llvm-project/polly
Tobias Grosser 95e860c19c Scheduling: Add option to disable schedule_maximise_band_depth
maximise_band_depth does not seem to have any effect for now, but it may help to
increase the amount of tileable loops. We expose the flag to be able to analyze
its effects when looking into individual benchmarks.

llvm-svn: 149266
2012-01-30 19:38:54 +00:00
..
autoconf configure: Add gmp_inc when checking for CLooG 2011-10-04 06:55:03 +00:00
cmake Add initial version of Polly 2011-04-29 06:27:02 +00:00
docs Add initial version of Polly 2011-04-29 06:27:02 +00:00
include RegisterPass: Expose functions to register Polly passes 2012-01-30 09:07:50 +00:00
lib Scheduling: Add option to disable schedule_maximise_band_depth 2012-01-30 19:38:54 +00:00
test Support non-affine access functions in Polly. 2011-12-20 10:43:14 +00:00
tools Add initial version of Polly 2011-04-29 06:27:02 +00:00
utils Use isl version: 3c66541593a6bf3b5a3d35d31567abe6c9e5a04b 2012-01-30 19:38:40 +00:00
www www: Move automatic polly installation to a more prominent place 2012-01-17 14:44:35 +00:00
CMakeLists.txt Buildsystem: Add -no-rtti 2011-06-30 19:50:04 +00:00
CREDITS.txt (Test commit for polly) 2011-07-16 13:30:03 +00:00
LICENSE.txt Happy new year 2012! 2012-01-01 08:16:56 +00:00
Makefile Add initial version of Polly 2011-04-29 06:27:02 +00:00
Makefile.common.in Add initial version of Polly 2011-04-29 06:27:02 +00:00
Makefile.config.in Buildsystem: Add -no-rtti 2011-06-30 19:50:04 +00:00
README Remove some empty lines 2011-10-04 06:56:36 +00:00
configure configure: Add gmp_inc when checking for CLooG 2011-10-04 06:55:03 +00:00

README

Polly - Polyhedral optimizations for LLVM

Polly uses a mathematical representation, the polyhedral model, to represent and
transform loops and other control flow structures. Using an abstract
representation it is possible to reason about transformations in a more general
way and to use highly optimized linear programming libraries to figure out the
optimal loop structure. These transformations can be used to do constant
propagation through arrays, remove dead loop iterations, optimize loops for
cache locality, optimize arrays, apply advanced automatic parallelization, drive
vectorization, or they can be used to do software pipelining.