llvm-project/clang/test/Analysis/Inputs/system-header-simulator-cxx.h

680 lines
21 KiB
C++

// Like the compiler, the static analyzer treats some functions differently if
// they come from a system header -- for example, it is assumed that system
// functions do not arbitrarily free() their parameters, and that some bugs
// found in system headers cannot be fixed by the user and should be
// suppressed.
#pragma clang system_header
typedef unsigned char uint8_t;
typedef __typeof__(sizeof(int)) size_t;
typedef __typeof__((char*)0-(char*)0) ptrdiff_t;
void *memmove(void *s1, const void *s2, size_t n);
namespace std {
struct input_iterator_tag { };
struct output_iterator_tag { };
struct forward_iterator_tag : public input_iterator_tag { };
struct bidirectional_iterator_tag : public forward_iterator_tag { };
struct random_access_iterator_tag : public bidirectional_iterator_tag { };
template <typename Iterator> struct iterator_traits {
typedef typename Iterator::difference_type difference_type;
typedef typename Iterator::value_type value_type;
typedef typename Iterator::pointer pointer;
typedef typename Iterator::reference reference;
typedef typename Iterator::iterator_category iterator_category;
};
}
template <typename T, typename Ptr, typename Ref> struct __vector_iterator {
typedef __vector_iterator<T, T *, T &> iterator;
typedef __vector_iterator<T, const T *, const T &> const_iterator;
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef Ptr pointer;
typedef Ref reference;
typedef std::random_access_iterator_tag iterator_category;
__vector_iterator(const Ptr p = 0) : ptr(p) {}
__vector_iterator(const iterator &rhs): ptr(rhs.base()) {}
__vector_iterator<T, Ptr, Ref> operator++() { ++ ptr; return *this; }
__vector_iterator<T, Ptr, Ref> operator++(int) {
auto tmp = *this;
++ ptr;
return tmp;
}
__vector_iterator<T, Ptr, Ref> operator--() { -- ptr; return *this; }
__vector_iterator<T, Ptr, Ref> operator--(int) {
auto tmp = *this; -- ptr;
return tmp;
}
__vector_iterator<T, Ptr, Ref> operator+(difference_type n) {
return ptr + n;
}
__vector_iterator<T, Ptr, Ref> operator-(difference_type n) {
return ptr - n;
}
__vector_iterator<T, Ptr, Ref> operator+=(difference_type n) {
return ptr += n;
}
__vector_iterator<T, Ptr, Ref> operator-=(difference_type n) {
return ptr -= n;
}
Ref operator*() const { return *ptr; }
Ptr operator->() const { return *ptr; }
bool operator==(const iterator &rhs) const { return ptr == rhs.ptr; }
bool operator==(const const_iterator &rhs) const { return ptr == rhs.ptr; }
bool operator!=(const iterator &rhs) const { return ptr != rhs.ptr; }
bool operator!=(const const_iterator &rhs) const { return ptr != rhs.ptr; }
const Ptr& base() const { return ptr; }
private:
Ptr ptr;
};
template <typename T, typename Ptr, typename Ref> struct __deque_iterator {
typedef __deque_iterator<T, T *, T &> iterator;
typedef __deque_iterator<T, const T *, const T &> const_iterator;
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef Ptr pointer;
typedef Ref reference;
typedef std::random_access_iterator_tag iterator_category;
__deque_iterator(const Ptr p = 0) : ptr(p) {}
__deque_iterator(const iterator &rhs): ptr(rhs.base()) {}
__deque_iterator<T, Ptr, Ref> operator++() { ++ ptr; return *this; }
__deque_iterator<T, Ptr, Ref> operator++(int) {
auto tmp = *this;
++ ptr;
return tmp;
}
__deque_iterator<T, Ptr, Ref> operator--() { -- ptr; return *this; }
__deque_iterator<T, Ptr, Ref> operator--(int) {
auto tmp = *this; -- ptr;
return tmp;
}
__deque_iterator<T, Ptr, Ref> operator+(difference_type n) {
return ptr + n;
}
__deque_iterator<T, Ptr, Ref> operator-(difference_type n) {
return ptr - n;
}
__deque_iterator<T, Ptr, Ref> operator+=(difference_type n) {
return ptr += n;
}
__deque_iterator<T, Ptr, Ref> operator-=(difference_type n) {
return ptr -= n;
}
Ref operator*() const { return *ptr; }
Ptr operator->() const { return *ptr; }
bool operator==(const iterator &rhs) const { return ptr == rhs.ptr; }
bool operator==(const const_iterator &rhs) const { return ptr == rhs.ptr; }
bool operator!=(const iterator &rhs) const { return ptr != rhs.ptr; }
bool operator!=(const const_iterator &rhs) const { return ptr != rhs.ptr; }
const Ptr& base() const { return ptr; }
private:
Ptr ptr;
};
template <typename T, typename Ptr, typename Ref> struct __list_iterator {
typedef __list_iterator<T, __typeof__(T::data) *, __typeof__(T::data) &> iterator;
typedef __list_iterator<T, const __typeof__(T::data) *, const __typeof__(T::data) &> const_iterator;
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef Ptr pointer;
typedef Ref reference;
typedef std::bidirectional_iterator_tag iterator_category;
__list_iterator(T* it = 0) : item(it) {}
__list_iterator(const iterator &rhs): item(rhs.base()) {}
__list_iterator<T, Ptr, Ref> operator++() { item = item->next; return *this; }
__list_iterator<T, Ptr, Ref> operator++(int) {
auto tmp = *this;
item = item->next;
return tmp;
}
__list_iterator<T, Ptr, Ref> operator--() { item = item->prev; return *this; }
__list_iterator<T, Ptr, Ref> operator--(int) {
auto tmp = *this;
item = item->prev;
return tmp;
}
Ref operator*() const { return item->data; }
Ptr operator->() const { return item->data; }
bool operator==(const iterator &rhs) const { return item == rhs->item; }
bool operator==(const const_iterator &rhs) const { return item == rhs->item; }
bool operator!=(const iterator &rhs) const { return item != rhs->item; }
bool operator!=(const const_iterator &rhs) const { return item != rhs->item; }
const T* &base() const { return item; }
private:
T* item;
};
template <typename T, typename Ptr, typename Ref> struct __fwdl_iterator {
typedef __fwdl_iterator<T, __typeof__(T::data) *, __typeof__(T::data) &> iterator;
typedef __fwdl_iterator<T, const __typeof__(T::data) *, const __typeof__(T::data) &> const_iterator;
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef Ptr pointer;
typedef Ref reference;
typedef std::forward_iterator_tag iterator_category;
__fwdl_iterator(T* it = 0) : item(it) {}
__fwdl_iterator(const iterator &rhs): item(rhs.base()) {}
__fwdl_iterator<T, Ptr, Ref> operator++() { item = item->next; return *this; }
__fwdl_iterator<T, Ptr, Ref> operator++(int) {
auto tmp = *this;
item = item->next;
return tmp;
}
Ref operator*() const { return item->data; }
Ptr operator->() const { return item->data; }
bool operator==(const iterator &rhs) const { return item == rhs->item; }
bool operator==(const const_iterator &rhs) const { return item == rhs->item; }
bool operator!=(const iterator &rhs) const { return item != rhs->item; }
bool operator!=(const const_iterator &rhs) const { return item != rhs->item; }
const T* &base() const { return item; }
private:
T* item;
};
namespace std {
template <class T1, class T2>
struct pair {
T1 first;
T2 second;
pair() : first(), second() {}
pair(const T1 &a, const T2 &b) : first(a), second(b) {}
template<class U1, class U2>
pair(const pair<U1, U2> &other) : first(other.first),
second(other.second) {}
};
typedef __typeof__(sizeof(int)) size_t;
template <class T> class initializer_list;
template< class T > struct remove_reference {typedef T type;};
template< class T > struct remove_reference<T&> {typedef T type;};
template< class T > struct remove_reference<T&&> {typedef T type;};
template<class T>
typename remove_reference<T>::type&& move(T&& a) {
typedef typename remove_reference<T>::type&& RvalRef;
return static_cast<RvalRef>(a);
}
template<typename T>
class vector {
typedef T value_type;
typedef size_t size_type;
typedef __vector_iterator<T, T *, T &> iterator;
typedef __vector_iterator<T, const T *, const T &> const_iterator;
T *_start;
T *_finish;
T *_end_of_storage;
public:
vector() : _start(0), _finish(0), _end_of_storage(0) {}
template <typename InputIterator>
vector(InputIterator first, InputIterator last);
vector(const vector &other);
vector(vector &&other);
~vector();
size_t size() const {
return size_t(_finish - _start);
}
vector& operator=(const vector &other);
vector& operator=(vector &&other);
vector& operator=(std::initializer_list<T> ilist);
void assign(size_type count, const T &value);
template <typename InputIterator >
void assign(InputIterator first, InputIterator last);
void assign(std::initializer_list<T> ilist);
void clear();
void push_back(const T &value);
void push_back(T &&value);
void pop_back();
T &operator[](size_t n) {
return _start[n];
}
const T &operator[](size_t n) const {
return _start[n];
}
iterator begin() { return iterator(_start); }
const_iterator begin() const { return const_iterator(_start); }
const_iterator cbegin() const { return const_iterator(_start); }
iterator end() { return iterator(_finish); }
const_iterator end() const { return const_iterator(_finish); }
const_iterator cend() const { return const_iterator(_finish); }
T& front() { return *begin(); }
const T& front() const { return *begin(); }
T& back() { return *(end() - 1); }
const T& back() const { return *(end() - 1); }
};
template<typename T>
class list {
struct __item {
T data;
__item *prev, *next;
} *_start, *_finish;
public:
typedef T value_type;
typedef size_t size_type;
typedef __list_iterator<__item, T *, T &> iterator;
typedef __list_iterator<__item, const T *, const T &> const_iterator;
list() : _start(0), _finish(0) {}
template <typename InputIterator>
list(InputIterator first, InputIterator last);
list(const list &other);
list(list &&other);
~list();
list& operator=(const list &other);
list& operator=(list &&other);
list& operator=(std::initializer_list<T> ilist);
void assign(size_type count, const T &value);
template <typename InputIterator >
void assign(InputIterator first, InputIterator last);
void assign(std::initializer_list<T> ilist);
void clear();
void push_back(const T &value);
void push_back(T &&value);
void pop_back();
void push_front(const T &value);
void push_front(T &&value);
void pop_front();
iterator begin() { return iterator(_start); }
const_iterator begin() const { return const_iterator(_start); }
const_iterator cbegin() const { return const_iterator(_start); }
iterator end() { return iterator(_finish); }
const_iterator end() const { return const_iterator(_finish); }
const_iterator cend() const { return const_iterator(_finish); }
T& front() { return *begin(); }
const T& front() const { return *begin(); }
T& back() { return *--end(); }
const T& back() const { return *--end(); }
};
template<typename T>
class deque {
typedef T value_type;
typedef size_t size_type;
typedef __deque_iterator<T, T *, T &> iterator;
typedef __deque_iterator<T, const T *, const T &> const_iterator;
T *_start;
T *_finish;
T *_end_of_storage;
public:
deque() : _start(0), _finish(0), _end_of_storage(0) {}
template <typename InputIterator>
deque(InputIterator first, InputIterator last);
deque(const deque &other);
deque(deque &&other);
~deque();
size_t size() const {
return size_t(_finish - _start);
}
deque& operator=(const deque &other);
deque& operator=(deque &&other);
deque& operator=(std::initializer_list<T> ilist);
void assign(size_type count, const T &value);
template <typename InputIterator >
void assign(InputIterator first, InputIterator last);
void assign(std::initializer_list<T> ilist);
void clear();
void push_back(const T &value);
void push_back(T &&value);
void pop_back();
void push_front(const T &value);
void push_front(T &&value);
void pop_front();
T &operator[](size_t n) {
return _start[n];
}
const T &operator[](size_t n) const {
return _start[n];
}
iterator begin() { return iterator(_start); }
const_iterator begin() const { return const_iterator(_start); }
const_iterator cbegin() const { return const_iterator(_start); }
iterator end() { return iterator(_finish); }
const_iterator end() const { return const_iterator(_finish); }
const_iterator cend() const { return const_iterator(_finish); }
T& front() { return *begin(); }
const T& front() const { return *begin(); }
T& back() { return *(end() - 1); }
const T& back() const { return *(end() - 1); }
};
template<typename T>
class forward_list {
struct __item {
T data;
__item *next;
} *_start;
public:
typedef T value_type;
typedef size_t size_type;
typedef __fwdl_iterator<__item, T *, T &> iterator;
typedef __fwdl_iterator<__item, const T *, const T &> const_iterator;
forward_list() : _start(0) {}
template <typename InputIterator>
forward_list(InputIterator first, InputIterator last);
forward_list(const forward_list &other);
forward_list(forward_list &&other);
~forward_list();
forward_list& operator=(const forward_list &other);
forward_list& operator=(forward_list &&other);
forward_list& operator=(std::initializer_list<T> ilist);
void assign(size_type count, const T &value);
template <typename InputIterator >
void assign(InputIterator first, InputIterator last);
void assign(std::initializer_list<T> ilist);
void clear();
void push_front(const T &value);
void push_front(T &&value);
void pop_front();
iterator begin() { return iterator(_start); }
const_iterator begin() const { return const_iterator(_start); }
const_iterator cbegin() const { return const_iterator(_start); }
iterator end() { return iterator(); }
const_iterator end() const { return const_iterator(); }
const_iterator cend() const { return const_iterator(); }
T& front() { return *begin(); }
const T& front() const { return *begin(); }
};
class exception {
public:
exception() throw();
virtual ~exception() throw();
virtual const char *what() const throw() {
return 0;
}
};
class bad_alloc : public exception {
public:
bad_alloc() throw();
bad_alloc(const bad_alloc&) throw();
bad_alloc& operator=(const bad_alloc&) throw();
virtual const char* what() const throw() {
return 0;
}
};
struct nothrow_t {};
extern const nothrow_t nothrow;
// libc++'s implementation
template <class _E>
class initializer_list
{
const _E* __begin_;
size_t __size_;
initializer_list(const _E* __b, size_t __s)
: __begin_(__b),
__size_(__s)
{}
public:
typedef _E value_type;
typedef const _E& reference;
typedef const _E& const_reference;
typedef size_t size_type;
typedef const _E* iterator;
typedef const _E* const_iterator;
initializer_list() : __begin_(0), __size_(0) {}
size_t size() const {return __size_;}
const _E* begin() const {return __begin_;}
const _E* end() const {return __begin_ + __size_;}
};
template <bool, class _Tp = void> struct enable_if {};
template <class _Tp> struct enable_if<true, _Tp> {typedef _Tp type;};
template <class _Tp, _Tp __v>
struct integral_constant
{
static const _Tp value = __v;
typedef _Tp value_type;
typedef integral_constant type;
operator value_type() const {return value;}
value_type operator ()() const {return value;}
};
template <class _Tp, _Tp __v>
const _Tp integral_constant<_Tp, __v>::value;
template <class _Tp, class _Arg>
struct is_trivially_assignable
: integral_constant<bool, __is_trivially_assignable(_Tp, _Arg)>
{
};
typedef integral_constant<bool,true> true_type;
typedef integral_constant<bool,false> false_type;
template <class _Tp> struct is_const : public false_type {};
template <class _Tp> struct is_const<_Tp const> : public true_type {};
template <class _Tp> struct is_reference : public false_type {};
template <class _Tp> struct is_reference<_Tp&> : public true_type {};
template <class _Tp, class _Up> struct is_same : public false_type {};
template <class _Tp> struct is_same<_Tp, _Tp> : public true_type {};
template <class _Tp, bool = is_const<_Tp>::value || is_reference<_Tp>::value >
struct __add_const {typedef _Tp type;};
template <class _Tp>
struct __add_const<_Tp, false> {typedef const _Tp type;};
template <class _Tp> struct add_const {typedef typename __add_const<_Tp>::type type;};
template <class _Tp> struct remove_const {typedef _Tp type;};
template <class _Tp> struct remove_const<const _Tp> {typedef _Tp type;};
template <class _Tp> struct add_lvalue_reference {typedef _Tp& type;};
template <class _Tp> struct is_trivially_copy_assignable
: public is_trivially_assignable<typename add_lvalue_reference<_Tp>::type,
typename add_lvalue_reference<typename add_const<_Tp>::type>::type> {};
template<class InputIter, class OutputIter>
OutputIter __copy(InputIter II, InputIter IE, OutputIter OI) {
while (II != IE)
*OI++ = *II++;
return OI;
}
template <class _Tp, class _Up>
inline
typename enable_if
<
is_same<typename remove_const<_Tp>::type, _Up>::value &&
is_trivially_copy_assignable<_Up>::value,
_Up*
>::type __copy(_Tp* __first, _Tp* __last, _Up* __result) {
size_t __n = __last - __first;
if (__n > 0)
memmove(__result, __first, __n * sizeof(_Up));
return __result + __n;
}
template<class InputIter, class OutputIter>
OutputIter copy(InputIter II, InputIter IE, OutputIter OI) {
return __copy(II, IE, OI);
}
template <class _BidirectionalIterator, class _OutputIterator>
inline
_OutputIterator
__copy_backward(_BidirectionalIterator __first, _BidirectionalIterator __last,
_OutputIterator __result)
{
while (__first != __last)
*--__result = *--__last;
return __result;
}
template <class _Tp, class _Up>
inline
typename enable_if
<
is_same<typename remove_const<_Tp>::type, _Up>::value &&
is_trivially_copy_assignable<_Up>::value,
_Up*
>::type __copy_backward(_Tp* __first, _Tp* __last, _Up* __result) {
size_t __n = __last - __first;
if (__n > 0)
{
__result -= __n;
memmove(__result, __first, __n * sizeof(_Up));
}
return __result;
}
template<class InputIter, class OutputIter>
OutputIter copy_backward(InputIter II, InputIter IE, OutputIter OI) {
return __copy_backward(II, IE, OI);
}
}
template <class BidirectionalIterator, class Distance>
void __advance (BidirectionalIterator& it, Distance n,
std::bidirectional_iterator_tag) {
if (n >= 0) while(n-- > 0) ++it; else while (n++<0) --it;
}
template <class RandomAccessIterator, class Distance>
void __advance (RandomAccessIterator& it, Distance n,
std::random_access_iterator_tag) {
it += n;
}
namespace std {
template <class InputIterator, class Distance>
void advance (InputIterator& it, Distance n) {
__advance(it, n, typename InputIterator::iterator_category());
}
template <class BidirectionalIterator>
BidirectionalIterator
prev (BidirectionalIterator it,
typename iterator_traits<BidirectionalIterator>::difference_type n =
1) {
advance(it, -n);
return it;
}
template <class InputIterator, class T>
InputIterator find(InputIterator first, InputIterator last, const T &val);
template <class InputIterator, class OutputIterator>
OutputIterator copy(InputIterator first, InputIterator last,
OutputIterator result);
}
#ifdef TEST_INLINABLE_ALLOCATORS
namespace std {
void *malloc(size_t);
void free(void *);
}
void* operator new(std::size_t size, const std::nothrow_t&) throw() { return std::malloc(size); }
void* operator new[](std::size_t size, const std::nothrow_t&) throw() { return std::malloc(size); }
void operator delete(void* ptr, const std::nothrow_t&) throw() { std::free(ptr); }
void operator delete[](void* ptr, const std::nothrow_t&) throw() { std::free(ptr); }
#else
void* operator new(std::size_t, const std::nothrow_t&) throw();
void* operator new[](std::size_t, const std::nothrow_t&) throw();
void operator delete(void*, const std::nothrow_t&) throw();
void operator delete[](void*, const std::nothrow_t&) throw();
#endif
void* operator new (std::size_t size, void* ptr) throw() { return ptr; };
void* operator new[] (std::size_t size, void* ptr) throw() { return ptr; };
void operator delete (void* ptr, void*) throw() {};
void operator delete[] (void* ptr, void*) throw() {};
namespace __cxxabiv1 {
extern "C" {
extern char *__cxa_demangle(const char *mangled_name,
char *output_buffer,
size_t *length,
int *status);
}}
namespace abi = __cxxabiv1;