llvm-project/polly
Tobias Grosser 76164677f8 ScopDetection: Use SCEVValidator for memory accesses.
We currently run the old memory access checker in parallel, as we would
otherwise fail in TempScop because of currently unsupported functions. We will
remove the old memory access checker as soon as TempScop is fixed.

llvm-svn: 143654
2011-11-03 21:03:18 +00:00
..
autoconf configure: Add gmp_inc when checking for CLooG 2011-10-04 06:55:03 +00:00
cmake Add initial version of Polly 2011-04-29 06:27:02 +00:00
docs Add initial version of Polly 2011-04-29 06:27:02 +00:00
include TempScop: Remove unused SCEVAffFunc constructor 2011-11-03 21:03:10 +00:00
lib ScopDetection: Use SCEVValidator for memory accesses. 2011-11-03 21:03:18 +00:00
test TempScopInfo: Print the original SCEV instead of using SCEVAffFunc 2011-11-02 21:37:06 +00:00
tools Add initial version of Polly 2011-04-29 06:27:02 +00:00
utils Remove pollycc 2011-10-23 20:59:47 +00:00
www www: Change in cloog installation procedure 2011-10-26 12:25:49 +00:00
CMakeLists.txt Buildsystem: Add -no-rtti 2011-06-30 19:50:04 +00:00
CREDITS.txt (Test commit for polly) 2011-07-16 13:30:03 +00:00
LICENSE.txt Add initial version of Polly 2011-04-29 06:27:02 +00:00
Makefile Add initial version of Polly 2011-04-29 06:27:02 +00:00
Makefile.common.in Add initial version of Polly 2011-04-29 06:27:02 +00:00
Makefile.config.in Buildsystem: Add -no-rtti 2011-06-30 19:50:04 +00:00
README Remove some empty lines 2011-10-04 06:56:36 +00:00
configure configure: Add gmp_inc when checking for CLooG 2011-10-04 06:55:03 +00:00

README

Polly - Polyhedral optimizations for LLVM

Polly uses a mathematical representation, the polyhedral model, to represent and
transform loops and other control flow structures. Using an abstract
representation it is possible to reason about transformations in a more general
way and to use highly optimized linear programming libraries to figure out the
optimal loop structure. These transformations can be used to do constant
propagation through arrays, remove dead loop iterations, optimize loops for
cache locality, optimize arrays, apply advanced automatic parallelization, drive
vectorization, or they can be used to do software pipelining.