llvm-project/llvm/lib/Target/ARM/ARMCodeGenPrepare.cpp

766 lines
24 KiB
C++

//===----- ARMCodeGenPrepare.cpp ------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass inserts intrinsics to handle small types that would otherwise be
/// promoted during legalization. Here we can manually promote types or insert
/// intrinsics which can handle narrow types that aren't supported by the
/// register classes.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMSubtarget.h"
#include "ARMTargetMachine.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#define DEBUG_TYPE "arm-codegenprepare"
using namespace llvm;
static cl::opt<bool>
DisableCGP("arm-disable-cgp", cl::Hidden, cl::init(false),
cl::desc("Disable ARM specific CodeGenPrepare pass"));
static cl::opt<bool>
EnableDSP("arm-enable-scalar-dsp", cl::Hidden, cl::init(false),
cl::desc("Use DSP instructions for scalar operations"));
static cl::opt<bool>
EnableDSPWithImms("arm-enable-scalar-dsp-imms", cl::Hidden, cl::init(false),
cl::desc("Use DSP instructions for scalar operations\
with immediate operands"));
// The goal of this pass is to enable more efficient code generation for
// operations on narrow types (i.e. types with < 32-bits) and this is a
// motivating IR code example:
//
// define hidden i32 @cmp(i8 zeroext) {
// %2 = add i8 %0, -49
// %3 = icmp ult i8 %2, 3
// ..
// }
//
// The issue here is that i8 is type-legalized to i32 because i8 is not a
// legal type. Thus, arithmetic is done in integer-precision, but then the
// byte value is masked out as follows:
//
// t19: i32 = add t4, Constant:i32<-49>
// t24: i32 = and t19, Constant:i32<255>
//
// Consequently, we generate code like this:
//
// subs r0, #49
// uxtb r1, r0
// cmp r1, #3
//
// This shows that masking out the byte value results in generation of
// the UXTB instruction. This is not optimal as r0 already contains the byte
// value we need, and so instead we can just generate:
//
// sub.w r1, r0, #49
// cmp r1, #3
//
// We achieve this by type promoting the IR to i32 like so for this example:
//
// define i32 @cmp(i8 zeroext %c) {
// %0 = zext i8 %c to i32
// %c.off = add i32 %0, -49
// %1 = icmp ult i32 %c.off, 3
// ..
// }
//
// For this to be valid and legal, we need to prove that the i32 add is
// producing the same value as the i8 addition, and that e.g. no overflow
// happens.
//
// A brief sketch of the algorithm and some terminology.
// We pattern match interesting IR patterns:
// - which have "sources": instructions producing narrow values (i8, i16), and
// - they have "sinks": instructions consuming these narrow values.
//
// We collect all instruction connecting sources and sinks in a worklist, so
// that we can mutate these instruction and perform type promotion when it is
// legal to do so.
namespace {
class IRPromoter {
SmallPtrSet<Value*, 8> NewInsts;
SmallVector<Instruction*, 4> InstsToRemove;
Module *M = nullptr;
LLVMContext &Ctx;
public:
IRPromoter(Module *M) : M(M), Ctx(M->getContext()) { }
void Cleanup() {
for (auto *I : InstsToRemove) {
LLVM_DEBUG(dbgs() << "ARM CGP: Removing " << *I << "\n");
I->dropAllReferences();
I->eraseFromParent();
}
InstsToRemove.clear();
NewInsts.clear();
}
void Mutate(Type *OrigTy,
SmallPtrSetImpl<Value*> &Visited,
SmallPtrSetImpl<Value*> &Sources,
SmallPtrSetImpl<Instruction*> &Sinks);
};
class ARMCodeGenPrepare : public FunctionPass {
const ARMSubtarget *ST = nullptr;
IRPromoter *Promoter = nullptr;
std::set<Value*> AllVisited;
bool isSupportedValue(Value *V);
bool isLegalToPromote(Value *V);
bool TryToPromote(Value *V);
public:
static char ID;
static unsigned TypeSize;
Type *OrigTy = nullptr;
ARMCodeGenPrepare() : FunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetPassConfig>();
}
StringRef getPassName() const override { return "ARM IR optimizations"; }
bool doInitialization(Module &M) override;
bool runOnFunction(Function &F) override;
bool doFinalization(Module &M) override;
};
}
static bool generateSignBits(Value *V) {
if (!isa<Instruction>(V))
return false;
unsigned Opc = cast<Instruction>(V)->getOpcode();
return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
Opc == Instruction::SRem;
}
/// Some instructions can use 8- and 16-bit operands, and we don't need to
/// promote anything larger. We disallow booleans to make life easier when
/// dealing with icmps but allow any other integer that is <= 16 bits. Void
/// types are accepted so we can handle switches.
static bool isSupportedType(Value *V) {
LLVM_DEBUG(dbgs() << "ARM CGP: isSupportedType: " << *V << "\n");
Type *Ty = V->getType();
// Allow voids and pointers, these won't be promoted.
if (Ty->isVoidTy() || Ty->isPointerTy())
return true;
if (auto *Ld = dyn_cast<LoadInst>(V))
Ty = cast<PointerType>(Ld->getPointerOperandType())->getElementType();
const IntegerType *IntTy = dyn_cast<IntegerType>(Ty);
if (!IntTy) {
LLVM_DEBUG(dbgs() << "ARM CGP: No, not an integer.\n");
return false;
}
return IntTy->getBitWidth() == ARMCodeGenPrepare::TypeSize;
}
/// Return true if the given value is a source in the use-def chain, producing
/// a narrow (i8, i16) value. These values will be zext to start the promotion
/// of the tree to i32. We guarantee that these won't populate the upper bits
/// of the register. ZExt on the loads will be free, and the same for call
/// return values because we only accept ones that guarantee a zeroext ret val.
/// Many arguments will have the zeroext attribute too, so those would be free
/// too.
static bool isSource(Value *V) {
if (!isa<IntegerType>(V->getType()))
return false;
// TODO Allow truncs and zext to be sources.
if (isa<Argument>(V))
return true;
else if (isa<LoadInst>(V))
return true;
else if (isa<BitCastInst>(V))
return true;
else if (auto *Call = dyn_cast<CallInst>(V))
return Call->hasRetAttr(Attribute::AttrKind::ZExt);
return false;
}
/// Return true if V will require any promoted values to be truncated for the
/// the IR to remain valid. We can't mutate the value type of these
/// instructions.
static bool isSink(Value *V) {
// TODO The truncate also isn't actually necessary because we would already
// proved that the data value is kept within the range of the original data
// type.
auto UsesNarrowValue = [](Value *V) {
return V->getType()->getScalarSizeInBits() == ARMCodeGenPrepare::TypeSize;
};
if (auto *Store = dyn_cast<StoreInst>(V))
return UsesNarrowValue(Store->getValueOperand());
if (auto *Return = dyn_cast<ReturnInst>(V))
return UsesNarrowValue(Return->getReturnValue());
if (auto *Trunc = dyn_cast<TruncInst>(V))
return UsesNarrowValue(Trunc->getOperand(0));
if (auto *ZExt = dyn_cast<ZExtInst>(V))
return UsesNarrowValue(ZExt->getOperand(0));
if (auto *ICmp = dyn_cast<ICmpInst>(V))
return ICmp->isSigned();
return isa<CallInst>(V);
}
/// Return whether the instruction can be promoted within any modifications to
/// it's operands or result.
static bool isSafeOverflow(Instruction *I) {
// FIXME Do we need NSW too?
if (isa<OverflowingBinaryOperator>(I) && I->hasNoUnsignedWrap())
return true;
unsigned Opc = I->getOpcode();
if (Opc == Instruction::Add || Opc == Instruction::Sub) {
// We don't care if the add or sub could wrap if the value is decreasing
// and is only being used by an unsigned compare.
if (!I->hasOneUse() ||
!isa<ICmpInst>(*I->user_begin()) ||
!isa<ConstantInt>(I->getOperand(1)))
return false;
auto *CI = cast<ICmpInst>(*I->user_begin());
if (CI->isSigned())
return false;
bool NegImm = cast<ConstantInt>(I->getOperand(1))->isNegative();
bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) ||
((Opc == Instruction::Add) && NegImm);
if (!IsDecreasing)
return false;
LLVM_DEBUG(dbgs() << "ARM CGP: Allowing safe overflow for " << *I << "\n");
return true;
}
return false;
}
static bool shouldPromote(Value *V) {
if (!isa<IntegerType>(V->getType()) || isSink(V)) {
LLVM_DEBUG(dbgs() << "ARM CGP: Don't need to promote: " << *V << "\n");
return false;
}
if (isSource(V))
return true;
auto *I = dyn_cast<Instruction>(V);
if (!I)
return false;
if (isa<ICmpInst>(I))
return false;
return true;
}
/// Return whether we can safely mutate V's type to ExtTy without having to be
/// concerned with zero extending or truncation.
static bool isPromotedResultSafe(Value *V) {
if (!isa<Instruction>(V))
return true;
if (generateSignBits(V))
return false;
// If I is only being used by something that will require its value to be
// truncated, then we don't care about the promoted result.
auto *I = cast<Instruction>(V);
if (I->hasOneUse() && isSink(*I->use_begin()))
return true;
if (isa<OverflowingBinaryOperator>(I))
return isSafeOverflow(I);
return true;
}
/// Return the intrinsic for the instruction that can perform the same
/// operation but on a narrow type. This is using the parallel dsp intrinsics
/// on scalar values.
static Intrinsic::ID getNarrowIntrinsic(Instruction *I) {
// Whether we use the signed or unsigned versions of these intrinsics
// doesn't matter because we're not using the GE bits that they set in
// the APSR.
switch(I->getOpcode()) {
default:
break;
case Instruction::Add:
return ARMCodeGenPrepare::TypeSize == 16 ? Intrinsic::arm_uadd16 :
Intrinsic::arm_uadd8;
case Instruction::Sub:
return ARMCodeGenPrepare::TypeSize == 16 ? Intrinsic::arm_usub16 :
Intrinsic::arm_usub8;
}
llvm_unreachable("unhandled opcode for narrow intrinsic");
}
void IRPromoter::Mutate(Type *OrigTy,
SmallPtrSetImpl<Value*> &Visited,
SmallPtrSetImpl<Value*> &Sources,
SmallPtrSetImpl<Instruction*> &Sinks) {
IRBuilder<> Builder{Ctx};
Type *ExtTy = Type::getInt32Ty(M->getContext());
SmallPtrSet<Value*, 8> Promoted;
LLVM_DEBUG(dbgs() << "ARM CGP: Promoting use-def chains to from "
<< ARMCodeGenPrepare::TypeSize << " to 32-bits\n");
// Cache original types.
DenseMap<Value*, Type*> TruncTysMap;
for (auto *V : Visited)
TruncTysMap[V] = V->getType();
auto ReplaceAllUsersOfWith = [&](Value *From, Value *To) {
SmallVector<Instruction*, 4> Users;
Instruction *InstTo = dyn_cast<Instruction>(To);
for (Use &U : From->uses()) {
auto *User = cast<Instruction>(U.getUser());
if (InstTo && User->isIdenticalTo(InstTo))
continue;
Users.push_back(User);
}
for (auto &U : Users)
U->replaceUsesOfWith(From, To);
};
auto FixConst = [&](ConstantInt *Const, Instruction *I) {
Constant *NewConst = isSafeOverflow(I) && Const->isNegative() ?
ConstantExpr::getSExt(Const, ExtTy) :
ConstantExpr::getZExt(Const, ExtTy);
I->replaceUsesOfWith(Const, NewConst);
};
auto InsertDSPIntrinsic = [&](Instruction *I) {
LLVM_DEBUG(dbgs() << "ARM CGP: Inserting DSP intrinsic for "
<< *I << "\n");
Function *DSPInst =
Intrinsic::getDeclaration(M, getNarrowIntrinsic(I));
Builder.SetInsertPoint(I);
Builder.SetCurrentDebugLocation(I->getDebugLoc());
Value *Args[] = { I->getOperand(0), I->getOperand(1) };
CallInst *Call = Builder.CreateCall(DSPInst, Args);
ReplaceAllUsersOfWith(I, Call);
InstsToRemove.push_back(I);
NewInsts.insert(Call);
TruncTysMap[Call] = OrigTy;
};
auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
LLVM_DEBUG(dbgs() << "ARM CGP: Inserting ZExt for " << *V << "\n");
Builder.SetInsertPoint(InsertPt);
if (auto *I = dyn_cast<Instruction>(V))
Builder.SetCurrentDebugLocation(I->getDebugLoc());
auto *ZExt = cast<Instruction>(Builder.CreateZExt(V, ExtTy));
if (isa<Argument>(V))
ZExt->moveBefore(InsertPt);
else
ZExt->moveAfter(InsertPt);
ReplaceAllUsersOfWith(V, ZExt);
NewInsts.insert(ZExt);
TruncTysMap[ZExt] = TruncTysMap[V];
};
// First, insert extending instructions between the sources and their users.
LLVM_DEBUG(dbgs() << "ARM CGP: Promoting sources:\n");
for (auto V : Sources) {
LLVM_DEBUG(dbgs() << " - " << *V << "\n");
if (auto *I = dyn_cast<Instruction>(V))
InsertZExt(I, I);
else if (auto *Arg = dyn_cast<Argument>(V)) {
BasicBlock &BB = Arg->getParent()->front();
InsertZExt(Arg, &*BB.getFirstInsertionPt());
} else {
llvm_unreachable("unhandled source that needs extending");
}
Promoted.insert(V);
}
LLVM_DEBUG(dbgs() << "ARM CGP: Mutating the tree..\n");
// Then mutate the types of the instructions within the tree. Here we handle
// constant operands.
for (auto *V : Visited) {
if (Sources.count(V))
continue;
auto *I = cast<Instruction>(V);
if (Sinks.count(I))
continue;
for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
Value *Op = I->getOperand(i);
if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
continue;
if (auto *Const = dyn_cast<ConstantInt>(Op))
FixConst(Const, I);
else if (isa<UndefValue>(Op))
I->setOperand(i, UndefValue::get(ExtTy));
}
if (shouldPromote(I)) {
I->mutateType(ExtTy);
Promoted.insert(I);
}
}
// Now we need to remove any zexts that have become unnecessary, as well
// as insert any intrinsics.
for (auto *V : Visited) {
if (Sources.count(V))
continue;
if (!shouldPromote(V) || isPromotedResultSafe(V))
continue;
// Replace unsafe instructions with appropriate intrinsic calls.
InsertDSPIntrinsic(cast<Instruction>(V));
}
auto InsertTrunc = [&](Value *V) -> Instruction* {
if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
return nullptr;
if ((!Promoted.count(V) && !NewInsts.count(V)) || !TruncTysMap.count(V) ||
Sources.count(V))
return nullptr;
Type *TruncTy = TruncTysMap[V];
if (TruncTy == ExtTy)
return nullptr;
LLVM_DEBUG(dbgs() << "ARM CGP: Creating " << *TruncTy << " Trunc for "
<< *V << "\n");
Builder.SetInsertPoint(cast<Instruction>(V));
auto *Trunc = cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
NewInsts.insert(Trunc);
return Trunc;
};
LLVM_DEBUG(dbgs() << "ARM CGP: Fixing up the sinks:\n");
// Fix up any stores or returns that use the results of the promoted
// chain.
for (auto I : Sinks) {
LLVM_DEBUG(dbgs() << " - " << *I << "\n");
// Handle calls separately as we need to iterate over arg operands.
if (auto *Call = dyn_cast<CallInst>(I)) {
for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
Value *Arg = Call->getArgOperand(i);
if (Instruction *Trunc = InsertTrunc(Arg)) {
Trunc->moveBefore(Call);
Call->setArgOperand(i, Trunc);
}
}
continue;
}
// Now handle the others.
for (unsigned i = 0; i < I->getNumOperands(); ++i) {
if (Instruction *Trunc = InsertTrunc(I->getOperand(i))) {
Trunc->moveBefore(I);
I->setOperand(i, Trunc);
}
}
}
LLVM_DEBUG(dbgs() << "ARM CGP: Mutation complete:\n");
}
/// We accept most instructions, as well as Arguments and ConstantInsts. We
/// Disallow casts other than zext and truncs and only allow calls if their
/// return value is zeroext. We don't allow opcodes that can introduce sign
/// bits.
bool ARMCodeGenPrepare::isSupportedValue(Value *V) {
LLVM_DEBUG(dbgs() << "ARM CGP: Is " << *V << " supported?\n");
if (isa<ICmpInst>(V))
return true;
// Memory instructions
if (isa<StoreInst>(V) || isa<GetElementPtrInst>(V))
return true;
// Branches and targets.
if( isa<BranchInst>(V) || isa<SwitchInst>(V) || isa<BasicBlock>(V))
return true;
// Non-instruction values that we can handle.
if ((isa<Constant>(V) && !isa<ConstantExpr>(V)) || isa<Argument>(V))
return isSupportedType(V);
if (isa<PHINode>(V) || isa<SelectInst>(V) || isa<ReturnInst>(V) ||
isa<LoadInst>(V))
return isSupportedType(V);
if (isa<CastInst>(V) && !isa<SExtInst>(V))
return isSupportedType(cast<CastInst>(V)->getOperand(0));
// Special cases for calls as we need to check for zeroext
// TODO We should accept calls even if they don't have zeroext, as they can
// still be sinks.
if (auto *Call = dyn_cast<CallInst>(V))
return isSupportedType(Call) &&
Call->hasRetAttr(Attribute::AttrKind::ZExt);
if (!isa<BinaryOperator>(V)) {
LLVM_DEBUG(dbgs() << "ARM CGP: No, not a binary operator.\n");
return false;
}
if (!isSupportedType(V))
return false;
if (generateSignBits(V)) {
LLVM_DEBUG(dbgs() << "ARM CGP: No, instruction can generate sign bits.\n");
return false;
}
return true;
}
/// Check that the type of V would be promoted and that the original type is
/// smaller than the targeted promoted type. Check that we're not trying to
/// promote something larger than our base 'TypeSize' type.
bool ARMCodeGenPrepare::isLegalToPromote(Value *V) {
if (isPromotedResultSafe(V))
return true;
auto *I = dyn_cast<Instruction>(V);
if (!I)
return false;
// If promotion is not safe, can we use a DSP instruction to natively
// handle the narrow type?
if (!ST->hasDSP() || !EnableDSP || !isSupportedType(I))
return false;
if (ST->isThumb() && !ST->hasThumb2())
return false;
if (I->getOpcode() != Instruction::Add && I->getOpcode() != Instruction::Sub)
return false;
// TODO
// Would it be profitable? For Thumb code, these parallel DSP instructions
// are only Thumb-2, so we wouldn't be able to dual issue on Cortex-M33. For
// Cortex-A, specifically Cortex-A72, the latency is double and throughput is
// halved. They also do not take immediates as operands.
for (auto &Op : I->operands()) {
if (isa<Constant>(Op)) {
if (!EnableDSPWithImms)
return false;
}
}
return true;
}
bool ARMCodeGenPrepare::TryToPromote(Value *V) {
OrigTy = V->getType();
TypeSize = OrigTy->getPrimitiveSizeInBits();
if (TypeSize > 16 || TypeSize < 8)
return false;
if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
return false;
LLVM_DEBUG(dbgs() << "ARM CGP: TryToPromote: " << *V << ", TypeSize = "
<< TypeSize << "\n");
SetVector<Value*> WorkList;
SmallPtrSet<Value*, 8> Sources;
SmallPtrSet<Instruction*, 4> Sinks;
WorkList.insert(V);
SmallPtrSet<Value*, 16> CurrentVisited;
CurrentVisited.clear();
// Return true if V was added to the worklist as a supported instruction,
// if it was already visited, or if we don't need to explore it (e.g.
// pointer values and GEPs), and false otherwise.
auto AddLegalInst = [&](Value *V) {
if (CurrentVisited.count(V))
return true;
// Ignore GEPs because they don't need promoting and the constant indices
// will prevent the transformation.
if (isa<GetElementPtrInst>(V))
return true;
if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
LLVM_DEBUG(dbgs() << "ARM CGP: Can't handle: " << *V << "\n");
return false;
}
WorkList.insert(V);
return true;
};
// Iterate through, and add to, a tree of operands and users in the use-def.
while (!WorkList.empty()) {
Value *V = WorkList.back();
WorkList.pop_back();
if (CurrentVisited.count(V))
continue;
// Ignore non-instructions, other than arguments.
if (!isa<Instruction>(V) && !isSource(V))
continue;
// If we've already visited this value from somewhere, bail now because
// the tree has already been explored.
// TODO: This could limit the transform, ie if we try to promote something
// from an i8 and fail first, before trying an i16.
if (AllVisited.count(V)) {
LLVM_DEBUG(dbgs() << "ARM CGP: Already visited this: " << *V << "\n");
return false;
}
CurrentVisited.insert(V);
AllVisited.insert(V);
// Calls can be both sources and sinks.
if (isSink(V))
Sinks.insert(cast<Instruction>(V));
if (isSource(V))
Sources.insert(V);
else if (auto *I = dyn_cast<Instruction>(V)) {
// Visit operands of any instruction visited.
for (auto &U : I->operands()) {
if (!AddLegalInst(U))
return false;
}
}
// Don't visit users of a node which isn't going to be mutated unless its a
// source.
if (isSource(V) || shouldPromote(V)) {
for (Use &U : V->uses()) {
if (!AddLegalInst(U.getUser()))
return false;
}
}
}
LLVM_DEBUG(dbgs() << "ARM CGP: Visited nodes:\n";
for (auto *I : CurrentVisited)
I->dump();
);
unsigned ToPromote = 0;
for (auto *V : CurrentVisited) {
if (Sources.count(V))
continue;
if (Sinks.count(cast<Instruction>(V)))
continue;
++ToPromote;
}
if (ToPromote < 2)
return false;
Promoter->Mutate(OrigTy, CurrentVisited, Sources, Sinks);
return true;
}
bool ARMCodeGenPrepare::doInitialization(Module &M) {
Promoter = new IRPromoter(&M);
return false;
}
bool ARMCodeGenPrepare::runOnFunction(Function &F) {
if (skipFunction(F) || DisableCGP)
return false;
auto *TPC = &getAnalysis<TargetPassConfig>();
if (!TPC)
return false;
const TargetMachine &TM = TPC->getTM<TargetMachine>();
ST = &TM.getSubtarget<ARMSubtarget>(F);
bool MadeChange = false;
LLVM_DEBUG(dbgs() << "ARM CGP: Running on " << F.getName() << "\n");
// Search up from icmps to try to promote their operands.
for (BasicBlock &BB : F) {
auto &Insts = BB.getInstList();
for (auto &I : Insts) {
if (AllVisited.count(&I))
continue;
if (isa<ICmpInst>(I)) {
auto &CI = cast<ICmpInst>(I);
// Skip signed or pointer compares
if (CI.isSigned() || !isa<IntegerType>(CI.getOperand(0)->getType()))
continue;
LLVM_DEBUG(dbgs() << "ARM CGP: Searching from: " << CI << "\n");
for (auto &Op : CI.operands()) {
if (auto *I = dyn_cast<Instruction>(Op))
MadeChange |= TryToPromote(I);
}
}
}
Promoter->Cleanup();
LLVM_DEBUG(if (verifyFunction(F, &dbgs())) {
dbgs();
report_fatal_error("Broken function after type promotion");
});
}
if (MadeChange)
LLVM_DEBUG(dbgs() << "After ARMCodeGenPrepare: " << F << "\n");
return MadeChange;
}
bool ARMCodeGenPrepare::doFinalization(Module &M) {
delete Promoter;
return false;
}
INITIALIZE_PASS_BEGIN(ARMCodeGenPrepare, DEBUG_TYPE,
"ARM IR optimizations", false, false)
INITIALIZE_PASS_END(ARMCodeGenPrepare, DEBUG_TYPE, "ARM IR optimizations",
false, false)
char ARMCodeGenPrepare::ID = 0;
unsigned ARMCodeGenPrepare::TypeSize = 0;
FunctionPass *llvm::createARMCodeGenPreparePass() {
return new ARMCodeGenPrepare();
}