forked from OSchip/llvm-project
2265 lines
79 KiB
C++
2265 lines
79 KiB
C++
//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Methods common to all machine instructions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/ModuleSlotTracker.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetIntrinsicInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> PrintWholeRegMask(
|
|
"print-whole-regmask",
|
|
cl::desc("Print the full contents of regmask operands in IR dumps"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MachineOperand Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void MachineOperand::setReg(unsigned Reg) {
|
|
if (getReg() == Reg) return; // No change.
|
|
|
|
// Otherwise, we have to change the register. If this operand is embedded
|
|
// into a machine function, we need to update the old and new register's
|
|
// use/def lists.
|
|
if (MachineInstr *MI = getParent())
|
|
if (MachineBasicBlock *MBB = MI->getParent())
|
|
if (MachineFunction *MF = MBB->getParent()) {
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
MRI.removeRegOperandFromUseList(this);
|
|
SmallContents.RegNo = Reg;
|
|
MRI.addRegOperandToUseList(this);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, just change the register, no problem. :)
|
|
SmallContents.RegNo = Reg;
|
|
}
|
|
|
|
void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
|
|
const TargetRegisterInfo &TRI) {
|
|
assert(TargetRegisterInfo::isVirtualRegister(Reg));
|
|
if (SubIdx && getSubReg())
|
|
SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
|
|
setReg(Reg);
|
|
if (SubIdx)
|
|
setSubReg(SubIdx);
|
|
}
|
|
|
|
void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
|
|
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
|
|
if (getSubReg()) {
|
|
Reg = TRI.getSubReg(Reg, getSubReg());
|
|
// Note that getSubReg() may return 0 if the sub-register doesn't exist.
|
|
// That won't happen in legal code.
|
|
setSubReg(0);
|
|
if (isDef())
|
|
setIsUndef(false);
|
|
}
|
|
setReg(Reg);
|
|
}
|
|
|
|
/// Change a def to a use, or a use to a def.
|
|
void MachineOperand::setIsDef(bool Val) {
|
|
assert(isReg() && "Wrong MachineOperand accessor");
|
|
assert((!Val || !isDebug()) && "Marking a debug operation as def");
|
|
if (IsDef == Val)
|
|
return;
|
|
// MRI may keep uses and defs in different list positions.
|
|
if (MachineInstr *MI = getParent())
|
|
if (MachineBasicBlock *MBB = MI->getParent())
|
|
if (MachineFunction *MF = MBB->getParent()) {
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
MRI.removeRegOperandFromUseList(this);
|
|
IsDef = Val;
|
|
MRI.addRegOperandToUseList(this);
|
|
return;
|
|
}
|
|
IsDef = Val;
|
|
}
|
|
|
|
// If this operand is currently a register operand, and if this is in a
|
|
// function, deregister the operand from the register's use/def list.
|
|
void MachineOperand::removeRegFromUses() {
|
|
if (!isReg() || !isOnRegUseList())
|
|
return;
|
|
|
|
if (MachineInstr *MI = getParent()) {
|
|
if (MachineBasicBlock *MBB = MI->getParent()) {
|
|
if (MachineFunction *MF = MBB->getParent())
|
|
MF->getRegInfo().removeRegOperandFromUseList(this);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ChangeToImmediate - Replace this operand with a new immediate operand of
|
|
/// the specified value. If an operand is known to be an immediate already,
|
|
/// the setImm method should be used.
|
|
void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
|
|
assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
|
|
|
|
removeRegFromUses();
|
|
|
|
OpKind = MO_Immediate;
|
|
Contents.ImmVal = ImmVal;
|
|
}
|
|
|
|
void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
|
|
assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
|
|
|
|
removeRegFromUses();
|
|
|
|
OpKind = MO_FPImmediate;
|
|
Contents.CFP = FPImm;
|
|
}
|
|
|
|
void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) {
|
|
assert((!isReg() || !isTied()) &&
|
|
"Cannot change a tied operand into an external symbol");
|
|
|
|
removeRegFromUses();
|
|
|
|
OpKind = MO_ExternalSymbol;
|
|
Contents.OffsetedInfo.Val.SymbolName = SymName;
|
|
setOffset(0); // Offset is always 0.
|
|
setTargetFlags(TargetFlags);
|
|
}
|
|
|
|
void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) {
|
|
assert((!isReg() || !isTied()) &&
|
|
"Cannot change a tied operand into an MCSymbol");
|
|
|
|
removeRegFromUses();
|
|
|
|
OpKind = MO_MCSymbol;
|
|
Contents.Sym = Sym;
|
|
}
|
|
|
|
void MachineOperand::ChangeToFrameIndex(int Idx) {
|
|
assert((!isReg() || !isTied()) &&
|
|
"Cannot change a tied operand into a FrameIndex");
|
|
|
|
removeRegFromUses();
|
|
|
|
OpKind = MO_FrameIndex;
|
|
setIndex(Idx);
|
|
}
|
|
|
|
/// ChangeToRegister - Replace this operand with a new register operand of
|
|
/// the specified value. If an operand is known to be an register already,
|
|
/// the setReg method should be used.
|
|
void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
|
|
bool isKill, bool isDead, bool isUndef,
|
|
bool isDebug) {
|
|
MachineRegisterInfo *RegInfo = nullptr;
|
|
if (MachineInstr *MI = getParent())
|
|
if (MachineBasicBlock *MBB = MI->getParent())
|
|
if (MachineFunction *MF = MBB->getParent())
|
|
RegInfo = &MF->getRegInfo();
|
|
// If this operand is already a register operand, remove it from the
|
|
// register's use/def lists.
|
|
bool WasReg = isReg();
|
|
if (RegInfo && WasReg)
|
|
RegInfo->removeRegOperandFromUseList(this);
|
|
|
|
// Change this to a register and set the reg#.
|
|
OpKind = MO_Register;
|
|
SmallContents.RegNo = Reg;
|
|
SubReg_TargetFlags = 0;
|
|
IsDef = isDef;
|
|
IsImp = isImp;
|
|
IsKill = isKill;
|
|
IsDead = isDead;
|
|
IsUndef = isUndef;
|
|
IsInternalRead = false;
|
|
IsEarlyClobber = false;
|
|
IsDebug = isDebug;
|
|
// Ensure isOnRegUseList() returns false.
|
|
Contents.Reg.Prev = nullptr;
|
|
// Preserve the tie when the operand was already a register.
|
|
if (!WasReg)
|
|
TiedTo = 0;
|
|
|
|
// If this operand is embedded in a function, add the operand to the
|
|
// register's use/def list.
|
|
if (RegInfo)
|
|
RegInfo->addRegOperandToUseList(this);
|
|
}
|
|
|
|
/// isIdenticalTo - Return true if this operand is identical to the specified
|
|
/// operand. Note that this should stay in sync with the hash_value overload
|
|
/// below.
|
|
bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
|
|
if (getType() != Other.getType() ||
|
|
getTargetFlags() != Other.getTargetFlags())
|
|
return false;
|
|
|
|
switch (getType()) {
|
|
case MachineOperand::MO_Register:
|
|
return getReg() == Other.getReg() && isDef() == Other.isDef() &&
|
|
getSubReg() == Other.getSubReg();
|
|
case MachineOperand::MO_Immediate:
|
|
return getImm() == Other.getImm();
|
|
case MachineOperand::MO_CImmediate:
|
|
return getCImm() == Other.getCImm();
|
|
case MachineOperand::MO_FPImmediate:
|
|
return getFPImm() == Other.getFPImm();
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
return getMBB() == Other.getMBB();
|
|
case MachineOperand::MO_FrameIndex:
|
|
return getIndex() == Other.getIndex();
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
case MachineOperand::MO_TargetIndex:
|
|
return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
|
|
case MachineOperand::MO_JumpTableIndex:
|
|
return getIndex() == Other.getIndex();
|
|
case MachineOperand::MO_GlobalAddress:
|
|
return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
return !strcmp(getSymbolName(), Other.getSymbolName()) &&
|
|
getOffset() == Other.getOffset();
|
|
case MachineOperand::MO_BlockAddress:
|
|
return getBlockAddress() == Other.getBlockAddress() &&
|
|
getOffset() == Other.getOffset();
|
|
case MachineOperand::MO_RegisterMask:
|
|
case MachineOperand::MO_RegisterLiveOut:
|
|
return getRegMask() == Other.getRegMask();
|
|
case MachineOperand::MO_MCSymbol:
|
|
return getMCSymbol() == Other.getMCSymbol();
|
|
case MachineOperand::MO_CFIIndex:
|
|
return getCFIIndex() == Other.getCFIIndex();
|
|
case MachineOperand::MO_Metadata:
|
|
return getMetadata() == Other.getMetadata();
|
|
case MachineOperand::MO_IntrinsicID:
|
|
return getIntrinsicID() == Other.getIntrinsicID();
|
|
case MachineOperand::MO_Predicate:
|
|
return getPredicate() == Other.getPredicate();
|
|
}
|
|
llvm_unreachable("Invalid machine operand type");
|
|
}
|
|
|
|
// Note: this must stay exactly in sync with isIdenticalTo above.
|
|
hash_code llvm::hash_value(const MachineOperand &MO) {
|
|
switch (MO.getType()) {
|
|
case MachineOperand::MO_Register:
|
|
// Register operands don't have target flags.
|
|
return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
|
|
case MachineOperand::MO_Immediate:
|
|
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
|
|
case MachineOperand::MO_CImmediate:
|
|
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
|
|
case MachineOperand::MO_FPImmediate:
|
|
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
|
|
case MachineOperand::MO_FrameIndex:
|
|
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
case MachineOperand::MO_TargetIndex:
|
|
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
|
|
MO.getOffset());
|
|
case MachineOperand::MO_JumpTableIndex:
|
|
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
|
|
MO.getSymbolName());
|
|
case MachineOperand::MO_GlobalAddress:
|
|
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
|
|
MO.getOffset());
|
|
case MachineOperand::MO_BlockAddress:
|
|
return hash_combine(MO.getType(), MO.getTargetFlags(),
|
|
MO.getBlockAddress(), MO.getOffset());
|
|
case MachineOperand::MO_RegisterMask:
|
|
case MachineOperand::MO_RegisterLiveOut:
|
|
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
|
|
case MachineOperand::MO_Metadata:
|
|
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
|
|
case MachineOperand::MO_MCSymbol:
|
|
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
|
|
case MachineOperand::MO_CFIIndex:
|
|
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
|
|
case MachineOperand::MO_IntrinsicID:
|
|
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID());
|
|
case MachineOperand::MO_Predicate:
|
|
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate());
|
|
}
|
|
llvm_unreachable("Invalid machine operand type");
|
|
}
|
|
|
|
void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI,
|
|
const TargetIntrinsicInfo *IntrinsicInfo) const {
|
|
ModuleSlotTracker DummyMST(nullptr);
|
|
print(OS, DummyMST, TRI, IntrinsicInfo);
|
|
}
|
|
|
|
void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
|
|
const TargetRegisterInfo *TRI,
|
|
const TargetIntrinsicInfo *IntrinsicInfo) const {
|
|
switch (getType()) {
|
|
case MachineOperand::MO_Register:
|
|
OS << PrintReg(getReg(), TRI, getSubReg());
|
|
|
|
if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
|
|
isInternalRead() || isEarlyClobber() || isTied()) {
|
|
OS << '<';
|
|
bool NeedComma = false;
|
|
if (isDef()) {
|
|
if (NeedComma) OS << ',';
|
|
if (isEarlyClobber())
|
|
OS << "earlyclobber,";
|
|
if (isImplicit())
|
|
OS << "imp-";
|
|
OS << "def";
|
|
NeedComma = true;
|
|
// <def,read-undef> only makes sense when getSubReg() is set.
|
|
// Don't clutter the output otherwise.
|
|
if (isUndef() && getSubReg())
|
|
OS << ",read-undef";
|
|
} else if (isImplicit()) {
|
|
OS << "imp-use";
|
|
NeedComma = true;
|
|
}
|
|
|
|
if (isKill()) {
|
|
if (NeedComma) OS << ',';
|
|
OS << "kill";
|
|
NeedComma = true;
|
|
}
|
|
if (isDead()) {
|
|
if (NeedComma) OS << ',';
|
|
OS << "dead";
|
|
NeedComma = true;
|
|
}
|
|
if (isUndef() && isUse()) {
|
|
if (NeedComma) OS << ',';
|
|
OS << "undef";
|
|
NeedComma = true;
|
|
}
|
|
if (isInternalRead()) {
|
|
if (NeedComma) OS << ',';
|
|
OS << "internal";
|
|
NeedComma = true;
|
|
}
|
|
if (isTied()) {
|
|
if (NeedComma) OS << ',';
|
|
OS << "tied";
|
|
if (TiedTo != 15)
|
|
OS << unsigned(TiedTo - 1);
|
|
}
|
|
OS << '>';
|
|
}
|
|
break;
|
|
case MachineOperand::MO_Immediate:
|
|
OS << getImm();
|
|
break;
|
|
case MachineOperand::MO_CImmediate:
|
|
getCImm()->getValue().print(OS, false);
|
|
break;
|
|
case MachineOperand::MO_FPImmediate:
|
|
if (getFPImm()->getType()->isFloatTy()) {
|
|
OS << getFPImm()->getValueAPF().convertToFloat();
|
|
} else if (getFPImm()->getType()->isHalfTy()) {
|
|
APFloat APF = getFPImm()->getValueAPF();
|
|
bool Unused;
|
|
APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Unused);
|
|
OS << "half " << APF.convertToFloat();
|
|
} else {
|
|
OS << getFPImm()->getValueAPF().convertToDouble();
|
|
}
|
|
break;
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
OS << "<BB#" << getMBB()->getNumber() << ">";
|
|
break;
|
|
case MachineOperand::MO_FrameIndex:
|
|
OS << "<fi#" << getIndex() << '>';
|
|
break;
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
OS << "<cp#" << getIndex();
|
|
if (getOffset()) OS << "+" << getOffset();
|
|
OS << '>';
|
|
break;
|
|
case MachineOperand::MO_TargetIndex:
|
|
OS << "<ti#" << getIndex();
|
|
if (getOffset()) OS << "+" << getOffset();
|
|
OS << '>';
|
|
break;
|
|
case MachineOperand::MO_JumpTableIndex:
|
|
OS << "<jt#" << getIndex() << '>';
|
|
break;
|
|
case MachineOperand::MO_GlobalAddress:
|
|
OS << "<ga:";
|
|
getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
|
|
if (getOffset()) OS << "+" << getOffset();
|
|
OS << '>';
|
|
break;
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
OS << "<es:" << getSymbolName();
|
|
if (getOffset()) OS << "+" << getOffset();
|
|
OS << '>';
|
|
break;
|
|
case MachineOperand::MO_BlockAddress:
|
|
OS << '<';
|
|
getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST);
|
|
if (getOffset()) OS << "+" << getOffset();
|
|
OS << '>';
|
|
break;
|
|
case MachineOperand::MO_RegisterMask: {
|
|
unsigned NumRegsInMask = 0;
|
|
unsigned NumRegsEmitted = 0;
|
|
OS << "<regmask";
|
|
for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
|
|
unsigned MaskWord = i / 32;
|
|
unsigned MaskBit = i % 32;
|
|
if (getRegMask()[MaskWord] & (1 << MaskBit)) {
|
|
if (PrintWholeRegMask || NumRegsEmitted <= 10) {
|
|
OS << " " << PrintReg(i, TRI);
|
|
NumRegsEmitted++;
|
|
}
|
|
NumRegsInMask++;
|
|
}
|
|
}
|
|
if (NumRegsEmitted != NumRegsInMask)
|
|
OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more...";
|
|
OS << ">";
|
|
break;
|
|
}
|
|
case MachineOperand::MO_RegisterLiveOut:
|
|
OS << "<regliveout>";
|
|
break;
|
|
case MachineOperand::MO_Metadata:
|
|
OS << '<';
|
|
getMetadata()->printAsOperand(OS, MST);
|
|
OS << '>';
|
|
break;
|
|
case MachineOperand::MO_MCSymbol:
|
|
OS << "<MCSym=" << *getMCSymbol() << '>';
|
|
break;
|
|
case MachineOperand::MO_CFIIndex:
|
|
OS << "<call frame instruction>";
|
|
break;
|
|
case MachineOperand::MO_IntrinsicID: {
|
|
Intrinsic::ID ID = getIntrinsicID();
|
|
if (ID < Intrinsic::num_intrinsics)
|
|
OS << "<intrinsic:@" << Intrinsic::getName(ID, None) << '>';
|
|
else if (IntrinsicInfo)
|
|
OS << "<intrinsic:@" << IntrinsicInfo->getName(ID) << '>';
|
|
else
|
|
OS << "<intrinsic:" << ID << '>';
|
|
break;
|
|
}
|
|
case MachineOperand::MO_Predicate: {
|
|
auto Pred = static_cast<CmpInst::Predicate>(getPredicate());
|
|
OS << '<' << (CmpInst::isIntPredicate(Pred) ? "intpred" : "floatpred")
|
|
<< CmpInst::getPredicateName(Pred) << '>';
|
|
}
|
|
}
|
|
if (unsigned TF = getTargetFlags())
|
|
OS << "[TF=" << TF << ']';
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void MachineOperand::dump() const {
|
|
dbgs() << *this << '\n';
|
|
}
|
|
#endif
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MachineMemOperand Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getAddrSpace - Return the LLVM IR address space number that this pointer
|
|
/// points into.
|
|
unsigned MachinePointerInfo::getAddrSpace() const {
|
|
if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
|
|
return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
|
|
}
|
|
|
|
/// getConstantPool - Return a MachinePointerInfo record that refers to the
|
|
/// constant pool.
|
|
MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) {
|
|
return MachinePointerInfo(MF.getPSVManager().getConstantPool());
|
|
}
|
|
|
|
/// getFixedStack - Return a MachinePointerInfo record that refers to the
|
|
/// the specified FrameIndex.
|
|
MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF,
|
|
int FI, int64_t Offset) {
|
|
return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset);
|
|
}
|
|
|
|
MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) {
|
|
return MachinePointerInfo(MF.getPSVManager().getJumpTable());
|
|
}
|
|
|
|
MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) {
|
|
return MachinePointerInfo(MF.getPSVManager().getGOT());
|
|
}
|
|
|
|
MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF,
|
|
int64_t Offset) {
|
|
return MachinePointerInfo(MF.getPSVManager().getStack(), Offset);
|
|
}
|
|
|
|
MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f,
|
|
uint64_t s, unsigned int a,
|
|
const AAMDNodes &AAInfo,
|
|
const MDNode *Ranges,
|
|
SynchronizationScope SynchScope,
|
|
AtomicOrdering Ordering,
|
|
AtomicOrdering FailureOrdering)
|
|
: PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1),
|
|
AAInfo(AAInfo), Ranges(Ranges) {
|
|
assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
|
|
isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
|
|
"invalid pointer value");
|
|
assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
|
|
assert((isLoad() || isStore()) && "Not a load/store!");
|
|
|
|
AtomicInfo.SynchScope = static_cast<unsigned>(SynchScope);
|
|
assert(getSynchScope() == SynchScope && "Value truncated");
|
|
AtomicInfo.Ordering = static_cast<unsigned>(Ordering);
|
|
assert(getOrdering() == Ordering && "Value truncated");
|
|
AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering);
|
|
assert(getFailureOrdering() == FailureOrdering && "Value truncated");
|
|
}
|
|
|
|
/// Profile - Gather unique data for the object.
|
|
///
|
|
void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
|
|
ID.AddInteger(getOffset());
|
|
ID.AddInteger(Size);
|
|
ID.AddPointer(getOpaqueValue());
|
|
ID.AddInteger(getFlags());
|
|
ID.AddInteger(getBaseAlignment());
|
|
}
|
|
|
|
void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
|
|
// The Value and Offset may differ due to CSE. But the flags and size
|
|
// should be the same.
|
|
assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
|
|
assert(MMO->getSize() == getSize() && "Size mismatch!");
|
|
|
|
if (MMO->getBaseAlignment() >= getBaseAlignment()) {
|
|
// Update the alignment value.
|
|
BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1;
|
|
// Also update the base and offset, because the new alignment may
|
|
// not be applicable with the old ones.
|
|
PtrInfo = MMO->PtrInfo;
|
|
}
|
|
}
|
|
|
|
/// getAlignment - Return the minimum known alignment in bytes of the
|
|
/// actual memory reference.
|
|
uint64_t MachineMemOperand::getAlignment() const {
|
|
return MinAlign(getBaseAlignment(), getOffset());
|
|
}
|
|
|
|
void MachineMemOperand::print(raw_ostream &OS) const {
|
|
ModuleSlotTracker DummyMST(nullptr);
|
|
print(OS, DummyMST);
|
|
}
|
|
void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const {
|
|
assert((isLoad() || isStore()) &&
|
|
"SV has to be a load, store or both.");
|
|
|
|
if (isVolatile())
|
|
OS << "Volatile ";
|
|
|
|
if (isLoad())
|
|
OS << "LD";
|
|
if (isStore())
|
|
OS << "ST";
|
|
OS << getSize();
|
|
|
|
// Print the address information.
|
|
OS << "[";
|
|
if (const Value *V = getValue())
|
|
V->printAsOperand(OS, /*PrintType=*/false, MST);
|
|
else if (const PseudoSourceValue *PSV = getPseudoValue())
|
|
PSV->printCustom(OS);
|
|
else
|
|
OS << "<unknown>";
|
|
|
|
unsigned AS = getAddrSpace();
|
|
if (AS != 0)
|
|
OS << "(addrspace=" << AS << ')';
|
|
|
|
// If the alignment of the memory reference itself differs from the alignment
|
|
// of the base pointer, print the base alignment explicitly, next to the base
|
|
// pointer.
|
|
if (getBaseAlignment() != getAlignment())
|
|
OS << "(align=" << getBaseAlignment() << ")";
|
|
|
|
if (getOffset() != 0)
|
|
OS << "+" << getOffset();
|
|
OS << "]";
|
|
|
|
// Print the alignment of the reference.
|
|
if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize())
|
|
OS << "(align=" << getAlignment() << ")";
|
|
|
|
// Print TBAA info.
|
|
if (const MDNode *TBAAInfo = getAAInfo().TBAA) {
|
|
OS << "(tbaa=";
|
|
if (TBAAInfo->getNumOperands() > 0)
|
|
TBAAInfo->getOperand(0)->printAsOperand(OS, MST);
|
|
else
|
|
OS << "<unknown>";
|
|
OS << ")";
|
|
}
|
|
|
|
// Print AA scope info.
|
|
if (const MDNode *ScopeInfo = getAAInfo().Scope) {
|
|
OS << "(alias.scope=";
|
|
if (ScopeInfo->getNumOperands() > 0)
|
|
for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
|
|
ScopeInfo->getOperand(i)->printAsOperand(OS, MST);
|
|
if (i != ie-1)
|
|
OS << ",";
|
|
}
|
|
else
|
|
OS << "<unknown>";
|
|
OS << ")";
|
|
}
|
|
|
|
// Print AA noalias scope info.
|
|
if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) {
|
|
OS << "(noalias=";
|
|
if (NoAliasInfo->getNumOperands() > 0)
|
|
for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
|
|
NoAliasInfo->getOperand(i)->printAsOperand(OS, MST);
|
|
if (i != ie-1)
|
|
OS << ",";
|
|
}
|
|
else
|
|
OS << "<unknown>";
|
|
OS << ")";
|
|
}
|
|
|
|
if (isNonTemporal())
|
|
OS << "(nontemporal)";
|
|
if (isDereferenceable())
|
|
OS << "(dereferenceable)";
|
|
if (isInvariant())
|
|
OS << "(invariant)";
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MachineInstr Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
|
|
if (MCID->ImplicitDefs)
|
|
for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
|
|
++ImpDefs)
|
|
addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
|
|
if (MCID->ImplicitUses)
|
|
for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
|
|
++ImpUses)
|
|
addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
|
|
}
|
|
|
|
/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
|
|
/// implicit operands. It reserves space for the number of operands specified by
|
|
/// the MCInstrDesc.
|
|
MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
|
|
DebugLoc dl, bool NoImp)
|
|
: MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0),
|
|
AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr),
|
|
debugLoc(std::move(dl)) {
|
|
assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
|
|
|
|
// Reserve space for the expected number of operands.
|
|
if (unsigned NumOps = MCID->getNumOperands() +
|
|
MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
|
|
CapOperands = OperandCapacity::get(NumOps);
|
|
Operands = MF.allocateOperandArray(CapOperands);
|
|
}
|
|
|
|
if (!NoImp)
|
|
addImplicitDefUseOperands(MF);
|
|
}
|
|
|
|
/// MachineInstr ctor - Copies MachineInstr arg exactly
|
|
///
|
|
MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
|
|
: MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0),
|
|
Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs),
|
|
MemRefs(MI.MemRefs), debugLoc(MI.getDebugLoc()) {
|
|
assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
|
|
|
|
CapOperands = OperandCapacity::get(MI.getNumOperands());
|
|
Operands = MF.allocateOperandArray(CapOperands);
|
|
|
|
// Copy operands.
|
|
for (const MachineOperand &MO : MI.operands())
|
|
addOperand(MF, MO);
|
|
|
|
// Copy all the sensible flags.
|
|
setFlags(MI.Flags);
|
|
}
|
|
|
|
/// getRegInfo - If this instruction is embedded into a MachineFunction,
|
|
/// return the MachineRegisterInfo object for the current function, otherwise
|
|
/// return null.
|
|
MachineRegisterInfo *MachineInstr::getRegInfo() {
|
|
if (MachineBasicBlock *MBB = getParent())
|
|
return &MBB->getParent()->getRegInfo();
|
|
return nullptr;
|
|
}
|
|
|
|
/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
|
|
/// this instruction from their respective use lists. This requires that the
|
|
/// operands already be on their use lists.
|
|
void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
|
|
for (MachineOperand &MO : operands())
|
|
if (MO.isReg())
|
|
MRI.removeRegOperandFromUseList(&MO);
|
|
}
|
|
|
|
/// AddRegOperandsToUseLists - Add all of the register operands in
|
|
/// this instruction from their respective use lists. This requires that the
|
|
/// operands not be on their use lists yet.
|
|
void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
|
|
for (MachineOperand &MO : operands())
|
|
if (MO.isReg())
|
|
MRI.addRegOperandToUseList(&MO);
|
|
}
|
|
|
|
void MachineInstr::addOperand(const MachineOperand &Op) {
|
|
MachineBasicBlock *MBB = getParent();
|
|
assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
|
|
MachineFunction *MF = MBB->getParent();
|
|
assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
|
|
addOperand(*MF, Op);
|
|
}
|
|
|
|
/// Move NumOps MachineOperands from Src to Dst, with support for overlapping
|
|
/// ranges. If MRI is non-null also update use-def chains.
|
|
static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
|
|
unsigned NumOps, MachineRegisterInfo *MRI) {
|
|
if (MRI)
|
|
return MRI->moveOperands(Dst, Src, NumOps);
|
|
|
|
// MachineOperand is a trivially copyable type so we can just use memmove.
|
|
std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
|
|
}
|
|
|
|
/// addOperand - Add the specified operand to the instruction. If it is an
|
|
/// implicit operand, it is added to the end of the operand list. If it is
|
|
/// an explicit operand it is added at the end of the explicit operand list
|
|
/// (before the first implicit operand).
|
|
void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
|
|
assert(MCID && "Cannot add operands before providing an instr descriptor");
|
|
|
|
// Check if we're adding one of our existing operands.
|
|
if (&Op >= Operands && &Op < Operands + NumOperands) {
|
|
// This is unusual: MI->addOperand(MI->getOperand(i)).
|
|
// If adding Op requires reallocating or moving existing operands around,
|
|
// the Op reference could go stale. Support it by copying Op.
|
|
MachineOperand CopyOp(Op);
|
|
return addOperand(MF, CopyOp);
|
|
}
|
|
|
|
// Find the insert location for the new operand. Implicit registers go at
|
|
// the end, everything else goes before the implicit regs.
|
|
//
|
|
// FIXME: Allow mixed explicit and implicit operands on inline asm.
|
|
// InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
|
|
// implicit-defs, but they must not be moved around. See the FIXME in
|
|
// InstrEmitter.cpp.
|
|
unsigned OpNo = getNumOperands();
|
|
bool isImpReg = Op.isReg() && Op.isImplicit();
|
|
if (!isImpReg && !isInlineAsm()) {
|
|
while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
|
|
--OpNo;
|
|
assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
|
|
// OpNo now points as the desired insertion point. Unless this is a variadic
|
|
// instruction, only implicit regs are allowed beyond MCID->getNumOperands().
|
|
// RegMask operands go between the explicit and implicit operands.
|
|
assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
|
|
OpNo < MCID->getNumOperands() || isMetaDataOp) &&
|
|
"Trying to add an operand to a machine instr that is already done!");
|
|
#endif
|
|
|
|
MachineRegisterInfo *MRI = getRegInfo();
|
|
|
|
// Determine if the Operands array needs to be reallocated.
|
|
// Save the old capacity and operand array.
|
|
OperandCapacity OldCap = CapOperands;
|
|
MachineOperand *OldOperands = Operands;
|
|
if (!OldOperands || OldCap.getSize() == getNumOperands()) {
|
|
CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
|
|
Operands = MF.allocateOperandArray(CapOperands);
|
|
// Move the operands before the insertion point.
|
|
if (OpNo)
|
|
moveOperands(Operands, OldOperands, OpNo, MRI);
|
|
}
|
|
|
|
// Move the operands following the insertion point.
|
|
if (OpNo != NumOperands)
|
|
moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
|
|
MRI);
|
|
++NumOperands;
|
|
|
|
// Deallocate the old operand array.
|
|
if (OldOperands != Operands && OldOperands)
|
|
MF.deallocateOperandArray(OldCap, OldOperands);
|
|
|
|
// Copy Op into place. It still needs to be inserted into the MRI use lists.
|
|
MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
|
|
NewMO->ParentMI = this;
|
|
|
|
// When adding a register operand, tell MRI about it.
|
|
if (NewMO->isReg()) {
|
|
// Ensure isOnRegUseList() returns false, regardless of Op's status.
|
|
NewMO->Contents.Reg.Prev = nullptr;
|
|
// Ignore existing ties. This is not a property that can be copied.
|
|
NewMO->TiedTo = 0;
|
|
// Add the new operand to MRI, but only for instructions in an MBB.
|
|
if (MRI)
|
|
MRI->addRegOperandToUseList(NewMO);
|
|
// The MCID operand information isn't accurate until we start adding
|
|
// explicit operands. The implicit operands are added first, then the
|
|
// explicits are inserted before them.
|
|
if (!isImpReg) {
|
|
// Tie uses to defs as indicated in MCInstrDesc.
|
|
if (NewMO->isUse()) {
|
|
int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
|
|
if (DefIdx != -1)
|
|
tieOperands(DefIdx, OpNo);
|
|
}
|
|
// If the register operand is flagged as early, mark the operand as such.
|
|
if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
|
|
NewMO->setIsEarlyClobber(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// RemoveOperand - Erase an operand from an instruction, leaving it with one
|
|
/// fewer operand than it started with.
|
|
///
|
|
void MachineInstr::RemoveOperand(unsigned OpNo) {
|
|
assert(OpNo < getNumOperands() && "Invalid operand number");
|
|
untieRegOperand(OpNo);
|
|
|
|
#ifndef NDEBUG
|
|
// Moving tied operands would break the ties.
|
|
for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
|
|
if (Operands[i].isReg())
|
|
assert(!Operands[i].isTied() && "Cannot move tied operands");
|
|
#endif
|
|
|
|
MachineRegisterInfo *MRI = getRegInfo();
|
|
if (MRI && Operands[OpNo].isReg())
|
|
MRI->removeRegOperandFromUseList(Operands + OpNo);
|
|
|
|
// Don't call the MachineOperand destructor. A lot of this code depends on
|
|
// MachineOperand having a trivial destructor anyway, and adding a call here
|
|
// wouldn't make it 'destructor-correct'.
|
|
|
|
if (unsigned N = NumOperands - 1 - OpNo)
|
|
moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
|
|
--NumOperands;
|
|
}
|
|
|
|
/// addMemOperand - Add a MachineMemOperand to the machine instruction.
|
|
/// This function should be used only occasionally. The setMemRefs function
|
|
/// is the primary method for setting up a MachineInstr's MemRefs list.
|
|
void MachineInstr::addMemOperand(MachineFunction &MF,
|
|
MachineMemOperand *MO) {
|
|
mmo_iterator OldMemRefs = MemRefs;
|
|
unsigned OldNumMemRefs = NumMemRefs;
|
|
|
|
unsigned NewNum = NumMemRefs + 1;
|
|
mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
|
|
|
|
std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
|
|
NewMemRefs[NewNum - 1] = MO;
|
|
setMemRefs(NewMemRefs, NewMemRefs + NewNum);
|
|
}
|
|
|
|
/// Check to see if the MMOs pointed to by the two MemRefs arrays are
|
|
/// identical.
|
|
static bool hasIdenticalMMOs(const MachineInstr &MI1, const MachineInstr &MI2) {
|
|
auto I1 = MI1.memoperands_begin(), E1 = MI1.memoperands_end();
|
|
auto I2 = MI2.memoperands_begin(), E2 = MI2.memoperands_end();
|
|
if ((E1 - I1) != (E2 - I2))
|
|
return false;
|
|
for (; I1 != E1; ++I1, ++I2) {
|
|
if (**I1 != **I2)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
std::pair<MachineInstr::mmo_iterator, unsigned>
|
|
MachineInstr::mergeMemRefsWith(const MachineInstr& Other) {
|
|
|
|
// If either of the incoming memrefs are empty, we must be conservative and
|
|
// treat this as if we've exhausted our space for memrefs and dropped them.
|
|
if (memoperands_empty() || Other.memoperands_empty())
|
|
return std::make_pair(nullptr, 0);
|
|
|
|
// If both instructions have identical memrefs, we don't need to merge them.
|
|
// Since many instructions have a single memref, and we tend to merge things
|
|
// like pairs of loads from the same location, this catches a large number of
|
|
// cases in practice.
|
|
if (hasIdenticalMMOs(*this, Other))
|
|
return std::make_pair(MemRefs, NumMemRefs);
|
|
|
|
// TODO: consider uniquing elements within the operand lists to reduce
|
|
// space usage and fall back to conservative information less often.
|
|
size_t CombinedNumMemRefs = NumMemRefs + Other.NumMemRefs;
|
|
|
|
// If we don't have enough room to store this many memrefs, be conservative
|
|
// and drop them. Otherwise, we'd fail asserts when trying to add them to
|
|
// the new instruction.
|
|
if (CombinedNumMemRefs != uint8_t(CombinedNumMemRefs))
|
|
return std::make_pair(nullptr, 0);
|
|
|
|
MachineFunction *MF = getParent()->getParent();
|
|
mmo_iterator MemBegin = MF->allocateMemRefsArray(CombinedNumMemRefs);
|
|
mmo_iterator MemEnd = std::copy(memoperands_begin(), memoperands_end(),
|
|
MemBegin);
|
|
MemEnd = std::copy(Other.memoperands_begin(), Other.memoperands_end(),
|
|
MemEnd);
|
|
assert(MemEnd - MemBegin == (ptrdiff_t)CombinedNumMemRefs &&
|
|
"missing memrefs");
|
|
|
|
return std::make_pair(MemBegin, CombinedNumMemRefs);
|
|
}
|
|
|
|
bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
|
|
assert(!isBundledWithPred() && "Must be called on bundle header");
|
|
for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
|
|
if (MII->getDesc().getFlags() & Mask) {
|
|
if (Type == AnyInBundle)
|
|
return true;
|
|
} else {
|
|
if (Type == AllInBundle && !MII->isBundle())
|
|
return false;
|
|
}
|
|
// This was the last instruction in the bundle.
|
|
if (!MII->isBundledWithSucc())
|
|
return Type == AllInBundle;
|
|
}
|
|
}
|
|
|
|
bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
|
|
MICheckType Check) const {
|
|
// If opcodes or number of operands are not the same then the two
|
|
// instructions are obviously not identical.
|
|
if (Other.getOpcode() != getOpcode() ||
|
|
Other.getNumOperands() != getNumOperands())
|
|
return false;
|
|
|
|
if (isBundle()) {
|
|
// We have passed the test above that both instructions have the same
|
|
// opcode, so we know that both instructions are bundles here. Let's compare
|
|
// MIs inside the bundle.
|
|
assert(Other.isBundle() && "Expected that both instructions are bundles.");
|
|
MachineBasicBlock::const_instr_iterator I1 = getIterator();
|
|
MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
|
|
// Loop until we analysed the last intruction inside at least one of the
|
|
// bundles.
|
|
while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
|
|
++I1;
|
|
++I2;
|
|
if (!I1->isIdenticalTo(*I2, Check))
|
|
return false;
|
|
}
|
|
// If we've reached the end of just one of the two bundles, but not both,
|
|
// the instructions are not identical.
|
|
if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
|
|
return false;
|
|
}
|
|
|
|
// Check operands to make sure they match.
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
const MachineOperand &OMO = Other.getOperand(i);
|
|
if (!MO.isReg()) {
|
|
if (!MO.isIdenticalTo(OMO))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
// Clients may or may not want to ignore defs when testing for equality.
|
|
// For example, machine CSE pass only cares about finding common
|
|
// subexpressions, so it's safe to ignore virtual register defs.
|
|
if (MO.isDef()) {
|
|
if (Check == IgnoreDefs)
|
|
continue;
|
|
else if (Check == IgnoreVRegDefs) {
|
|
if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
|
|
TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
|
|
if (MO.getReg() != OMO.getReg())
|
|
return false;
|
|
} else {
|
|
if (!MO.isIdenticalTo(OMO))
|
|
return false;
|
|
if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!MO.isIdenticalTo(OMO))
|
|
return false;
|
|
if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
|
|
return false;
|
|
}
|
|
}
|
|
// If DebugLoc does not match then two dbg.values are not identical.
|
|
if (isDebugValue())
|
|
if (getDebugLoc() && Other.getDebugLoc() &&
|
|
getDebugLoc() != Other.getDebugLoc())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
MachineInstr *MachineInstr::removeFromParent() {
|
|
assert(getParent() && "Not embedded in a basic block!");
|
|
return getParent()->remove(this);
|
|
}
|
|
|
|
MachineInstr *MachineInstr::removeFromBundle() {
|
|
assert(getParent() && "Not embedded in a basic block!");
|
|
return getParent()->remove_instr(this);
|
|
}
|
|
|
|
void MachineInstr::eraseFromParent() {
|
|
assert(getParent() && "Not embedded in a basic block!");
|
|
getParent()->erase(this);
|
|
}
|
|
|
|
void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
|
|
assert(getParent() && "Not embedded in a basic block!");
|
|
MachineBasicBlock *MBB = getParent();
|
|
MachineFunction *MF = MBB->getParent();
|
|
assert(MF && "Not embedded in a function!");
|
|
|
|
MachineInstr *MI = (MachineInstr *)this;
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
|
|
for (const MachineOperand &MO : MI->operands()) {
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(Reg))
|
|
continue;
|
|
MRI.markUsesInDebugValueAsUndef(Reg);
|
|
}
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
void MachineInstr::eraseFromBundle() {
|
|
assert(getParent() && "Not embedded in a basic block!");
|
|
getParent()->erase_instr(this);
|
|
}
|
|
|
|
/// getNumExplicitOperands - Returns the number of non-implicit operands.
|
|
///
|
|
unsigned MachineInstr::getNumExplicitOperands() const {
|
|
unsigned NumOperands = MCID->getNumOperands();
|
|
if (!MCID->isVariadic())
|
|
return NumOperands;
|
|
|
|
for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isImplicit())
|
|
NumOperands++;
|
|
}
|
|
return NumOperands;
|
|
}
|
|
|
|
void MachineInstr::bundleWithPred() {
|
|
assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
|
|
setFlag(BundledPred);
|
|
MachineBasicBlock::instr_iterator Pred = getIterator();
|
|
--Pred;
|
|
assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
|
|
Pred->setFlag(BundledSucc);
|
|
}
|
|
|
|
void MachineInstr::bundleWithSucc() {
|
|
assert(!isBundledWithSucc() && "MI is already bundled with its successor");
|
|
setFlag(BundledSucc);
|
|
MachineBasicBlock::instr_iterator Succ = getIterator();
|
|
++Succ;
|
|
assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
|
|
Succ->setFlag(BundledPred);
|
|
}
|
|
|
|
void MachineInstr::unbundleFromPred() {
|
|
assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
|
|
clearFlag(BundledPred);
|
|
MachineBasicBlock::instr_iterator Pred = getIterator();
|
|
--Pred;
|
|
assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
|
|
Pred->clearFlag(BundledSucc);
|
|
}
|
|
|
|
void MachineInstr::unbundleFromSucc() {
|
|
assert(isBundledWithSucc() && "MI isn't bundled with its successor");
|
|
clearFlag(BundledSucc);
|
|
MachineBasicBlock::instr_iterator Succ = getIterator();
|
|
++Succ;
|
|
assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
|
|
Succ->clearFlag(BundledPred);
|
|
}
|
|
|
|
bool MachineInstr::isStackAligningInlineAsm() const {
|
|
if (isInlineAsm()) {
|
|
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
|
|
assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
|
|
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
|
|
}
|
|
|
|
int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
|
|
unsigned *GroupNo) const {
|
|
assert(isInlineAsm() && "Expected an inline asm instruction");
|
|
assert(OpIdx < getNumOperands() && "OpIdx out of range");
|
|
|
|
// Ignore queries about the initial operands.
|
|
if (OpIdx < InlineAsm::MIOp_FirstOperand)
|
|
return -1;
|
|
|
|
unsigned Group = 0;
|
|
unsigned NumOps;
|
|
for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
|
|
i += NumOps) {
|
|
const MachineOperand &FlagMO = getOperand(i);
|
|
// If we reach the implicit register operands, stop looking.
|
|
if (!FlagMO.isImm())
|
|
return -1;
|
|
NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
|
|
if (i + NumOps > OpIdx) {
|
|
if (GroupNo)
|
|
*GroupNo = Group;
|
|
return i;
|
|
}
|
|
++Group;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
const DILocalVariable *MachineInstr::getDebugVariable() const {
|
|
assert(isDebugValue() && "not a DBG_VALUE");
|
|
return cast<DILocalVariable>(getOperand(2).getMetadata());
|
|
}
|
|
|
|
const DIExpression *MachineInstr::getDebugExpression() const {
|
|
assert(isDebugValue() && "not a DBG_VALUE");
|
|
return cast<DIExpression>(getOperand(3).getMetadata());
|
|
}
|
|
|
|
const TargetRegisterClass*
|
|
MachineInstr::getRegClassConstraint(unsigned OpIdx,
|
|
const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI) const {
|
|
assert(getParent() && "Can't have an MBB reference here!");
|
|
assert(getParent()->getParent() && "Can't have an MF reference here!");
|
|
const MachineFunction &MF = *getParent()->getParent();
|
|
|
|
// Most opcodes have fixed constraints in their MCInstrDesc.
|
|
if (!isInlineAsm())
|
|
return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
|
|
|
|
if (!getOperand(OpIdx).isReg())
|
|
return nullptr;
|
|
|
|
// For tied uses on inline asm, get the constraint from the def.
|
|
unsigned DefIdx;
|
|
if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
|
|
OpIdx = DefIdx;
|
|
|
|
// Inline asm stores register class constraints in the flag word.
|
|
int FlagIdx = findInlineAsmFlagIdx(OpIdx);
|
|
if (FlagIdx < 0)
|
|
return nullptr;
|
|
|
|
unsigned Flag = getOperand(FlagIdx).getImm();
|
|
unsigned RCID;
|
|
if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
|
|
InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
|
|
InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
|
|
InlineAsm::hasRegClassConstraint(Flag, RCID))
|
|
return TRI->getRegClass(RCID);
|
|
|
|
// Assume that all registers in a memory operand are pointers.
|
|
if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
|
|
return TRI->getPointerRegClass(MF);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
|
|
unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI, bool ExploreBundle) const {
|
|
// Check every operands inside the bundle if we have
|
|
// been asked to.
|
|
if (ExploreBundle)
|
|
for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
|
|
++OpndIt)
|
|
CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
|
|
OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
|
|
else
|
|
// Otherwise, just check the current operands.
|
|
for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
|
|
CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
|
|
return CurRC;
|
|
}
|
|
|
|
const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
|
|
unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
|
|
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
|
|
assert(CurRC && "Invalid initial register class");
|
|
// Check if Reg is constrained by some of its use/def from MI.
|
|
const MachineOperand &MO = getOperand(OpIdx);
|
|
if (!MO.isReg() || MO.getReg() != Reg)
|
|
return CurRC;
|
|
// If yes, accumulate the constraints through the operand.
|
|
return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
|
|
}
|
|
|
|
const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
|
|
unsigned OpIdx, const TargetRegisterClass *CurRC,
|
|
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
|
|
const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
|
|
const MachineOperand &MO = getOperand(OpIdx);
|
|
assert(MO.isReg() &&
|
|
"Cannot get register constraints for non-register operand");
|
|
assert(CurRC && "Invalid initial register class");
|
|
if (unsigned SubIdx = MO.getSubReg()) {
|
|
if (OpRC)
|
|
CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
|
|
else
|
|
CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
|
|
} else if (OpRC)
|
|
CurRC = TRI->getCommonSubClass(CurRC, OpRC);
|
|
return CurRC;
|
|
}
|
|
|
|
/// Return the number of instructions inside the MI bundle, not counting the
|
|
/// header instruction.
|
|
unsigned MachineInstr::getBundleSize() const {
|
|
MachineBasicBlock::const_instr_iterator I = getIterator();
|
|
unsigned Size = 0;
|
|
while (I->isBundledWithSucc()) {
|
|
++Size;
|
|
++I;
|
|
}
|
|
return Size;
|
|
}
|
|
|
|
/// Returns true if the MachineInstr has an implicit-use operand of exactly
|
|
/// the given register (not considering sub/super-registers).
|
|
bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg) const {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
|
|
/// the specific register or -1 if it is not found. It further tightens
|
|
/// the search criteria to a use that kills the register if isKill is true.
|
|
int MachineInstr::findRegisterUseOperandIdx(
|
|
unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse())
|
|
continue;
|
|
unsigned MOReg = MO.getReg();
|
|
if (!MOReg)
|
|
continue;
|
|
if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) &&
|
|
TargetRegisterInfo::isPhysicalRegister(Reg) &&
|
|
TRI->isSubRegister(MOReg, Reg)))
|
|
if (!isKill || MO.isKill())
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
|
|
/// indicating if this instruction reads or writes Reg. This also considers
|
|
/// partial defines.
|
|
std::pair<bool,bool>
|
|
MachineInstr::readsWritesVirtualRegister(unsigned Reg,
|
|
SmallVectorImpl<unsigned> *Ops) const {
|
|
bool PartDef = false; // Partial redefine.
|
|
bool FullDef = false; // Full define.
|
|
bool Use = false;
|
|
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() != Reg)
|
|
continue;
|
|
if (Ops)
|
|
Ops->push_back(i);
|
|
if (MO.isUse())
|
|
Use |= !MO.isUndef();
|
|
else if (MO.getSubReg() && !MO.isUndef())
|
|
// A partial <def,undef> doesn't count as reading the register.
|
|
PartDef = true;
|
|
else
|
|
FullDef = true;
|
|
}
|
|
// A partial redefine uses Reg unless there is also a full define.
|
|
return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
|
|
}
|
|
|
|
/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
|
|
/// the specified register or -1 if it is not found. If isDead is true, defs
|
|
/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
|
|
/// also checks if there is a def of a super-register.
|
|
int
|
|
MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
|
|
const TargetRegisterInfo *TRI) const {
|
|
bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
// Accept regmask operands when Overlap is set.
|
|
// Ignore them when looking for a specific def operand (Overlap == false).
|
|
if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
|
|
return i;
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
unsigned MOReg = MO.getReg();
|
|
bool Found = (MOReg == Reg);
|
|
if (!Found && TRI && isPhys &&
|
|
TargetRegisterInfo::isPhysicalRegister(MOReg)) {
|
|
if (Overlap)
|
|
Found = TRI->regsOverlap(MOReg, Reg);
|
|
else
|
|
Found = TRI->isSubRegister(MOReg, Reg);
|
|
}
|
|
if (Found && (!isDead || MO.isDead()))
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/// findFirstPredOperandIdx() - Find the index of the first operand in the
|
|
/// operand list that is used to represent the predicate. It returns -1 if
|
|
/// none is found.
|
|
int MachineInstr::findFirstPredOperandIdx() const {
|
|
// Don't call MCID.findFirstPredOperandIdx() because this variant
|
|
// is sometimes called on an instruction that's not yet complete, and
|
|
// so the number of operands is less than the MCID indicates. In
|
|
// particular, the PTX target does this.
|
|
const MCInstrDesc &MCID = getDesc();
|
|
if (MCID.isPredicable()) {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
if (MCID.OpInfo[i].isPredicate())
|
|
return i;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
// MachineOperand::TiedTo is 4 bits wide.
|
|
const unsigned TiedMax = 15;
|
|
|
|
/// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
|
|
///
|
|
/// Use and def operands can be tied together, indicated by a non-zero TiedTo
|
|
/// field. TiedTo can have these values:
|
|
///
|
|
/// 0: Operand is not tied to anything.
|
|
/// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
|
|
/// TiedMax: Tied to an operand >= TiedMax-1.
|
|
///
|
|
/// The tied def must be one of the first TiedMax operands on a normal
|
|
/// instruction. INLINEASM instructions allow more tied defs.
|
|
///
|
|
void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
|
|
MachineOperand &DefMO = getOperand(DefIdx);
|
|
MachineOperand &UseMO = getOperand(UseIdx);
|
|
assert(DefMO.isDef() && "DefIdx must be a def operand");
|
|
assert(UseMO.isUse() && "UseIdx must be a use operand");
|
|
assert(!DefMO.isTied() && "Def is already tied to another use");
|
|
assert(!UseMO.isTied() && "Use is already tied to another def");
|
|
|
|
if (DefIdx < TiedMax)
|
|
UseMO.TiedTo = DefIdx + 1;
|
|
else {
|
|
// Inline asm can use the group descriptors to find tied operands, but on
|
|
// normal instruction, the tied def must be within the first TiedMax
|
|
// operands.
|
|
assert(isInlineAsm() && "DefIdx out of range");
|
|
UseMO.TiedTo = TiedMax;
|
|
}
|
|
|
|
// UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
|
|
DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
|
|
}
|
|
|
|
/// Given the index of a tied register operand, find the operand it is tied to.
|
|
/// Defs are tied to uses and vice versa. Returns the index of the tied operand
|
|
/// which must exist.
|
|
unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
|
|
const MachineOperand &MO = getOperand(OpIdx);
|
|
assert(MO.isTied() && "Operand isn't tied");
|
|
|
|
// Normally TiedTo is in range.
|
|
if (MO.TiedTo < TiedMax)
|
|
return MO.TiedTo - 1;
|
|
|
|
// Uses on normal instructions can be out of range.
|
|
if (!isInlineAsm()) {
|
|
// Normal tied defs must be in the 0..TiedMax-1 range.
|
|
if (MO.isUse())
|
|
return TiedMax - 1;
|
|
// MO is a def. Search for the tied use.
|
|
for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &UseMO = getOperand(i);
|
|
if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
|
|
return i;
|
|
}
|
|
llvm_unreachable("Can't find tied use");
|
|
}
|
|
|
|
// Now deal with inline asm by parsing the operand group descriptor flags.
|
|
// Find the beginning of each operand group.
|
|
SmallVector<unsigned, 8> GroupIdx;
|
|
unsigned OpIdxGroup = ~0u;
|
|
unsigned NumOps;
|
|
for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
|
|
i += NumOps) {
|
|
const MachineOperand &FlagMO = getOperand(i);
|
|
assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
|
|
unsigned CurGroup = GroupIdx.size();
|
|
GroupIdx.push_back(i);
|
|
NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
|
|
// OpIdx belongs to this operand group.
|
|
if (OpIdx > i && OpIdx < i + NumOps)
|
|
OpIdxGroup = CurGroup;
|
|
unsigned TiedGroup;
|
|
if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
|
|
continue;
|
|
// Operands in this group are tied to operands in TiedGroup which must be
|
|
// earlier. Find the number of operands between the two groups.
|
|
unsigned Delta = i - GroupIdx[TiedGroup];
|
|
|
|
// OpIdx is a use tied to TiedGroup.
|
|
if (OpIdxGroup == CurGroup)
|
|
return OpIdx - Delta;
|
|
|
|
// OpIdx is a def tied to this use group.
|
|
if (OpIdxGroup == TiedGroup)
|
|
return OpIdx + Delta;
|
|
}
|
|
llvm_unreachable("Invalid tied operand on inline asm");
|
|
}
|
|
|
|
/// clearKillInfo - Clears kill flags on all operands.
|
|
///
|
|
void MachineInstr::clearKillInfo() {
|
|
for (MachineOperand &MO : operands()) {
|
|
if (MO.isReg() && MO.isUse())
|
|
MO.setIsKill(false);
|
|
}
|
|
}
|
|
|
|
void MachineInstr::substituteRegister(unsigned FromReg,
|
|
unsigned ToReg,
|
|
unsigned SubIdx,
|
|
const TargetRegisterInfo &RegInfo) {
|
|
if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
|
|
if (SubIdx)
|
|
ToReg = RegInfo.getSubReg(ToReg, SubIdx);
|
|
for (MachineOperand &MO : operands()) {
|
|
if (!MO.isReg() || MO.getReg() != FromReg)
|
|
continue;
|
|
MO.substPhysReg(ToReg, RegInfo);
|
|
}
|
|
} else {
|
|
for (MachineOperand &MO : operands()) {
|
|
if (!MO.isReg() || MO.getReg() != FromReg)
|
|
continue;
|
|
MO.substVirtReg(ToReg, SubIdx, RegInfo);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// isSafeToMove - Return true if it is safe to move this instruction. If
|
|
/// SawStore is set to true, it means that there is a store (or call) between
|
|
/// the instruction's location and its intended destination.
|
|
bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
|
|
// Ignore stuff that we obviously can't move.
|
|
//
|
|
// Treat volatile loads as stores. This is not strictly necessary for
|
|
// volatiles, but it is required for atomic loads. It is not allowed to move
|
|
// a load across an atomic load with Ordering > Monotonic.
|
|
if (mayStore() || isCall() ||
|
|
(mayLoad() && hasOrderedMemoryRef())) {
|
|
SawStore = true;
|
|
return false;
|
|
}
|
|
|
|
if (isPosition() || isDebugValue() || isTerminator() ||
|
|
hasUnmodeledSideEffects())
|
|
return false;
|
|
|
|
// See if this instruction does a load. If so, we have to guarantee that the
|
|
// loaded value doesn't change between the load and the its intended
|
|
// destination. The check for isInvariantLoad gives the targe the chance to
|
|
// classify the load as always returning a constant, e.g. a constant pool
|
|
// load.
|
|
if (mayLoad() && !isDereferenceableInvariantLoad(AA))
|
|
// Otherwise, this is a real load. If there is a store between the load and
|
|
// end of block, we can't move it.
|
|
return !SawStore;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// hasOrderedMemoryRef - Return true if this instruction may have an ordered
|
|
/// or volatile memory reference, or if the information describing the memory
|
|
/// reference is not available. Return false if it is known to have no ordered
|
|
/// memory references.
|
|
bool MachineInstr::hasOrderedMemoryRef() const {
|
|
// An instruction known never to access memory won't have a volatile access.
|
|
if (!mayStore() &&
|
|
!mayLoad() &&
|
|
!isCall() &&
|
|
!hasUnmodeledSideEffects())
|
|
return false;
|
|
|
|
// Otherwise, if the instruction has no memory reference information,
|
|
// conservatively assume it wasn't preserved.
|
|
if (memoperands_empty())
|
|
return true;
|
|
|
|
// Check if any of our memory operands are ordered.
|
|
return any_of(memoperands(), [](const MachineMemOperand *MMO) {
|
|
return !MMO->isUnordered();
|
|
});
|
|
}
|
|
|
|
/// isDereferenceableInvariantLoad - Return true if this instruction will never
|
|
/// trap and is loading from a location whose value is invariant across a run of
|
|
/// this function.
|
|
bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis *AA) const {
|
|
// If the instruction doesn't load at all, it isn't an invariant load.
|
|
if (!mayLoad())
|
|
return false;
|
|
|
|
// If the instruction has lost its memoperands, conservatively assume that
|
|
// it may not be an invariant load.
|
|
if (memoperands_empty())
|
|
return false;
|
|
|
|
const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
|
|
|
|
for (MachineMemOperand *MMO : memoperands()) {
|
|
if (MMO->isVolatile()) return false;
|
|
if (MMO->isStore()) return false;
|
|
if (MMO->isInvariant() && MMO->isDereferenceable())
|
|
continue;
|
|
|
|
// A load from a constant PseudoSourceValue is invariant.
|
|
if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
|
|
if (PSV->isConstant(&MFI))
|
|
continue;
|
|
|
|
if (const Value *V = MMO->getValue()) {
|
|
// If we have an AliasAnalysis, ask it whether the memory is constant.
|
|
if (AA &&
|
|
AA->pointsToConstantMemory(
|
|
MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
|
|
continue;
|
|
}
|
|
|
|
// Otherwise assume conservatively.
|
|
return false;
|
|
}
|
|
|
|
// Everything checks out.
|
|
return true;
|
|
}
|
|
|
|
/// isConstantValuePHI - If the specified instruction is a PHI that always
|
|
/// merges together the same virtual register, return the register, otherwise
|
|
/// return 0.
|
|
unsigned MachineInstr::isConstantValuePHI() const {
|
|
if (!isPHI())
|
|
return 0;
|
|
assert(getNumOperands() >= 3 &&
|
|
"It's illegal to have a PHI without source operands");
|
|
|
|
unsigned Reg = getOperand(1).getReg();
|
|
for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
|
|
if (getOperand(i).getReg() != Reg)
|
|
return 0;
|
|
return Reg;
|
|
}
|
|
|
|
bool MachineInstr::hasUnmodeledSideEffects() const {
|
|
if (hasProperty(MCID::UnmodeledSideEffects))
|
|
return true;
|
|
if (isInlineAsm()) {
|
|
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool MachineInstr::isLoadFoldBarrier() const {
|
|
return mayStore() || isCall() || hasUnmodeledSideEffects();
|
|
}
|
|
|
|
/// allDefsAreDead - Return true if all the defs of this instruction are dead.
|
|
///
|
|
bool MachineInstr::allDefsAreDead() const {
|
|
for (const MachineOperand &MO : operands()) {
|
|
if (!MO.isReg() || MO.isUse())
|
|
continue;
|
|
if (!MO.isDead())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// copyImplicitOps - Copy implicit register operands from specified
|
|
/// instruction to this instruction.
|
|
void MachineInstr::copyImplicitOps(MachineFunction &MF,
|
|
const MachineInstr &MI) {
|
|
for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
|
|
i != e; ++i) {
|
|
const MachineOperand &MO = MI.getOperand(i);
|
|
if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
|
|
addOperand(MF, MO);
|
|
}
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void MachineInstr::dump(const TargetInstrInfo *TII) const {
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
dbgs() << " ";
|
|
print(dbgs(), false /* SkipOpers */, TII);
|
|
#endif
|
|
}
|
|
|
|
void MachineInstr::print(raw_ostream &OS, bool SkipOpers,
|
|
const TargetInstrInfo *TII) const {
|
|
const Module *M = nullptr;
|
|
if (const MachineBasicBlock *MBB = getParent())
|
|
if (const MachineFunction *MF = MBB->getParent())
|
|
M = MF->getFunction()->getParent();
|
|
|
|
ModuleSlotTracker MST(M);
|
|
print(OS, MST, SkipOpers, TII);
|
|
}
|
|
|
|
void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
|
|
bool SkipOpers, const TargetInstrInfo *TII) const {
|
|
// We can be a bit tidier if we know the MachineFunction.
|
|
const MachineFunction *MF = nullptr;
|
|
const TargetRegisterInfo *TRI = nullptr;
|
|
const MachineRegisterInfo *MRI = nullptr;
|
|
const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
|
|
|
|
if (const MachineBasicBlock *MBB = getParent()) {
|
|
MF = MBB->getParent();
|
|
if (MF) {
|
|
MRI = &MF->getRegInfo();
|
|
TRI = MF->getSubtarget().getRegisterInfo();
|
|
if (!TII)
|
|
TII = MF->getSubtarget().getInstrInfo();
|
|
IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
|
|
}
|
|
}
|
|
|
|
// Save a list of virtual registers.
|
|
SmallVector<unsigned, 8> VirtRegs;
|
|
|
|
// Print explicitly defined operands on the left of an assignment syntax.
|
|
unsigned StartOp = 0, e = getNumOperands();
|
|
for (; StartOp < e && getOperand(StartOp).isReg() &&
|
|
getOperand(StartOp).isDef() &&
|
|
!getOperand(StartOp).isImplicit();
|
|
++StartOp) {
|
|
if (StartOp != 0) OS << ", ";
|
|
getOperand(StartOp).print(OS, MST, TRI, IntrinsicInfo);
|
|
unsigned Reg = getOperand(StartOp).getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
VirtRegs.push_back(Reg);
|
|
LLT Ty = MRI ? MRI->getType(Reg) : LLT{};
|
|
if (Ty.isValid())
|
|
OS << '(' << Ty << ')';
|
|
}
|
|
}
|
|
|
|
if (StartOp != 0)
|
|
OS << " = ";
|
|
|
|
// Print the opcode name.
|
|
if (TII)
|
|
OS << TII->getName(getOpcode());
|
|
else
|
|
OS << "UNKNOWN";
|
|
|
|
if (SkipOpers)
|
|
return;
|
|
|
|
// Print the rest of the operands.
|
|
bool OmittedAnyCallClobbers = false;
|
|
bool FirstOp = true;
|
|
unsigned AsmDescOp = ~0u;
|
|
unsigned AsmOpCount = 0;
|
|
|
|
if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
|
|
// Print asm string.
|
|
OS << " ";
|
|
getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI);
|
|
|
|
// Print HasSideEffects, MayLoad, MayStore, IsAlignStack
|
|
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
|
|
OS << " [sideeffect]";
|
|
if (ExtraInfo & InlineAsm::Extra_MayLoad)
|
|
OS << " [mayload]";
|
|
if (ExtraInfo & InlineAsm::Extra_MayStore)
|
|
OS << " [maystore]";
|
|
if (ExtraInfo & InlineAsm::Extra_IsConvergent)
|
|
OS << " [isconvergent]";
|
|
if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
|
|
OS << " [alignstack]";
|
|
if (getInlineAsmDialect() == InlineAsm::AD_ATT)
|
|
OS << " [attdialect]";
|
|
if (getInlineAsmDialect() == InlineAsm::AD_Intel)
|
|
OS << " [inteldialect]";
|
|
|
|
StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
|
|
FirstOp = false;
|
|
}
|
|
|
|
for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = getOperand(i);
|
|
|
|
if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
|
|
VirtRegs.push_back(MO.getReg());
|
|
|
|
// Omit call-clobbered registers which aren't used anywhere. This makes
|
|
// call instructions much less noisy on targets where calls clobber lots
|
|
// of registers. Don't rely on MO.isDead() because we may be called before
|
|
// LiveVariables is run, or we may be looking at a non-allocatable reg.
|
|
if (MRI && isCall() &&
|
|
MO.isReg() && MO.isImplicit() && MO.isDef()) {
|
|
unsigned Reg = MO.getReg();
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
if (MRI->use_empty(Reg)) {
|
|
bool HasAliasLive = false;
|
|
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
|
|
unsigned AliasReg = *AI;
|
|
if (!MRI->use_empty(AliasReg)) {
|
|
HasAliasLive = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!HasAliasLive) {
|
|
OmittedAnyCallClobbers = true;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (FirstOp) FirstOp = false; else OS << ",";
|
|
OS << " ";
|
|
if (i < getDesc().NumOperands) {
|
|
const MCOperandInfo &MCOI = getDesc().OpInfo[i];
|
|
if (MCOI.isPredicate())
|
|
OS << "pred:";
|
|
if (MCOI.isOptionalDef())
|
|
OS << "opt:";
|
|
}
|
|
if (isDebugValue() && MO.isMetadata()) {
|
|
// Pretty print DBG_VALUE instructions.
|
|
auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
|
|
if (DIV && !DIV->getName().empty())
|
|
OS << "!\"" << DIV->getName() << '\"';
|
|
else
|
|
MO.print(OS, MST, TRI);
|
|
} else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
|
|
OS << TRI->getSubRegIndexName(MO.getImm());
|
|
} else if (i == AsmDescOp && MO.isImm()) {
|
|
// Pretty print the inline asm operand descriptor.
|
|
OS << '$' << AsmOpCount++;
|
|
unsigned Flag = MO.getImm();
|
|
switch (InlineAsm::getKind(Flag)) {
|
|
case InlineAsm::Kind_RegUse: OS << ":[reguse"; break;
|
|
case InlineAsm::Kind_RegDef: OS << ":[regdef"; break;
|
|
case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
|
|
case InlineAsm::Kind_Clobber: OS << ":[clobber"; break;
|
|
case InlineAsm::Kind_Imm: OS << ":[imm"; break;
|
|
case InlineAsm::Kind_Mem: OS << ":[mem"; break;
|
|
default: OS << ":[??" << InlineAsm::getKind(Flag); break;
|
|
}
|
|
|
|
unsigned RCID = 0;
|
|
if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
|
|
InlineAsm::hasRegClassConstraint(Flag, RCID)) {
|
|
if (TRI) {
|
|
OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
|
|
} else
|
|
OS << ":RC" << RCID;
|
|
}
|
|
|
|
if (InlineAsm::isMemKind(Flag)) {
|
|
unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
|
|
switch (MCID) {
|
|
case InlineAsm::Constraint_es: OS << ":es"; break;
|
|
case InlineAsm::Constraint_i: OS << ":i"; break;
|
|
case InlineAsm::Constraint_m: OS << ":m"; break;
|
|
case InlineAsm::Constraint_o: OS << ":o"; break;
|
|
case InlineAsm::Constraint_v: OS << ":v"; break;
|
|
case InlineAsm::Constraint_Q: OS << ":Q"; break;
|
|
case InlineAsm::Constraint_R: OS << ":R"; break;
|
|
case InlineAsm::Constraint_S: OS << ":S"; break;
|
|
case InlineAsm::Constraint_T: OS << ":T"; break;
|
|
case InlineAsm::Constraint_Um: OS << ":Um"; break;
|
|
case InlineAsm::Constraint_Un: OS << ":Un"; break;
|
|
case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
|
|
case InlineAsm::Constraint_Us: OS << ":Us"; break;
|
|
case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
|
|
case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
|
|
case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
|
|
case InlineAsm::Constraint_X: OS << ":X"; break;
|
|
case InlineAsm::Constraint_Z: OS << ":Z"; break;
|
|
case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
|
|
case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
|
|
default: OS << ":?"; break;
|
|
}
|
|
}
|
|
|
|
unsigned TiedTo = 0;
|
|
if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
|
|
OS << " tiedto:$" << TiedTo;
|
|
|
|
OS << ']';
|
|
|
|
// Compute the index of the next operand descriptor.
|
|
AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
|
|
} else
|
|
MO.print(OS, MST, TRI);
|
|
}
|
|
|
|
// Briefly indicate whether any call clobbers were omitted.
|
|
if (OmittedAnyCallClobbers) {
|
|
if (!FirstOp) OS << ",";
|
|
OS << " ...";
|
|
}
|
|
|
|
bool HaveSemi = false;
|
|
const unsigned PrintableFlags = FrameSetup | FrameDestroy;
|
|
if (Flags & PrintableFlags) {
|
|
if (!HaveSemi) {
|
|
OS << ";";
|
|
HaveSemi = true;
|
|
}
|
|
OS << " flags: ";
|
|
|
|
if (Flags & FrameSetup)
|
|
OS << "FrameSetup";
|
|
|
|
if (Flags & FrameDestroy)
|
|
OS << "FrameDestroy";
|
|
}
|
|
|
|
if (!memoperands_empty()) {
|
|
if (!HaveSemi) {
|
|
OS << ";";
|
|
HaveSemi = true;
|
|
}
|
|
|
|
OS << " mem:";
|
|
for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
|
|
i != e; ++i) {
|
|
(*i)->print(OS, MST);
|
|
if (std::next(i) != e)
|
|
OS << " ";
|
|
}
|
|
}
|
|
|
|
// Print the regclass of any virtual registers encountered.
|
|
if (MRI && !VirtRegs.empty()) {
|
|
if (!HaveSemi) {
|
|
OS << ";";
|
|
HaveSemi = true;
|
|
}
|
|
for (unsigned i = 0; i != VirtRegs.size(); ++i) {
|
|
const RegClassOrRegBank &RC = MRI->getRegClassOrRegBank(VirtRegs[i]);
|
|
if (!RC)
|
|
continue;
|
|
// Generic virtual registers do not have register classes.
|
|
if (RC.is<const RegisterBank *>())
|
|
OS << " " << RC.get<const RegisterBank *>()->getName();
|
|
else
|
|
OS << " "
|
|
<< TRI->getRegClassName(RC.get<const TargetRegisterClass *>());
|
|
OS << ':' << PrintReg(VirtRegs[i]);
|
|
for (unsigned j = i+1; j != VirtRegs.size();) {
|
|
if (MRI->getRegClassOrRegBank(VirtRegs[j]) != RC) {
|
|
++j;
|
|
continue;
|
|
}
|
|
if (VirtRegs[i] != VirtRegs[j])
|
|
OS << "," << PrintReg(VirtRegs[j]);
|
|
VirtRegs.erase(VirtRegs.begin()+j);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Print debug location information.
|
|
if (isDebugValue() && getOperand(e - 2).isMetadata()) {
|
|
if (!HaveSemi)
|
|
OS << ";";
|
|
auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
|
|
OS << " line no:" << DV->getLine();
|
|
if (auto *InlinedAt = debugLoc->getInlinedAt()) {
|
|
DebugLoc InlinedAtDL(InlinedAt);
|
|
if (InlinedAtDL && MF) {
|
|
OS << " inlined @[ ";
|
|
InlinedAtDL.print(OS);
|
|
OS << " ]";
|
|
}
|
|
}
|
|
if (isIndirectDebugValue())
|
|
OS << " indirect";
|
|
} else if (debugLoc && MF) {
|
|
if (!HaveSemi)
|
|
OS << ";";
|
|
OS << " dbg:";
|
|
debugLoc.print(OS);
|
|
}
|
|
|
|
OS << '\n';
|
|
}
|
|
|
|
bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
|
|
const TargetRegisterInfo *RegInfo,
|
|
bool AddIfNotFound) {
|
|
bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
|
|
bool hasAliases = isPhysReg &&
|
|
MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
|
|
bool Found = false;
|
|
SmallVector<unsigned,4> DeadOps;
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse() || MO.isUndef())
|
|
continue;
|
|
|
|
// DEBUG_VALUE nodes do not contribute to code generation and should
|
|
// always be ignored. Failure to do so may result in trying to modify
|
|
// KILL flags on DEBUG_VALUE nodes.
|
|
if (MO.isDebug())
|
|
continue;
|
|
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
|
|
if (Reg == IncomingReg) {
|
|
if (!Found) {
|
|
if (MO.isKill())
|
|
// The register is already marked kill.
|
|
return true;
|
|
if (isPhysReg && isRegTiedToDefOperand(i))
|
|
// Two-address uses of physregs must not be marked kill.
|
|
return true;
|
|
MO.setIsKill();
|
|
Found = true;
|
|
}
|
|
} else if (hasAliases && MO.isKill() &&
|
|
TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
// A super-register kill already exists.
|
|
if (RegInfo->isSuperRegister(IncomingReg, Reg))
|
|
return true;
|
|
if (RegInfo->isSubRegister(IncomingReg, Reg))
|
|
DeadOps.push_back(i);
|
|
}
|
|
}
|
|
|
|
// Trim unneeded kill operands.
|
|
while (!DeadOps.empty()) {
|
|
unsigned OpIdx = DeadOps.back();
|
|
if (getOperand(OpIdx).isImplicit())
|
|
RemoveOperand(OpIdx);
|
|
else
|
|
getOperand(OpIdx).setIsKill(false);
|
|
DeadOps.pop_back();
|
|
}
|
|
|
|
// If not found, this means an alias of one of the operands is killed. Add a
|
|
// new implicit operand if required.
|
|
if (!Found && AddIfNotFound) {
|
|
addOperand(MachineOperand::CreateReg(IncomingReg,
|
|
false /*IsDef*/,
|
|
true /*IsImp*/,
|
|
true /*IsKill*/));
|
|
return true;
|
|
}
|
|
return Found;
|
|
}
|
|
|
|
void MachineInstr::clearRegisterKills(unsigned Reg,
|
|
const TargetRegisterInfo *RegInfo) {
|
|
if (!TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
RegInfo = nullptr;
|
|
for (MachineOperand &MO : operands()) {
|
|
if (!MO.isReg() || !MO.isUse() || !MO.isKill())
|
|
continue;
|
|
unsigned OpReg = MO.getReg();
|
|
if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
|
|
MO.setIsKill(false);
|
|
}
|
|
}
|
|
|
|
bool MachineInstr::addRegisterDead(unsigned Reg,
|
|
const TargetRegisterInfo *RegInfo,
|
|
bool AddIfNotFound) {
|
|
bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
|
|
bool hasAliases = isPhysReg &&
|
|
MCRegAliasIterator(Reg, RegInfo, false).isValid();
|
|
bool Found = false;
|
|
SmallVector<unsigned,4> DeadOps;
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = getOperand(i);
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
unsigned MOReg = MO.getReg();
|
|
if (!MOReg)
|
|
continue;
|
|
|
|
if (MOReg == Reg) {
|
|
MO.setIsDead();
|
|
Found = true;
|
|
} else if (hasAliases && MO.isDead() &&
|
|
TargetRegisterInfo::isPhysicalRegister(MOReg)) {
|
|
// There exists a super-register that's marked dead.
|
|
if (RegInfo->isSuperRegister(Reg, MOReg))
|
|
return true;
|
|
if (RegInfo->isSubRegister(Reg, MOReg))
|
|
DeadOps.push_back(i);
|
|
}
|
|
}
|
|
|
|
// Trim unneeded dead operands.
|
|
while (!DeadOps.empty()) {
|
|
unsigned OpIdx = DeadOps.back();
|
|
if (getOperand(OpIdx).isImplicit())
|
|
RemoveOperand(OpIdx);
|
|
else
|
|
getOperand(OpIdx).setIsDead(false);
|
|
DeadOps.pop_back();
|
|
}
|
|
|
|
// If not found, this means an alias of one of the operands is dead. Add a
|
|
// new implicit operand if required.
|
|
if (Found || !AddIfNotFound)
|
|
return Found;
|
|
|
|
addOperand(MachineOperand::CreateReg(Reg,
|
|
true /*IsDef*/,
|
|
true /*IsImp*/,
|
|
false /*IsKill*/,
|
|
true /*IsDead*/));
|
|
return true;
|
|
}
|
|
|
|
void MachineInstr::clearRegisterDeads(unsigned Reg) {
|
|
for (MachineOperand &MO : operands()) {
|
|
if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
|
|
continue;
|
|
MO.setIsDead(false);
|
|
}
|
|
}
|
|
|
|
void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
|
|
for (MachineOperand &MO : operands()) {
|
|
if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
|
|
continue;
|
|
MO.setIsUndef(IsUndef);
|
|
}
|
|
}
|
|
|
|
void MachineInstr::addRegisterDefined(unsigned Reg,
|
|
const TargetRegisterInfo *RegInfo) {
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
|
|
if (MO)
|
|
return;
|
|
} else {
|
|
for (const MachineOperand &MO : operands()) {
|
|
if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
|
|
MO.getSubReg() == 0)
|
|
return;
|
|
}
|
|
}
|
|
addOperand(MachineOperand::CreateReg(Reg,
|
|
true /*IsDef*/,
|
|
true /*IsImp*/));
|
|
}
|
|
|
|
void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
|
|
const TargetRegisterInfo &TRI) {
|
|
bool HasRegMask = false;
|
|
for (MachineOperand &MO : operands()) {
|
|
if (MO.isRegMask()) {
|
|
HasRegMask = true;
|
|
continue;
|
|
}
|
|
if (!MO.isReg() || !MO.isDef()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
|
|
// If there are no uses, including partial uses, the def is dead.
|
|
if (none_of(UsedRegs,
|
|
[&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
|
|
MO.setIsDead();
|
|
}
|
|
|
|
// This is a call with a register mask operand.
|
|
// Mask clobbers are always dead, so add defs for the non-dead defines.
|
|
if (HasRegMask)
|
|
for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
|
|
I != E; ++I)
|
|
addRegisterDefined(*I, &TRI);
|
|
}
|
|
|
|
unsigned
|
|
MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
|
|
// Build up a buffer of hash code components.
|
|
SmallVector<size_t, 8> HashComponents;
|
|
HashComponents.reserve(MI->getNumOperands() + 1);
|
|
HashComponents.push_back(MI->getOpcode());
|
|
for (const MachineOperand &MO : MI->operands()) {
|
|
if (MO.isReg() && MO.isDef() &&
|
|
TargetRegisterInfo::isVirtualRegister(MO.getReg()))
|
|
continue; // Skip virtual register defs.
|
|
|
|
HashComponents.push_back(hash_value(MO));
|
|
}
|
|
return hash_combine_range(HashComponents.begin(), HashComponents.end());
|
|
}
|
|
|
|
void MachineInstr::emitError(StringRef Msg) const {
|
|
// Find the source location cookie.
|
|
unsigned LocCookie = 0;
|
|
const MDNode *LocMD = nullptr;
|
|
for (unsigned i = getNumOperands(); i != 0; --i) {
|
|
if (getOperand(i-1).isMetadata() &&
|
|
(LocMD = getOperand(i-1).getMetadata()) &&
|
|
LocMD->getNumOperands() != 0) {
|
|
if (const ConstantInt *CI =
|
|
mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
|
|
LocCookie = CI->getZExtValue();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (const MachineBasicBlock *MBB = getParent())
|
|
if (const MachineFunction *MF = MBB->getParent())
|
|
return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
|
|
report_fatal_error(Msg);
|
|
}
|
|
|
|
MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
|
|
const MCInstrDesc &MCID, bool IsIndirect,
|
|
unsigned Reg, unsigned Offset,
|
|
const MDNode *Variable, const MDNode *Expr) {
|
|
assert(isa<DILocalVariable>(Variable) && "not a variable");
|
|
assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
|
|
assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
|
|
"Expected inlined-at fields to agree");
|
|
if (IsIndirect)
|
|
return BuildMI(MF, DL, MCID)
|
|
.addReg(Reg, RegState::Debug)
|
|
.addImm(Offset)
|
|
.addMetadata(Variable)
|
|
.addMetadata(Expr);
|
|
else {
|
|
assert(Offset == 0 && "A direct address cannot have an offset.");
|
|
return BuildMI(MF, DL, MCID)
|
|
.addReg(Reg, RegState::Debug)
|
|
.addReg(0U, RegState::Debug)
|
|
.addMetadata(Variable)
|
|
.addMetadata(Expr);
|
|
}
|
|
}
|
|
|
|
MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
|
|
MachineBasicBlock::iterator I,
|
|
const DebugLoc &DL, const MCInstrDesc &MCID,
|
|
bool IsIndirect, unsigned Reg,
|
|
unsigned Offset, const MDNode *Variable,
|
|
const MDNode *Expr) {
|
|
assert(isa<DILocalVariable>(Variable) && "not a variable");
|
|
assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
|
|
MachineFunction &MF = *BB.getParent();
|
|
MachineInstr *MI =
|
|
BuildMI(MF, DL, MCID, IsIndirect, Reg, Offset, Variable, Expr);
|
|
BB.insert(I, MI);
|
|
return MachineInstrBuilder(MF, MI);
|
|
}
|