40 KiB
Table-driven Operation Definition Specification (ODS)
In addition to specializing the mlir::Op
C++ template, MLIR also supports
defining operations in a table-driven manner. This is achieved via
TableGen, which is both a generic language and its tooling to
maintain records of domain-specific information. Facts regarding an operation
are specified concisely into a TableGen record, which will be expanded into an
equivalent mlir::Op
C++ template specialization at compiler build time.
This manual explains in detail all the available mechanisms for defining operations in such a table-driven manner. It aims to be a specification instead of a tutorial. Please refer to Quickstart tutorial to adding MLIR graph rewrite for the latter.
In addition to detailing each mechanism, this manual also tries to capture best practices. They are rendered as quoted bullet points.
Motivation
MLIR allows pluggable dialects, and dialects contain, among others, a list of
operations. This open and extensible ecosystem leads to the "stringly" type IR
problem, e.g., repetitive string comparisons during optimization and analysis
passes, unintuitive accessor methods (e.g., generic/error prone getOperand(3)
vs self-documenting getStride()
) with more generic return types, verbose and
generic constructors without default arguments, verbose textual IR dump, and
so on. Furthermore, operation verification is:
- best case: a central string-to-verification-function map,
- middle case: duplication of verification across the code base, or
- worst case: no verification functions.
The fix is to support defining ops in a table-driven manner. Then for each dialect, we can have a central place that contains everything you need to know about each op, including its constraints, custom assembly form, etc. This description is also used to generate helper functions and classes to allow building, verification, parsing, printing, analysis, and many more.
Benefits
Compared to the C++ template, this table-driven approach has several benefits including but not limited to:
- Single source of truth: We strive to encode all facts regarding an operation into the record, so that readers don't need to jump among code snippets to fully understand an operation.
- Removing boilerplate: We can automatically generate operand/attribute/result getter methods, operation build methods, operation verify methods, and many more utilities from the record. This greatly reduces the boilerplate needed for defining a new op.
- Facilitating auto-generation: The usage of these operation information records are by no means limited to op definition itself. We can use them to drive the auto-generation of many other components, like computation graph serialization.
TableGen Syntax
We use TableGen as the language for specifying operation information. TableGen
itself just provides syntax for writing records; the syntax and constructs
allowed in a TableGen file (typically with filename suffix .td
) can be found
here. The formal language specification can be found
here. Roughly speaking,
- TableGen
class
is similar to C++ class; it can be templated and subclassed. - TableGen
def
is similar to C++ object; it can be declared by specializing a TableGenclass
(e.g.,def MyDef : MyClass<...>;
) or completely independently (e.g.,def MyDef;
). It cannot be further templated or subclassed. - TableGen
dag
is a dedicated type for directed graph of elements. Adag
has one operator and zero or more arguments. Its syntax is(operator arg0, arg1, argN)
. The operator can be any TableGendef
; an argument can be anything, includingdag
itself. We can have names attached to both the operator and the arguments like(MyOp:$op_name MyArg:$arg_name)
.
Please see the language introduction to learn about all the types and expressions supported by TableGen.
Operation Definition
MLIR defines several common constructs to help operation definition and provide
their semantics via a special TableGen backend:
OpDefinitionsGen
. These constructs are defined in
OpBase.td
. The main ones are
- The
Op
class: It is the main construct for defining operations. All facts regarding the operation is specified when specializing this class, with the help of the following constructs. - The
Dialect
class: Operations belonging to one logical group are placed in the same dialect. TheDialect
class contains dialect-level information. - The
OpTrait
class hierarchy: They are used to specify special properties and constraints of the operation, including whether the operation has side effect or whether its output has the same shape as the input. - The
ins
/outs
marker: These are two special makers builtin to theOpDefinitionsGen
backend. They lead the definitions of operands/attributes and results respectively. - The
TypeConstraint
class hierarchy: They are used to specify the constraints over operands or results. A notable subclass hierarchy isType
, which stands for constraints for common C++ types. - The
AttrConstraint
class hierarchy: They are used to specify the constraints over attributes. A notable subclass hierarchy isAttr
, which stands for constraints for attributes whose values are of common types.
An operation is defined by specializing the Op
class with concrete contents
for all the fields it requires. For example, tf.AvgPool
is defined as
def TF_AvgPoolOp : TF_Op<"AvgPool", [NoSideEffect]> {
let summary = "Performs average pooling on the input.";
let description = [{
Each entry in `output` is the mean of the corresponding size `ksize`
window in `value`.
}];
let arguments = (ins
TF_FpTensor:$value,
Confined<I64ArrayAttr, [ArrayMinCount<4>]>:$ksize,
Confined<I64ArrayAttr, [ArrayMinCount<4>]>:$strides,
TF_AnyStrAttrOf<["SAME", "VALID"]>:$padding,
DefaultValuedAttr<TF_ConvnetDataFormatAttr, "NHWC">:$data_format
);
let results = (outs
TF_FpTensor:$output
);
TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>;
}
In the following we describe all the fields needed. Please see the definition
of the Op
class for the complete list of fields supported.
Operation name
The operation name is a unique identifier of the operation within MLIR, e.g.,
tf.Add
for addition operation in the TensorFlow dialect. This is the
equivalent of the mnemonic in assembly language. It is used for parsing and
printing in the textual format. It is also used for pattern matching in graph
rewrites.
The full operation name is composed of the dialect name and the op name, with
the former provided via the dialect and the latter provided as the second
template parameter to the Op
class.
Operation documentation
This includes both an one-line summary
and a longer human-readable
description
. They will be used to drive automatic generation of dialect
documentation. They need to be provided in the operation's definition body:
let summary = "...";
let description = [{
...
}];
description
should be written in Markdown syntax.
Placing the documentation at the beginning is recommended since it helps in understanding the operation.
- Place documentation at the beginning of the operation definition
- The summary should be short and concise. It should be a one-liner without trailing punctuation. Put expanded explanation in description.
Operation arguments
There are two kinds of arguments: operands and attributes. Operands are runtime values produced by other ops; while attributes are compile-time known constant values, including two categories:
- Natural attributes: these attributes affect the behavior of the operations (e.g., padding for convolution);
- Derived attributes: these attributes are not needed to define the operation but are instead derived from information of the operation. E.g., the output shape of type. This is mostly used for convenience interface generation or interaction with other frameworks/translation.
Both operands and attributes are specified inside the dag
-typed arguments
,
led by ins
:
let arguments = (ins
<type-constraint>:$<operand-name>,
...
<attr-constraint>:$<attr-name>,
...
);
Here <type-constraint>
is a TableGen def
from the TypeConstraint
class
hierarchy. Similarly, <attr-constraint>
is a TableGen def
from the
AttrConstraint
class hierarchy. See Constraints for more
information.
There is no requirements on the relative order of operands and attributes; they can mix freely. But it is recommended to put all operands ahead of attributes, and use an empty line to separate them to make it more visually distinguishable if possible. The relative order of operands themselves matters.
All the arguments should be named to 1) provide documentation, 2) drive auto-generation of getter methods, 3) provide a handle to reference for other places like constraints.
- Place attributes after operands if possible
- Give operands and attribute proper names
Variadic operands
To declare a variadic operand, wrap the TypeConstraint
for the operand with
Variadic<...>
.
Normally operations have no variadic operands or just one variadic operand.
For the latter case, it is easily deduce which dynamic operands are for the
static variadic operand definition. But if an operation has more than one
variadic operands, it would be impossible to attribute dynamic operands to the
corresponding static variadic operand definitions without further information
from the operation. Therefore, the SameVariadicOperandSize
trait is needed
to indicate that all variadic operands have the same number of dynamic values.
Optional attributes
To declare an optional attribute, wrap the AttrConstraint
for the attribute
with OptionalAttr<...>
.
Attributes with default values
To declare an attribute with a default value, wrap the AttrConstraint
for the
attribute with DefaultValuedAttr<..., "...">
.
The second parameter to DefaultValuedAttr
should be a string containing the
C++ default value. For example, a float default value should be specified as
like "0.5f"
, and an integer array default value should be specified as like
"{1, 2, 3}"
.
Confining attributes
Confined
is provided as a general mechanism to help modelling further
constraints on attributes beyond the ones brought by value types. You can use
Confined
to compose complex constraints out of more primitive ones. For
example, a 32-bit integer attribute whose minimal value must be 10 can be
expressed as Confined<I32Attr, [IntMinValue<10>]>
.
Right now, the following primitive constraints are supported:
IntMinValue<N>
: Specifying an integer attribute to be greater than or equal toN
ArrayMinCount<N>
: Specifying an array attribute to have at leastN
elementsIntArrayNthElemEq<I, N>
: Specifying an integer array attribute'sI
-th element to be equal toN
IntArrayNthElemMinValue<I, N>
: Specifying an integer array attribute'sI
-th element to be greater than or equal toN
TODO: Design and implement more primitive constraints
Operation results
Similar to operands, results are specified inside the dag
-typed results
, led
by outs
:
let results = (outs
<type-constraint>:$<result-name>,
...
);
Variadic results
Similar to variadic operands, Variadic<...>
can also be used for results.
And similarly, SameVariadicResultSize
for multiple variadic results in the
same operation.
Operation traits and constraints
Traits are operation properties that affect syntax or semantics. MLIR C++
models various traits in the mlir::OpTrait
namespace.
Both operation traits, interfaces, and constraints
involving multiple operands/attributes/results are provided as the second
template parameter to the Op
class. They should be deriving from the OpTrait
class. See Constraints for more information.
Operation interfaces
Operation interfaces are a mechanism by
which to opaquely call methods and access information on an *Op instance,
without knowing the exact operation type. Operation interfaces defined in C++
can be accessed in the ODS framework via the OpInterfaceTrait
class. Aside
from using pre-existing interfaces in the C++ API, the ODS framework also
provides a simplified mechanism for defining such interfaces; that removes much
of the boilerplate necessary.
Providing a definition of the OpInterface
class will auto-generate the C++
classes for the interface. An OpInterface
includes a name, for the C++ class,
a description, and a list of interface methods.
def MyInterface : OpInterface<"MyInterface"> {
let description = ...;
let methods = [...];
}
There are two types of methods that can be used with an interface,
InterfaceMethod
and StaticInterfaceMethod
. They are both comprised of the
same core components, with the distinction that StaticInterfaceMethod
models a
static method on the derived operation.
An InterfaceMethod
is comprised of the following components:
- Description
- A string description of what this method does and its invariants.
- ReturnType
- A string corresponding to the C++ return type of the method.
- MethodName
- A string corresponding to the desired name of the method.
- Arguments (Optional)
- A dag of strings that correspond to a C++ type and variable name respectively.
- MethodBody (Optional)
- An optional explicit implementation of the interface method.
ConcreteOp
is an implicitly defined typename that can be used to refer to the type of the derived operation currently being operated on.- In non-static methods, a variable 'ConcreteOp op' is defined and may be used to refer to an instance of the derived operation.
ODS also allows generating the declarations for the InterfaceMethod
of the op
if one specifies the interface with DeclareOpInterfaceMethods
(see example
below).
Examples:
def MyInterface : OpInterface<"MyInterface"> {
let description = [{
My interface is very interesting. ...
}];
let methods = [
// A simple non-static method with no inputs.
InterfaceMethod<"'foo' is a non-static method with no inputs.",
"unsigned", "foo"
>,
// A new non-static method accepting an input argument.
InterfaceMethod<"/*insert doc here*/",
"Value *", "bar", (ins "unsigned":$i)
>,
// Query a static property of the derived operation.
StaticInterfaceMethod<"'fooStatic' is a static method with no inputs.",
"unsigned", "fooStatic"
>,
// Provide the definition of a static interface method.
// Note: `ConcreteOp` corresponds to the derived operation typename.
StaticInterfaceMethod<"/*insert doc here*/",
"Operation *", "create", (ins "OpBuilder &":$builder, "Location":$loc), [{
return builder.create<ConcreteOp>(loc);
}]>,
// Provide a definition of the non-static method.
// Note: `op` corresponds to the derived operation variable.
InterfaceMethod<"/*insert doc here*/",
"unsigned", "getNumInputsAndOutputs", (ins), [{
return op.getNumInputs() + op.getNumOutputs();
}]>,
];
}
// Interfaces can optionally be wrapped inside DeclareOpInterfaceMethods. This
// would result in autogenerating declarations for members `foo`, `bar` and
// `fooStatic`. Methods with bodies are not declared inside the op
// declaration but instead handled by the op interface trait directly.
def OpWithInferTypeInterfaceOp : Op<...
[DeclareOpInterfaceMethods<MyInterface>]> { ... }
Custom builder methods
For each operation, there are two builders automatically generated based on the arguments and returns types:
static void build(Builder *, OperationState &tblgen_state,
Type <result0-name>, Type <result1-name>, ...,
Value <arg0-name>, Value <arg1-name>, ...,
Attribute <attr0-name>, Attribute <attr1-name>, ...);
static void build(Builder *, OperationState &tblgen_state,
ArrayRef<Type> resultTypes,
ArrayRef<Value> operands,
ArrayRef<NamedAttribute> attributes);
The above cases make sure basic uniformity so that we can create ops using the same form regardless of the exact op. This is particularly useful for implementing declarative pattern rewrites.
However, if the above cases cannot satisfy all needs, you can define additional
convenience build methods with OpBuilder
.
OpBuilder
is a class that takes the parameter list and the optional build()
method body. They are separated because we need to generate op declaration and
definition into separate files. The parameter list should include Builder *builder, OperationState &state
. If the body
is not provided, only the
builder declaration will be generated; this provides a way to define complicated
builders entirely in C++ files.
For example, for the following op:
def MyOp : Op<"my_op", []> {
let arguments = (ins F32Attr:$attr);
let results = (outs);
}
If we want to define a builder with a default value for the only attribute, we
can add into MyOp
:
def MyOp : ... {
...
let builders = [
OpBuilder<"Builder *builder, OperationState &state, float val = 0.5f", [{
state.addAttribute("attr", builder->getF32FloatAttr(val));
]}>
];
}
The generated builder will look like:
static void build(Builder *builder, OperationState &state, float val = 0.5f) {
state.addAttribute("attr", builder->getF32FloatAttr(val));
}
Custom parser and printer methods
Functions to parse and print the operation's custom assembly form.
Custom verifier code
Verification code will be automatically generated for constraints specified on various entities of the op. To perform additional verification, you can use
let verifier = [{
...
}];
Code placed in verifier
will be called after the auto-generated verification
code.
hasCanonicalizer
This boolean field indicate whether canonicalization patterns have been defined
for this operation. If it is 1
, then ::getCanonicalizationPatterns()
should
be defined.
hasFolder
This boolean field indicate whether general folding rules have been defined
for this operation. If it is 1
, then ::fold()
should be defined.
Extra declarations
One of the goals of table-driven op definition is to auto-generate as much logic
and methods needed for each op as possible. With that said, there will always be
long-tail cases that won't be covered. For such cases, you can use
extraClassDeclaration
. Code in extraClassDeclaration
will be copied
literally to the generated C++ op class.
Note that extraClassDeclaration
is a mechanism intended for long-tail cases
by power users; for not-yet-implemented widely-applicable cases, improving the
infrastructure is preferable.
Generated C++ code
OpDefinitionsGen processes the op definition spec file and
generates two files containing the corresponding C++ code: one for declarations,
the other for definitions. The former is generated via the -gen-op-decls
command-line option, while the latter is via the -gen-op-defs
option.
The definition file contains all the op method definitions, which can be
included and enabled by defining GET_OP_CLASSES
. For each operation,
OpDefinitionsGen generates an operation class and an
operand adaptor class. Besides, it also contains a
comma-separated list of all defined ops, which can be included and enabled by
defining GET_OP_LIST
.
Class name and namespaces
For each operation, its generated C++ class name is the symbol def
ed with
TableGen with dialect prefix removed. The first _
serves as the delimiter.
For example, for def TF_AddOp
, the C++ class name would be AddOp
.
We remove the TF
prefix because it is for scoping ops; other dialects
may as well define their own AddOp
s.
The namespaces of the generated C++ class will come from the dialect's
cppNamespace
field. For example, if a dialect's cppNamespace
is A::B
,
then an op of that dialect will be placed in
namespace A { namespace B { ... } }
. If a dialect does not specify a
cppNamespace
, we then use the dialect's name as the namespace.
This means the qualified name of the generated C++ class does not necessarily match exactly with the operation name as explained in Operation name. This is to allow flexible naming to satisfy coding style requirements.
Operand adaptors
For each operation, we automatically generate an operand adaptor. This class
solves the problem of accessing operands provided as a list of Value
s without
using "magic" constants. The operand adaptor takes a reference to an array of
Value *
and provides methods with the same names as those in the operation
class to access them. For example, for a binary arithmetic operation, it may
provide .lhs()
to access the first operand and .rhs()
to access the second
operand.
The operand adaptor class lives in the same namespace as the operation class,
and has the name of the operation followed by OperandAdaptor
. A template
declaration OperandAdaptor<>
is provided to look up the operand adaptor for
the given operation.
Operand adaptors can be used in function templates that also process operations:
template <typename BinaryOpTy>
std::pair<Value *, Value *> zip(BinaryOpTy &&op) {
return std::make_pair(op.lhs(), op.rhs());;
}
void process(AddOp op, ArrayRef<Value *> newOperands) {
zip(op);
zip(OperandAdaptor<AddOp>(newOperands));
/*...*/
}
Constraints
Constraint is a core concept in table-driven operation definition: operation
verification and graph operation matching are all based on satisfying
constraints. So both the operation definition and rewrite rules specification
significantly involve writing constraints. We have the Constraint
class in
OpBase.td
has the common base class for all constraints.
An operation's constraint can cover different range; it may
- Only concern a single attribute (e.g. being an 32-bit integer greater than 5),
- Multiple operands and results (e.g., the 1st result's shape must be the same as the 1st operand), or
- Intrinsic to the operation itself (e.g., having no side effect).
We call them as single-entity constraint, multi-entity constraint, and traits, respectively.
Single-entity constraint
Constraints scoped to a single operand, attribute, or result are specified at the entity's declaration place as described in Operation arguments and Operation results.
To help modelling constraints of common types, a set of TypeConstraint
s are
created; they are the Type
subclass hierarchy. It includes F32
for the
constraints of being a float, TensorOf<[F32]>
for the constraints of being
a float tensor, and so on.
Similarly, a set of AttrConstraint
s are created for helping modelling
constraints of common attribute kinds. They are the Attr
subclass hierarchy.
It includes F32Attr
for the constraints of being a float attribute,
F32ArrayAttr
for the constraints of being a float array attribute, and so on.
Multi-entity constraint
Constraints involving more than one operand/attribute/result are quite common
on operations, like the element type and shape relation between operands and
results. These constraints should be specified as the Op
class template
parameter as described in
Operation traits and constraints.
Multi-entity constraints are modeled as PredOpTrait
(a subclass of OpTrait
)
in OpBase.td
.A bunch of constraint primitives are provided to help
specification. See OpBase.td
for the complete list.
Trait
Traits are intrinsic properties of the operation like having side effect or not,
commutative or not, whether is a terminator, etc. These constraints should be
specified as the Op
class template parameter as described in
Operation traits and constraints.
Traits are modeled as NativeOpTrait
(a subclass of OpTrait
) in
OpBase.td
. They are backed and will be translated into the
corresponding C++ mlir::OpTrait
classes.
How to specify new constraint
To write a constraint, you need to provide its predicates and give it a
descriptive name. Predicates, modeled with the Pred
class, are the workhorse
for composing constraints. The predicate for a constraint is typically built up
in a nested manner, using the two categories of predicates:
CPred
: the primitive leaf predicate.- Compound predicate: a predicate composed from child predicates using
predicate combiners (conjunction:
And
, disjunction:Or
, negation:Neg
, substitution:SubstLeaves
, concatenation:Concat
).
CPred
is the basis for composing more complex predicates. It is the "atom"
predicate from the perspective of TableGen and the "interface" between
TableGen and C++. What is inside is already C++ code, which will be treated
as opaque strings with special placeholders to be substituted.
You can put any C++ code that returns a boolean value inside a CPred
,
including evaluating expressions, calling functions, calling class methods,
and so on.
To help interaction with the C++ environment, there are a few special
placeholders provided to refer to entities in the context where this predicate
is used. They serve as "hooks" to the enclosing environment. This includes
$_builder
, $_op
, and $_self
:
$_builder
will be replaced by amlir::Builder
instance so that you can access common build methods.$_op
will be replaced by the current operation so that you can access information of the current operation.$_self
will be replaced with the entity this predicate is attached to. E.g.,BoolAttr
is an attribute constraint that wraps aCPred<"$_self.isa<BoolAttr>()">
. Then forF32:$attr
,$_self
will be replaced by$attr
. For type constraints, it's a little bit special since we want the constraints on each type definition reads naturally and we want to attach type constraints directly to an operand/result,$_self
will be replaced by the operand/result's type. E.g., forF32
inF32:$operand
, its$_self
will be expanded asgetOperand(...)->getType()
.
TODO(b/130663252): Reconsider the leading symbol for special placeholders.
Eventually we want to allow referencing operand/result -names; such
-names
can start with underscore.
For example, to write an attribute attr
is an IntegerAttr
, in C++ you can
just call attr.isa<IntegerAttr>()
. The code can be wrapped in a CPred
as
$_self.isa<IntegerAttr>()
, with $_self
as the special placeholder to be
replaced by the current attribute attr
at expansion time.
For more complicated predicates, you can wrap it in a single CPred
, or you
can use predicate combiners to combine them. For example, to write the
constraint that an attribute attr
is a 32-bit or 64-bit integer, you can
write it as
And<[
CPred<"$_self.isa<IntegerAttr>()">,
Or<[
CPred<"$_self.cast<IntegerAttr>().getType().isInteger(32)">,
CPred<"$_self.cast<IntegerAttr>().getType().isInteger(64)">
]>
]>
(Note that the above is just to show with a familiar example how you can use
CPred
and predicate combiners to write complicated predicates. For integer
attributes specifically, OpBase.td
already defines I32Attr
and
I64Attr
. So you can actually reuse them to write it as Or<[I32Attr.predicate, I64Attr.predicate]>
.)
TODO: Build up a library of reusable primitive constraints
If the predicate is very complex to write with CPred
together with predicate
combiners, you can also write it as a normal C++ function and use the CPred
as a way to "invoke" the function. For example, to verify an attribute attr
has some property, you can write a C++ function like
bool HasSomeProperty(Attribute attr) { ... }
and then define the op as:
def HasSomeProperty : AttrConstraint<CPred<"HasSomeProperty($_self)">,
"has some property">;
def MyOp : Op<...> {
let arguments = (ins
...
HasSomeProperty:$attr
);
}
As to whether we should define the predicate using a single CPred
wrapping
the whole expression, multiple CPred
s with predicate combiners, or a single
CPred
"invoking" a function, there are no clear-cut criteria. Defining using
CPred
and predicate combiners is preferable since it exposes more information
(instead hiding all the logic behind a C++ function) into the op definition spec
so that it can potentially drive more auto-generation cases. But it will
require a nice library of common predicates as the building blocks to avoid the
duplication, which is being worked on right now.
Attribute Definition
Enum attributes
Enum attributes can be defined using EnumAttr
, which requires all its cases to
be defined with EnumAttrCase
. To facilitate the interaction between
EnumAttr
s and their C++ consumers, the EnumsGen
TableGen backend
can generate a few common utilities, including an enum class,
llvm::DenseMapInfo
for the enum class, conversion functions from/to strings.
This is controlled via the -gen-enum-decls
and -gen-enum-defs
command-line
options of mlir-tblgen
.
For example, given the following EnumAttr
:
def CaseA: EnumAttrCase<"caseA", 0>;
def CaseB: EnumAttrCase<"caseB", 10>;
def MyEnum: EnumAttr<"MyEnum", "An example enum", [CaseA, CaseB]> {
let cppNamespace = "Outer::Inner";
let underlyingType = "uint64_t";
let stringToSymbolFnName = "ConvertToEnum";
let symbolToStringFnName = "ConvertToString";
}
The following will be generated via mlir-tblgen -gen-enum-decls
:
namespace Outer {
namespace Inner {
// An example enum
enum class MyEnum : uint64_t {
caseA = 0,
caseB = 10,
};
llvm::StringRef ConvertToString(MyEnum);
llvm::Optional<MyEnum> ConvertToEnum(llvm::StringRef);
} // namespace Inner
} // namespace Outer
namespace llvm {
template<> struct DenseMapInfo<Outer::Inner::MyEnum> {
using StorageInfo = llvm::DenseMapInfo<uint64_t>;
static inline Outer::Inner::MyEnum getEmptyKey() {
return static_cast<Outer::Inner::MyEnum>(StorageInfo::getEmptyKey());
}
static inline Outer::Inner::MyEnum getTombstoneKey() {
return static_cast<Outer::Inner::MyEnum>(StorageInfo::getTombstoneKey());
}
static unsigned getHashValue(const Outer::Inner::MyEnum &val) {
return StorageInfo::getHashValue(static_cast<uint64_t>(val));
}
static bool isEqual(const Outer::Inner::MyEnum &lhs,
const Outer::Inner::MyEnum &rhs) {
return lhs == rhs;
}
};
}
The following will be generated via mlir-tblgen -gen-enum-defs
:
namespace Outer {
namespace Inner {
llvm::StringRef ConvertToString(MyEnum val) {
switch (val) {
case MyEnum::caseA: return "caseA";
case MyEnum::caseB: return "caseB";
default: return "";
}
}
llvm::Optional<MyEnum> ConvertToEnum(llvm::StringRef str) {
return llvm::StringSwitch<llvm::Optional<MyEnum>>(str)
.Case("caseA", MyEnum::caseA)
.Case("caseB", MyEnum::caseB)
.Default(llvm::None);
}
} // namespace Inner
} // namespace Outer
TODO(b/132506080): This following is outdated. Update it.
An attribute is a compile time known constant of an operation. Attributes are
required to be known to construct an operation (e.g., the padding behavior is
required to fully define the conv2d
op).
Attributes are defined as having a storage type (corresponding to a derived
class of mlir::Attribute
), a return type (that corresponds to the C++ type to
use in the generation of the helper accessors) as well as method to convert
between the internal storage and the helper method. Derived attributes are a
special class of attributes that do not have storage but are instead calculated
based on the operation and its attributes.
Appendix
Requirements and existing mechanisms analysis
The op description should as declarative as possible to allow a wide range of tools to work with them and query methods generated from them. In particular this means specifying traits, constraints and shape inference information in a way that is easily analyzable (e.g., avoid opaque calls to C++ functions where possible).
We considered the approaches of several contemporary systems and focused on requirements that were desirable:
- Ops registered using a registry separate from C++ code.
- Unknown ops are allowed in MLIR, so ops need not be registered. The ability of the compiler to optimize those ops or graphs containing those ops is constrained but correct.
- The current proposal does not include a runtime op description, but it does not preclude such description, it can be added later.
- The op registry is essential for generating C++ classes that make manipulating ops, verifying correct construction etc. in C++ easier by providing a typed representation and accessors.
- The op registry will be defined in
TableGen and be used to
generate C++ classes and utility functions
(builder/verifier/parser/printer).
- TableGen is a modelling specification language used by LLVM's backends and fits in well with trait based modelling. This is an implementation decision and there are alternative ways of doing this. But the specification language is good for the requirements of modelling the traits (as seen from usage in LLVM processor backend modelling) and easy to extend, so a practical choice. If another good option comes up, we will consider it.
- MLIR allows both defined and undefined ops.
- Defined ops should have fixed semantics and could have a corresponding reference implementation defined using, for example, EDSC.
- Dialects are under full control of the dialect owner and normally live with the framework of the dialect.
- The op's traits (e.g., commutative) are modelled along with the op in the registry.
- The op's operand/return type constraints are modelled along with the op in the registry (see Shape inference discussion below), this allows (e.g.) optimized concise syntax in textual dumps.
- Behavior of the op is documented along with the op with a summary and a description. The description is written in markdown and extracted for inclusion in the generated LangRef section of the dialect.
- The generic assembly form of printing and parsing is available as normal,
but a custom parser and printer can either be specified or automatically
generated from an optional string representation showing the mapping of the
"assembly" string to operands/type.
- Parser-level remappings (e.g.,
eq
to enum) will be supported as part of the parser generation.
- Parser-level remappings (e.g.,
- Matching patterns are specified separately from the op description.
- Contrasted with LLVM there is no "base" set of ops that every backend needs to be aware of. Instead there are many different dialects and the transformations/legalizations between these dialects form a graph of transformations.
- Reference implementation may be provided along with the op definition.
-
The reference implementation may be in terms of either standard ops or other reference implementations.
TODO: document expectation if the dependent op's definition changes.
-
A proposal for auto-generating printer and parser methods
NOTE: Auto-generating printing/parsing (as explained in the below) has not been prototyped, and potentially just being able to specify custom printer/ parser methods are sufficient. This should presumably be influenced by the design of the assembler/disassembler logic that LLVM backends get for free for machine instructions.
The custom assembly form of the operation is specified using a string with matching operation name, operands and attributes. With the ability to express additional information that needs to be parsed to build the operation:
tfl.add $lhs, $rhs {fused_activation_function: $fused_activation_function}: ${type(self)}
- The output is never shown in the "mnemonics" string as that is fixed form and cannot be altered.
- Custom parsing of ops may include some punctuation (e.g., parenthesis).
- The operands/results are added to the created operation in the order that they are shown in the input and output dags.
- The
${type(self)}
operator is used to represent the type of the operator. The type of operands can also be queried. - Attributes names are matched to the placeholders in the mnemonic strings.
E.g., attribute axis is matched with
$axis
. Custom parsing for attribute type can be defined along with the attribute definition. - The information in the custom assembly form should be sufficient to invoke
the builder generated. That may require being able to propagate information
(e.g., the
$lhs
has the same type as the result).
Printing is effectively the inverse of the parsing function generated with the mnemonic string serving as a template.
Shape inference
Type constraints are along (at least) three axis: 1) elemental type, 2) rank
(including static or dynamic), 3) dimensions. While some ops have no compile
time fixed shape (e.g., output shape is dictated by data) we could still have
some knowledge of constraints/bounds in the system for that op (e.g., the output
of a tf.where
is at most the size of the input data). And so there are
additional valuable constraints that could be captured even without full
knowledge.
Initially the shape inference will be declaratively specified using:
- Constraint on the operands of an operation directly. For example
constraining the input type to be tensor/vector elements or that the
elemental type be of a specific type (e.g., output of sign is of elemental
type
i1
) or class (e.g., float like). - Constraints across operands and results of an operation. For example, enabling specifying equality constraints on type/constituents of a type (shape and elemental type) between operands and results (e.g., the output type of an add is the same as those of the input operands).
In general there is an input/output transfer function which maps the inputs to the outputs (e.g., given input X and Y [or slices thereof] with these sizes, the output is Z [or this slice thereof]). Such a function could be used to determine the output type (shape) for given input type (shape).
But shape functions are determined by attributes and could be arbitrarily
complicated with a wide-range of specification possibilities. Equality
relationships are common (e.g., the elemental type of the output matches the
primitive type of the inputs, both inputs have exactly the same type [primitive
type and shape]) and so these should be easy to specify. Algebraic relationships
would also be common (e.g., a concat of [n,m]
and [n,m]
matrix along axis 0
is [n+n, m]
matrix), while some ops only have defined shapes under certain
cases (e.g., matrix multiplication of [a,b]
and [c,d]
is only defined if
b == c
). As ops are also verified, the shape inference need only specify rules
for the allowed cases (e.g., shape inference for matmul can ignore the case
where b != c
), which would simplify type constraint specification.
Instead of specifying an additional mechanism to specify a shape transfer function, the reference implementation of the operation will be used to derive the shape function. The reference implementation is general and can support the arbitrary computations needed to specify output shapes.