forked from OSchip/llvm-project
719 lines
24 KiB
C++
719 lines
24 KiB
C++
//===- SymbolTable.cpp ----------------------------------------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Symbol table is a bag of all known symbols. We put all symbols of
|
|
// all input files to the symbol table. The symbol table is basically
|
|
// a hash table with the logic to resolve symbol name conflicts using
|
|
// the symbol types.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SymbolTable.h"
|
|
#include "Config.h"
|
|
#include "Error.h"
|
|
#include "LinkerScript.h"
|
|
#include "SymbolListFile.h"
|
|
#include "Symbols.h"
|
|
#include "llvm/Bitcode/ReaderWriter.h"
|
|
#include "llvm/Support/StringSaver.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace llvm::ELF;
|
|
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
// All input object files must be for the same architecture
|
|
// (e.g. it does not make sense to link x86 object files with
|
|
// MIPS object files.) This function checks for that error.
|
|
template <class ELFT> static bool isCompatible(InputFile *F) {
|
|
if (!isa<ELFFileBase<ELFT>>(F) && !isa<BitcodeFile>(F))
|
|
return true;
|
|
if (F->EKind == Config->EKind && F->EMachine == Config->EMachine)
|
|
return true;
|
|
StringRef A = F->getName();
|
|
StringRef B = Config->Emulation;
|
|
if (B.empty())
|
|
B = Config->FirstElf->getName();
|
|
error(A + " is incompatible with " + B);
|
|
return false;
|
|
}
|
|
|
|
// Add symbols in File to the symbol table.
|
|
template <class ELFT> void SymbolTable<ELFT>::addFile(InputFile *File) {
|
|
if (!isCompatible<ELFT>(File))
|
|
return;
|
|
|
|
// Binary file
|
|
if (auto *F = dyn_cast<BinaryFile>(File)) {
|
|
addFile(F->createELF<ELFT>());
|
|
return;
|
|
}
|
|
|
|
// .a file
|
|
if (auto *F = dyn_cast<ArchiveFile>(File)) {
|
|
F->parse<ELFT>();
|
|
return;
|
|
}
|
|
|
|
// Lazy object file
|
|
if (auto *F = dyn_cast<LazyObjectFile>(File)) {
|
|
F->parse<ELFT>();
|
|
return;
|
|
}
|
|
|
|
if (Config->Trace)
|
|
outs() << getFilename(File) << "\n";
|
|
|
|
// .so file
|
|
if (auto *F = dyn_cast<SharedFile<ELFT>>(File)) {
|
|
// DSOs are uniquified not by filename but by soname.
|
|
F->parseSoName();
|
|
if (!SoNames.insert(F->getSoName()).second)
|
|
return;
|
|
SharedFiles.push_back(F);
|
|
F->parseRest();
|
|
return;
|
|
}
|
|
|
|
// LLVM bitcode file
|
|
if (auto *F = dyn_cast<BitcodeFile>(File)) {
|
|
BitcodeFiles.push_back(F);
|
|
F->parse<ELFT>(ComdatGroups);
|
|
return;
|
|
}
|
|
|
|
// Regular object file
|
|
auto *F = cast<ObjectFile<ELFT>>(File);
|
|
ObjectFiles.push_back(F);
|
|
F->parse(ComdatGroups);
|
|
}
|
|
|
|
// This function is where all the optimizations of link-time
|
|
// optimization happens. When LTO is in use, some input files are
|
|
// not in native object file format but in the LLVM bitcode format.
|
|
// This function compiles bitcode files into a few big native files
|
|
// using LLVM functions and replaces bitcode symbols with the results.
|
|
// Because all bitcode files that consist of a program are passed
|
|
// to the compiler at once, it can do whole-program optimization.
|
|
template <class ELFT> void SymbolTable<ELFT>::addCombinedLtoObject() {
|
|
if (BitcodeFiles.empty())
|
|
return;
|
|
|
|
// Compile bitcode files and replace bitcode symbols.
|
|
Lto.reset(new BitcodeCompiler);
|
|
for (BitcodeFile *F : BitcodeFiles)
|
|
Lto->add(*F);
|
|
|
|
for (InputFile *File : Lto->compile()) {
|
|
ObjectFile<ELFT> *Obj = cast<ObjectFile<ELFT>>(File);
|
|
DenseSet<StringRef> DummyGroups;
|
|
Obj->parse(DummyGroups);
|
|
ObjectFiles.push_back(Obj);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
DefinedRegular<ELFT> *SymbolTable<ELFT>::addAbsolute(StringRef Name,
|
|
uint8_t Visibility) {
|
|
return cast<DefinedRegular<ELFT>>(
|
|
addRegular(Name, STB_GLOBAL, Visibility)->body());
|
|
}
|
|
|
|
// Add Name as an "ignored" symbol. An ignored symbol is a regular
|
|
// linker-synthesized defined symbol, but is only defined if needed.
|
|
template <class ELFT>
|
|
DefinedRegular<ELFT> *SymbolTable<ELFT>::addIgnored(StringRef Name,
|
|
uint8_t Visibility) {
|
|
if (!find(Name))
|
|
return nullptr;
|
|
return addAbsolute(Name, Visibility);
|
|
}
|
|
|
|
// Set a flag for --trace-symbol so that we can print out a log message
|
|
// if a new symbol with the same name is inserted into the symbol table.
|
|
template <class ELFT> void SymbolTable<ELFT>::trace(StringRef Name) {
|
|
Symtab.insert({Name, {-1, true}});
|
|
}
|
|
|
|
// Rename SYM as __wrap_SYM. The original symbol is preserved as __real_SYM.
|
|
// Used to implement --wrap.
|
|
template <class ELFT> void SymbolTable<ELFT>::wrap(StringRef Name) {
|
|
SymbolBody *B = find(Name);
|
|
if (!B)
|
|
return;
|
|
StringSaver Saver(Alloc);
|
|
Symbol *Sym = B->symbol();
|
|
Symbol *Real = addUndefined(Saver.save("__real_" + Name));
|
|
Symbol *Wrap = addUndefined(Saver.save("__wrap_" + Name));
|
|
// We rename symbols by replacing the old symbol's SymbolBody with the new
|
|
// symbol's SymbolBody. This causes all SymbolBody pointers referring to the
|
|
// old symbol to instead refer to the new symbol.
|
|
memcpy(Real->Body.buffer, Sym->Body.buffer, sizeof(Sym->Body));
|
|
memcpy(Sym->Body.buffer, Wrap->Body.buffer, sizeof(Wrap->Body));
|
|
}
|
|
|
|
static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) {
|
|
if (VA == STV_DEFAULT)
|
|
return VB;
|
|
if (VB == STV_DEFAULT)
|
|
return VA;
|
|
return std::min(VA, VB);
|
|
}
|
|
|
|
// Parses a symbol in the form of <name>@<version> or <name>@@<version>.
|
|
static std::pair<StringRef, uint16_t> getSymbolVersion(StringRef S) {
|
|
if (Config->VersionDefinitions.empty())
|
|
return {S, Config->DefaultSymbolVersion};
|
|
|
|
size_t Pos = S.find('@');
|
|
if (Pos == 0 || Pos == StringRef::npos)
|
|
return {S, Config->DefaultSymbolVersion};
|
|
|
|
StringRef Name = S.substr(0, Pos);
|
|
StringRef Verstr = S.substr(Pos + 1);
|
|
if (Verstr.empty())
|
|
return {S, Config->DefaultSymbolVersion};
|
|
|
|
// '@@' in a symbol name means the default version.
|
|
// It is usually the most recent one.
|
|
bool IsDefault = (Verstr[0] == '@');
|
|
if (IsDefault)
|
|
Verstr = Verstr.substr(1);
|
|
|
|
for (VersionDefinition &V : Config->VersionDefinitions) {
|
|
if (V.Name == Verstr)
|
|
return {Name, IsDefault ? V.Id : (V.Id | VERSYM_HIDDEN)};
|
|
}
|
|
|
|
// It is an error if the specified version was not defined.
|
|
error("symbol " + S + " has undefined version " + Verstr);
|
|
return {S, Config->DefaultSymbolVersion};
|
|
}
|
|
|
|
// Find an existing symbol or create and insert a new one.
|
|
template <class ELFT>
|
|
std::pair<Symbol *, bool> SymbolTable<ELFT>::insert(StringRef &Name) {
|
|
auto P = Symtab.insert({Name, SymIndex((int)SymVector.size(), false)});
|
|
SymIndex &V = P.first->second;
|
|
bool IsNew = P.second;
|
|
|
|
if (V.Idx == -1) {
|
|
IsNew = true;
|
|
V = SymIndex((int)SymVector.size(), true);
|
|
}
|
|
|
|
Symbol *Sym;
|
|
if (IsNew) {
|
|
Sym = new (Alloc) Symbol;
|
|
Sym->Binding = STB_WEAK;
|
|
Sym->Visibility = STV_DEFAULT;
|
|
Sym->IsUsedInRegularObj = false;
|
|
Sym->ExportDynamic = false;
|
|
Sym->Traced = V.Traced;
|
|
std::tie(Name, Sym->VersionId) = getSymbolVersion(Name);
|
|
SymVector.push_back(Sym);
|
|
} else {
|
|
Sym = SymVector[V.Idx];
|
|
}
|
|
return {Sym, IsNew};
|
|
}
|
|
|
|
// Find an existing symbol or create and insert a new one, then apply the given
|
|
// attributes.
|
|
template <class ELFT>
|
|
std::pair<Symbol *, bool>
|
|
SymbolTable<ELFT>::insert(StringRef &Name, uint8_t Type, uint8_t Visibility,
|
|
bool CanOmitFromDynSym, InputFile *File) {
|
|
bool IsUsedInRegularObj = !File || File->kind() == InputFile::ObjectKind;
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) = insert(Name);
|
|
|
|
// Merge in the new symbol's visibility.
|
|
S->Visibility = getMinVisibility(S->Visibility, Visibility);
|
|
if (!CanOmitFromDynSym && (Config->Shared || Config->ExportDynamic))
|
|
S->ExportDynamic = true;
|
|
if (IsUsedInRegularObj)
|
|
S->IsUsedInRegularObj = true;
|
|
if (!WasInserted && S->body()->Type != SymbolBody::UnknownType &&
|
|
((Type == STT_TLS) != S->body()->isTls()))
|
|
error("TLS attribute mismatch for symbol: " +
|
|
conflictMsg(S->body(), File));
|
|
|
|
return {S, WasInserted};
|
|
}
|
|
|
|
// Construct a string in the form of "Sym in File1 and File2".
|
|
// Used to construct an error message.
|
|
template <typename ELFT>
|
|
std::string SymbolTable<ELFT>::conflictMsg(SymbolBody *Existing,
|
|
InputFile *NewFile) {
|
|
std::string Sym = Existing->getName();
|
|
if (Config->Demangle)
|
|
Sym = demangle(Sym);
|
|
return Sym + " in " + getFilename(Existing->File) + " and " +
|
|
getFilename(NewFile);
|
|
}
|
|
|
|
template <class ELFT> Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name) {
|
|
return addUndefined(Name, STB_GLOBAL, STV_DEFAULT, /*Type*/ 0,
|
|
/*CanOmitFromDynSym*/ false, /*File*/ nullptr);
|
|
}
|
|
|
|
template <class ELFT>
|
|
Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name, uint8_t Binding,
|
|
uint8_t StOther, uint8_t Type,
|
|
bool CanOmitFromDynSym,
|
|
InputFile *File) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) =
|
|
insert(Name, Type, StOther & 3, CanOmitFromDynSym, File);
|
|
if (WasInserted) {
|
|
S->Binding = Binding;
|
|
replaceBody<Undefined>(S, Name, StOther, Type, File);
|
|
return S;
|
|
}
|
|
if (Binding != STB_WEAK) {
|
|
if (S->body()->isShared() || S->body()->isLazy())
|
|
S->Binding = Binding;
|
|
if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(S->body()))
|
|
SS->file()->IsUsed = true;
|
|
}
|
|
if (auto *L = dyn_cast<Lazy>(S->body())) {
|
|
// An undefined weak will not fetch archive members, but we have to remember
|
|
// its type. See also comment in addLazyArchive.
|
|
if (S->isWeak())
|
|
L->Type = Type;
|
|
else if (InputFile *F = L->fetch())
|
|
addFile(F);
|
|
}
|
|
return S;
|
|
}
|
|
|
|
// We have a new defined symbol with the specified binding. Return 1 if the new
|
|
// symbol should win, -1 if the new symbol should lose, or 0 if both symbols are
|
|
// strong defined symbols.
|
|
static int compareDefined(Symbol *S, bool WasInserted, uint8_t Binding) {
|
|
if (WasInserted)
|
|
return 1;
|
|
SymbolBody *Body = S->body();
|
|
if (Body->isLazy() || Body->isUndefined() || Body->isShared())
|
|
return 1;
|
|
if (Binding == STB_WEAK)
|
|
return -1;
|
|
if (S->isWeak())
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
// We have a new non-common defined symbol with the specified binding. Return 1
|
|
// if the new symbol should win, -1 if the new symbol should lose, or 0 if there
|
|
// is a conflict. If the new symbol wins, also update the binding.
|
|
static int compareDefinedNonCommon(Symbol *S, bool WasInserted,
|
|
uint8_t Binding) {
|
|
if (int Cmp = compareDefined(S, WasInserted, Binding)) {
|
|
if (Cmp > 0)
|
|
S->Binding = Binding;
|
|
return Cmp;
|
|
}
|
|
if (isa<DefinedCommon>(S->body())) {
|
|
// Non-common symbols take precedence over common symbols.
|
|
if (Config->WarnCommon)
|
|
warn("common " + S->body()->getName() + " is overridden");
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
template <class ELFT>
|
|
Symbol *SymbolTable<ELFT>::addCommon(StringRef N, uint64_t Size,
|
|
uint64_t Alignment, uint8_t Binding,
|
|
uint8_t StOther, uint8_t Type,
|
|
InputFile *File) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) =
|
|
insert(N, Type, StOther & 3, /*CanOmitFromDynSym*/ false, File);
|
|
int Cmp = compareDefined(S, WasInserted, Binding);
|
|
if (Cmp > 0) {
|
|
S->Binding = Binding;
|
|
replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type, File);
|
|
} else if (Cmp == 0) {
|
|
auto *C = dyn_cast<DefinedCommon>(S->body());
|
|
if (!C) {
|
|
// Non-common symbols take precedence over common symbols.
|
|
if (Config->WarnCommon)
|
|
warn("common " + S->body()->getName() + " is overridden");
|
|
return S;
|
|
}
|
|
|
|
if (Config->WarnCommon)
|
|
warn("multiple common of " + S->body()->getName());
|
|
|
|
Alignment = C->Alignment = std::max(C->Alignment, Alignment);
|
|
if (Size > C->Size)
|
|
replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type, File);
|
|
}
|
|
return S;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTable<ELFT>::reportDuplicate(SymbolBody *Existing,
|
|
InputFile *NewFile) {
|
|
std::string Msg = "duplicate symbol: " + conflictMsg(Existing, NewFile);
|
|
if (Config->AllowMultipleDefinition)
|
|
warn(Msg);
|
|
else
|
|
error(Msg);
|
|
}
|
|
|
|
template <typename ELFT>
|
|
Symbol *SymbolTable<ELFT>::addRegular(StringRef Name, const Elf_Sym &Sym,
|
|
InputSectionBase<ELFT> *Section) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) = insert(Name, Sym.getType(), Sym.getVisibility(),
|
|
/*CanOmitFromDynSym*/ false,
|
|
Section ? Section->getFile() : nullptr);
|
|
int Cmp = compareDefinedNonCommon(S, WasInserted, Sym.getBinding());
|
|
if (Cmp > 0)
|
|
replaceBody<DefinedRegular<ELFT>>(S, Name, Sym, Section);
|
|
else if (Cmp == 0)
|
|
reportDuplicate(S->body(), Section->getFile());
|
|
return S;
|
|
}
|
|
|
|
template <typename ELFT>
|
|
Symbol *SymbolTable<ELFT>::addRegular(StringRef Name, uint8_t Binding,
|
|
uint8_t StOther) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) = insert(Name, STT_NOTYPE, StOther & 3,
|
|
/*CanOmitFromDynSym*/ false, nullptr);
|
|
int Cmp = compareDefinedNonCommon(S, WasInserted, Binding);
|
|
if (Cmp > 0)
|
|
replaceBody<DefinedRegular<ELFT>>(S, Name, StOther);
|
|
else if (Cmp == 0)
|
|
reportDuplicate(S->body(), nullptr);
|
|
return S;
|
|
}
|
|
|
|
template <typename ELFT>
|
|
Symbol *SymbolTable<ELFT>::addSynthetic(StringRef N,
|
|
OutputSectionBase<ELFT> *Section,
|
|
uintX_t Value, uint8_t StOther) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) = insert(N, STT_NOTYPE, /*Visibility*/ StOther & 0x3,
|
|
/*CanOmitFromDynSym*/ false, nullptr);
|
|
int Cmp = compareDefinedNonCommon(S, WasInserted, STB_GLOBAL);
|
|
if (Cmp > 0)
|
|
replaceBody<DefinedSynthetic<ELFT>>(S, N, Value, Section);
|
|
else if (Cmp == 0)
|
|
reportDuplicate(S->body(), nullptr);
|
|
return S;
|
|
}
|
|
|
|
template <typename ELFT>
|
|
void SymbolTable<ELFT>::addShared(SharedFile<ELFT> *F, StringRef Name,
|
|
const Elf_Sym &Sym,
|
|
const typename ELFT::Verdef *Verdef) {
|
|
// DSO symbols do not affect visibility in the output, so we pass STV_DEFAULT
|
|
// as the visibility, which will leave the visibility in the symbol table
|
|
// unchanged.
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) =
|
|
insert(Name, Sym.getType(), STV_DEFAULT, /*CanOmitFromDynSym*/ true, F);
|
|
// Make sure we preempt DSO symbols with default visibility.
|
|
if (Sym.getVisibility() == STV_DEFAULT)
|
|
S->ExportDynamic = true;
|
|
if (WasInserted || isa<Undefined>(S->body())) {
|
|
replaceBody<SharedSymbol<ELFT>>(S, F, Name, Sym, Verdef);
|
|
if (!S->isWeak())
|
|
F->IsUsed = true;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
Symbol *SymbolTable<ELFT>::addBitcode(StringRef Name, uint8_t Binding,
|
|
uint8_t StOther, uint8_t Type,
|
|
bool CanOmitFromDynSym, BitcodeFile *F) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) =
|
|
insert(Name, Type, StOther & 3, CanOmitFromDynSym, F);
|
|
int Cmp = compareDefinedNonCommon(S, WasInserted, Binding);
|
|
if (Cmp > 0)
|
|
replaceBody<DefinedRegular<ELFT>>(S, Name, StOther, Type, F);
|
|
else if (Cmp == 0)
|
|
reportDuplicate(S->body(), F);
|
|
return S;
|
|
}
|
|
|
|
template <class ELFT> SymbolBody *SymbolTable<ELFT>::find(StringRef Name) {
|
|
auto It = Symtab.find(Name);
|
|
if (It == Symtab.end())
|
|
return nullptr;
|
|
SymIndex V = It->second;
|
|
if (V.Idx == -1)
|
|
return nullptr;
|
|
return SymVector[V.Idx]->body();
|
|
}
|
|
|
|
// Returns a list of defined symbols that match with a given regex.
|
|
template <class ELFT>
|
|
std::vector<SymbolBody *> SymbolTable<ELFT>::findAll(const Regex &Re) {
|
|
std::vector<SymbolBody *> Res;
|
|
for (Symbol *Sym : SymVector) {
|
|
SymbolBody *B = Sym->body();
|
|
StringRef Name = B->getName();
|
|
if (!B->isUndefined() && const_cast<Regex &>(Re).match(Name))
|
|
Res.push_back(B);
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTable<ELFT>::addLazyArchive(ArchiveFile *F,
|
|
const object::Archive::Symbol Sym) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
StringRef Name = Sym.getName();
|
|
std::tie(S, WasInserted) = insert(Name);
|
|
if (WasInserted) {
|
|
replaceBody<LazyArchive>(S, *F, Sym, SymbolBody::UnknownType);
|
|
return;
|
|
}
|
|
if (!S->body()->isUndefined())
|
|
return;
|
|
|
|
// Weak undefined symbols should not fetch members from archives. If we were
|
|
// to keep old symbol we would not know that an archive member was available
|
|
// if a strong undefined symbol shows up afterwards in the link. If a strong
|
|
// undefined symbol never shows up, this lazy symbol will get to the end of
|
|
// the link and must be treated as the weak undefined one. We already marked
|
|
// this symbol as used when we added it to the symbol table, but we also need
|
|
// to preserve its type. FIXME: Move the Type field to Symbol.
|
|
if (S->isWeak()) {
|
|
replaceBody<LazyArchive>(S, *F, Sym, S->body()->Type);
|
|
return;
|
|
}
|
|
MemoryBufferRef MBRef = F->getMember(&Sym);
|
|
if (!MBRef.getBuffer().empty())
|
|
addFile(createObjectFile(MBRef, F->getName()));
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTable<ELFT>::addLazyObject(StringRef Name, LazyObjectFile &Obj) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) = insert(Name);
|
|
if (WasInserted) {
|
|
replaceBody<LazyObject>(S, Name, Obj, SymbolBody::UnknownType);
|
|
return;
|
|
}
|
|
if (!S->body()->isUndefined())
|
|
return;
|
|
|
|
// See comment for addLazyArchive above.
|
|
if (S->isWeak()) {
|
|
replaceBody<LazyObject>(S, Name, Obj, S->body()->Type);
|
|
} else {
|
|
MemoryBufferRef MBRef = Obj.getBuffer();
|
|
if (!MBRef.getBuffer().empty())
|
|
addFile(createObjectFile(MBRef));
|
|
}
|
|
}
|
|
|
|
// Process undefined (-u) flags by loading lazy symbols named by those flags.
|
|
template <class ELFT> void SymbolTable<ELFT>::scanUndefinedFlags() {
|
|
for (StringRef S : Config->Undefined)
|
|
if (auto *L = dyn_cast_or_null<Lazy>(find(S)))
|
|
if (InputFile *File = L->fetch())
|
|
addFile(File);
|
|
}
|
|
|
|
// This function takes care of the case in which shared libraries depend on
|
|
// the user program (not the other way, which is usual). Shared libraries
|
|
// may have undefined symbols, expecting that the user program provides
|
|
// the definitions for them. An example is BSD's __progname symbol.
|
|
// We need to put such symbols to the main program's .dynsym so that
|
|
// shared libraries can find them.
|
|
// Except this, we ignore undefined symbols in DSOs.
|
|
template <class ELFT> void SymbolTable<ELFT>::scanShlibUndefined() {
|
|
for (SharedFile<ELFT> *File : SharedFiles)
|
|
for (StringRef U : File->getUndefinedSymbols())
|
|
if (SymbolBody *Sym = find(U))
|
|
if (Sym->isDefined())
|
|
Sym->symbol()->ExportDynamic = true;
|
|
}
|
|
|
|
// This function processes --export-dynamic-symbol and --dynamic-list.
|
|
template <class ELFT> void SymbolTable<ELFT>::scanDynamicList() {
|
|
for (StringRef S : Config->DynamicList)
|
|
if (SymbolBody *B = find(S))
|
|
B->symbol()->ExportDynamic = true;
|
|
}
|
|
|
|
static void setVersionId(SymbolBody *Body, StringRef VersionName,
|
|
StringRef Name, uint16_t Version) {
|
|
if (!Body || Body->isUndefined()) {
|
|
if (Config->NoUndefinedVersion)
|
|
error("version script assignment of " + VersionName + " to symbol " +
|
|
Name + " failed: symbol not defined");
|
|
return;
|
|
}
|
|
|
|
Symbol *Sym = Body->symbol();
|
|
if (Sym->VersionId != Config->DefaultSymbolVersion)
|
|
warn("duplicate symbol " + Name + " in version script");
|
|
Sym->VersionId = Version;
|
|
}
|
|
|
|
// Returns a map from demangled symbols to symbol objects.
|
|
// The relationship is 1:N instead of 1:1 because with the symbol
|
|
// versioning, more than one symbol may have the same name.
|
|
template <class ELFT>
|
|
std::map<std::string, std::vector<SymbolBody *>>
|
|
SymbolTable<ELFT>::getDemangledSyms() {
|
|
std::map<std::string, std::vector<SymbolBody *>> Result;
|
|
for (Symbol *Sym : SymVector) {
|
|
SymbolBody *B = Sym->body();
|
|
Result[demangle(B->getName())].push_back(B);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
static bool hasExternCpp() {
|
|
for (VersionDefinition &V : Config->VersionDefinitions)
|
|
for (SymbolVersion Sym : V.Globals)
|
|
if (Sym.IsExternCpp)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static ArrayRef<SymbolBody *>
|
|
findDemangled(std::map<std::string, std::vector<SymbolBody *>> &D,
|
|
StringRef Name) {
|
|
auto I = D.find(Name);
|
|
if (I != D.end())
|
|
return I->second;
|
|
return {};
|
|
}
|
|
|
|
static std::vector<SymbolBody *>
|
|
findAllDemangled(const std::map<std::string, std::vector<SymbolBody *>> &D,
|
|
const Regex &Re) {
|
|
std::vector<SymbolBody *> Res;
|
|
for (auto &P : D) {
|
|
if (const_cast<Regex &>(Re).match(P.first))
|
|
for (SymbolBody *Body : P.second)
|
|
if (!Body->isUndefined())
|
|
Res.push_back(Body);
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
// If there's only one anonymous version definition in a version
|
|
// script file, the script does not actullay define any symbol version,
|
|
// but just specifies symbols visibilities. We assume that the script was
|
|
// in the form of { global: foo; bar; local *; }. So, local is default.
|
|
// In this function, we make specified symbols global.
|
|
template <class ELFT> void SymbolTable<ELFT>::handleAnonymousVersion() {
|
|
std::vector<StringRef> Patterns;
|
|
for (SymbolVersion &Sym : Config->VersionScriptGlobals) {
|
|
if (hasWildcard(Sym.Name)) {
|
|
Patterns.push_back(Sym.Name);
|
|
continue;
|
|
}
|
|
if (SymbolBody *B = find(Sym.Name))
|
|
B->symbol()->VersionId = VER_NDX_GLOBAL;
|
|
}
|
|
if (Patterns.empty())
|
|
return;
|
|
Regex Re = compileGlobPatterns(Patterns);
|
|
std::vector<SymbolBody *> Syms = findAll(Re);
|
|
for (SymbolBody *B : Syms)
|
|
B->symbol()->VersionId = VER_NDX_GLOBAL;
|
|
}
|
|
|
|
// This function processes version scripts by updating VersionId
|
|
// member of symbols.
|
|
template <class ELFT> void SymbolTable<ELFT>::scanVersionScript() {
|
|
// Handle edge cases first.
|
|
if (!Config->VersionScriptGlobals.empty()) {
|
|
handleAnonymousVersion();
|
|
return;
|
|
}
|
|
|
|
if (Config->VersionDefinitions.empty())
|
|
return;
|
|
|
|
// Now we have version definitions, so we need to set version ids to symbols.
|
|
// Each version definition has a glob pattern, and all symbols that match
|
|
// with the pattern get that version.
|
|
|
|
// Users can use "extern C++ {}" directive to match against demangled
|
|
// C++ symbols. For example, you can write a pattern such as
|
|
// "llvm::*::foo(int, ?)". Obviously, there's no way to handle this
|
|
// other than trying to match a regexp against all demangled symbols.
|
|
// So, if "extern C++" feature is used, we demangle all known symbols.
|
|
std::map<std::string, std::vector<SymbolBody *>> Demangled;
|
|
if (hasExternCpp())
|
|
Demangled = getDemangledSyms();
|
|
|
|
// First, we assign versions to exact matching symbols,
|
|
// i.e. version definitions not containing any glob meta-characters.
|
|
for (VersionDefinition &V : Config->VersionDefinitions) {
|
|
for (SymbolVersion Sym : V.Globals) {
|
|
if (Sym.HasWildcards)
|
|
continue;
|
|
|
|
StringRef N = Sym.Name;
|
|
if (Sym.IsExternCpp) {
|
|
for (SymbolBody *B : findDemangled(Demangled, N))
|
|
setVersionId(B, V.Name, N, V.Id);
|
|
continue;
|
|
}
|
|
setVersionId(find(N), V.Name, N, V.Id);
|
|
}
|
|
}
|
|
|
|
// Next, we assign versions to fuzzy matching symbols,
|
|
// i.e. version definitions containing glob meta-characters.
|
|
// Note that because the last match takes precedence over previous matches,
|
|
// we iterate over the definitions in the reverse order.
|
|
for (size_t I = Config->VersionDefinitions.size() - 1; I != (size_t)-1; --I) {
|
|
VersionDefinition &V = Config->VersionDefinitions[I];
|
|
for (SymbolVersion &Sym : V.Globals) {
|
|
if (!Sym.HasWildcards)
|
|
continue;
|
|
Regex Re = compileGlobPatterns({Sym.Name});
|
|
std::vector<SymbolBody *> Syms =
|
|
Sym.IsExternCpp ? findAllDemangled(Demangled, Re) : findAll(Re);
|
|
|
|
// Exact matching takes precendence over fuzzy matching,
|
|
// so we set a version to a symbol only if no version has been assigned
|
|
// to the symbol. This behavior is compatible with GNU.
|
|
for (SymbolBody *B : Syms)
|
|
if (B->symbol()->VersionId == Config->DefaultSymbolVersion)
|
|
B->symbol()->VersionId = V.Id;
|
|
}
|
|
}
|
|
}
|
|
|
|
template class elf::SymbolTable<ELF32LE>;
|
|
template class elf::SymbolTable<ELF32BE>;
|
|
template class elf::SymbolTable<ELF64LE>;
|
|
template class elf::SymbolTable<ELF64BE>;
|