forked from OSchip/llvm-project
5442 lines
192 KiB
C++
5442 lines
192 KiB
C++
//===- AArch64InstructionSelector.cpp ----------------------------*- C++ -*-==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements the targeting of the InstructionSelector class for
|
|
/// AArch64.
|
|
/// \todo This should be generated by TableGen.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64InstrInfo.h"
|
|
#include "AArch64MachineFunctionInfo.h"
|
|
#include "AArch64RegisterBankInfo.h"
|
|
#include "AArch64RegisterInfo.h"
|
|
#include "AArch64Subtarget.h"
|
|
#include "AArch64TargetMachine.h"
|
|
#include "MCTargetDesc/AArch64AddressingModes.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
|
|
#include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h"
|
|
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
|
|
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
|
|
#include "llvm/CodeGen/GlobalISel/Utils.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/IntrinsicsAArch64.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#define DEBUG_TYPE "aarch64-isel"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
#define GET_GLOBALISEL_PREDICATE_BITSET
|
|
#include "AArch64GenGlobalISel.inc"
|
|
#undef GET_GLOBALISEL_PREDICATE_BITSET
|
|
|
|
class AArch64InstructionSelector : public InstructionSelector {
|
|
public:
|
|
AArch64InstructionSelector(const AArch64TargetMachine &TM,
|
|
const AArch64Subtarget &STI,
|
|
const AArch64RegisterBankInfo &RBI);
|
|
|
|
bool select(MachineInstr &I) override;
|
|
static const char *getName() { return DEBUG_TYPE; }
|
|
|
|
void setupMF(MachineFunction &MF, GISelKnownBits &KB,
|
|
CodeGenCoverage &CoverageInfo) override {
|
|
InstructionSelector::setupMF(MF, KB, CoverageInfo);
|
|
|
|
// hasFnAttribute() is expensive to call on every BRCOND selection, so
|
|
// cache it here for each run of the selector.
|
|
ProduceNonFlagSettingCondBr =
|
|
!MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
|
|
MFReturnAddr = Register();
|
|
|
|
processPHIs(MF);
|
|
}
|
|
|
|
private:
|
|
/// tblgen-erated 'select' implementation, used as the initial selector for
|
|
/// the patterns that don't require complex C++.
|
|
bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
|
|
|
|
// A lowering phase that runs before any selection attempts.
|
|
// Returns true if the instruction was modified.
|
|
bool preISelLower(MachineInstr &I);
|
|
|
|
// An early selection function that runs before the selectImpl() call.
|
|
bool earlySelect(MachineInstr &I) const;
|
|
|
|
// Do some preprocessing of G_PHIs before we begin selection.
|
|
void processPHIs(MachineFunction &MF);
|
|
|
|
bool earlySelectSHL(MachineInstr &I, MachineRegisterInfo &MRI) const;
|
|
|
|
/// Eliminate same-sized cross-bank copies into stores before selectImpl().
|
|
bool contractCrossBankCopyIntoStore(MachineInstr &I,
|
|
MachineRegisterInfo &MRI);
|
|
|
|
bool convertPtrAddToAdd(MachineInstr &I, MachineRegisterInfo &MRI);
|
|
|
|
bool selectVaStartAAPCS(MachineInstr &I, MachineFunction &MF,
|
|
MachineRegisterInfo &MRI) const;
|
|
bool selectVaStartDarwin(MachineInstr &I, MachineFunction &MF,
|
|
MachineRegisterInfo &MRI) const;
|
|
|
|
bool tryOptAndIntoCompareBranch(MachineInstr *LHS,
|
|
int64_t CmpConstant,
|
|
const CmpInst::Predicate &Pred,
|
|
MachineBasicBlock *DstMBB,
|
|
MachineIRBuilder &MIB) const;
|
|
bool selectCompareBranch(MachineInstr &I, MachineFunction &MF,
|
|
MachineRegisterInfo &MRI) const;
|
|
|
|
bool selectVectorASHR(MachineInstr &I, MachineRegisterInfo &MRI) const;
|
|
bool selectVectorSHL(MachineInstr &I, MachineRegisterInfo &MRI) const;
|
|
|
|
// Helper to generate an equivalent of scalar_to_vector into a new register,
|
|
// returned via 'Dst'.
|
|
MachineInstr *emitScalarToVector(unsigned EltSize,
|
|
const TargetRegisterClass *DstRC,
|
|
Register Scalar,
|
|
MachineIRBuilder &MIRBuilder) const;
|
|
|
|
/// Emit a lane insert into \p DstReg, or a new vector register if None is
|
|
/// provided.
|
|
///
|
|
/// The lane inserted into is defined by \p LaneIdx. The vector source
|
|
/// register is given by \p SrcReg. The register containing the element is
|
|
/// given by \p EltReg.
|
|
MachineInstr *emitLaneInsert(Optional<Register> DstReg, Register SrcReg,
|
|
Register EltReg, unsigned LaneIdx,
|
|
const RegisterBank &RB,
|
|
MachineIRBuilder &MIRBuilder) const;
|
|
bool selectInsertElt(MachineInstr &I, MachineRegisterInfo &MRI) const;
|
|
bool selectBuildVector(MachineInstr &I, MachineRegisterInfo &MRI) const;
|
|
bool selectMergeValues(MachineInstr &I, MachineRegisterInfo &MRI) const;
|
|
bool selectUnmergeValues(MachineInstr &I, MachineRegisterInfo &MRI) const;
|
|
|
|
bool selectShuffleVector(MachineInstr &I, MachineRegisterInfo &MRI) const;
|
|
bool selectExtractElt(MachineInstr &I, MachineRegisterInfo &MRI) const;
|
|
bool selectConcatVectors(MachineInstr &I, MachineRegisterInfo &MRI) const;
|
|
bool selectSplitVectorUnmerge(MachineInstr &I,
|
|
MachineRegisterInfo &MRI) const;
|
|
bool selectIntrinsicWithSideEffects(MachineInstr &I,
|
|
MachineRegisterInfo &MRI) const;
|
|
bool selectIntrinsic(MachineInstr &I, MachineRegisterInfo &MRI);
|
|
bool selectVectorICmp(MachineInstr &I, MachineRegisterInfo &MRI) const;
|
|
bool selectIntrinsicTrunc(MachineInstr &I, MachineRegisterInfo &MRI) const;
|
|
bool selectIntrinsicRound(MachineInstr &I, MachineRegisterInfo &MRI) const;
|
|
bool selectJumpTable(MachineInstr &I, MachineRegisterInfo &MRI) const;
|
|
bool selectBrJT(MachineInstr &I, MachineRegisterInfo &MRI) const;
|
|
bool selectTLSGlobalValue(MachineInstr &I, MachineRegisterInfo &MRI) const;
|
|
|
|
unsigned emitConstantPoolEntry(Constant *CPVal, MachineFunction &MF) const;
|
|
MachineInstr *emitLoadFromConstantPool(Constant *CPVal,
|
|
MachineIRBuilder &MIRBuilder) const;
|
|
|
|
// Emit a vector concat operation.
|
|
MachineInstr *emitVectorConcat(Optional<Register> Dst, Register Op1,
|
|
Register Op2,
|
|
MachineIRBuilder &MIRBuilder) const;
|
|
MachineInstr *emitIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
|
|
MachineOperand &Predicate,
|
|
MachineIRBuilder &MIRBuilder) const;
|
|
MachineInstr *emitADD(Register DefReg, MachineOperand &LHS, MachineOperand &RHS,
|
|
MachineIRBuilder &MIRBuilder) const;
|
|
MachineInstr *emitCMN(MachineOperand &LHS, MachineOperand &RHS,
|
|
MachineIRBuilder &MIRBuilder) const;
|
|
MachineInstr *emitTST(const Register &LHS, const Register &RHS,
|
|
MachineIRBuilder &MIRBuilder) const;
|
|
MachineInstr *emitExtractVectorElt(Optional<Register> DstReg,
|
|
const RegisterBank &DstRB, LLT ScalarTy,
|
|
Register VecReg, unsigned LaneIdx,
|
|
MachineIRBuilder &MIRBuilder) const;
|
|
|
|
/// Helper function for selecting G_FCONSTANT. If the G_FCONSTANT can be
|
|
/// materialized using a FMOV instruction, then update MI and return it.
|
|
/// Otherwise, do nothing and return a nullptr.
|
|
MachineInstr *emitFMovForFConstant(MachineInstr &MI,
|
|
MachineRegisterInfo &MRI) const;
|
|
|
|
/// Emit a CSet for a compare.
|
|
MachineInstr *emitCSetForICMP(Register DefReg, unsigned Pred,
|
|
MachineIRBuilder &MIRBuilder) const;
|
|
|
|
/// Emit a TB(N)Z instruction which tests \p Bit in \p TestReg.
|
|
/// \p IsNegative is true if the test should be "not zero".
|
|
/// This will also optimize the test bit instruction when possible.
|
|
MachineInstr *emitTestBit(Register TestReg, uint64_t Bit, bool IsNegative,
|
|
MachineBasicBlock *DstMBB,
|
|
MachineIRBuilder &MIB) const;
|
|
|
|
// Equivalent to the i32shift_a and friends from AArch64InstrInfo.td.
|
|
// We use these manually instead of using the importer since it doesn't
|
|
// support SDNodeXForm.
|
|
ComplexRendererFns selectShiftA_32(const MachineOperand &Root) const;
|
|
ComplexRendererFns selectShiftB_32(const MachineOperand &Root) const;
|
|
ComplexRendererFns selectShiftA_64(const MachineOperand &Root) const;
|
|
ComplexRendererFns selectShiftB_64(const MachineOperand &Root) const;
|
|
|
|
ComplexRendererFns select12BitValueWithLeftShift(uint64_t Immed) const;
|
|
ComplexRendererFns selectArithImmed(MachineOperand &Root) const;
|
|
ComplexRendererFns selectNegArithImmed(MachineOperand &Root) const;
|
|
|
|
ComplexRendererFns selectAddrModeUnscaled(MachineOperand &Root,
|
|
unsigned Size) const;
|
|
|
|
ComplexRendererFns selectAddrModeUnscaled8(MachineOperand &Root) const {
|
|
return selectAddrModeUnscaled(Root, 1);
|
|
}
|
|
ComplexRendererFns selectAddrModeUnscaled16(MachineOperand &Root) const {
|
|
return selectAddrModeUnscaled(Root, 2);
|
|
}
|
|
ComplexRendererFns selectAddrModeUnscaled32(MachineOperand &Root) const {
|
|
return selectAddrModeUnscaled(Root, 4);
|
|
}
|
|
ComplexRendererFns selectAddrModeUnscaled64(MachineOperand &Root) const {
|
|
return selectAddrModeUnscaled(Root, 8);
|
|
}
|
|
ComplexRendererFns selectAddrModeUnscaled128(MachineOperand &Root) const {
|
|
return selectAddrModeUnscaled(Root, 16);
|
|
}
|
|
|
|
ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root,
|
|
unsigned Size) const;
|
|
template <int Width>
|
|
ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root) const {
|
|
return selectAddrModeIndexed(Root, Width / 8);
|
|
}
|
|
|
|
bool isWorthFoldingIntoExtendedReg(MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI) const;
|
|
ComplexRendererFns
|
|
selectAddrModeShiftedExtendXReg(MachineOperand &Root,
|
|
unsigned SizeInBytes) const;
|
|
|
|
/// Returns a \p ComplexRendererFns which contains a base, offset, and whether
|
|
/// or not a shift + extend should be folded into an addressing mode. Returns
|
|
/// None when this is not profitable or possible.
|
|
ComplexRendererFns
|
|
selectExtendedSHL(MachineOperand &Root, MachineOperand &Base,
|
|
MachineOperand &Offset, unsigned SizeInBytes,
|
|
bool WantsExt) const;
|
|
ComplexRendererFns selectAddrModeRegisterOffset(MachineOperand &Root) const;
|
|
ComplexRendererFns selectAddrModeXRO(MachineOperand &Root,
|
|
unsigned SizeInBytes) const;
|
|
template <int Width>
|
|
ComplexRendererFns selectAddrModeXRO(MachineOperand &Root) const {
|
|
return selectAddrModeXRO(Root, Width / 8);
|
|
}
|
|
|
|
ComplexRendererFns selectAddrModeWRO(MachineOperand &Root,
|
|
unsigned SizeInBytes) const;
|
|
template <int Width>
|
|
ComplexRendererFns selectAddrModeWRO(MachineOperand &Root) const {
|
|
return selectAddrModeWRO(Root, Width / 8);
|
|
}
|
|
|
|
ComplexRendererFns selectShiftedRegister(MachineOperand &Root) const;
|
|
|
|
ComplexRendererFns selectArithShiftedRegister(MachineOperand &Root) const {
|
|
return selectShiftedRegister(Root);
|
|
}
|
|
|
|
ComplexRendererFns selectLogicalShiftedRegister(MachineOperand &Root) const {
|
|
// TODO: selectShiftedRegister should allow for rotates on logical shifts.
|
|
// For now, make them the same. The only difference between the two is that
|
|
// logical shifts are allowed to fold in rotates. Otherwise, these are
|
|
// functionally the same.
|
|
return selectShiftedRegister(Root);
|
|
}
|
|
|
|
/// Given an extend instruction, determine the correct shift-extend type for
|
|
/// that instruction.
|
|
///
|
|
/// If the instruction is going to be used in a load or store, pass
|
|
/// \p IsLoadStore = true.
|
|
AArch64_AM::ShiftExtendType
|
|
getExtendTypeForInst(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
bool IsLoadStore = false) const;
|
|
|
|
/// Instructions that accept extend modifiers like UXTW expect the register
|
|
/// being extended to be a GPR32. Narrow ExtReg to a 32-bit register using a
|
|
/// subregister copy if necessary. Return either ExtReg, or the result of the
|
|
/// new copy.
|
|
Register narrowExtendRegIfNeeded(Register ExtReg,
|
|
MachineIRBuilder &MIB) const;
|
|
Register widenGPRBankRegIfNeeded(Register Reg, unsigned Size,
|
|
MachineIRBuilder &MIB) const;
|
|
ComplexRendererFns selectArithExtendedRegister(MachineOperand &Root) const;
|
|
|
|
void renderTruncImm(MachineInstrBuilder &MIB, const MachineInstr &MI,
|
|
int OpIdx = -1) const;
|
|
void renderLogicalImm32(MachineInstrBuilder &MIB, const MachineInstr &I,
|
|
int OpIdx = -1) const;
|
|
void renderLogicalImm64(MachineInstrBuilder &MIB, const MachineInstr &I,
|
|
int OpIdx = -1) const;
|
|
|
|
// Materialize a GlobalValue or BlockAddress using a movz+movk sequence.
|
|
void materializeLargeCMVal(MachineInstr &I, const Value *V,
|
|
unsigned OpFlags) const;
|
|
|
|
// Optimization methods.
|
|
bool tryOptVectorShuffle(MachineInstr &I) const;
|
|
bool tryOptVectorDup(MachineInstr &MI) const;
|
|
bool tryOptSelect(MachineInstr &MI) const;
|
|
MachineInstr *tryFoldIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
|
|
MachineOperand &Predicate,
|
|
MachineIRBuilder &MIRBuilder) const;
|
|
|
|
/// Return true if \p MI is a load or store of \p NumBytes bytes.
|
|
bool isLoadStoreOfNumBytes(const MachineInstr &MI, unsigned NumBytes) const;
|
|
|
|
/// Returns true if \p MI is guaranteed to have the high-half of a 64-bit
|
|
/// register zeroed out. In other words, the result of MI has been explicitly
|
|
/// zero extended.
|
|
bool isDef32(const MachineInstr &MI) const;
|
|
|
|
const AArch64TargetMachine &TM;
|
|
const AArch64Subtarget &STI;
|
|
const AArch64InstrInfo &TII;
|
|
const AArch64RegisterInfo &TRI;
|
|
const AArch64RegisterBankInfo &RBI;
|
|
|
|
bool ProduceNonFlagSettingCondBr = false;
|
|
|
|
// Some cached values used during selection.
|
|
// We use LR as a live-in register, and we keep track of it here as it can be
|
|
// clobbered by calls.
|
|
Register MFReturnAddr;
|
|
|
|
#define GET_GLOBALISEL_PREDICATES_DECL
|
|
#include "AArch64GenGlobalISel.inc"
|
|
#undef GET_GLOBALISEL_PREDICATES_DECL
|
|
|
|
// We declare the temporaries used by selectImpl() in the class to minimize the
|
|
// cost of constructing placeholder values.
|
|
#define GET_GLOBALISEL_TEMPORARIES_DECL
|
|
#include "AArch64GenGlobalISel.inc"
|
|
#undef GET_GLOBALISEL_TEMPORARIES_DECL
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
#define GET_GLOBALISEL_IMPL
|
|
#include "AArch64GenGlobalISel.inc"
|
|
#undef GET_GLOBALISEL_IMPL
|
|
|
|
AArch64InstructionSelector::AArch64InstructionSelector(
|
|
const AArch64TargetMachine &TM, const AArch64Subtarget &STI,
|
|
const AArch64RegisterBankInfo &RBI)
|
|
: InstructionSelector(), TM(TM), STI(STI), TII(*STI.getInstrInfo()),
|
|
TRI(*STI.getRegisterInfo()), RBI(RBI),
|
|
#define GET_GLOBALISEL_PREDICATES_INIT
|
|
#include "AArch64GenGlobalISel.inc"
|
|
#undef GET_GLOBALISEL_PREDICATES_INIT
|
|
#define GET_GLOBALISEL_TEMPORARIES_INIT
|
|
#include "AArch64GenGlobalISel.inc"
|
|
#undef GET_GLOBALISEL_TEMPORARIES_INIT
|
|
{
|
|
}
|
|
|
|
// FIXME: This should be target-independent, inferred from the types declared
|
|
// for each class in the bank.
|
|
static const TargetRegisterClass *
|
|
getRegClassForTypeOnBank(LLT Ty, const RegisterBank &RB,
|
|
const RegisterBankInfo &RBI,
|
|
bool GetAllRegSet = false) {
|
|
if (RB.getID() == AArch64::GPRRegBankID) {
|
|
if (Ty.getSizeInBits() <= 32)
|
|
return GetAllRegSet ? &AArch64::GPR32allRegClass
|
|
: &AArch64::GPR32RegClass;
|
|
if (Ty.getSizeInBits() == 64)
|
|
return GetAllRegSet ? &AArch64::GPR64allRegClass
|
|
: &AArch64::GPR64RegClass;
|
|
return nullptr;
|
|
}
|
|
|
|
if (RB.getID() == AArch64::FPRRegBankID) {
|
|
if (Ty.getSizeInBits() <= 16)
|
|
return &AArch64::FPR16RegClass;
|
|
if (Ty.getSizeInBits() == 32)
|
|
return &AArch64::FPR32RegClass;
|
|
if (Ty.getSizeInBits() == 64)
|
|
return &AArch64::FPR64RegClass;
|
|
if (Ty.getSizeInBits() == 128)
|
|
return &AArch64::FPR128RegClass;
|
|
return nullptr;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Given a register bank, and size in bits, return the smallest register class
|
|
/// that can represent that combination.
|
|
static const TargetRegisterClass *
|
|
getMinClassForRegBank(const RegisterBank &RB, unsigned SizeInBits,
|
|
bool GetAllRegSet = false) {
|
|
unsigned RegBankID = RB.getID();
|
|
|
|
if (RegBankID == AArch64::GPRRegBankID) {
|
|
if (SizeInBits <= 32)
|
|
return GetAllRegSet ? &AArch64::GPR32allRegClass
|
|
: &AArch64::GPR32RegClass;
|
|
if (SizeInBits == 64)
|
|
return GetAllRegSet ? &AArch64::GPR64allRegClass
|
|
: &AArch64::GPR64RegClass;
|
|
}
|
|
|
|
if (RegBankID == AArch64::FPRRegBankID) {
|
|
switch (SizeInBits) {
|
|
default:
|
|
return nullptr;
|
|
case 8:
|
|
return &AArch64::FPR8RegClass;
|
|
case 16:
|
|
return &AArch64::FPR16RegClass;
|
|
case 32:
|
|
return &AArch64::FPR32RegClass;
|
|
case 64:
|
|
return &AArch64::FPR64RegClass;
|
|
case 128:
|
|
return &AArch64::FPR128RegClass;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Returns the correct subregister to use for a given register class.
|
|
static bool getSubRegForClass(const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo &TRI, unsigned &SubReg) {
|
|
switch (TRI.getRegSizeInBits(*RC)) {
|
|
case 8:
|
|
SubReg = AArch64::bsub;
|
|
break;
|
|
case 16:
|
|
SubReg = AArch64::hsub;
|
|
break;
|
|
case 32:
|
|
if (RC != &AArch64::FPR32RegClass)
|
|
SubReg = AArch64::sub_32;
|
|
else
|
|
SubReg = AArch64::ssub;
|
|
break;
|
|
case 64:
|
|
SubReg = AArch64::dsub;
|
|
break;
|
|
default:
|
|
LLVM_DEBUG(
|
|
dbgs() << "Couldn't find appropriate subregister for register class.");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Returns the minimum size the given register bank can hold.
|
|
static unsigned getMinSizeForRegBank(const RegisterBank &RB) {
|
|
switch (RB.getID()) {
|
|
case AArch64::GPRRegBankID:
|
|
return 32;
|
|
case AArch64::FPRRegBankID:
|
|
return 8;
|
|
default:
|
|
llvm_unreachable("Tried to get minimum size for unknown register bank.");
|
|
}
|
|
}
|
|
|
|
/// Check whether \p I is a currently unsupported binary operation:
|
|
/// - it has an unsized type
|
|
/// - an operand is not a vreg
|
|
/// - all operands are not in the same bank
|
|
/// These are checks that should someday live in the verifier, but right now,
|
|
/// these are mostly limitations of the aarch64 selector.
|
|
static bool unsupportedBinOp(const MachineInstr &I,
|
|
const AArch64RegisterBankInfo &RBI,
|
|
const MachineRegisterInfo &MRI,
|
|
const AArch64RegisterInfo &TRI) {
|
|
LLT Ty = MRI.getType(I.getOperand(0).getReg());
|
|
if (!Ty.isValid()) {
|
|
LLVM_DEBUG(dbgs() << "Generic binop register should be typed\n");
|
|
return true;
|
|
}
|
|
|
|
const RegisterBank *PrevOpBank = nullptr;
|
|
for (auto &MO : I.operands()) {
|
|
// FIXME: Support non-register operands.
|
|
if (!MO.isReg()) {
|
|
LLVM_DEBUG(dbgs() << "Generic inst non-reg operands are unsupported\n");
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Can generic operations have physical registers operands? If
|
|
// so, this will need to be taught about that, and we'll need to get the
|
|
// bank out of the minimal class for the register.
|
|
// Either way, this needs to be documented (and possibly verified).
|
|
if (!Register::isVirtualRegister(MO.getReg())) {
|
|
LLVM_DEBUG(dbgs() << "Generic inst has physical register operand\n");
|
|
return true;
|
|
}
|
|
|
|
const RegisterBank *OpBank = RBI.getRegBank(MO.getReg(), MRI, TRI);
|
|
if (!OpBank) {
|
|
LLVM_DEBUG(dbgs() << "Generic register has no bank or class\n");
|
|
return true;
|
|
}
|
|
|
|
if (PrevOpBank && OpBank != PrevOpBank) {
|
|
LLVM_DEBUG(dbgs() << "Generic inst operands have different banks\n");
|
|
return true;
|
|
}
|
|
PrevOpBank = OpBank;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Select the AArch64 opcode for the basic binary operation \p GenericOpc
|
|
/// (such as G_OR or G_SDIV), appropriate for the register bank \p RegBankID
|
|
/// and of size \p OpSize.
|
|
/// \returns \p GenericOpc if the combination is unsupported.
|
|
static unsigned selectBinaryOp(unsigned GenericOpc, unsigned RegBankID,
|
|
unsigned OpSize) {
|
|
switch (RegBankID) {
|
|
case AArch64::GPRRegBankID:
|
|
if (OpSize == 32) {
|
|
switch (GenericOpc) {
|
|
case TargetOpcode::G_SHL:
|
|
return AArch64::LSLVWr;
|
|
case TargetOpcode::G_LSHR:
|
|
return AArch64::LSRVWr;
|
|
case TargetOpcode::G_ASHR:
|
|
return AArch64::ASRVWr;
|
|
default:
|
|
return GenericOpc;
|
|
}
|
|
} else if (OpSize == 64) {
|
|
switch (GenericOpc) {
|
|
case TargetOpcode::G_PTR_ADD:
|
|
return AArch64::ADDXrr;
|
|
case TargetOpcode::G_SHL:
|
|
return AArch64::LSLVXr;
|
|
case TargetOpcode::G_LSHR:
|
|
return AArch64::LSRVXr;
|
|
case TargetOpcode::G_ASHR:
|
|
return AArch64::ASRVXr;
|
|
default:
|
|
return GenericOpc;
|
|
}
|
|
}
|
|
break;
|
|
case AArch64::FPRRegBankID:
|
|
switch (OpSize) {
|
|
case 32:
|
|
switch (GenericOpc) {
|
|
case TargetOpcode::G_FADD:
|
|
return AArch64::FADDSrr;
|
|
case TargetOpcode::G_FSUB:
|
|
return AArch64::FSUBSrr;
|
|
case TargetOpcode::G_FMUL:
|
|
return AArch64::FMULSrr;
|
|
case TargetOpcode::G_FDIV:
|
|
return AArch64::FDIVSrr;
|
|
default:
|
|
return GenericOpc;
|
|
}
|
|
case 64:
|
|
switch (GenericOpc) {
|
|
case TargetOpcode::G_FADD:
|
|
return AArch64::FADDDrr;
|
|
case TargetOpcode::G_FSUB:
|
|
return AArch64::FSUBDrr;
|
|
case TargetOpcode::G_FMUL:
|
|
return AArch64::FMULDrr;
|
|
case TargetOpcode::G_FDIV:
|
|
return AArch64::FDIVDrr;
|
|
case TargetOpcode::G_OR:
|
|
return AArch64::ORRv8i8;
|
|
default:
|
|
return GenericOpc;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return GenericOpc;
|
|
}
|
|
|
|
/// Select the AArch64 opcode for the G_LOAD or G_STORE operation \p GenericOpc,
|
|
/// appropriate for the (value) register bank \p RegBankID and of memory access
|
|
/// size \p OpSize. This returns the variant with the base+unsigned-immediate
|
|
/// addressing mode (e.g., LDRXui).
|
|
/// \returns \p GenericOpc if the combination is unsupported.
|
|
static unsigned selectLoadStoreUIOp(unsigned GenericOpc, unsigned RegBankID,
|
|
unsigned OpSize) {
|
|
const bool isStore = GenericOpc == TargetOpcode::G_STORE;
|
|
switch (RegBankID) {
|
|
case AArch64::GPRRegBankID:
|
|
switch (OpSize) {
|
|
case 8:
|
|
return isStore ? AArch64::STRBBui : AArch64::LDRBBui;
|
|
case 16:
|
|
return isStore ? AArch64::STRHHui : AArch64::LDRHHui;
|
|
case 32:
|
|
return isStore ? AArch64::STRWui : AArch64::LDRWui;
|
|
case 64:
|
|
return isStore ? AArch64::STRXui : AArch64::LDRXui;
|
|
}
|
|
break;
|
|
case AArch64::FPRRegBankID:
|
|
switch (OpSize) {
|
|
case 8:
|
|
return isStore ? AArch64::STRBui : AArch64::LDRBui;
|
|
case 16:
|
|
return isStore ? AArch64::STRHui : AArch64::LDRHui;
|
|
case 32:
|
|
return isStore ? AArch64::STRSui : AArch64::LDRSui;
|
|
case 64:
|
|
return isStore ? AArch64::STRDui : AArch64::LDRDui;
|
|
}
|
|
break;
|
|
}
|
|
return GenericOpc;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// Helper function that verifies that we have a valid copy at the end of
|
|
/// selectCopy. Verifies that the source and dest have the expected sizes and
|
|
/// then returns true.
|
|
static bool isValidCopy(const MachineInstr &I, const RegisterBank &DstBank,
|
|
const MachineRegisterInfo &MRI,
|
|
const TargetRegisterInfo &TRI,
|
|
const RegisterBankInfo &RBI) {
|
|
const Register DstReg = I.getOperand(0).getReg();
|
|
const Register SrcReg = I.getOperand(1).getReg();
|
|
const unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
|
|
const unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
|
|
|
|
// Make sure the size of the source and dest line up.
|
|
assert(
|
|
(DstSize == SrcSize ||
|
|
// Copies are a mean to setup initial types, the number of
|
|
// bits may not exactly match.
|
|
(Register::isPhysicalRegister(SrcReg) && DstSize <= SrcSize) ||
|
|
// Copies are a mean to copy bits around, as long as we are
|
|
// on the same register class, that's fine. Otherwise, that
|
|
// means we need some SUBREG_TO_REG or AND & co.
|
|
(((DstSize + 31) / 32 == (SrcSize + 31) / 32) && DstSize > SrcSize)) &&
|
|
"Copy with different width?!");
|
|
|
|
// Check the size of the destination.
|
|
assert((DstSize <= 64 || DstBank.getID() == AArch64::FPRRegBankID) &&
|
|
"GPRs cannot get more than 64-bit width values");
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
/// Helper function for selectCopy. Inserts a subregister copy from \p SrcReg
|
|
/// to \p *To.
|
|
///
|
|
/// E.g "To = COPY SrcReg:SubReg"
|
|
static bool copySubReg(MachineInstr &I, MachineRegisterInfo &MRI,
|
|
const RegisterBankInfo &RBI, Register SrcReg,
|
|
const TargetRegisterClass *To, unsigned SubReg) {
|
|
assert(SrcReg.isValid() && "Expected a valid source register?");
|
|
assert(To && "Destination register class cannot be null");
|
|
assert(SubReg && "Expected a valid subregister");
|
|
|
|
MachineIRBuilder MIB(I);
|
|
auto SubRegCopy =
|
|
MIB.buildInstr(TargetOpcode::COPY, {To}, {}).addReg(SrcReg, 0, SubReg);
|
|
MachineOperand &RegOp = I.getOperand(1);
|
|
RegOp.setReg(SubRegCopy.getReg(0));
|
|
|
|
// It's possible that the destination register won't be constrained. Make
|
|
// sure that happens.
|
|
if (!Register::isPhysicalRegister(I.getOperand(0).getReg()))
|
|
RBI.constrainGenericRegister(I.getOperand(0).getReg(), *To, MRI);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Helper function to get the source and destination register classes for a
|
|
/// copy. Returns a std::pair containing the source register class for the
|
|
/// copy, and the destination register class for the copy. If a register class
|
|
/// cannot be determined, then it will be nullptr.
|
|
static std::pair<const TargetRegisterClass *, const TargetRegisterClass *>
|
|
getRegClassesForCopy(MachineInstr &I, const TargetInstrInfo &TII,
|
|
MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
|
|
const RegisterBankInfo &RBI) {
|
|
Register DstReg = I.getOperand(0).getReg();
|
|
Register SrcReg = I.getOperand(1).getReg();
|
|
const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
|
|
const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
|
|
unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
|
|
unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
|
|
|
|
// Special casing for cross-bank copies of s1s. We can technically represent
|
|
// a 1-bit value with any size of register. The minimum size for a GPR is 32
|
|
// bits. So, we need to put the FPR on 32 bits as well.
|
|
//
|
|
// FIXME: I'm not sure if this case holds true outside of copies. If it does,
|
|
// then we can pull it into the helpers that get the appropriate class for a
|
|
// register bank. Or make a new helper that carries along some constraint
|
|
// information.
|
|
if (SrcRegBank != DstRegBank && (DstSize == 1 && SrcSize == 1))
|
|
SrcSize = DstSize = 32;
|
|
|
|
return {getMinClassForRegBank(SrcRegBank, SrcSize, true),
|
|
getMinClassForRegBank(DstRegBank, DstSize, true)};
|
|
}
|
|
|
|
static bool selectCopy(MachineInstr &I, const TargetInstrInfo &TII,
|
|
MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
|
|
const RegisterBankInfo &RBI) {
|
|
|
|
Register DstReg = I.getOperand(0).getReg();
|
|
Register SrcReg = I.getOperand(1).getReg();
|
|
const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
|
|
const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
|
|
|
|
// Find the correct register classes for the source and destination registers.
|
|
const TargetRegisterClass *SrcRC;
|
|
const TargetRegisterClass *DstRC;
|
|
std::tie(SrcRC, DstRC) = getRegClassesForCopy(I, TII, MRI, TRI, RBI);
|
|
|
|
if (!DstRC) {
|
|
LLVM_DEBUG(dbgs() << "Unexpected dest size "
|
|
<< RBI.getSizeInBits(DstReg, MRI, TRI) << '\n');
|
|
return false;
|
|
}
|
|
|
|
// A couple helpers below, for making sure that the copy we produce is valid.
|
|
|
|
// Set to true if we insert a SUBREG_TO_REG. If we do this, then we don't want
|
|
// to verify that the src and dst are the same size, since that's handled by
|
|
// the SUBREG_TO_REG.
|
|
bool KnownValid = false;
|
|
|
|
// Returns true, or asserts if something we don't expect happens. Instead of
|
|
// returning true, we return isValidCopy() to ensure that we verify the
|
|
// result.
|
|
auto CheckCopy = [&]() {
|
|
// If we have a bitcast or something, we can't have physical registers.
|
|
assert((I.isCopy() ||
|
|
(!Register::isPhysicalRegister(I.getOperand(0).getReg()) &&
|
|
!Register::isPhysicalRegister(I.getOperand(1).getReg()))) &&
|
|
"No phys reg on generic operator!");
|
|
assert(KnownValid || isValidCopy(I, DstRegBank, MRI, TRI, RBI));
|
|
(void)KnownValid;
|
|
return true;
|
|
};
|
|
|
|
// Is this a copy? If so, then we may need to insert a subregister copy, or
|
|
// a SUBREG_TO_REG.
|
|
if (I.isCopy()) {
|
|
// Yes. Check if there's anything to fix up.
|
|
if (!SrcRC) {
|
|
LLVM_DEBUG(dbgs() << "Couldn't determine source register class\n");
|
|
return false;
|
|
}
|
|
|
|
unsigned SrcSize = TRI.getRegSizeInBits(*SrcRC);
|
|
unsigned DstSize = TRI.getRegSizeInBits(*DstRC);
|
|
|
|
// If the source register is bigger than the destination we need to perform
|
|
// a subregister copy.
|
|
if (SrcSize > DstSize) {
|
|
unsigned SubReg = 0;
|
|
|
|
// If the source bank doesn't support a subregister copy small enough,
|
|
// then we first need to copy to the destination bank.
|
|
if (getMinSizeForRegBank(SrcRegBank) > DstSize) {
|
|
const TargetRegisterClass *SubregRC = getMinClassForRegBank(
|
|
DstRegBank, SrcSize, /* GetAllRegSet = */ true);
|
|
getSubRegForClass(DstRC, TRI, SubReg);
|
|
|
|
MachineIRBuilder MIB(I);
|
|
auto Copy = MIB.buildCopy({SubregRC}, {SrcReg});
|
|
copySubReg(I, MRI, RBI, Copy.getReg(0), DstRC, SubReg);
|
|
} else {
|
|
const TargetRegisterClass *SubregRC = getMinClassForRegBank(
|
|
SrcRegBank, DstSize, /* GetAllRegSet = */ true);
|
|
getSubRegForClass(SubregRC, TRI, SubReg);
|
|
copySubReg(I, MRI, RBI, SrcReg, DstRC, SubReg);
|
|
}
|
|
|
|
return CheckCopy();
|
|
}
|
|
|
|
// Is this a cross-bank copy?
|
|
if (DstRegBank.getID() != SrcRegBank.getID()) {
|
|
if (DstRegBank.getID() == AArch64::GPRRegBankID && DstSize == 32 &&
|
|
SrcSize == 16) {
|
|
// Special case for FPR16 to GPR32.
|
|
// FIXME: This can probably be generalized like the above case.
|
|
Register PromoteReg =
|
|
MRI.createVirtualRegister(&AArch64::FPR32RegClass);
|
|
BuildMI(*I.getParent(), I, I.getDebugLoc(),
|
|
TII.get(AArch64::SUBREG_TO_REG), PromoteReg)
|
|
.addImm(0)
|
|
.addUse(SrcReg)
|
|
.addImm(AArch64::hsub);
|
|
MachineOperand &RegOp = I.getOperand(1);
|
|
RegOp.setReg(PromoteReg);
|
|
|
|
// Promise that the copy is implicitly validated by the SUBREG_TO_REG.
|
|
KnownValid = true;
|
|
}
|
|
}
|
|
|
|
// If the destination is a physical register, then there's nothing to
|
|
// change, so we're done.
|
|
if (Register::isPhysicalRegister(DstReg))
|
|
return CheckCopy();
|
|
}
|
|
|
|
// No need to constrain SrcReg. It will get constrained when we hit another
|
|
// of its use or its defs. Copies do not have constraints.
|
|
if (!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
|
|
LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
|
|
<< " operand\n");
|
|
return false;
|
|
}
|
|
I.setDesc(TII.get(AArch64::COPY));
|
|
return CheckCopy();
|
|
}
|
|
|
|
static unsigned selectFPConvOpc(unsigned GenericOpc, LLT DstTy, LLT SrcTy) {
|
|
if (!DstTy.isScalar() || !SrcTy.isScalar())
|
|
return GenericOpc;
|
|
|
|
const unsigned DstSize = DstTy.getSizeInBits();
|
|
const unsigned SrcSize = SrcTy.getSizeInBits();
|
|
|
|
switch (DstSize) {
|
|
case 32:
|
|
switch (SrcSize) {
|
|
case 32:
|
|
switch (GenericOpc) {
|
|
case TargetOpcode::G_SITOFP:
|
|
return AArch64::SCVTFUWSri;
|
|
case TargetOpcode::G_UITOFP:
|
|
return AArch64::UCVTFUWSri;
|
|
case TargetOpcode::G_FPTOSI:
|
|
return AArch64::FCVTZSUWSr;
|
|
case TargetOpcode::G_FPTOUI:
|
|
return AArch64::FCVTZUUWSr;
|
|
default:
|
|
return GenericOpc;
|
|
}
|
|
case 64:
|
|
switch (GenericOpc) {
|
|
case TargetOpcode::G_SITOFP:
|
|
return AArch64::SCVTFUXSri;
|
|
case TargetOpcode::G_UITOFP:
|
|
return AArch64::UCVTFUXSri;
|
|
case TargetOpcode::G_FPTOSI:
|
|
return AArch64::FCVTZSUWDr;
|
|
case TargetOpcode::G_FPTOUI:
|
|
return AArch64::FCVTZUUWDr;
|
|
default:
|
|
return GenericOpc;
|
|
}
|
|
default:
|
|
return GenericOpc;
|
|
}
|
|
case 64:
|
|
switch (SrcSize) {
|
|
case 32:
|
|
switch (GenericOpc) {
|
|
case TargetOpcode::G_SITOFP:
|
|
return AArch64::SCVTFUWDri;
|
|
case TargetOpcode::G_UITOFP:
|
|
return AArch64::UCVTFUWDri;
|
|
case TargetOpcode::G_FPTOSI:
|
|
return AArch64::FCVTZSUXSr;
|
|
case TargetOpcode::G_FPTOUI:
|
|
return AArch64::FCVTZUUXSr;
|
|
default:
|
|
return GenericOpc;
|
|
}
|
|
case 64:
|
|
switch (GenericOpc) {
|
|
case TargetOpcode::G_SITOFP:
|
|
return AArch64::SCVTFUXDri;
|
|
case TargetOpcode::G_UITOFP:
|
|
return AArch64::UCVTFUXDri;
|
|
case TargetOpcode::G_FPTOSI:
|
|
return AArch64::FCVTZSUXDr;
|
|
case TargetOpcode::G_FPTOUI:
|
|
return AArch64::FCVTZUUXDr;
|
|
default:
|
|
return GenericOpc;
|
|
}
|
|
default:
|
|
return GenericOpc;
|
|
}
|
|
default:
|
|
return GenericOpc;
|
|
};
|
|
return GenericOpc;
|
|
}
|
|
|
|
static unsigned selectSelectOpc(MachineInstr &I, MachineRegisterInfo &MRI,
|
|
const RegisterBankInfo &RBI) {
|
|
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
|
|
bool IsFP = (RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI)->getID() !=
|
|
AArch64::GPRRegBankID);
|
|
LLT Ty = MRI.getType(I.getOperand(0).getReg());
|
|
if (Ty == LLT::scalar(32))
|
|
return IsFP ? AArch64::FCSELSrrr : AArch64::CSELWr;
|
|
else if (Ty == LLT::scalar(64) || Ty == LLT::pointer(0, 64))
|
|
return IsFP ? AArch64::FCSELDrrr : AArch64::CSELXr;
|
|
return 0;
|
|
}
|
|
|
|
/// Helper function to select the opcode for a G_FCMP.
|
|
static unsigned selectFCMPOpc(MachineInstr &I, MachineRegisterInfo &MRI) {
|
|
// If this is a compare against +0.0, then we don't have to explicitly
|
|
// materialize a constant.
|
|
const ConstantFP *FPImm = getConstantFPVRegVal(I.getOperand(3).getReg(), MRI);
|
|
bool ShouldUseImm = FPImm && (FPImm->isZero() && !FPImm->isNegative());
|
|
unsigned OpSize = MRI.getType(I.getOperand(2).getReg()).getSizeInBits();
|
|
if (OpSize != 32 && OpSize != 64)
|
|
return 0;
|
|
unsigned CmpOpcTbl[2][2] = {{AArch64::FCMPSrr, AArch64::FCMPDrr},
|
|
{AArch64::FCMPSri, AArch64::FCMPDri}};
|
|
return CmpOpcTbl[ShouldUseImm][OpSize == 64];
|
|
}
|
|
|
|
/// Returns true if \p P is an unsigned integer comparison predicate.
|
|
static bool isUnsignedICMPPred(const CmpInst::Predicate P) {
|
|
switch (P) {
|
|
default:
|
|
return false;
|
|
case CmpInst::ICMP_UGT:
|
|
case CmpInst::ICMP_UGE:
|
|
case CmpInst::ICMP_ULT:
|
|
case CmpInst::ICMP_ULE:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static AArch64CC::CondCode changeICMPPredToAArch64CC(CmpInst::Predicate P) {
|
|
switch (P) {
|
|
default:
|
|
llvm_unreachable("Unknown condition code!");
|
|
case CmpInst::ICMP_NE:
|
|
return AArch64CC::NE;
|
|
case CmpInst::ICMP_EQ:
|
|
return AArch64CC::EQ;
|
|
case CmpInst::ICMP_SGT:
|
|
return AArch64CC::GT;
|
|
case CmpInst::ICMP_SGE:
|
|
return AArch64CC::GE;
|
|
case CmpInst::ICMP_SLT:
|
|
return AArch64CC::LT;
|
|
case CmpInst::ICMP_SLE:
|
|
return AArch64CC::LE;
|
|
case CmpInst::ICMP_UGT:
|
|
return AArch64CC::HI;
|
|
case CmpInst::ICMP_UGE:
|
|
return AArch64CC::HS;
|
|
case CmpInst::ICMP_ULT:
|
|
return AArch64CC::LO;
|
|
case CmpInst::ICMP_ULE:
|
|
return AArch64CC::LS;
|
|
}
|
|
}
|
|
|
|
static void changeFCMPPredToAArch64CC(CmpInst::Predicate P,
|
|
AArch64CC::CondCode &CondCode,
|
|
AArch64CC::CondCode &CondCode2) {
|
|
CondCode2 = AArch64CC::AL;
|
|
switch (P) {
|
|
default:
|
|
llvm_unreachable("Unknown FP condition!");
|
|
case CmpInst::FCMP_OEQ:
|
|
CondCode = AArch64CC::EQ;
|
|
break;
|
|
case CmpInst::FCMP_OGT:
|
|
CondCode = AArch64CC::GT;
|
|
break;
|
|
case CmpInst::FCMP_OGE:
|
|
CondCode = AArch64CC::GE;
|
|
break;
|
|
case CmpInst::FCMP_OLT:
|
|
CondCode = AArch64CC::MI;
|
|
break;
|
|
case CmpInst::FCMP_OLE:
|
|
CondCode = AArch64CC::LS;
|
|
break;
|
|
case CmpInst::FCMP_ONE:
|
|
CondCode = AArch64CC::MI;
|
|
CondCode2 = AArch64CC::GT;
|
|
break;
|
|
case CmpInst::FCMP_ORD:
|
|
CondCode = AArch64CC::VC;
|
|
break;
|
|
case CmpInst::FCMP_UNO:
|
|
CondCode = AArch64CC::VS;
|
|
break;
|
|
case CmpInst::FCMP_UEQ:
|
|
CondCode = AArch64CC::EQ;
|
|
CondCode2 = AArch64CC::VS;
|
|
break;
|
|
case CmpInst::FCMP_UGT:
|
|
CondCode = AArch64CC::HI;
|
|
break;
|
|
case CmpInst::FCMP_UGE:
|
|
CondCode = AArch64CC::PL;
|
|
break;
|
|
case CmpInst::FCMP_ULT:
|
|
CondCode = AArch64CC::LT;
|
|
break;
|
|
case CmpInst::FCMP_ULE:
|
|
CondCode = AArch64CC::LE;
|
|
break;
|
|
case CmpInst::FCMP_UNE:
|
|
CondCode = AArch64CC::NE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Return a register which can be used as a bit to test in a TB(N)Z.
|
|
static Register getTestBitReg(Register Reg, uint64_t &Bit, bool &Invert,
|
|
MachineRegisterInfo &MRI) {
|
|
assert(Reg.isValid() && "Expected valid register!");
|
|
while (MachineInstr *MI = getDefIgnoringCopies(Reg, MRI)) {
|
|
unsigned Opc = MI->getOpcode();
|
|
|
|
if (!MI->getOperand(0).isReg() ||
|
|
!MRI.hasOneUse(MI->getOperand(0).getReg()))
|
|
break;
|
|
|
|
// (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
|
|
//
|
|
// (tbz (trunc x), b) -> (tbz x, b) is always safe, because the bit number
|
|
// on the truncated x is the same as the bit number on x.
|
|
if (Opc == TargetOpcode::G_ANYEXT || Opc == TargetOpcode::G_ZEXT ||
|
|
Opc == TargetOpcode::G_TRUNC) {
|
|
Register NextReg = MI->getOperand(1).getReg();
|
|
// Did we find something worth folding?
|
|
if (!NextReg.isValid() || !MRI.hasOneUse(NextReg))
|
|
break;
|
|
|
|
// NextReg is worth folding. Keep looking.
|
|
Reg = NextReg;
|
|
continue;
|
|
}
|
|
|
|
// Attempt to find a suitable operation with a constant on one side.
|
|
Optional<uint64_t> C;
|
|
Register TestReg;
|
|
switch (Opc) {
|
|
default:
|
|
break;
|
|
case TargetOpcode::G_AND:
|
|
case TargetOpcode::G_XOR: {
|
|
TestReg = MI->getOperand(1).getReg();
|
|
Register ConstantReg = MI->getOperand(2).getReg();
|
|
auto VRegAndVal = getConstantVRegValWithLookThrough(ConstantReg, MRI);
|
|
if (!VRegAndVal) {
|
|
// AND commutes, check the other side for a constant.
|
|
// FIXME: Can we canonicalize the constant so that it's always on the
|
|
// same side at some point earlier?
|
|
std::swap(ConstantReg, TestReg);
|
|
VRegAndVal = getConstantVRegValWithLookThrough(ConstantReg, MRI);
|
|
}
|
|
if (VRegAndVal)
|
|
C = VRegAndVal->Value;
|
|
break;
|
|
}
|
|
case TargetOpcode::G_ASHR:
|
|
case TargetOpcode::G_LSHR:
|
|
case TargetOpcode::G_SHL: {
|
|
TestReg = MI->getOperand(1).getReg();
|
|
auto VRegAndVal =
|
|
getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
|
|
if (VRegAndVal)
|
|
C = VRegAndVal->Value;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Didn't find a constant or viable register. Bail out of the loop.
|
|
if (!C || !TestReg.isValid())
|
|
break;
|
|
|
|
// We found a suitable instruction with a constant. Check to see if we can
|
|
// walk through the instruction.
|
|
Register NextReg;
|
|
unsigned TestRegSize = MRI.getType(TestReg).getSizeInBits();
|
|
switch (Opc) {
|
|
default:
|
|
break;
|
|
case TargetOpcode::G_AND:
|
|
// (tbz (and x, m), b) -> (tbz x, b) when the b-th bit of m is set.
|
|
if ((*C >> Bit) & 1)
|
|
NextReg = TestReg;
|
|
break;
|
|
case TargetOpcode::G_SHL:
|
|
// (tbz (shl x, c), b) -> (tbz x, b-c) when b-c is positive and fits in
|
|
// the type of the register.
|
|
if (*C <= Bit && (Bit - *C) < TestRegSize) {
|
|
NextReg = TestReg;
|
|
Bit = Bit - *C;
|
|
}
|
|
break;
|
|
case TargetOpcode::G_ASHR:
|
|
// (tbz (ashr x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits
|
|
// in x
|
|
NextReg = TestReg;
|
|
Bit = Bit + *C;
|
|
if (Bit >= TestRegSize)
|
|
Bit = TestRegSize - 1;
|
|
break;
|
|
case TargetOpcode::G_LSHR:
|
|
// (tbz (lshr x, c), b) -> (tbz x, b+c) when b + c is < # bits in x
|
|
if ((Bit + *C) < TestRegSize) {
|
|
NextReg = TestReg;
|
|
Bit = Bit + *C;
|
|
}
|
|
break;
|
|
case TargetOpcode::G_XOR:
|
|
// We can walk through a G_XOR by inverting whether we use tbz/tbnz when
|
|
// appropriate.
|
|
//
|
|
// e.g. If x' = xor x, c, and the b-th bit is set in c then
|
|
//
|
|
// tbz x', b -> tbnz x, b
|
|
//
|
|
// Because x' only has the b-th bit set if x does not.
|
|
if ((*C >> Bit) & 1)
|
|
Invert = !Invert;
|
|
NextReg = TestReg;
|
|
break;
|
|
}
|
|
|
|
// Check if we found anything worth folding.
|
|
if (!NextReg.isValid())
|
|
return Reg;
|
|
Reg = NextReg;
|
|
}
|
|
|
|
return Reg;
|
|
}
|
|
|
|
MachineInstr *AArch64InstructionSelector::emitTestBit(
|
|
Register TestReg, uint64_t Bit, bool IsNegative, MachineBasicBlock *DstMBB,
|
|
MachineIRBuilder &MIB) const {
|
|
assert(TestReg.isValid());
|
|
assert(ProduceNonFlagSettingCondBr &&
|
|
"Cannot emit TB(N)Z with speculation tracking!");
|
|
MachineRegisterInfo &MRI = *MIB.getMRI();
|
|
|
|
// Attempt to optimize the test bit by walking over instructions.
|
|
TestReg = getTestBitReg(TestReg, Bit, IsNegative, MRI);
|
|
LLT Ty = MRI.getType(TestReg);
|
|
unsigned Size = Ty.getSizeInBits();
|
|
assert(!Ty.isVector() && "Expected a scalar!");
|
|
assert(Bit < 64 && "Bit is too large!");
|
|
|
|
// When the test register is a 64-bit register, we have to narrow to make
|
|
// TBNZW work.
|
|
bool UseWReg = Bit < 32;
|
|
unsigned NecessarySize = UseWReg ? 32 : 64;
|
|
if (Size < NecessarySize)
|
|
TestReg = widenGPRBankRegIfNeeded(TestReg, NecessarySize, MIB);
|
|
else if (Size > NecessarySize)
|
|
TestReg = narrowExtendRegIfNeeded(TestReg, MIB);
|
|
|
|
static const unsigned OpcTable[2][2] = {{AArch64::TBZX, AArch64::TBNZX},
|
|
{AArch64::TBZW, AArch64::TBNZW}};
|
|
unsigned Opc = OpcTable[UseWReg][IsNegative];
|
|
auto TestBitMI =
|
|
MIB.buildInstr(Opc).addReg(TestReg).addImm(Bit).addMBB(DstMBB);
|
|
constrainSelectedInstRegOperands(*TestBitMI, TII, TRI, RBI);
|
|
return &*TestBitMI;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::tryOptAndIntoCompareBranch(
|
|
MachineInstr *AndInst, int64_t CmpConstant, const CmpInst::Predicate &Pred,
|
|
MachineBasicBlock *DstMBB, MachineIRBuilder &MIB) const {
|
|
// Given something like this:
|
|
//
|
|
// %x = ...Something...
|
|
// %one = G_CONSTANT i64 1
|
|
// %zero = G_CONSTANT i64 0
|
|
// %and = G_AND %x, %one
|
|
// %cmp = G_ICMP intpred(ne), %and, %zero
|
|
// %cmp_trunc = G_TRUNC %cmp
|
|
// G_BRCOND %cmp_trunc, %bb.3
|
|
//
|
|
// We want to try and fold the AND into the G_BRCOND and produce either a
|
|
// TBNZ (when we have intpred(ne)) or a TBZ (when we have intpred(eq)).
|
|
//
|
|
// In this case, we'd get
|
|
//
|
|
// TBNZ %x %bb.3
|
|
//
|
|
if (!AndInst || AndInst->getOpcode() != TargetOpcode::G_AND)
|
|
return false;
|
|
|
|
// Need to be comparing against 0 to fold.
|
|
if (CmpConstant != 0)
|
|
return false;
|
|
|
|
MachineRegisterInfo &MRI = *MIB.getMRI();
|
|
|
|
// Only support EQ and NE. If we have LT, then it *is* possible to fold, but
|
|
// we don't want to do this. When we have an AND and LT, we need a TST/ANDS,
|
|
// so folding would be redundant.
|
|
if (Pred != CmpInst::Predicate::ICMP_EQ &&
|
|
Pred != CmpInst::Predicate::ICMP_NE)
|
|
return false;
|
|
|
|
// Check if the AND has a constant on its RHS which we can use as a mask.
|
|
// If it's a power of 2, then it's the same as checking a specific bit.
|
|
// (e.g, ANDing with 8 == ANDing with 000...100 == testing if bit 3 is set)
|
|
auto MaybeBit =
|
|
getConstantVRegValWithLookThrough(AndInst->getOperand(2).getReg(), MRI);
|
|
if (!MaybeBit || !isPowerOf2_64(MaybeBit->Value))
|
|
return false;
|
|
|
|
uint64_t Bit = Log2_64(static_cast<uint64_t>(MaybeBit->Value));
|
|
Register TestReg = AndInst->getOperand(1).getReg();
|
|
bool Invert = Pred == CmpInst::Predicate::ICMP_NE;
|
|
|
|
// Emit a TB(N)Z.
|
|
emitTestBit(TestReg, Bit, Invert, DstMBB, MIB);
|
|
return true;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectCompareBranch(
|
|
MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
|
|
|
|
const Register CondReg = I.getOperand(0).getReg();
|
|
MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
|
|
MachineInstr *CCMI = MRI.getVRegDef(CondReg);
|
|
if (CCMI->getOpcode() == TargetOpcode::G_TRUNC)
|
|
CCMI = MRI.getVRegDef(CCMI->getOperand(1).getReg());
|
|
if (CCMI->getOpcode() != TargetOpcode::G_ICMP)
|
|
return false;
|
|
|
|
Register LHS = CCMI->getOperand(2).getReg();
|
|
Register RHS = CCMI->getOperand(3).getReg();
|
|
auto VRegAndVal = getConstantVRegValWithLookThrough(RHS, MRI);
|
|
MachineIRBuilder MIB(I);
|
|
const auto Pred = (CmpInst::Predicate)CCMI->getOperand(1).getPredicate();
|
|
MachineInstr *LHSMI = getDefIgnoringCopies(LHS, MRI);
|
|
|
|
// When we can emit a TB(N)Z, prefer that.
|
|
//
|
|
// Handle non-commutative condition codes first.
|
|
// Note that we don't want to do this when we have a G_AND because it can
|
|
// become a tst. The tst will make the test bit in the TB(N)Z redundant.
|
|
if (VRegAndVal && LHSMI->getOpcode() != TargetOpcode::G_AND) {
|
|
int64_t C = VRegAndVal->Value;
|
|
|
|
// When we have a greater-than comparison, we can just test if the msb is
|
|
// zero.
|
|
if (C == -1 && Pred == CmpInst::ICMP_SGT) {
|
|
uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1;
|
|
emitTestBit(LHS, Bit, /*IsNegative = */ false, DestMBB, MIB);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
// When we have a less than comparison, we can just test if the msb is not
|
|
// zero.
|
|
if (C == 0 && Pred == CmpInst::ICMP_SLT) {
|
|
uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1;
|
|
emitTestBit(LHS, Bit, /*IsNegative = */ true, DestMBB, MIB);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (!VRegAndVal) {
|
|
std::swap(RHS, LHS);
|
|
VRegAndVal = getConstantVRegValWithLookThrough(RHS, MRI);
|
|
LHSMI = getDefIgnoringCopies(LHS, MRI);
|
|
}
|
|
|
|
if (!VRegAndVal || VRegAndVal->Value != 0) {
|
|
// If we can't select a CBZ then emit a cmp + Bcc.
|
|
if (!emitIntegerCompare(CCMI->getOperand(2), CCMI->getOperand(3),
|
|
CCMI->getOperand(1), MIB))
|
|
return false;
|
|
const AArch64CC::CondCode CC = changeICMPPredToAArch64CC(Pred);
|
|
MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC).addMBB(DestMBB);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
// Try to emit a TB(N)Z for an eq or ne condition.
|
|
if (tryOptAndIntoCompareBranch(LHSMI, VRegAndVal->Value, Pred, DestMBB,
|
|
MIB)) {
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
const RegisterBank &RB = *RBI.getRegBank(LHS, MRI, TRI);
|
|
if (RB.getID() != AArch64::GPRRegBankID)
|
|
return false;
|
|
if (Pred != CmpInst::ICMP_NE && Pred != CmpInst::ICMP_EQ)
|
|
return false;
|
|
|
|
const unsigned CmpWidth = MRI.getType(LHS).getSizeInBits();
|
|
unsigned CBOpc = 0;
|
|
if (CmpWidth <= 32)
|
|
CBOpc = (Pred == CmpInst::ICMP_EQ ? AArch64::CBZW : AArch64::CBNZW);
|
|
else if (CmpWidth == 64)
|
|
CBOpc = (Pred == CmpInst::ICMP_EQ ? AArch64::CBZX : AArch64::CBNZX);
|
|
else
|
|
return false;
|
|
|
|
BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(CBOpc))
|
|
.addUse(LHS)
|
|
.addMBB(DestMBB)
|
|
.constrainAllUses(TII, TRI, RBI);
|
|
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// Returns the element immediate value of a vector shift operand if found.
|
|
/// This needs to detect a splat-like operation, e.g. a G_BUILD_VECTOR.
|
|
static Optional<int64_t> getVectorShiftImm(Register Reg,
|
|
MachineRegisterInfo &MRI) {
|
|
assert(MRI.getType(Reg).isVector() && "Expected a *vector* shift operand");
|
|
MachineInstr *OpMI = MRI.getVRegDef(Reg);
|
|
assert(OpMI && "Expected to find a vreg def for vector shift operand");
|
|
if (OpMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR)
|
|
return None;
|
|
|
|
// Check all operands are identical immediates.
|
|
int64_t ImmVal = 0;
|
|
for (unsigned Idx = 1; Idx < OpMI->getNumOperands(); ++Idx) {
|
|
auto VRegAndVal = getConstantVRegValWithLookThrough(OpMI->getOperand(Idx).getReg(), MRI);
|
|
if (!VRegAndVal)
|
|
return None;
|
|
|
|
if (Idx == 1)
|
|
ImmVal = VRegAndVal->Value;
|
|
if (ImmVal != VRegAndVal->Value)
|
|
return None;
|
|
}
|
|
|
|
return ImmVal;
|
|
}
|
|
|
|
/// Matches and returns the shift immediate value for a SHL instruction given
|
|
/// a shift operand.
|
|
static Optional<int64_t> getVectorSHLImm(LLT SrcTy, Register Reg, MachineRegisterInfo &MRI) {
|
|
Optional<int64_t> ShiftImm = getVectorShiftImm(Reg, MRI);
|
|
if (!ShiftImm)
|
|
return None;
|
|
// Check the immediate is in range for a SHL.
|
|
int64_t Imm = *ShiftImm;
|
|
if (Imm < 0)
|
|
return None;
|
|
switch (SrcTy.getElementType().getSizeInBits()) {
|
|
default:
|
|
LLVM_DEBUG(dbgs() << "Unhandled element type for vector shift");
|
|
return None;
|
|
case 8:
|
|
if (Imm > 7)
|
|
return None;
|
|
break;
|
|
case 16:
|
|
if (Imm > 15)
|
|
return None;
|
|
break;
|
|
case 32:
|
|
if (Imm > 31)
|
|
return None;
|
|
break;
|
|
case 64:
|
|
if (Imm > 63)
|
|
return None;
|
|
break;
|
|
}
|
|
return Imm;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectVectorSHL(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) const {
|
|
assert(I.getOpcode() == TargetOpcode::G_SHL);
|
|
Register DstReg = I.getOperand(0).getReg();
|
|
const LLT Ty = MRI.getType(DstReg);
|
|
Register Src1Reg = I.getOperand(1).getReg();
|
|
Register Src2Reg = I.getOperand(2).getReg();
|
|
|
|
if (!Ty.isVector())
|
|
return false;
|
|
|
|
// Check if we have a vector of constants on RHS that we can select as the
|
|
// immediate form.
|
|
Optional<int64_t> ImmVal = getVectorSHLImm(Ty, Src2Reg, MRI);
|
|
|
|
unsigned Opc = 0;
|
|
if (Ty == LLT::vector(2, 64)) {
|
|
Opc = ImmVal ? AArch64::SHLv2i64_shift : AArch64::USHLv2i64;
|
|
} else if (Ty == LLT::vector(4, 32)) {
|
|
Opc = ImmVal ? AArch64::SHLv4i32_shift : AArch64::USHLv4i32;
|
|
} else if (Ty == LLT::vector(2, 32)) {
|
|
Opc = ImmVal ? AArch64::SHLv2i32_shift : AArch64::USHLv2i32;
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "Unhandled G_SHL type");
|
|
return false;
|
|
}
|
|
|
|
MachineIRBuilder MIB(I);
|
|
auto Shl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg});
|
|
if (ImmVal)
|
|
Shl.addImm(*ImmVal);
|
|
else
|
|
Shl.addUse(Src2Reg);
|
|
constrainSelectedInstRegOperands(*Shl, TII, TRI, RBI);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectVectorASHR(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) const {
|
|
assert(I.getOpcode() == TargetOpcode::G_ASHR);
|
|
Register DstReg = I.getOperand(0).getReg();
|
|
const LLT Ty = MRI.getType(DstReg);
|
|
Register Src1Reg = I.getOperand(1).getReg();
|
|
Register Src2Reg = I.getOperand(2).getReg();
|
|
|
|
if (!Ty.isVector())
|
|
return false;
|
|
|
|
// There is not a shift right register instruction, but the shift left
|
|
// register instruction takes a signed value, where negative numbers specify a
|
|
// right shift.
|
|
|
|
unsigned Opc = 0;
|
|
unsigned NegOpc = 0;
|
|
const TargetRegisterClass *RC = nullptr;
|
|
if (Ty == LLT::vector(2, 64)) {
|
|
Opc = AArch64::SSHLv2i64;
|
|
NegOpc = AArch64::NEGv2i64;
|
|
RC = &AArch64::FPR128RegClass;
|
|
} else if (Ty == LLT::vector(4, 32)) {
|
|
Opc = AArch64::SSHLv4i32;
|
|
NegOpc = AArch64::NEGv4i32;
|
|
RC = &AArch64::FPR128RegClass;
|
|
} else if (Ty == LLT::vector(2, 32)) {
|
|
Opc = AArch64::SSHLv2i32;
|
|
NegOpc = AArch64::NEGv2i32;
|
|
RC = &AArch64::FPR64RegClass;
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "Unhandled G_ASHR type");
|
|
return false;
|
|
}
|
|
|
|
MachineIRBuilder MIB(I);
|
|
auto Neg = MIB.buildInstr(NegOpc, {RC}, {Src2Reg});
|
|
constrainSelectedInstRegOperands(*Neg, TII, TRI, RBI);
|
|
auto SShl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg, Neg});
|
|
constrainSelectedInstRegOperands(*SShl, TII, TRI, RBI);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectVaStartAAPCS(
|
|
MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
|
|
return false;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectVaStartDarwin(
|
|
MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
|
|
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
|
|
Register ListReg = I.getOperand(0).getReg();
|
|
|
|
Register ArgsAddrReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
|
|
|
|
auto MIB =
|
|
BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::ADDXri))
|
|
.addDef(ArgsAddrReg)
|
|
.addFrameIndex(FuncInfo->getVarArgsStackIndex())
|
|
.addImm(0)
|
|
.addImm(0);
|
|
|
|
constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
|
|
|
|
MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::STRXui))
|
|
.addUse(ArgsAddrReg)
|
|
.addUse(ListReg)
|
|
.addImm(0)
|
|
.addMemOperand(*I.memoperands_begin());
|
|
|
|
constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
void AArch64InstructionSelector::materializeLargeCMVal(
|
|
MachineInstr &I, const Value *V, unsigned OpFlags) const {
|
|
MachineBasicBlock &MBB = *I.getParent();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
MachineIRBuilder MIB(I);
|
|
|
|
auto MovZ = MIB.buildInstr(AArch64::MOVZXi, {&AArch64::GPR64RegClass}, {});
|
|
MovZ->addOperand(MF, I.getOperand(1));
|
|
MovZ->getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_G0 |
|
|
AArch64II::MO_NC);
|
|
MovZ->addOperand(MF, MachineOperand::CreateImm(0));
|
|
constrainSelectedInstRegOperands(*MovZ, TII, TRI, RBI);
|
|
|
|
auto BuildMovK = [&](Register SrcReg, unsigned char Flags, unsigned Offset,
|
|
Register ForceDstReg) {
|
|
Register DstReg = ForceDstReg
|
|
? ForceDstReg
|
|
: MRI.createVirtualRegister(&AArch64::GPR64RegClass);
|
|
auto MovI = MIB.buildInstr(AArch64::MOVKXi).addDef(DstReg).addUse(SrcReg);
|
|
if (auto *GV = dyn_cast<GlobalValue>(V)) {
|
|
MovI->addOperand(MF, MachineOperand::CreateGA(
|
|
GV, MovZ->getOperand(1).getOffset(), Flags));
|
|
} else {
|
|
MovI->addOperand(
|
|
MF, MachineOperand::CreateBA(cast<BlockAddress>(V),
|
|
MovZ->getOperand(1).getOffset(), Flags));
|
|
}
|
|
MovI->addOperand(MF, MachineOperand::CreateImm(Offset));
|
|
constrainSelectedInstRegOperands(*MovI, TII, TRI, RBI);
|
|
return DstReg;
|
|
};
|
|
Register DstReg = BuildMovK(MovZ.getReg(0),
|
|
AArch64II::MO_G1 | AArch64II::MO_NC, 16, 0);
|
|
DstReg = BuildMovK(DstReg, AArch64II::MO_G2 | AArch64II::MO_NC, 32, 0);
|
|
BuildMovK(DstReg, AArch64II::MO_G3, 48, I.getOperand(0).getReg());
|
|
return;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::preISelLower(MachineInstr &I) {
|
|
MachineBasicBlock &MBB = *I.getParent();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
|
|
switch (I.getOpcode()) {
|
|
case TargetOpcode::G_SHL:
|
|
case TargetOpcode::G_ASHR:
|
|
case TargetOpcode::G_LSHR: {
|
|
// These shifts are legalized to have 64 bit shift amounts because we want
|
|
// to take advantage of the existing imported selection patterns that assume
|
|
// the immediates are s64s. However, if the shifted type is 32 bits and for
|
|
// some reason we receive input GMIR that has an s64 shift amount that's not
|
|
// a G_CONSTANT, insert a truncate so that we can still select the s32
|
|
// register-register variant.
|
|
Register SrcReg = I.getOperand(1).getReg();
|
|
Register ShiftReg = I.getOperand(2).getReg();
|
|
const LLT ShiftTy = MRI.getType(ShiftReg);
|
|
const LLT SrcTy = MRI.getType(SrcReg);
|
|
if (SrcTy.isVector())
|
|
return false;
|
|
assert(!ShiftTy.isVector() && "unexpected vector shift ty");
|
|
if (SrcTy.getSizeInBits() != 32 || ShiftTy.getSizeInBits() != 64)
|
|
return false;
|
|
auto *AmtMI = MRI.getVRegDef(ShiftReg);
|
|
assert(AmtMI && "could not find a vreg definition for shift amount");
|
|
if (AmtMI->getOpcode() != TargetOpcode::G_CONSTANT) {
|
|
// Insert a subregister copy to implement a 64->32 trunc
|
|
MachineIRBuilder MIB(I);
|
|
auto Trunc = MIB.buildInstr(TargetOpcode::COPY, {SrcTy}, {})
|
|
.addReg(ShiftReg, 0, AArch64::sub_32);
|
|
MRI.setRegBank(Trunc.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));
|
|
I.getOperand(2).setReg(Trunc.getReg(0));
|
|
}
|
|
return true;
|
|
}
|
|
case TargetOpcode::G_STORE:
|
|
return contractCrossBankCopyIntoStore(I, MRI);
|
|
case TargetOpcode::G_PTR_ADD:
|
|
return convertPtrAddToAdd(I, MRI);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// This lowering tries to look for G_PTR_ADD instructions and then converts
|
|
/// them to a standard G_ADD with a COPY on the source.
|
|
///
|
|
/// The motivation behind this is to expose the add semantics to the imported
|
|
/// tablegen patterns. We shouldn't need to check for uses being loads/stores,
|
|
/// because the selector works bottom up, uses before defs. By the time we
|
|
/// end up trying to select a G_PTR_ADD, we should have already attempted to
|
|
/// fold this into addressing modes and were therefore unsuccessful.
|
|
bool AArch64InstructionSelector::convertPtrAddToAdd(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) {
|
|
assert(I.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
|
|
Register DstReg = I.getOperand(0).getReg();
|
|
Register AddOp1Reg = I.getOperand(1).getReg();
|
|
const LLT PtrTy = MRI.getType(DstReg);
|
|
if (PtrTy.getAddressSpace() != 0)
|
|
return false;
|
|
|
|
// Only do this for scalars for now.
|
|
if (PtrTy.isVector())
|
|
return false;
|
|
|
|
MachineIRBuilder MIB(I);
|
|
const LLT s64 = LLT::scalar(64);
|
|
auto PtrToInt = MIB.buildPtrToInt(s64, AddOp1Reg);
|
|
// Set regbanks on the registers.
|
|
MRI.setRegBank(PtrToInt.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));
|
|
|
|
// Now turn the %dst(p0) = G_PTR_ADD %base, off into:
|
|
// %dst(s64) = G_ADD %intbase, off
|
|
I.setDesc(TII.get(TargetOpcode::G_ADD));
|
|
MRI.setType(DstReg, s64);
|
|
I.getOperand(1).setReg(PtrToInt.getReg(0));
|
|
if (!select(*PtrToInt)) {
|
|
LLVM_DEBUG(dbgs() << "Failed to select G_PTRTOINT in convertPtrAddToAdd");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::earlySelectSHL(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) const {
|
|
// We try to match the immediate variant of LSL, which is actually an alias
|
|
// for a special case of UBFM. Otherwise, we fall back to the imported
|
|
// selector which will match the register variant.
|
|
assert(I.getOpcode() == TargetOpcode::G_SHL && "unexpected op");
|
|
const auto &MO = I.getOperand(2);
|
|
auto VRegAndVal = getConstantVRegVal(MO.getReg(), MRI);
|
|
if (!VRegAndVal)
|
|
return false;
|
|
|
|
const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
|
|
if (DstTy.isVector())
|
|
return false;
|
|
bool Is64Bit = DstTy.getSizeInBits() == 64;
|
|
auto Imm1Fn = Is64Bit ? selectShiftA_64(MO) : selectShiftA_32(MO);
|
|
auto Imm2Fn = Is64Bit ? selectShiftB_64(MO) : selectShiftB_32(MO);
|
|
MachineIRBuilder MIB(I);
|
|
|
|
if (!Imm1Fn || !Imm2Fn)
|
|
return false;
|
|
|
|
auto NewI =
|
|
MIB.buildInstr(Is64Bit ? AArch64::UBFMXri : AArch64::UBFMWri,
|
|
{I.getOperand(0).getReg()}, {I.getOperand(1).getReg()});
|
|
|
|
for (auto &RenderFn : *Imm1Fn)
|
|
RenderFn(NewI);
|
|
for (auto &RenderFn : *Imm2Fn)
|
|
RenderFn(NewI);
|
|
|
|
I.eraseFromParent();
|
|
return constrainSelectedInstRegOperands(*NewI, TII, TRI, RBI);
|
|
}
|
|
|
|
bool AArch64InstructionSelector::contractCrossBankCopyIntoStore(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) {
|
|
assert(I.getOpcode() == TargetOpcode::G_STORE && "Expected G_STORE");
|
|
// If we're storing a scalar, it doesn't matter what register bank that
|
|
// scalar is on. All that matters is the size.
|
|
//
|
|
// So, if we see something like this (with a 32-bit scalar as an example):
|
|
//
|
|
// %x:gpr(s32) = ... something ...
|
|
// %y:fpr(s32) = COPY %x:gpr(s32)
|
|
// G_STORE %y:fpr(s32)
|
|
//
|
|
// We can fix this up into something like this:
|
|
//
|
|
// G_STORE %x:gpr(s32)
|
|
//
|
|
// And then continue the selection process normally.
|
|
Register DefDstReg = getSrcRegIgnoringCopies(I.getOperand(0).getReg(), MRI);
|
|
if (!DefDstReg.isValid())
|
|
return false;
|
|
LLT DefDstTy = MRI.getType(DefDstReg);
|
|
Register StoreSrcReg = I.getOperand(0).getReg();
|
|
LLT StoreSrcTy = MRI.getType(StoreSrcReg);
|
|
|
|
// If we get something strange like a physical register, then we shouldn't
|
|
// go any further.
|
|
if (!DefDstTy.isValid())
|
|
return false;
|
|
|
|
// Are the source and dst types the same size?
|
|
if (DefDstTy.getSizeInBits() != StoreSrcTy.getSizeInBits())
|
|
return false;
|
|
|
|
if (RBI.getRegBank(StoreSrcReg, MRI, TRI) ==
|
|
RBI.getRegBank(DefDstReg, MRI, TRI))
|
|
return false;
|
|
|
|
// We have a cross-bank copy, which is entering a store. Let's fold it.
|
|
I.getOperand(0).setReg(DefDstReg);
|
|
return true;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::earlySelect(MachineInstr &I) const {
|
|
assert(I.getParent() && "Instruction should be in a basic block!");
|
|
assert(I.getParent()->getParent() && "Instruction should be in a function!");
|
|
|
|
MachineBasicBlock &MBB = *I.getParent();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
|
|
switch (I.getOpcode()) {
|
|
case TargetOpcode::G_SHL:
|
|
return earlySelectSHL(I, MRI);
|
|
case TargetOpcode::G_CONSTANT: {
|
|
bool IsZero = false;
|
|
if (I.getOperand(1).isCImm())
|
|
IsZero = I.getOperand(1).getCImm()->getZExtValue() == 0;
|
|
else if (I.getOperand(1).isImm())
|
|
IsZero = I.getOperand(1).getImm() == 0;
|
|
|
|
if (!IsZero)
|
|
return false;
|
|
|
|
Register DefReg = I.getOperand(0).getReg();
|
|
LLT Ty = MRI.getType(DefReg);
|
|
if (Ty.getSizeInBits() == 64) {
|
|
I.getOperand(1).ChangeToRegister(AArch64::XZR, false);
|
|
RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI);
|
|
} else if (Ty.getSizeInBits() == 32) {
|
|
I.getOperand(1).ChangeToRegister(AArch64::WZR, false);
|
|
RBI.constrainGenericRegister(DefReg, AArch64::GPR32RegClass, MRI);
|
|
} else
|
|
return false;
|
|
|
|
I.setDesc(TII.get(TargetOpcode::COPY));
|
|
return true;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool AArch64InstructionSelector::select(MachineInstr &I) {
|
|
assert(I.getParent() && "Instruction should be in a basic block!");
|
|
assert(I.getParent()->getParent() && "Instruction should be in a function!");
|
|
|
|
MachineBasicBlock &MBB = *I.getParent();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
|
|
const AArch64Subtarget *Subtarget =
|
|
&static_cast<const AArch64Subtarget &>(MF.getSubtarget());
|
|
if (Subtarget->requiresStrictAlign()) {
|
|
// We don't support this feature yet.
|
|
LLVM_DEBUG(dbgs() << "AArch64 GISel does not support strict-align yet\n");
|
|
return false;
|
|
}
|
|
|
|
unsigned Opcode = I.getOpcode();
|
|
// G_PHI requires same handling as PHI
|
|
if (!isPreISelGenericOpcode(Opcode) || Opcode == TargetOpcode::G_PHI) {
|
|
// Certain non-generic instructions also need some special handling.
|
|
|
|
if (Opcode == TargetOpcode::LOAD_STACK_GUARD)
|
|
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
|
|
if (Opcode == TargetOpcode::PHI || Opcode == TargetOpcode::G_PHI) {
|
|
const Register DefReg = I.getOperand(0).getReg();
|
|
const LLT DefTy = MRI.getType(DefReg);
|
|
|
|
const RegClassOrRegBank &RegClassOrBank =
|
|
MRI.getRegClassOrRegBank(DefReg);
|
|
|
|
const TargetRegisterClass *DefRC
|
|
= RegClassOrBank.dyn_cast<const TargetRegisterClass *>();
|
|
if (!DefRC) {
|
|
if (!DefTy.isValid()) {
|
|
LLVM_DEBUG(dbgs() << "PHI operand has no type, not a gvreg?\n");
|
|
return false;
|
|
}
|
|
const RegisterBank &RB = *RegClassOrBank.get<const RegisterBank *>();
|
|
DefRC = getRegClassForTypeOnBank(DefTy, RB, RBI);
|
|
if (!DefRC) {
|
|
LLVM_DEBUG(dbgs() << "PHI operand has unexpected size/bank\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
I.setDesc(TII.get(TargetOpcode::PHI));
|
|
|
|
return RBI.constrainGenericRegister(DefReg, *DefRC, MRI);
|
|
}
|
|
|
|
if (I.isCopy())
|
|
return selectCopy(I, TII, MRI, TRI, RBI);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
if (I.getNumOperands() != I.getNumExplicitOperands()) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Generic instruction has unexpected implicit operands\n");
|
|
return false;
|
|
}
|
|
|
|
// Try to do some lowering before we start instruction selecting. These
|
|
// lowerings are purely transformations on the input G_MIR and so selection
|
|
// must continue after any modification of the instruction.
|
|
if (preISelLower(I)) {
|
|
Opcode = I.getOpcode(); // The opcode may have been modified, refresh it.
|
|
}
|
|
|
|
// There may be patterns where the importer can't deal with them optimally,
|
|
// but does select it to a suboptimal sequence so our custom C++ selection
|
|
// code later never has a chance to work on it. Therefore, we have an early
|
|
// selection attempt here to give priority to certain selection routines
|
|
// over the imported ones.
|
|
if (earlySelect(I))
|
|
return true;
|
|
|
|
if (selectImpl(I, *CoverageInfo))
|
|
return true;
|
|
|
|
LLT Ty =
|
|
I.getOperand(0).isReg() ? MRI.getType(I.getOperand(0).getReg()) : LLT{};
|
|
|
|
MachineIRBuilder MIB(I);
|
|
|
|
switch (Opcode) {
|
|
case TargetOpcode::G_BRCOND: {
|
|
if (Ty.getSizeInBits() > 32) {
|
|
// We shouldn't need this on AArch64, but it would be implemented as an
|
|
// EXTRACT_SUBREG followed by a TBNZW because TBNZX has no encoding if the
|
|
// bit being tested is < 32.
|
|
LLVM_DEBUG(dbgs() << "G_BRCOND has type: " << Ty
|
|
<< ", expected at most 32-bits");
|
|
return false;
|
|
}
|
|
|
|
const Register CondReg = I.getOperand(0).getReg();
|
|
MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
|
|
|
|
// Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z
|
|
// instructions will not be produced, as they are conditional branch
|
|
// instructions that do not set flags.
|
|
if (ProduceNonFlagSettingCondBr && selectCompareBranch(I, MF, MRI))
|
|
return true;
|
|
|
|
if (ProduceNonFlagSettingCondBr) {
|
|
auto MIB = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::TBNZW))
|
|
.addUse(CondReg)
|
|
.addImm(/*bit offset=*/0)
|
|
.addMBB(DestMBB);
|
|
|
|
I.eraseFromParent();
|
|
return constrainSelectedInstRegOperands(*MIB.getInstr(), TII, TRI, RBI);
|
|
} else {
|
|
auto CMP = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::ANDSWri))
|
|
.addDef(AArch64::WZR)
|
|
.addUse(CondReg)
|
|
.addImm(1);
|
|
constrainSelectedInstRegOperands(*CMP.getInstr(), TII, TRI, RBI);
|
|
auto Bcc =
|
|
BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::Bcc))
|
|
.addImm(AArch64CC::EQ)
|
|
.addMBB(DestMBB);
|
|
|
|
I.eraseFromParent();
|
|
return constrainSelectedInstRegOperands(*Bcc.getInstr(), TII, TRI, RBI);
|
|
}
|
|
}
|
|
|
|
case TargetOpcode::G_BRINDIRECT: {
|
|
I.setDesc(TII.get(AArch64::BR));
|
|
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
}
|
|
|
|
case TargetOpcode::G_BRJT:
|
|
return selectBrJT(I, MRI);
|
|
|
|
case TargetOpcode::G_BSWAP: {
|
|
// Handle vector types for G_BSWAP directly.
|
|
Register DstReg = I.getOperand(0).getReg();
|
|
LLT DstTy = MRI.getType(DstReg);
|
|
|
|
// We should only get vector types here; everything else is handled by the
|
|
// importer right now.
|
|
if (!DstTy.isVector() || DstTy.getSizeInBits() > 128) {
|
|
LLVM_DEBUG(dbgs() << "Dst type for G_BSWAP currently unsupported.\n");
|
|
return false;
|
|
}
|
|
|
|
// Only handle 4 and 2 element vectors for now.
|
|
// TODO: 16-bit elements.
|
|
unsigned NumElts = DstTy.getNumElements();
|
|
if (NumElts != 4 && NumElts != 2) {
|
|
LLVM_DEBUG(dbgs() << "Unsupported number of elements for G_BSWAP.\n");
|
|
return false;
|
|
}
|
|
|
|
// Choose the correct opcode for the supported types. Right now, that's
|
|
// v2s32, v4s32, and v2s64.
|
|
unsigned Opc = 0;
|
|
unsigned EltSize = DstTy.getElementType().getSizeInBits();
|
|
if (EltSize == 32)
|
|
Opc = (DstTy.getNumElements() == 2) ? AArch64::REV32v8i8
|
|
: AArch64::REV32v16i8;
|
|
else if (EltSize == 64)
|
|
Opc = AArch64::REV64v16i8;
|
|
|
|
// We should always get something by the time we get here...
|
|
assert(Opc != 0 && "Didn't get an opcode for G_BSWAP?");
|
|
|
|
I.setDesc(TII.get(Opc));
|
|
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
}
|
|
|
|
case TargetOpcode::G_FCONSTANT:
|
|
case TargetOpcode::G_CONSTANT: {
|
|
const bool isFP = Opcode == TargetOpcode::G_FCONSTANT;
|
|
|
|
const LLT s8 = LLT::scalar(8);
|
|
const LLT s16 = LLT::scalar(16);
|
|
const LLT s32 = LLT::scalar(32);
|
|
const LLT s64 = LLT::scalar(64);
|
|
const LLT p0 = LLT::pointer(0, 64);
|
|
|
|
const Register DefReg = I.getOperand(0).getReg();
|
|
const LLT DefTy = MRI.getType(DefReg);
|
|
const unsigned DefSize = DefTy.getSizeInBits();
|
|
const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
|
|
|
|
// FIXME: Redundant check, but even less readable when factored out.
|
|
if (isFP) {
|
|
if (Ty != s32 && Ty != s64) {
|
|
LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
|
|
<< " constant, expected: " << s32 << " or " << s64
|
|
<< '\n');
|
|
return false;
|
|
}
|
|
|
|
if (RB.getID() != AArch64::FPRRegBankID) {
|
|
LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
|
|
<< " constant on bank: " << RB
|
|
<< ", expected: FPR\n");
|
|
return false;
|
|
}
|
|
|
|
// The case when we have 0.0 is covered by tablegen. Reject it here so we
|
|
// can be sure tablegen works correctly and isn't rescued by this code.
|
|
if (I.getOperand(1).getFPImm()->getValueAPF().isExactlyValue(0.0))
|
|
return false;
|
|
} else {
|
|
// s32 and s64 are covered by tablegen.
|
|
if (Ty != p0 && Ty != s8 && Ty != s16) {
|
|
LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
|
|
<< " constant, expected: " << s32 << ", " << s64
|
|
<< ", or " << p0 << '\n');
|
|
return false;
|
|
}
|
|
|
|
if (RB.getID() != AArch64::GPRRegBankID) {
|
|
LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
|
|
<< " constant on bank: " << RB
|
|
<< ", expected: GPR\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We allow G_CONSTANT of types < 32b.
|
|
const unsigned MovOpc =
|
|
DefSize == 64 ? AArch64::MOVi64imm : AArch64::MOVi32imm;
|
|
|
|
if (isFP) {
|
|
// Either emit a FMOV, or emit a copy to emit a normal mov.
|
|
const TargetRegisterClass &GPRRC =
|
|
DefSize == 32 ? AArch64::GPR32RegClass : AArch64::GPR64RegClass;
|
|
const TargetRegisterClass &FPRRC =
|
|
DefSize == 32 ? AArch64::FPR32RegClass : AArch64::FPR64RegClass;
|
|
|
|
// Can we use a FMOV instruction to represent the immediate?
|
|
if (emitFMovForFConstant(I, MRI))
|
|
return true;
|
|
|
|
// Nope. Emit a copy and use a normal mov instead.
|
|
const Register DefGPRReg = MRI.createVirtualRegister(&GPRRC);
|
|
MachineOperand &RegOp = I.getOperand(0);
|
|
RegOp.setReg(DefGPRReg);
|
|
MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
|
|
MIB.buildCopy({DefReg}, {DefGPRReg});
|
|
|
|
if (!RBI.constrainGenericRegister(DefReg, FPRRC, MRI)) {
|
|
LLVM_DEBUG(dbgs() << "Failed to constrain G_FCONSTANT def operand\n");
|
|
return false;
|
|
}
|
|
|
|
MachineOperand &ImmOp = I.getOperand(1);
|
|
// FIXME: Is going through int64_t always correct?
|
|
ImmOp.ChangeToImmediate(
|
|
ImmOp.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue());
|
|
} else if (I.getOperand(1).isCImm()) {
|
|
uint64_t Val = I.getOperand(1).getCImm()->getZExtValue();
|
|
I.getOperand(1).ChangeToImmediate(Val);
|
|
} else if (I.getOperand(1).isImm()) {
|
|
uint64_t Val = I.getOperand(1).getImm();
|
|
I.getOperand(1).ChangeToImmediate(Val);
|
|
}
|
|
|
|
I.setDesc(TII.get(MovOpc));
|
|
constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
return true;
|
|
}
|
|
case TargetOpcode::G_EXTRACT: {
|
|
Register DstReg = I.getOperand(0).getReg();
|
|
Register SrcReg = I.getOperand(1).getReg();
|
|
LLT SrcTy = MRI.getType(SrcReg);
|
|
LLT DstTy = MRI.getType(DstReg);
|
|
(void)DstTy;
|
|
unsigned SrcSize = SrcTy.getSizeInBits();
|
|
|
|
if (SrcTy.getSizeInBits() > 64) {
|
|
// This should be an extract of an s128, which is like a vector extract.
|
|
if (SrcTy.getSizeInBits() != 128)
|
|
return false;
|
|
// Only support extracting 64 bits from an s128 at the moment.
|
|
if (DstTy.getSizeInBits() != 64)
|
|
return false;
|
|
|
|
const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
|
|
const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
|
|
// Check we have the right regbank always.
|
|
assert(SrcRB.getID() == AArch64::FPRRegBankID &&
|
|
DstRB.getID() == AArch64::FPRRegBankID &&
|
|
"Wrong extract regbank!");
|
|
(void)SrcRB;
|
|
|
|
// Emit the same code as a vector extract.
|
|
// Offset must be a multiple of 64.
|
|
unsigned Offset = I.getOperand(2).getImm();
|
|
if (Offset % 64 != 0)
|
|
return false;
|
|
unsigned LaneIdx = Offset / 64;
|
|
MachineIRBuilder MIB(I);
|
|
MachineInstr *Extract = emitExtractVectorElt(
|
|
DstReg, DstRB, LLT::scalar(64), SrcReg, LaneIdx, MIB);
|
|
if (!Extract)
|
|
return false;
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
I.setDesc(TII.get(SrcSize == 64 ? AArch64::UBFMXri : AArch64::UBFMWri));
|
|
MachineInstrBuilder(MF, I).addImm(I.getOperand(2).getImm() +
|
|
Ty.getSizeInBits() - 1);
|
|
|
|
if (SrcSize < 64) {
|
|
assert(SrcSize == 32 && DstTy.getSizeInBits() == 16 &&
|
|
"unexpected G_EXTRACT types");
|
|
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
}
|
|
|
|
DstReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
|
|
MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
|
|
MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
|
|
.addReg(DstReg, 0, AArch64::sub_32);
|
|
RBI.constrainGenericRegister(I.getOperand(0).getReg(),
|
|
AArch64::GPR32RegClass, MRI);
|
|
I.getOperand(0).setReg(DstReg);
|
|
|
|
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
}
|
|
|
|
case TargetOpcode::G_INSERT: {
|
|
LLT SrcTy = MRI.getType(I.getOperand(2).getReg());
|
|
LLT DstTy = MRI.getType(I.getOperand(0).getReg());
|
|
unsigned DstSize = DstTy.getSizeInBits();
|
|
// Larger inserts are vectors, same-size ones should be something else by
|
|
// now (split up or turned into COPYs).
|
|
if (Ty.getSizeInBits() > 64 || SrcTy.getSizeInBits() > 32)
|
|
return false;
|
|
|
|
I.setDesc(TII.get(DstSize == 64 ? AArch64::BFMXri : AArch64::BFMWri));
|
|
unsigned LSB = I.getOperand(3).getImm();
|
|
unsigned Width = MRI.getType(I.getOperand(2).getReg()).getSizeInBits();
|
|
I.getOperand(3).setImm((DstSize - LSB) % DstSize);
|
|
MachineInstrBuilder(MF, I).addImm(Width - 1);
|
|
|
|
if (DstSize < 64) {
|
|
assert(DstSize == 32 && SrcTy.getSizeInBits() == 16 &&
|
|
"unexpected G_INSERT types");
|
|
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
}
|
|
|
|
Register SrcReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
|
|
BuildMI(MBB, I.getIterator(), I.getDebugLoc(),
|
|
TII.get(AArch64::SUBREG_TO_REG))
|
|
.addDef(SrcReg)
|
|
.addImm(0)
|
|
.addUse(I.getOperand(2).getReg())
|
|
.addImm(AArch64::sub_32);
|
|
RBI.constrainGenericRegister(I.getOperand(2).getReg(),
|
|
AArch64::GPR32RegClass, MRI);
|
|
I.getOperand(2).setReg(SrcReg);
|
|
|
|
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
}
|
|
case TargetOpcode::G_FRAME_INDEX: {
|
|
// allocas and G_FRAME_INDEX are only supported in addrspace(0).
|
|
if (Ty != LLT::pointer(0, 64)) {
|
|
LLVM_DEBUG(dbgs() << "G_FRAME_INDEX pointer has type: " << Ty
|
|
<< ", expected: " << LLT::pointer(0, 64) << '\n');
|
|
return false;
|
|
}
|
|
I.setDesc(TII.get(AArch64::ADDXri));
|
|
|
|
// MOs for a #0 shifted immediate.
|
|
I.addOperand(MachineOperand::CreateImm(0));
|
|
I.addOperand(MachineOperand::CreateImm(0));
|
|
|
|
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
}
|
|
|
|
case TargetOpcode::G_GLOBAL_VALUE: {
|
|
auto GV = I.getOperand(1).getGlobal();
|
|
if (GV->isThreadLocal())
|
|
return selectTLSGlobalValue(I, MRI);
|
|
|
|
unsigned OpFlags = STI.ClassifyGlobalReference(GV, TM);
|
|
if (OpFlags & AArch64II::MO_GOT) {
|
|
I.setDesc(TII.get(AArch64::LOADgot));
|
|
I.getOperand(1).setTargetFlags(OpFlags);
|
|
} else if (TM.getCodeModel() == CodeModel::Large) {
|
|
// Materialize the global using movz/movk instructions.
|
|
materializeLargeCMVal(I, GV, OpFlags);
|
|
I.eraseFromParent();
|
|
return true;
|
|
} else if (TM.getCodeModel() == CodeModel::Tiny) {
|
|
I.setDesc(TII.get(AArch64::ADR));
|
|
I.getOperand(1).setTargetFlags(OpFlags);
|
|
} else {
|
|
I.setDesc(TII.get(AArch64::MOVaddr));
|
|
I.getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_PAGE);
|
|
MachineInstrBuilder MIB(MF, I);
|
|
MIB.addGlobalAddress(GV, I.getOperand(1).getOffset(),
|
|
OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
|
|
}
|
|
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
}
|
|
|
|
case TargetOpcode::G_ZEXTLOAD:
|
|
case TargetOpcode::G_LOAD:
|
|
case TargetOpcode::G_STORE: {
|
|
bool IsZExtLoad = I.getOpcode() == TargetOpcode::G_ZEXTLOAD;
|
|
MachineIRBuilder MIB(I);
|
|
|
|
LLT PtrTy = MRI.getType(I.getOperand(1).getReg());
|
|
|
|
if (PtrTy != LLT::pointer(0, 64)) {
|
|
LLVM_DEBUG(dbgs() << "Load/Store pointer has type: " << PtrTy
|
|
<< ", expected: " << LLT::pointer(0, 64) << '\n');
|
|
return false;
|
|
}
|
|
|
|
auto &MemOp = **I.memoperands_begin();
|
|
if (MemOp.isAtomic()) {
|
|
// For now we just support s8 acquire loads to be able to compile stack
|
|
// protector code.
|
|
if (MemOp.getOrdering() == AtomicOrdering::Acquire &&
|
|
MemOp.getSize() == 1) {
|
|
I.setDesc(TII.get(AArch64::LDARB));
|
|
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Atomic load/store not fully supported yet\n");
|
|
return false;
|
|
}
|
|
unsigned MemSizeInBits = MemOp.getSize() * 8;
|
|
|
|
const Register PtrReg = I.getOperand(1).getReg();
|
|
#ifndef NDEBUG
|
|
const RegisterBank &PtrRB = *RBI.getRegBank(PtrReg, MRI, TRI);
|
|
// Sanity-check the pointer register.
|
|
assert(PtrRB.getID() == AArch64::GPRRegBankID &&
|
|
"Load/Store pointer operand isn't a GPR");
|
|
assert(MRI.getType(PtrReg).isPointer() &&
|
|
"Load/Store pointer operand isn't a pointer");
|
|
#endif
|
|
|
|
const Register ValReg = I.getOperand(0).getReg();
|
|
const RegisterBank &RB = *RBI.getRegBank(ValReg, MRI, TRI);
|
|
|
|
const unsigned NewOpc =
|
|
selectLoadStoreUIOp(I.getOpcode(), RB.getID(), MemSizeInBits);
|
|
if (NewOpc == I.getOpcode())
|
|
return false;
|
|
|
|
I.setDesc(TII.get(NewOpc));
|
|
|
|
uint64_t Offset = 0;
|
|
auto *PtrMI = MRI.getVRegDef(PtrReg);
|
|
|
|
// Try to fold a GEP into our unsigned immediate addressing mode.
|
|
if (PtrMI->getOpcode() == TargetOpcode::G_PTR_ADD) {
|
|
if (auto COff = getConstantVRegVal(PtrMI->getOperand(2).getReg(), MRI)) {
|
|
int64_t Imm = *COff;
|
|
const unsigned Size = MemSizeInBits / 8;
|
|
const unsigned Scale = Log2_32(Size);
|
|
if ((Imm & (Size - 1)) == 0 && Imm >= 0 && Imm < (0x1000 << Scale)) {
|
|
Register Ptr2Reg = PtrMI->getOperand(1).getReg();
|
|
I.getOperand(1).setReg(Ptr2Reg);
|
|
PtrMI = MRI.getVRegDef(Ptr2Reg);
|
|
Offset = Imm / Size;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we haven't folded anything into our addressing mode yet, try to fold
|
|
// a frame index into the base+offset.
|
|
if (!Offset && PtrMI->getOpcode() == TargetOpcode::G_FRAME_INDEX)
|
|
I.getOperand(1).ChangeToFrameIndex(PtrMI->getOperand(1).getIndex());
|
|
|
|
I.addOperand(MachineOperand::CreateImm(Offset));
|
|
|
|
// If we're storing a 0, use WZR/XZR.
|
|
if (auto CVal = getConstantVRegVal(ValReg, MRI)) {
|
|
if (*CVal == 0 && Opcode == TargetOpcode::G_STORE) {
|
|
if (I.getOpcode() == AArch64::STRWui)
|
|
I.getOperand(0).setReg(AArch64::WZR);
|
|
else if (I.getOpcode() == AArch64::STRXui)
|
|
I.getOperand(0).setReg(AArch64::XZR);
|
|
}
|
|
}
|
|
|
|
if (IsZExtLoad) {
|
|
// The zextload from a smaller type to i32 should be handled by the importer.
|
|
if (MRI.getType(ValReg).getSizeInBits() != 64)
|
|
return false;
|
|
// If we have a ZEXTLOAD then change the load's type to be a narrower reg
|
|
//and zero_extend with SUBREG_TO_REG.
|
|
Register LdReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
|
|
Register DstReg = I.getOperand(0).getReg();
|
|
I.getOperand(0).setReg(LdReg);
|
|
|
|
MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
|
|
MIB.buildInstr(AArch64::SUBREG_TO_REG, {DstReg}, {})
|
|
.addImm(0)
|
|
.addUse(LdReg)
|
|
.addImm(AArch64::sub_32);
|
|
constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
return RBI.constrainGenericRegister(DstReg, AArch64::GPR64allRegClass,
|
|
MRI);
|
|
}
|
|
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
}
|
|
|
|
case TargetOpcode::G_SMULH:
|
|
case TargetOpcode::G_UMULH: {
|
|
// Reject the various things we don't support yet.
|
|
if (unsupportedBinOp(I, RBI, MRI, TRI))
|
|
return false;
|
|
|
|
const Register DefReg = I.getOperand(0).getReg();
|
|
const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
|
|
|
|
if (RB.getID() != AArch64::GPRRegBankID) {
|
|
LLVM_DEBUG(dbgs() << "G_[SU]MULH on bank: " << RB << ", expected: GPR\n");
|
|
return false;
|
|
}
|
|
|
|
if (Ty != LLT::scalar(64)) {
|
|
LLVM_DEBUG(dbgs() << "G_[SU]MULH has type: " << Ty
|
|
<< ", expected: " << LLT::scalar(64) << '\n');
|
|
return false;
|
|
}
|
|
|
|
unsigned NewOpc = I.getOpcode() == TargetOpcode::G_SMULH ? AArch64::SMULHrr
|
|
: AArch64::UMULHrr;
|
|
I.setDesc(TII.get(NewOpc));
|
|
|
|
// Now that we selected an opcode, we need to constrain the register
|
|
// operands to use appropriate classes.
|
|
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
}
|
|
case TargetOpcode::G_FADD:
|
|
case TargetOpcode::G_FSUB:
|
|
case TargetOpcode::G_FMUL:
|
|
case TargetOpcode::G_FDIV:
|
|
|
|
case TargetOpcode::G_ASHR:
|
|
if (MRI.getType(I.getOperand(0).getReg()).isVector())
|
|
return selectVectorASHR(I, MRI);
|
|
LLVM_FALLTHROUGH;
|
|
case TargetOpcode::G_SHL:
|
|
if (Opcode == TargetOpcode::G_SHL &&
|
|
MRI.getType(I.getOperand(0).getReg()).isVector())
|
|
return selectVectorSHL(I, MRI);
|
|
LLVM_FALLTHROUGH;
|
|
case TargetOpcode::G_OR:
|
|
case TargetOpcode::G_LSHR: {
|
|
// Reject the various things we don't support yet.
|
|
if (unsupportedBinOp(I, RBI, MRI, TRI))
|
|
return false;
|
|
|
|
const unsigned OpSize = Ty.getSizeInBits();
|
|
|
|
const Register DefReg = I.getOperand(0).getReg();
|
|
const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
|
|
|
|
const unsigned NewOpc = selectBinaryOp(I.getOpcode(), RB.getID(), OpSize);
|
|
if (NewOpc == I.getOpcode())
|
|
return false;
|
|
|
|
I.setDesc(TII.get(NewOpc));
|
|
// FIXME: Should the type be always reset in setDesc?
|
|
|
|
// Now that we selected an opcode, we need to constrain the register
|
|
// operands to use appropriate classes.
|
|
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
}
|
|
|
|
case TargetOpcode::G_PTR_ADD: {
|
|
MachineIRBuilder MIRBuilder(I);
|
|
emitADD(I.getOperand(0).getReg(), I.getOperand(1), I.getOperand(2),
|
|
MIRBuilder);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
case TargetOpcode::G_UADDO: {
|
|
// TODO: Support other types.
|
|
unsigned OpSize = Ty.getSizeInBits();
|
|
if (OpSize != 32 && OpSize != 64) {
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "G_UADDO currently only supported for 32 and 64 b types.\n");
|
|
return false;
|
|
}
|
|
|
|
// TODO: Support vectors.
|
|
if (Ty.isVector()) {
|
|
LLVM_DEBUG(dbgs() << "G_UADDO currently only supported for scalars.\n");
|
|
return false;
|
|
}
|
|
|
|
// Add and set the set condition flag.
|
|
unsigned AddsOpc = OpSize == 32 ? AArch64::ADDSWrr : AArch64::ADDSXrr;
|
|
MachineIRBuilder MIRBuilder(I);
|
|
auto AddsMI = MIRBuilder.buildInstr(AddsOpc, {I.getOperand(0)},
|
|
{I.getOperand(2), I.getOperand(3)});
|
|
constrainSelectedInstRegOperands(*AddsMI, TII, TRI, RBI);
|
|
|
|
// Now, put the overflow result in the register given by the first operand
|
|
// to the G_UADDO. CSINC increments the result when the predicate is false,
|
|
// so to get the increment when it's true, we need to use the inverse. In
|
|
// this case, we want to increment when carry is set.
|
|
auto CsetMI = MIRBuilder
|
|
.buildInstr(AArch64::CSINCWr, {I.getOperand(1).getReg()},
|
|
{Register(AArch64::WZR), Register(AArch64::WZR)})
|
|
.addImm(getInvertedCondCode(AArch64CC::HS));
|
|
constrainSelectedInstRegOperands(*CsetMI, TII, TRI, RBI);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
case TargetOpcode::G_PTR_MASK: {
|
|
uint64_t Align = I.getOperand(2).getImm();
|
|
if (Align >= 64 || Align == 0)
|
|
return false;
|
|
|
|
uint64_t Mask = ~((1ULL << Align) - 1);
|
|
I.setDesc(TII.get(AArch64::ANDXri));
|
|
I.getOperand(2).setImm(AArch64_AM::encodeLogicalImmediate(Mask, 64));
|
|
|
|
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
}
|
|
case TargetOpcode::G_PTRTOINT:
|
|
case TargetOpcode::G_TRUNC: {
|
|
const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
|
|
const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
|
|
|
|
const Register DstReg = I.getOperand(0).getReg();
|
|
const Register SrcReg = I.getOperand(1).getReg();
|
|
|
|
const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
|
|
const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
|
|
|
|
if (DstRB.getID() != SrcRB.getID()) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "G_TRUNC/G_PTRTOINT input/output on different banks\n");
|
|
return false;
|
|
}
|
|
|
|
if (DstRB.getID() == AArch64::GPRRegBankID) {
|
|
const TargetRegisterClass *DstRC =
|
|
getRegClassForTypeOnBank(DstTy, DstRB, RBI);
|
|
if (!DstRC)
|
|
return false;
|
|
|
|
const TargetRegisterClass *SrcRC =
|
|
getRegClassForTypeOnBank(SrcTy, SrcRB, RBI);
|
|
if (!SrcRC)
|
|
return false;
|
|
|
|
if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
|
|
!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
|
|
LLVM_DEBUG(dbgs() << "Failed to constrain G_TRUNC/G_PTRTOINT\n");
|
|
return false;
|
|
}
|
|
|
|
if (DstRC == SrcRC) {
|
|
// Nothing to be done
|
|
} else if (Opcode == TargetOpcode::G_TRUNC && DstTy == LLT::scalar(32) &&
|
|
SrcTy == LLT::scalar(64)) {
|
|
llvm_unreachable("TableGen can import this case");
|
|
return false;
|
|
} else if (DstRC == &AArch64::GPR32RegClass &&
|
|
SrcRC == &AArch64::GPR64RegClass) {
|
|
I.getOperand(1).setSubReg(AArch64::sub_32);
|
|
} else {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Unhandled mismatched classes in G_TRUNC/G_PTRTOINT\n");
|
|
return false;
|
|
}
|
|
|
|
I.setDesc(TII.get(TargetOpcode::COPY));
|
|
return true;
|
|
} else if (DstRB.getID() == AArch64::FPRRegBankID) {
|
|
if (DstTy == LLT::vector(4, 16) && SrcTy == LLT::vector(4, 32)) {
|
|
I.setDesc(TII.get(AArch64::XTNv4i16));
|
|
constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
return true;
|
|
}
|
|
|
|
if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128) {
|
|
MachineIRBuilder MIB(I);
|
|
MachineInstr *Extract = emitExtractVectorElt(
|
|
DstReg, DstRB, LLT::scalar(DstTy.getSizeInBits()), SrcReg, 0, MIB);
|
|
if (!Extract)
|
|
return false;
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
case TargetOpcode::G_ANYEXT: {
|
|
const Register DstReg = I.getOperand(0).getReg();
|
|
const Register SrcReg = I.getOperand(1).getReg();
|
|
|
|
const RegisterBank &RBDst = *RBI.getRegBank(DstReg, MRI, TRI);
|
|
if (RBDst.getID() != AArch64::GPRRegBankID) {
|
|
LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBDst
|
|
<< ", expected: GPR\n");
|
|
return false;
|
|
}
|
|
|
|
const RegisterBank &RBSrc = *RBI.getRegBank(SrcReg, MRI, TRI);
|
|
if (RBSrc.getID() != AArch64::GPRRegBankID) {
|
|
LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBSrc
|
|
<< ", expected: GPR\n");
|
|
return false;
|
|
}
|
|
|
|
const unsigned DstSize = MRI.getType(DstReg).getSizeInBits();
|
|
|
|
if (DstSize == 0) {
|
|
LLVM_DEBUG(dbgs() << "G_ANYEXT operand has no size, not a gvreg?\n");
|
|
return false;
|
|
}
|
|
|
|
if (DstSize != 64 && DstSize > 32) {
|
|
LLVM_DEBUG(dbgs() << "G_ANYEXT to size: " << DstSize
|
|
<< ", expected: 32 or 64\n");
|
|
return false;
|
|
}
|
|
// At this point G_ANYEXT is just like a plain COPY, but we need
|
|
// to explicitly form the 64-bit value if any.
|
|
if (DstSize > 32) {
|
|
Register ExtSrc = MRI.createVirtualRegister(&AArch64::GPR64allRegClass);
|
|
BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::SUBREG_TO_REG))
|
|
.addDef(ExtSrc)
|
|
.addImm(0)
|
|
.addUse(SrcReg)
|
|
.addImm(AArch64::sub_32);
|
|
I.getOperand(1).setReg(ExtSrc);
|
|
}
|
|
return selectCopy(I, TII, MRI, TRI, RBI);
|
|
}
|
|
|
|
case TargetOpcode::G_ZEXT:
|
|
case TargetOpcode::G_SEXT: {
|
|
unsigned Opcode = I.getOpcode();
|
|
const bool IsSigned = Opcode == TargetOpcode::G_SEXT;
|
|
const Register DefReg = I.getOperand(0).getReg();
|
|
const Register SrcReg = I.getOperand(1).getReg();
|
|
const LLT DstTy = MRI.getType(DefReg);
|
|
const LLT SrcTy = MRI.getType(SrcReg);
|
|
unsigned DstSize = DstTy.getSizeInBits();
|
|
unsigned SrcSize = SrcTy.getSizeInBits();
|
|
|
|
if (DstTy.isVector())
|
|
return false; // Should be handled by imported patterns.
|
|
|
|
assert((*RBI.getRegBank(DefReg, MRI, TRI)).getID() ==
|
|
AArch64::GPRRegBankID &&
|
|
"Unexpected ext regbank");
|
|
|
|
MachineIRBuilder MIB(I);
|
|
MachineInstr *ExtI;
|
|
|
|
// First check if we're extending the result of a load which has a dest type
|
|
// smaller than 32 bits, then this zext is redundant. GPR32 is the smallest
|
|
// GPR register on AArch64 and all loads which are smaller automatically
|
|
// zero-extend the upper bits. E.g.
|
|
// %v(s8) = G_LOAD %p, :: (load 1)
|
|
// %v2(s32) = G_ZEXT %v(s8)
|
|
if (!IsSigned) {
|
|
auto *LoadMI = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI);
|
|
if (LoadMI &&
|
|
RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::GPRRegBankID) {
|
|
const MachineMemOperand *MemOp = *LoadMI->memoperands_begin();
|
|
unsigned BytesLoaded = MemOp->getSize();
|
|
if (BytesLoaded < 4 && SrcTy.getSizeInBytes() == BytesLoaded)
|
|
return selectCopy(I, TII, MRI, TRI, RBI);
|
|
}
|
|
}
|
|
|
|
if (DstSize == 64) {
|
|
// FIXME: Can we avoid manually doing this?
|
|
if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass, MRI)) {
|
|
LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(Opcode)
|
|
<< " operand\n");
|
|
return false;
|
|
}
|
|
|
|
auto SubregToReg =
|
|
MIB.buildInstr(AArch64::SUBREG_TO_REG, {&AArch64::GPR64RegClass}, {})
|
|
.addImm(0)
|
|
.addUse(SrcReg)
|
|
.addImm(AArch64::sub_32);
|
|
|
|
ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMXri : AArch64::UBFMXri,
|
|
{DefReg}, {SubregToReg})
|
|
.addImm(0)
|
|
.addImm(SrcSize - 1);
|
|
} else if (DstSize <= 32) {
|
|
ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMWri : AArch64::UBFMWri,
|
|
{DefReg}, {SrcReg})
|
|
.addImm(0)
|
|
.addImm(SrcSize - 1);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
case TargetOpcode::G_SITOFP:
|
|
case TargetOpcode::G_UITOFP:
|
|
case TargetOpcode::G_FPTOSI:
|
|
case TargetOpcode::G_FPTOUI: {
|
|
const LLT DstTy = MRI.getType(I.getOperand(0).getReg()),
|
|
SrcTy = MRI.getType(I.getOperand(1).getReg());
|
|
const unsigned NewOpc = selectFPConvOpc(Opcode, DstTy, SrcTy);
|
|
if (NewOpc == Opcode)
|
|
return false;
|
|
|
|
I.setDesc(TII.get(NewOpc));
|
|
constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
case TargetOpcode::G_INTTOPTR:
|
|
// The importer is currently unable to import pointer types since they
|
|
// didn't exist in SelectionDAG.
|
|
return selectCopy(I, TII, MRI, TRI, RBI);
|
|
|
|
case TargetOpcode::G_BITCAST:
|
|
// Imported SelectionDAG rules can handle every bitcast except those that
|
|
// bitcast from a type to the same type. Ideally, these shouldn't occur
|
|
// but we might not run an optimizer that deletes them. The other exception
|
|
// is bitcasts involving pointer types, as SelectionDAG has no knowledge
|
|
// of them.
|
|
return selectCopy(I, TII, MRI, TRI, RBI);
|
|
|
|
case TargetOpcode::G_SELECT: {
|
|
if (MRI.getType(I.getOperand(1).getReg()) != LLT::scalar(1)) {
|
|
LLVM_DEBUG(dbgs() << "G_SELECT cond has type: " << Ty
|
|
<< ", expected: " << LLT::scalar(1) << '\n');
|
|
return false;
|
|
}
|
|
|
|
const Register CondReg = I.getOperand(1).getReg();
|
|
const Register TReg = I.getOperand(2).getReg();
|
|
const Register FReg = I.getOperand(3).getReg();
|
|
|
|
if (tryOptSelect(I))
|
|
return true;
|
|
|
|
Register CSelOpc = selectSelectOpc(I, MRI, RBI);
|
|
MachineInstr &TstMI =
|
|
*BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::ANDSWri))
|
|
.addDef(AArch64::WZR)
|
|
.addUse(CondReg)
|
|
.addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
|
|
|
|
MachineInstr &CSelMI = *BuildMI(MBB, I, I.getDebugLoc(), TII.get(CSelOpc))
|
|
.addDef(I.getOperand(0).getReg())
|
|
.addUse(TReg)
|
|
.addUse(FReg)
|
|
.addImm(AArch64CC::NE);
|
|
|
|
constrainSelectedInstRegOperands(TstMI, TII, TRI, RBI);
|
|
constrainSelectedInstRegOperands(CSelMI, TII, TRI, RBI);
|
|
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
case TargetOpcode::G_ICMP: {
|
|
if (Ty.isVector())
|
|
return selectVectorICmp(I, MRI);
|
|
|
|
if (Ty != LLT::scalar(32)) {
|
|
LLVM_DEBUG(dbgs() << "G_ICMP result has type: " << Ty
|
|
<< ", expected: " << LLT::scalar(32) << '\n');
|
|
return false;
|
|
}
|
|
|
|
MachineIRBuilder MIRBuilder(I);
|
|
if (!emitIntegerCompare(I.getOperand(2), I.getOperand(3), I.getOperand(1),
|
|
MIRBuilder))
|
|
return false;
|
|
emitCSetForICMP(I.getOperand(0).getReg(), I.getOperand(1).getPredicate(),
|
|
MIRBuilder);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
case TargetOpcode::G_FCMP: {
|
|
if (Ty != LLT::scalar(32)) {
|
|
LLVM_DEBUG(dbgs() << "G_FCMP result has type: " << Ty
|
|
<< ", expected: " << LLT::scalar(32) << '\n');
|
|
return false;
|
|
}
|
|
|
|
unsigned CmpOpc = selectFCMPOpc(I, MRI);
|
|
if (!CmpOpc)
|
|
return false;
|
|
|
|
// FIXME: regbank
|
|
|
|
AArch64CC::CondCode CC1, CC2;
|
|
changeFCMPPredToAArch64CC(
|
|
(CmpInst::Predicate)I.getOperand(1).getPredicate(), CC1, CC2);
|
|
|
|
// Partially build the compare. Decide if we need to add a use for the
|
|
// third operand based off whether or not we're comparing against 0.0.
|
|
auto CmpMI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(CmpOpc))
|
|
.addUse(I.getOperand(2).getReg());
|
|
|
|
// If we don't have an immediate compare, then we need to add a use of the
|
|
// register which wasn't used for the immediate.
|
|
// Note that the immediate will always be the last operand.
|
|
if (CmpOpc != AArch64::FCMPSri && CmpOpc != AArch64::FCMPDri)
|
|
CmpMI = CmpMI.addUse(I.getOperand(3).getReg());
|
|
|
|
const Register DefReg = I.getOperand(0).getReg();
|
|
Register Def1Reg = DefReg;
|
|
if (CC2 != AArch64CC::AL)
|
|
Def1Reg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
|
|
|
|
MachineInstr &CSetMI =
|
|
*BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::CSINCWr))
|
|
.addDef(Def1Reg)
|
|
.addUse(AArch64::WZR)
|
|
.addUse(AArch64::WZR)
|
|
.addImm(getInvertedCondCode(CC1));
|
|
|
|
if (CC2 != AArch64CC::AL) {
|
|
Register Def2Reg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
|
|
MachineInstr &CSet2MI =
|
|
*BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::CSINCWr))
|
|
.addDef(Def2Reg)
|
|
.addUse(AArch64::WZR)
|
|
.addUse(AArch64::WZR)
|
|
.addImm(getInvertedCondCode(CC2));
|
|
MachineInstr &OrMI =
|
|
*BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::ORRWrr))
|
|
.addDef(DefReg)
|
|
.addUse(Def1Reg)
|
|
.addUse(Def2Reg);
|
|
constrainSelectedInstRegOperands(OrMI, TII, TRI, RBI);
|
|
constrainSelectedInstRegOperands(CSet2MI, TII, TRI, RBI);
|
|
}
|
|
constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI);
|
|
constrainSelectedInstRegOperands(CSetMI, TII, TRI, RBI);
|
|
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
case TargetOpcode::G_VASTART:
|
|
return STI.isTargetDarwin() ? selectVaStartDarwin(I, MF, MRI)
|
|
: selectVaStartAAPCS(I, MF, MRI);
|
|
case TargetOpcode::G_INTRINSIC:
|
|
return selectIntrinsic(I, MRI);
|
|
case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
|
|
return selectIntrinsicWithSideEffects(I, MRI);
|
|
case TargetOpcode::G_IMPLICIT_DEF: {
|
|
I.setDesc(TII.get(TargetOpcode::IMPLICIT_DEF));
|
|
const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
|
|
const Register DstReg = I.getOperand(0).getReg();
|
|
const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
|
|
const TargetRegisterClass *DstRC =
|
|
getRegClassForTypeOnBank(DstTy, DstRB, RBI);
|
|
RBI.constrainGenericRegister(DstReg, *DstRC, MRI);
|
|
return true;
|
|
}
|
|
case TargetOpcode::G_BLOCK_ADDR: {
|
|
if (TM.getCodeModel() == CodeModel::Large) {
|
|
materializeLargeCMVal(I, I.getOperand(1).getBlockAddress(), 0);
|
|
I.eraseFromParent();
|
|
return true;
|
|
} else {
|
|
I.setDesc(TII.get(AArch64::MOVaddrBA));
|
|
auto MovMI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::MOVaddrBA),
|
|
I.getOperand(0).getReg())
|
|
.addBlockAddress(I.getOperand(1).getBlockAddress(),
|
|
/* Offset */ 0, AArch64II::MO_PAGE)
|
|
.addBlockAddress(
|
|
I.getOperand(1).getBlockAddress(), /* Offset */ 0,
|
|
AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
|
|
I.eraseFromParent();
|
|
return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
|
|
}
|
|
}
|
|
case TargetOpcode::G_INTRINSIC_TRUNC:
|
|
return selectIntrinsicTrunc(I, MRI);
|
|
case TargetOpcode::G_INTRINSIC_ROUND:
|
|
return selectIntrinsicRound(I, MRI);
|
|
case TargetOpcode::G_BUILD_VECTOR:
|
|
return selectBuildVector(I, MRI);
|
|
case TargetOpcode::G_MERGE_VALUES:
|
|
return selectMergeValues(I, MRI);
|
|
case TargetOpcode::G_UNMERGE_VALUES:
|
|
return selectUnmergeValues(I, MRI);
|
|
case TargetOpcode::G_SHUFFLE_VECTOR:
|
|
return selectShuffleVector(I, MRI);
|
|
case TargetOpcode::G_EXTRACT_VECTOR_ELT:
|
|
return selectExtractElt(I, MRI);
|
|
case TargetOpcode::G_INSERT_VECTOR_ELT:
|
|
return selectInsertElt(I, MRI);
|
|
case TargetOpcode::G_CONCAT_VECTORS:
|
|
return selectConcatVectors(I, MRI);
|
|
case TargetOpcode::G_JUMP_TABLE:
|
|
return selectJumpTable(I, MRI);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectBrJT(MachineInstr &I,
|
|
MachineRegisterInfo &MRI) const {
|
|
assert(I.getOpcode() == TargetOpcode::G_BRJT && "Expected G_BRJT");
|
|
Register JTAddr = I.getOperand(0).getReg();
|
|
unsigned JTI = I.getOperand(1).getIndex();
|
|
Register Index = I.getOperand(2).getReg();
|
|
MachineIRBuilder MIB(I);
|
|
|
|
Register TargetReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
|
|
Register ScratchReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
|
|
auto JumpTableInst = MIB.buildInstr(AArch64::JumpTableDest32,
|
|
{TargetReg, ScratchReg}, {JTAddr, Index})
|
|
.addJumpTableIndex(JTI);
|
|
// Build the indirect branch.
|
|
MIB.buildInstr(AArch64::BR, {}, {TargetReg});
|
|
I.eraseFromParent();
|
|
return constrainSelectedInstRegOperands(*JumpTableInst, TII, TRI, RBI);
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectJumpTable(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) const {
|
|
assert(I.getOpcode() == TargetOpcode::G_JUMP_TABLE && "Expected jump table");
|
|
assert(I.getOperand(1).isJTI() && "Jump table op should have a JTI!");
|
|
|
|
Register DstReg = I.getOperand(0).getReg();
|
|
unsigned JTI = I.getOperand(1).getIndex();
|
|
// We generate a MOVaddrJT which will get expanded to an ADRP + ADD later.
|
|
MachineIRBuilder MIB(I);
|
|
auto MovMI =
|
|
MIB.buildInstr(AArch64::MOVaddrJT, {DstReg}, {})
|
|
.addJumpTableIndex(JTI, AArch64II::MO_PAGE)
|
|
.addJumpTableIndex(JTI, AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
|
|
I.eraseFromParent();
|
|
return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectTLSGlobalValue(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) const {
|
|
if (!STI.isTargetMachO())
|
|
return false;
|
|
MachineFunction &MF = *I.getParent()->getParent();
|
|
MF.getFrameInfo().setAdjustsStack(true);
|
|
|
|
const GlobalValue &GV = *I.getOperand(1).getGlobal();
|
|
MachineIRBuilder MIB(I);
|
|
|
|
MIB.buildInstr(AArch64::LOADgot, {AArch64::X0}, {})
|
|
.addGlobalAddress(&GV, 0, AArch64II::MO_TLS);
|
|
|
|
auto Load = MIB.buildInstr(AArch64::LDRXui, {&AArch64::GPR64commonRegClass},
|
|
{Register(AArch64::X0)})
|
|
.addImm(0);
|
|
|
|
// TLS calls preserve all registers except those that absolutely must be
|
|
// trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
|
|
// silly).
|
|
MIB.buildInstr(AArch64::BLR, {}, {Load})
|
|
.addDef(AArch64::X0, RegState::Implicit)
|
|
.addRegMask(TRI.getTLSCallPreservedMask());
|
|
|
|
MIB.buildCopy(I.getOperand(0).getReg(), Register(AArch64::X0));
|
|
RBI.constrainGenericRegister(I.getOperand(0).getReg(), AArch64::GPR64RegClass,
|
|
MRI);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectIntrinsicTrunc(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) const {
|
|
const LLT SrcTy = MRI.getType(I.getOperand(0).getReg());
|
|
|
|
// Select the correct opcode.
|
|
unsigned Opc = 0;
|
|
if (!SrcTy.isVector()) {
|
|
switch (SrcTy.getSizeInBits()) {
|
|
default:
|
|
case 16:
|
|
Opc = AArch64::FRINTZHr;
|
|
break;
|
|
case 32:
|
|
Opc = AArch64::FRINTZSr;
|
|
break;
|
|
case 64:
|
|
Opc = AArch64::FRINTZDr;
|
|
break;
|
|
}
|
|
} else {
|
|
unsigned NumElts = SrcTy.getNumElements();
|
|
switch (SrcTy.getElementType().getSizeInBits()) {
|
|
default:
|
|
break;
|
|
case 16:
|
|
if (NumElts == 4)
|
|
Opc = AArch64::FRINTZv4f16;
|
|
else if (NumElts == 8)
|
|
Opc = AArch64::FRINTZv8f16;
|
|
break;
|
|
case 32:
|
|
if (NumElts == 2)
|
|
Opc = AArch64::FRINTZv2f32;
|
|
else if (NumElts == 4)
|
|
Opc = AArch64::FRINTZv4f32;
|
|
break;
|
|
case 64:
|
|
if (NumElts == 2)
|
|
Opc = AArch64::FRINTZv2f64;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Opc) {
|
|
// Didn't get an opcode above, bail.
|
|
LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_TRUNC!\n");
|
|
return false;
|
|
}
|
|
|
|
// Legalization would have set us up perfectly for this; we just need to
|
|
// set the opcode and move on.
|
|
I.setDesc(TII.get(Opc));
|
|
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectIntrinsicRound(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) const {
|
|
const LLT SrcTy = MRI.getType(I.getOperand(0).getReg());
|
|
|
|
// Select the correct opcode.
|
|
unsigned Opc = 0;
|
|
if (!SrcTy.isVector()) {
|
|
switch (SrcTy.getSizeInBits()) {
|
|
default:
|
|
case 16:
|
|
Opc = AArch64::FRINTAHr;
|
|
break;
|
|
case 32:
|
|
Opc = AArch64::FRINTASr;
|
|
break;
|
|
case 64:
|
|
Opc = AArch64::FRINTADr;
|
|
break;
|
|
}
|
|
} else {
|
|
unsigned NumElts = SrcTy.getNumElements();
|
|
switch (SrcTy.getElementType().getSizeInBits()) {
|
|
default:
|
|
break;
|
|
case 16:
|
|
if (NumElts == 4)
|
|
Opc = AArch64::FRINTAv4f16;
|
|
else if (NumElts == 8)
|
|
Opc = AArch64::FRINTAv8f16;
|
|
break;
|
|
case 32:
|
|
if (NumElts == 2)
|
|
Opc = AArch64::FRINTAv2f32;
|
|
else if (NumElts == 4)
|
|
Opc = AArch64::FRINTAv4f32;
|
|
break;
|
|
case 64:
|
|
if (NumElts == 2)
|
|
Opc = AArch64::FRINTAv2f64;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Opc) {
|
|
// Didn't get an opcode above, bail.
|
|
LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_ROUND!\n");
|
|
return false;
|
|
}
|
|
|
|
// Legalization would have set us up perfectly for this; we just need to
|
|
// set the opcode and move on.
|
|
I.setDesc(TII.get(Opc));
|
|
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectVectorICmp(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) const {
|
|
Register DstReg = I.getOperand(0).getReg();
|
|
LLT DstTy = MRI.getType(DstReg);
|
|
Register SrcReg = I.getOperand(2).getReg();
|
|
Register Src2Reg = I.getOperand(3).getReg();
|
|
LLT SrcTy = MRI.getType(SrcReg);
|
|
|
|
unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits();
|
|
unsigned NumElts = DstTy.getNumElements();
|
|
|
|
// First index is element size, 0 == 8b, 1 == 16b, 2 == 32b, 3 == 64b
|
|
// Second index is num elts, 0 == v2, 1 == v4, 2 == v8, 3 == v16
|
|
// Third index is cc opcode:
|
|
// 0 == eq
|
|
// 1 == ugt
|
|
// 2 == uge
|
|
// 3 == ult
|
|
// 4 == ule
|
|
// 5 == sgt
|
|
// 6 == sge
|
|
// 7 == slt
|
|
// 8 == sle
|
|
// ne is done by negating 'eq' result.
|
|
|
|
// This table below assumes that for some comparisons the operands will be
|
|
// commuted.
|
|
// ult op == commute + ugt op
|
|
// ule op == commute + uge op
|
|
// slt op == commute + sgt op
|
|
// sle op == commute + sge op
|
|
unsigned PredIdx = 0;
|
|
bool SwapOperands = false;
|
|
CmpInst::Predicate Pred = (CmpInst::Predicate)I.getOperand(1).getPredicate();
|
|
switch (Pred) {
|
|
case CmpInst::ICMP_NE:
|
|
case CmpInst::ICMP_EQ:
|
|
PredIdx = 0;
|
|
break;
|
|
case CmpInst::ICMP_UGT:
|
|
PredIdx = 1;
|
|
break;
|
|
case CmpInst::ICMP_UGE:
|
|
PredIdx = 2;
|
|
break;
|
|
case CmpInst::ICMP_ULT:
|
|
PredIdx = 3;
|
|
SwapOperands = true;
|
|
break;
|
|
case CmpInst::ICMP_ULE:
|
|
PredIdx = 4;
|
|
SwapOperands = true;
|
|
break;
|
|
case CmpInst::ICMP_SGT:
|
|
PredIdx = 5;
|
|
break;
|
|
case CmpInst::ICMP_SGE:
|
|
PredIdx = 6;
|
|
break;
|
|
case CmpInst::ICMP_SLT:
|
|
PredIdx = 7;
|
|
SwapOperands = true;
|
|
break;
|
|
case CmpInst::ICMP_SLE:
|
|
PredIdx = 8;
|
|
SwapOperands = true;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unhandled icmp predicate");
|
|
return false;
|
|
}
|
|
|
|
// This table obviously should be tablegen'd when we have our GISel native
|
|
// tablegen selector.
|
|
|
|
static const unsigned OpcTable[4][4][9] = {
|
|
{
|
|
{0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
|
|
0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
|
|
0 /* invalid */},
|
|
{0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
|
|
0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
|
|
0 /* invalid */},
|
|
{AArch64::CMEQv8i8, AArch64::CMHIv8i8, AArch64::CMHSv8i8,
|
|
AArch64::CMHIv8i8, AArch64::CMHSv8i8, AArch64::CMGTv8i8,
|
|
AArch64::CMGEv8i8, AArch64::CMGTv8i8, AArch64::CMGEv8i8},
|
|
{AArch64::CMEQv16i8, AArch64::CMHIv16i8, AArch64::CMHSv16i8,
|
|
AArch64::CMHIv16i8, AArch64::CMHSv16i8, AArch64::CMGTv16i8,
|
|
AArch64::CMGEv16i8, AArch64::CMGTv16i8, AArch64::CMGEv16i8}
|
|
},
|
|
{
|
|
{0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
|
|
0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
|
|
0 /* invalid */},
|
|
{AArch64::CMEQv4i16, AArch64::CMHIv4i16, AArch64::CMHSv4i16,
|
|
AArch64::CMHIv4i16, AArch64::CMHSv4i16, AArch64::CMGTv4i16,
|
|
AArch64::CMGEv4i16, AArch64::CMGTv4i16, AArch64::CMGEv4i16},
|
|
{AArch64::CMEQv8i16, AArch64::CMHIv8i16, AArch64::CMHSv8i16,
|
|
AArch64::CMHIv8i16, AArch64::CMHSv8i16, AArch64::CMGTv8i16,
|
|
AArch64::CMGEv8i16, AArch64::CMGTv8i16, AArch64::CMGEv8i16},
|
|
{0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
|
|
0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
|
|
0 /* invalid */}
|
|
},
|
|
{
|
|
{AArch64::CMEQv2i32, AArch64::CMHIv2i32, AArch64::CMHSv2i32,
|
|
AArch64::CMHIv2i32, AArch64::CMHSv2i32, AArch64::CMGTv2i32,
|
|
AArch64::CMGEv2i32, AArch64::CMGTv2i32, AArch64::CMGEv2i32},
|
|
{AArch64::CMEQv4i32, AArch64::CMHIv4i32, AArch64::CMHSv4i32,
|
|
AArch64::CMHIv4i32, AArch64::CMHSv4i32, AArch64::CMGTv4i32,
|
|
AArch64::CMGEv4i32, AArch64::CMGTv4i32, AArch64::CMGEv4i32},
|
|
{0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
|
|
0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
|
|
0 /* invalid */},
|
|
{0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
|
|
0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
|
|
0 /* invalid */}
|
|
},
|
|
{
|
|
{AArch64::CMEQv2i64, AArch64::CMHIv2i64, AArch64::CMHSv2i64,
|
|
AArch64::CMHIv2i64, AArch64::CMHSv2i64, AArch64::CMGTv2i64,
|
|
AArch64::CMGEv2i64, AArch64::CMGTv2i64, AArch64::CMGEv2i64},
|
|
{0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
|
|
0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
|
|
0 /* invalid */},
|
|
{0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
|
|
0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
|
|
0 /* invalid */},
|
|
{0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
|
|
0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
|
|
0 /* invalid */}
|
|
},
|
|
};
|
|
unsigned EltIdx = Log2_32(SrcEltSize / 8);
|
|
unsigned NumEltsIdx = Log2_32(NumElts / 2);
|
|
unsigned Opc = OpcTable[EltIdx][NumEltsIdx][PredIdx];
|
|
if (!Opc) {
|
|
LLVM_DEBUG(dbgs() << "Could not map G_ICMP to cmp opcode");
|
|
return false;
|
|
}
|
|
|
|
const RegisterBank &VecRB = *RBI.getRegBank(SrcReg, MRI, TRI);
|
|
const TargetRegisterClass *SrcRC =
|
|
getRegClassForTypeOnBank(SrcTy, VecRB, RBI, true);
|
|
if (!SrcRC) {
|
|
LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
|
|
return false;
|
|
}
|
|
|
|
unsigned NotOpc = Pred == ICmpInst::ICMP_NE ? AArch64::NOTv8i8 : 0;
|
|
if (SrcTy.getSizeInBits() == 128)
|
|
NotOpc = NotOpc ? AArch64::NOTv16i8 : 0;
|
|
|
|
if (SwapOperands)
|
|
std::swap(SrcReg, Src2Reg);
|
|
|
|
MachineIRBuilder MIB(I);
|
|
auto Cmp = MIB.buildInstr(Opc, {SrcRC}, {SrcReg, Src2Reg});
|
|
constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
|
|
|
|
// Invert if we had a 'ne' cc.
|
|
if (NotOpc) {
|
|
Cmp = MIB.buildInstr(NotOpc, {DstReg}, {Cmp});
|
|
constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
|
|
} else {
|
|
MIB.buildCopy(DstReg, Cmp.getReg(0));
|
|
}
|
|
RBI.constrainGenericRegister(DstReg, *SrcRC, MRI);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
MachineInstr *AArch64InstructionSelector::emitScalarToVector(
|
|
unsigned EltSize, const TargetRegisterClass *DstRC, Register Scalar,
|
|
MachineIRBuilder &MIRBuilder) const {
|
|
auto Undef = MIRBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstRC}, {});
|
|
|
|
auto BuildFn = [&](unsigned SubregIndex) {
|
|
auto Ins =
|
|
MIRBuilder
|
|
.buildInstr(TargetOpcode::INSERT_SUBREG, {DstRC}, {Undef, Scalar})
|
|
.addImm(SubregIndex);
|
|
constrainSelectedInstRegOperands(*Undef, TII, TRI, RBI);
|
|
constrainSelectedInstRegOperands(*Ins, TII, TRI, RBI);
|
|
return &*Ins;
|
|
};
|
|
|
|
switch (EltSize) {
|
|
case 16:
|
|
return BuildFn(AArch64::hsub);
|
|
case 32:
|
|
return BuildFn(AArch64::ssub);
|
|
case 64:
|
|
return BuildFn(AArch64::dsub);
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectMergeValues(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) const {
|
|
assert(I.getOpcode() == TargetOpcode::G_MERGE_VALUES && "unexpected opcode");
|
|
const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
|
|
const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
|
|
assert(!DstTy.isVector() && !SrcTy.isVector() && "invalid merge operation");
|
|
const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
|
|
|
|
if (I.getNumOperands() != 3)
|
|
return false;
|
|
|
|
// Merging 2 s64s into an s128.
|
|
if (DstTy == LLT::scalar(128)) {
|
|
if (SrcTy.getSizeInBits() != 64)
|
|
return false;
|
|
MachineIRBuilder MIB(I);
|
|
Register DstReg = I.getOperand(0).getReg();
|
|
Register Src1Reg = I.getOperand(1).getReg();
|
|
Register Src2Reg = I.getOperand(2).getReg();
|
|
auto Tmp = MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstTy}, {});
|
|
MachineInstr *InsMI =
|
|
emitLaneInsert(None, Tmp.getReg(0), Src1Reg, /* LaneIdx */ 0, RB, MIB);
|
|
if (!InsMI)
|
|
return false;
|
|
MachineInstr *Ins2MI = emitLaneInsert(DstReg, InsMI->getOperand(0).getReg(),
|
|
Src2Reg, /* LaneIdx */ 1, RB, MIB);
|
|
if (!Ins2MI)
|
|
return false;
|
|
constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
|
|
constrainSelectedInstRegOperands(*Ins2MI, TII, TRI, RBI);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
if (RB.getID() != AArch64::GPRRegBankID)
|
|
return false;
|
|
|
|
if (DstTy.getSizeInBits() != 64 || SrcTy.getSizeInBits() != 32)
|
|
return false;
|
|
|
|
auto *DstRC = &AArch64::GPR64RegClass;
|
|
Register SubToRegDef = MRI.createVirtualRegister(DstRC);
|
|
MachineInstr &SubRegMI = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
|
|
TII.get(TargetOpcode::SUBREG_TO_REG))
|
|
.addDef(SubToRegDef)
|
|
.addImm(0)
|
|
.addUse(I.getOperand(1).getReg())
|
|
.addImm(AArch64::sub_32);
|
|
Register SubToRegDef2 = MRI.createVirtualRegister(DstRC);
|
|
// Need to anyext the second scalar before we can use bfm
|
|
MachineInstr &SubRegMI2 = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
|
|
TII.get(TargetOpcode::SUBREG_TO_REG))
|
|
.addDef(SubToRegDef2)
|
|
.addImm(0)
|
|
.addUse(I.getOperand(2).getReg())
|
|
.addImm(AArch64::sub_32);
|
|
MachineInstr &BFM =
|
|
*BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::BFMXri))
|
|
.addDef(I.getOperand(0).getReg())
|
|
.addUse(SubToRegDef)
|
|
.addUse(SubToRegDef2)
|
|
.addImm(32)
|
|
.addImm(31);
|
|
constrainSelectedInstRegOperands(SubRegMI, TII, TRI, RBI);
|
|
constrainSelectedInstRegOperands(SubRegMI2, TII, TRI, RBI);
|
|
constrainSelectedInstRegOperands(BFM, TII, TRI, RBI);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
static bool getLaneCopyOpcode(unsigned &CopyOpc, unsigned &ExtractSubReg,
|
|
const unsigned EltSize) {
|
|
// Choose a lane copy opcode and subregister based off of the size of the
|
|
// vector's elements.
|
|
switch (EltSize) {
|
|
case 16:
|
|
CopyOpc = AArch64::CPYi16;
|
|
ExtractSubReg = AArch64::hsub;
|
|
break;
|
|
case 32:
|
|
CopyOpc = AArch64::CPYi32;
|
|
ExtractSubReg = AArch64::ssub;
|
|
break;
|
|
case 64:
|
|
CopyOpc = AArch64::CPYi64;
|
|
ExtractSubReg = AArch64::dsub;
|
|
break;
|
|
default:
|
|
// Unknown size, bail out.
|
|
LLVM_DEBUG(dbgs() << "Elt size '" << EltSize << "' unsupported.\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
MachineInstr *AArch64InstructionSelector::emitExtractVectorElt(
|
|
Optional<Register> DstReg, const RegisterBank &DstRB, LLT ScalarTy,
|
|
Register VecReg, unsigned LaneIdx, MachineIRBuilder &MIRBuilder) const {
|
|
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
|
|
unsigned CopyOpc = 0;
|
|
unsigned ExtractSubReg = 0;
|
|
if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, ScalarTy.getSizeInBits())) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Couldn't determine lane copy opcode for instruction.\n");
|
|
return nullptr;
|
|
}
|
|
|
|
const TargetRegisterClass *DstRC =
|
|
getRegClassForTypeOnBank(ScalarTy, DstRB, RBI, true);
|
|
if (!DstRC) {
|
|
LLVM_DEBUG(dbgs() << "Could not determine destination register class.\n");
|
|
return nullptr;
|
|
}
|
|
|
|
const RegisterBank &VecRB = *RBI.getRegBank(VecReg, MRI, TRI);
|
|
const LLT &VecTy = MRI.getType(VecReg);
|
|
const TargetRegisterClass *VecRC =
|
|
getRegClassForTypeOnBank(VecTy, VecRB, RBI, true);
|
|
if (!VecRC) {
|
|
LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
|
|
return nullptr;
|
|
}
|
|
|
|
// The register that we're going to copy into.
|
|
Register InsertReg = VecReg;
|
|
if (!DstReg)
|
|
DstReg = MRI.createVirtualRegister(DstRC);
|
|
// If the lane index is 0, we just use a subregister COPY.
|
|
if (LaneIdx == 0) {
|
|
auto Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, {*DstReg}, {})
|
|
.addReg(VecReg, 0, ExtractSubReg);
|
|
RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
|
|
return &*Copy;
|
|
}
|
|
|
|
// Lane copies require 128-bit wide registers. If we're dealing with an
|
|
// unpacked vector, then we need to move up to that width. Insert an implicit
|
|
// def and a subregister insert to get us there.
|
|
if (VecTy.getSizeInBits() != 128) {
|
|
MachineInstr *ScalarToVector = emitScalarToVector(
|
|
VecTy.getSizeInBits(), &AArch64::FPR128RegClass, VecReg, MIRBuilder);
|
|
if (!ScalarToVector)
|
|
return nullptr;
|
|
InsertReg = ScalarToVector->getOperand(0).getReg();
|
|
}
|
|
|
|
MachineInstr *LaneCopyMI =
|
|
MIRBuilder.buildInstr(CopyOpc, {*DstReg}, {InsertReg}).addImm(LaneIdx);
|
|
constrainSelectedInstRegOperands(*LaneCopyMI, TII, TRI, RBI);
|
|
|
|
// Make sure that we actually constrain the initial copy.
|
|
RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
|
|
return LaneCopyMI;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectExtractElt(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) const {
|
|
assert(I.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT &&
|
|
"unexpected opcode!");
|
|
Register DstReg = I.getOperand(0).getReg();
|
|
const LLT NarrowTy = MRI.getType(DstReg);
|
|
const Register SrcReg = I.getOperand(1).getReg();
|
|
const LLT WideTy = MRI.getType(SrcReg);
|
|
(void)WideTy;
|
|
assert(WideTy.getSizeInBits() >= NarrowTy.getSizeInBits() &&
|
|
"source register size too small!");
|
|
assert(NarrowTy.isScalar() && "cannot extract vector into vector!");
|
|
|
|
// Need the lane index to determine the correct copy opcode.
|
|
MachineOperand &LaneIdxOp = I.getOperand(2);
|
|
assert(LaneIdxOp.isReg() && "Lane index operand was not a register?");
|
|
|
|
if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
|
|
LLVM_DEBUG(dbgs() << "Cannot extract into GPR.\n");
|
|
return false;
|
|
}
|
|
|
|
// Find the index to extract from.
|
|
auto VRegAndVal = getConstantVRegValWithLookThrough(LaneIdxOp.getReg(), MRI);
|
|
if (!VRegAndVal)
|
|
return false;
|
|
unsigned LaneIdx = VRegAndVal->Value;
|
|
|
|
MachineIRBuilder MIRBuilder(I);
|
|
|
|
const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
|
|
MachineInstr *Extract = emitExtractVectorElt(DstReg, DstRB, NarrowTy, SrcReg,
|
|
LaneIdx, MIRBuilder);
|
|
if (!Extract)
|
|
return false;
|
|
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectSplitVectorUnmerge(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) const {
|
|
unsigned NumElts = I.getNumOperands() - 1;
|
|
Register SrcReg = I.getOperand(NumElts).getReg();
|
|
const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
|
|
const LLT SrcTy = MRI.getType(SrcReg);
|
|
|
|
assert(NarrowTy.isVector() && "Expected an unmerge into vectors");
|
|
if (SrcTy.getSizeInBits() > 128) {
|
|
LLVM_DEBUG(dbgs() << "Unexpected vector type for vec split unmerge");
|
|
return false;
|
|
}
|
|
|
|
MachineIRBuilder MIB(I);
|
|
|
|
// We implement a split vector operation by treating the sub-vectors as
|
|
// scalars and extracting them.
|
|
const RegisterBank &DstRB =
|
|
*RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI);
|
|
for (unsigned OpIdx = 0; OpIdx < NumElts; ++OpIdx) {
|
|
Register Dst = I.getOperand(OpIdx).getReg();
|
|
MachineInstr *Extract =
|
|
emitExtractVectorElt(Dst, DstRB, NarrowTy, SrcReg, OpIdx, MIB);
|
|
if (!Extract)
|
|
return false;
|
|
}
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectUnmergeValues(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) const {
|
|
assert(I.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
|
|
"unexpected opcode");
|
|
|
|
// TODO: Handle unmerging into GPRs and from scalars to scalars.
|
|
if (RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI)->getID() !=
|
|
AArch64::FPRRegBankID ||
|
|
RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI)->getID() !=
|
|
AArch64::FPRRegBankID) {
|
|
LLVM_DEBUG(dbgs() << "Unmerging vector-to-gpr and scalar-to-scalar "
|
|
"currently unsupported.\n");
|
|
return false;
|
|
}
|
|
|
|
// The last operand is the vector source register, and every other operand is
|
|
// a register to unpack into.
|
|
unsigned NumElts = I.getNumOperands() - 1;
|
|
Register SrcReg = I.getOperand(NumElts).getReg();
|
|
const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
|
|
const LLT WideTy = MRI.getType(SrcReg);
|
|
(void)WideTy;
|
|
assert((WideTy.isVector() || WideTy.getSizeInBits() == 128) &&
|
|
"can only unmerge from vector or s128 types!");
|
|
assert(WideTy.getSizeInBits() > NarrowTy.getSizeInBits() &&
|
|
"source register size too small!");
|
|
|
|
if (!NarrowTy.isScalar())
|
|
return selectSplitVectorUnmerge(I, MRI);
|
|
|
|
MachineIRBuilder MIB(I);
|
|
|
|
// Choose a lane copy opcode and subregister based off of the size of the
|
|
// vector's elements.
|
|
unsigned CopyOpc = 0;
|
|
unsigned ExtractSubReg = 0;
|
|
if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, NarrowTy.getSizeInBits()))
|
|
return false;
|
|
|
|
// Set up for the lane copies.
|
|
MachineBasicBlock &MBB = *I.getParent();
|
|
|
|
// Stores the registers we'll be copying from.
|
|
SmallVector<Register, 4> InsertRegs;
|
|
|
|
// We'll use the first register twice, so we only need NumElts-1 registers.
|
|
unsigned NumInsertRegs = NumElts - 1;
|
|
|
|
// If our elements fit into exactly 128 bits, then we can copy from the source
|
|
// directly. Otherwise, we need to do a bit of setup with some subregister
|
|
// inserts.
|
|
if (NarrowTy.getSizeInBits() * NumElts == 128) {
|
|
InsertRegs = SmallVector<Register, 4>(NumInsertRegs, SrcReg);
|
|
} else {
|
|
// No. We have to perform subregister inserts. For each insert, create an
|
|
// implicit def and a subregister insert, and save the register we create.
|
|
for (unsigned Idx = 0; Idx < NumInsertRegs; ++Idx) {
|
|
Register ImpDefReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
|
|
MachineInstr &ImpDefMI =
|
|
*BuildMI(MBB, I, I.getDebugLoc(), TII.get(TargetOpcode::IMPLICIT_DEF),
|
|
ImpDefReg);
|
|
|
|
// Now, create the subregister insert from SrcReg.
|
|
Register InsertReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
|
|
MachineInstr &InsMI =
|
|
*BuildMI(MBB, I, I.getDebugLoc(),
|
|
TII.get(TargetOpcode::INSERT_SUBREG), InsertReg)
|
|
.addUse(ImpDefReg)
|
|
.addUse(SrcReg)
|
|
.addImm(AArch64::dsub);
|
|
|
|
constrainSelectedInstRegOperands(ImpDefMI, TII, TRI, RBI);
|
|
constrainSelectedInstRegOperands(InsMI, TII, TRI, RBI);
|
|
|
|
// Save the register so that we can copy from it after.
|
|
InsertRegs.push_back(InsertReg);
|
|
}
|
|
}
|
|
|
|
// Now that we've created any necessary subregister inserts, we can
|
|
// create the copies.
|
|
//
|
|
// Perform the first copy separately as a subregister copy.
|
|
Register CopyTo = I.getOperand(0).getReg();
|
|
auto FirstCopy = MIB.buildInstr(TargetOpcode::COPY, {CopyTo}, {})
|
|
.addReg(InsertRegs[0], 0, ExtractSubReg);
|
|
constrainSelectedInstRegOperands(*FirstCopy, TII, TRI, RBI);
|
|
|
|
// Now, perform the remaining copies as vector lane copies.
|
|
unsigned LaneIdx = 1;
|
|
for (Register InsReg : InsertRegs) {
|
|
Register CopyTo = I.getOperand(LaneIdx).getReg();
|
|
MachineInstr &CopyInst =
|
|
*BuildMI(MBB, I, I.getDebugLoc(), TII.get(CopyOpc), CopyTo)
|
|
.addUse(InsReg)
|
|
.addImm(LaneIdx);
|
|
constrainSelectedInstRegOperands(CopyInst, TII, TRI, RBI);
|
|
++LaneIdx;
|
|
}
|
|
|
|
// Separately constrain the first copy's destination. Because of the
|
|
// limitation in constrainOperandRegClass, we can't guarantee that this will
|
|
// actually be constrained. So, do it ourselves using the second operand.
|
|
const TargetRegisterClass *RC =
|
|
MRI.getRegClassOrNull(I.getOperand(1).getReg());
|
|
if (!RC) {
|
|
LLVM_DEBUG(dbgs() << "Couldn't constrain copy destination.\n");
|
|
return false;
|
|
}
|
|
|
|
RBI.constrainGenericRegister(CopyTo, *RC, MRI);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectConcatVectors(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) const {
|
|
assert(I.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
|
|
"Unexpected opcode");
|
|
Register Dst = I.getOperand(0).getReg();
|
|
Register Op1 = I.getOperand(1).getReg();
|
|
Register Op2 = I.getOperand(2).getReg();
|
|
MachineIRBuilder MIRBuilder(I);
|
|
MachineInstr *ConcatMI = emitVectorConcat(Dst, Op1, Op2, MIRBuilder);
|
|
if (!ConcatMI)
|
|
return false;
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
unsigned
|
|
AArch64InstructionSelector::emitConstantPoolEntry(Constant *CPVal,
|
|
MachineFunction &MF) const {
|
|
Type *CPTy = CPVal->getType();
|
|
unsigned Align = MF.getDataLayout().getPrefTypeAlignment(CPTy);
|
|
if (Align == 0)
|
|
Align = MF.getDataLayout().getTypeAllocSize(CPTy);
|
|
|
|
MachineConstantPool *MCP = MF.getConstantPool();
|
|
return MCP->getConstantPoolIndex(CPVal, Align);
|
|
}
|
|
|
|
MachineInstr *AArch64InstructionSelector::emitLoadFromConstantPool(
|
|
Constant *CPVal, MachineIRBuilder &MIRBuilder) const {
|
|
unsigned CPIdx = emitConstantPoolEntry(CPVal, MIRBuilder.getMF());
|
|
|
|
auto Adrp =
|
|
MIRBuilder.buildInstr(AArch64::ADRP, {&AArch64::GPR64RegClass}, {})
|
|
.addConstantPoolIndex(CPIdx, 0, AArch64II::MO_PAGE);
|
|
|
|
MachineInstr *LoadMI = nullptr;
|
|
switch (MIRBuilder.getDataLayout().getTypeStoreSize(CPVal->getType())) {
|
|
case 16:
|
|
LoadMI =
|
|
&*MIRBuilder
|
|
.buildInstr(AArch64::LDRQui, {&AArch64::FPR128RegClass}, {Adrp})
|
|
.addConstantPoolIndex(CPIdx, 0,
|
|
AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
|
|
break;
|
|
case 8:
|
|
LoadMI = &*MIRBuilder
|
|
.buildInstr(AArch64::LDRDui, {&AArch64::FPR64RegClass}, {Adrp})
|
|
.addConstantPoolIndex(
|
|
CPIdx, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
|
|
break;
|
|
default:
|
|
LLVM_DEBUG(dbgs() << "Could not load from constant pool of type "
|
|
<< *CPVal->getType());
|
|
return nullptr;
|
|
}
|
|
constrainSelectedInstRegOperands(*Adrp, TII, TRI, RBI);
|
|
constrainSelectedInstRegOperands(*LoadMI, TII, TRI, RBI);
|
|
return LoadMI;
|
|
}
|
|
|
|
/// Return an <Opcode, SubregIndex> pair to do an vector elt insert of a given
|
|
/// size and RB.
|
|
static std::pair<unsigned, unsigned>
|
|
getInsertVecEltOpInfo(const RegisterBank &RB, unsigned EltSize) {
|
|
unsigned Opc, SubregIdx;
|
|
if (RB.getID() == AArch64::GPRRegBankID) {
|
|
if (EltSize == 32) {
|
|
Opc = AArch64::INSvi32gpr;
|
|
SubregIdx = AArch64::ssub;
|
|
} else if (EltSize == 64) {
|
|
Opc = AArch64::INSvi64gpr;
|
|
SubregIdx = AArch64::dsub;
|
|
} else {
|
|
llvm_unreachable("invalid elt size!");
|
|
}
|
|
} else {
|
|
if (EltSize == 8) {
|
|
Opc = AArch64::INSvi8lane;
|
|
SubregIdx = AArch64::bsub;
|
|
} else if (EltSize == 16) {
|
|
Opc = AArch64::INSvi16lane;
|
|
SubregIdx = AArch64::hsub;
|
|
} else if (EltSize == 32) {
|
|
Opc = AArch64::INSvi32lane;
|
|
SubregIdx = AArch64::ssub;
|
|
} else if (EltSize == 64) {
|
|
Opc = AArch64::INSvi64lane;
|
|
SubregIdx = AArch64::dsub;
|
|
} else {
|
|
llvm_unreachable("invalid elt size!");
|
|
}
|
|
}
|
|
return std::make_pair(Opc, SubregIdx);
|
|
}
|
|
|
|
MachineInstr *
|
|
AArch64InstructionSelector::emitADD(Register DefReg, MachineOperand &LHS,
|
|
MachineOperand &RHS,
|
|
MachineIRBuilder &MIRBuilder) const {
|
|
assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!");
|
|
MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
|
|
static const unsigned OpcTable[2][2]{{AArch64::ADDXrr, AArch64::ADDXri},
|
|
{AArch64::ADDWrr, AArch64::ADDWri}};
|
|
bool Is32Bit = MRI.getType(LHS.getReg()).getSizeInBits() == 32;
|
|
auto ImmFns = selectArithImmed(RHS);
|
|
unsigned Opc = OpcTable[Is32Bit][ImmFns.hasValue()];
|
|
auto AddMI = MIRBuilder.buildInstr(Opc, {DefReg}, {LHS});
|
|
|
|
// If we matched a valid constant immediate, add those operands.
|
|
if (ImmFns) {
|
|
for (auto &RenderFn : *ImmFns)
|
|
RenderFn(AddMI);
|
|
} else {
|
|
AddMI.addUse(RHS.getReg());
|
|
}
|
|
|
|
constrainSelectedInstRegOperands(*AddMI, TII, TRI, RBI);
|
|
return &*AddMI;
|
|
}
|
|
|
|
MachineInstr *
|
|
AArch64InstructionSelector::emitCMN(MachineOperand &LHS, MachineOperand &RHS,
|
|
MachineIRBuilder &MIRBuilder) const {
|
|
assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!");
|
|
MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
|
|
static const unsigned OpcTable[2][2]{{AArch64::ADDSXrr, AArch64::ADDSXri},
|
|
{AArch64::ADDSWrr, AArch64::ADDSWri}};
|
|
bool Is32Bit = (MRI.getType(LHS.getReg()).getSizeInBits() == 32);
|
|
auto ImmFns = selectArithImmed(RHS);
|
|
unsigned Opc = OpcTable[Is32Bit][ImmFns.hasValue()];
|
|
Register ZReg = Is32Bit ? AArch64::WZR : AArch64::XZR;
|
|
|
|
auto CmpMI = MIRBuilder.buildInstr(Opc, {ZReg}, {LHS});
|
|
|
|
// If we matched a valid constant immediate, add those operands.
|
|
if (ImmFns) {
|
|
for (auto &RenderFn : *ImmFns)
|
|
RenderFn(CmpMI);
|
|
} else {
|
|
CmpMI.addUse(RHS.getReg());
|
|
}
|
|
|
|
constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI);
|
|
return &*CmpMI;
|
|
}
|
|
|
|
MachineInstr *
|
|
AArch64InstructionSelector::emitTST(const Register &LHS, const Register &RHS,
|
|
MachineIRBuilder &MIRBuilder) const {
|
|
MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
|
|
unsigned RegSize = MRI.getType(LHS).getSizeInBits();
|
|
bool Is32Bit = (RegSize == 32);
|
|
static const unsigned OpcTable[2][2]{{AArch64::ANDSXrr, AArch64::ANDSXri},
|
|
{AArch64::ANDSWrr, AArch64::ANDSWri}};
|
|
Register ZReg = Is32Bit ? AArch64::WZR : AArch64::XZR;
|
|
|
|
// We might be able to fold in an immediate into the TST. We need to make sure
|
|
// it's a logical immediate though, since ANDS requires that.
|
|
auto ValAndVReg = getConstantVRegValWithLookThrough(RHS, MRI);
|
|
bool IsImmForm = ValAndVReg.hasValue() &&
|
|
AArch64_AM::isLogicalImmediate(ValAndVReg->Value, RegSize);
|
|
unsigned Opc = OpcTable[Is32Bit][IsImmForm];
|
|
auto TstMI = MIRBuilder.buildInstr(Opc, {ZReg}, {LHS});
|
|
|
|
if (IsImmForm)
|
|
TstMI.addImm(
|
|
AArch64_AM::encodeLogicalImmediate(ValAndVReg->Value, RegSize));
|
|
else
|
|
TstMI.addUse(RHS);
|
|
|
|
constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
|
|
return &*TstMI;
|
|
}
|
|
|
|
MachineInstr *AArch64InstructionSelector::emitIntegerCompare(
|
|
MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
|
|
MachineIRBuilder &MIRBuilder) const {
|
|
assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!");
|
|
MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
|
|
|
|
// Fold the compare if possible.
|
|
MachineInstr *FoldCmp =
|
|
tryFoldIntegerCompare(LHS, RHS, Predicate, MIRBuilder);
|
|
if (FoldCmp)
|
|
return FoldCmp;
|
|
|
|
// Can't fold into a CMN. Just emit a normal compare.
|
|
unsigned CmpOpc = 0;
|
|
Register ZReg;
|
|
|
|
LLT CmpTy = MRI.getType(LHS.getReg());
|
|
assert((CmpTy.isScalar() || CmpTy.isPointer()) &&
|
|
"Expected scalar or pointer");
|
|
if (CmpTy == LLT::scalar(32)) {
|
|
CmpOpc = AArch64::SUBSWrr;
|
|
ZReg = AArch64::WZR;
|
|
} else if (CmpTy == LLT::scalar(64) || CmpTy.isPointer()) {
|
|
CmpOpc = AArch64::SUBSXrr;
|
|
ZReg = AArch64::XZR;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
|
|
// Try to match immediate forms.
|
|
auto ImmFns = selectArithImmed(RHS);
|
|
if (ImmFns)
|
|
CmpOpc = CmpOpc == AArch64::SUBSWrr ? AArch64::SUBSWri : AArch64::SUBSXri;
|
|
|
|
auto CmpMI = MIRBuilder.buildInstr(CmpOpc).addDef(ZReg).addUse(LHS.getReg());
|
|
// If we matched a valid constant immediate, add those operands.
|
|
if (ImmFns) {
|
|
for (auto &RenderFn : *ImmFns)
|
|
RenderFn(CmpMI);
|
|
} else {
|
|
CmpMI.addUse(RHS.getReg());
|
|
}
|
|
|
|
// Make sure that we can constrain the compare that we emitted.
|
|
constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI);
|
|
return &*CmpMI;
|
|
}
|
|
|
|
MachineInstr *AArch64InstructionSelector::emitVectorConcat(
|
|
Optional<Register> Dst, Register Op1, Register Op2,
|
|
MachineIRBuilder &MIRBuilder) const {
|
|
// We implement a vector concat by:
|
|
// 1. Use scalar_to_vector to insert the lower vector into the larger dest
|
|
// 2. Insert the upper vector into the destination's upper element
|
|
// TODO: some of this code is common with G_BUILD_VECTOR handling.
|
|
MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
|
|
|
|
const LLT Op1Ty = MRI.getType(Op1);
|
|
const LLT Op2Ty = MRI.getType(Op2);
|
|
|
|
if (Op1Ty != Op2Ty) {
|
|
LLVM_DEBUG(dbgs() << "Could not do vector concat of differing vector tys");
|
|
return nullptr;
|
|
}
|
|
assert(Op1Ty.isVector() && "Expected a vector for vector concat");
|
|
|
|
if (Op1Ty.getSizeInBits() >= 128) {
|
|
LLVM_DEBUG(dbgs() << "Vector concat not supported for full size vectors");
|
|
return nullptr;
|
|
}
|
|
|
|
// At the moment we just support 64 bit vector concats.
|
|
if (Op1Ty.getSizeInBits() != 64) {
|
|
LLVM_DEBUG(dbgs() << "Vector concat supported for 64b vectors");
|
|
return nullptr;
|
|
}
|
|
|
|
const LLT ScalarTy = LLT::scalar(Op1Ty.getSizeInBits());
|
|
const RegisterBank &FPRBank = *RBI.getRegBank(Op1, MRI, TRI);
|
|
const TargetRegisterClass *DstRC =
|
|
getMinClassForRegBank(FPRBank, Op1Ty.getSizeInBits() * 2);
|
|
|
|
MachineInstr *WidenedOp1 =
|
|
emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op1, MIRBuilder);
|
|
MachineInstr *WidenedOp2 =
|
|
emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op2, MIRBuilder);
|
|
if (!WidenedOp1 || !WidenedOp2) {
|
|
LLVM_DEBUG(dbgs() << "Could not emit a vector from scalar value");
|
|
return nullptr;
|
|
}
|
|
|
|
// Now do the insert of the upper element.
|
|
unsigned InsertOpc, InsSubRegIdx;
|
|
std::tie(InsertOpc, InsSubRegIdx) =
|
|
getInsertVecEltOpInfo(FPRBank, ScalarTy.getSizeInBits());
|
|
|
|
if (!Dst)
|
|
Dst = MRI.createVirtualRegister(DstRC);
|
|
auto InsElt =
|
|
MIRBuilder
|
|
.buildInstr(InsertOpc, {*Dst}, {WidenedOp1->getOperand(0).getReg()})
|
|
.addImm(1) /* Lane index */
|
|
.addUse(WidenedOp2->getOperand(0).getReg())
|
|
.addImm(0);
|
|
constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
|
|
return &*InsElt;
|
|
}
|
|
|
|
MachineInstr *AArch64InstructionSelector::emitFMovForFConstant(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) const {
|
|
assert(I.getOpcode() == TargetOpcode::G_FCONSTANT &&
|
|
"Expected a G_FCONSTANT!");
|
|
MachineOperand &ImmOp = I.getOperand(1);
|
|
unsigned DefSize = MRI.getType(I.getOperand(0).getReg()).getSizeInBits();
|
|
|
|
// Only handle 32 and 64 bit defs for now.
|
|
if (DefSize != 32 && DefSize != 64)
|
|
return nullptr;
|
|
|
|
// Don't handle null values using FMOV.
|
|
if (ImmOp.getFPImm()->isNullValue())
|
|
return nullptr;
|
|
|
|
// Get the immediate representation for the FMOV.
|
|
const APFloat &ImmValAPF = ImmOp.getFPImm()->getValueAPF();
|
|
int Imm = DefSize == 32 ? AArch64_AM::getFP32Imm(ImmValAPF)
|
|
: AArch64_AM::getFP64Imm(ImmValAPF);
|
|
|
|
// If this is -1, it means the immediate can't be represented as the requested
|
|
// floating point value. Bail.
|
|
if (Imm == -1)
|
|
return nullptr;
|
|
|
|
// Update MI to represent the new FMOV instruction, constrain it, and return.
|
|
ImmOp.ChangeToImmediate(Imm);
|
|
unsigned MovOpc = DefSize == 32 ? AArch64::FMOVSi : AArch64::FMOVDi;
|
|
I.setDesc(TII.get(MovOpc));
|
|
constrainSelectedInstRegOperands(I, TII, TRI, RBI);
|
|
return &I;
|
|
}
|
|
|
|
MachineInstr *
|
|
AArch64InstructionSelector::emitCSetForICMP(Register DefReg, unsigned Pred,
|
|
MachineIRBuilder &MIRBuilder) const {
|
|
// CSINC increments the result when the predicate is false. Invert it.
|
|
const AArch64CC::CondCode InvCC = changeICMPPredToAArch64CC(
|
|
CmpInst::getInversePredicate((CmpInst::Predicate)Pred));
|
|
auto I =
|
|
MIRBuilder
|
|
.buildInstr(AArch64::CSINCWr, {DefReg}, {Register(AArch64::WZR), Register(AArch64::WZR)})
|
|
.addImm(InvCC);
|
|
constrainSelectedInstRegOperands(*I, TII, TRI, RBI);
|
|
return &*I;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::tryOptSelect(MachineInstr &I) const {
|
|
MachineIRBuilder MIB(I);
|
|
MachineRegisterInfo &MRI = *MIB.getMRI();
|
|
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
|
|
|
|
// We want to recognize this pattern:
|
|
//
|
|
// $z = G_FCMP pred, $x, $y
|
|
// ...
|
|
// $w = G_SELECT $z, $a, $b
|
|
//
|
|
// Where the value of $z is *only* ever used by the G_SELECT (possibly with
|
|
// some copies/truncs in between.)
|
|
//
|
|
// If we see this, then we can emit something like this:
|
|
//
|
|
// fcmp $x, $y
|
|
// fcsel $w, $a, $b, pred
|
|
//
|
|
// Rather than emitting both of the rather long sequences in the standard
|
|
// G_FCMP/G_SELECT select methods.
|
|
|
|
// First, check if the condition is defined by a compare.
|
|
MachineInstr *CondDef = MRI.getVRegDef(I.getOperand(1).getReg());
|
|
while (CondDef) {
|
|
// We can only fold if all of the defs have one use.
|
|
Register CondDefReg = CondDef->getOperand(0).getReg();
|
|
if (!MRI.hasOneUse(CondDefReg)) {
|
|
// Unless it's another select.
|
|
for (auto UI = MRI.use_instr_begin(CondDefReg), UE = MRI.use_instr_end();
|
|
UI != UE; ++UI) {
|
|
if (CondDef == &*UI)
|
|
continue;
|
|
if (UI->getOpcode() != TargetOpcode::G_SELECT)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We can skip over G_TRUNC since the condition is 1-bit.
|
|
// Truncating/extending can have no impact on the value.
|
|
unsigned Opc = CondDef->getOpcode();
|
|
if (Opc != TargetOpcode::COPY && Opc != TargetOpcode::G_TRUNC)
|
|
break;
|
|
|
|
// Can't see past copies from physregs.
|
|
if (Opc == TargetOpcode::COPY &&
|
|
Register::isPhysicalRegister(CondDef->getOperand(1).getReg()))
|
|
return false;
|
|
|
|
CondDef = MRI.getVRegDef(CondDef->getOperand(1).getReg());
|
|
}
|
|
|
|
// Is the condition defined by a compare?
|
|
if (!CondDef)
|
|
return false;
|
|
|
|
unsigned CondOpc = CondDef->getOpcode();
|
|
if (CondOpc != TargetOpcode::G_ICMP && CondOpc != TargetOpcode::G_FCMP)
|
|
return false;
|
|
|
|
AArch64CC::CondCode CondCode;
|
|
if (CondOpc == TargetOpcode::G_ICMP) {
|
|
CondCode = changeICMPPredToAArch64CC(
|
|
(CmpInst::Predicate)CondDef->getOperand(1).getPredicate());
|
|
if (!emitIntegerCompare(CondDef->getOperand(2), CondDef->getOperand(3),
|
|
CondDef->getOperand(1), MIB)) {
|
|
LLVM_DEBUG(dbgs() << "Couldn't emit compare for select!\n");
|
|
return false;
|
|
}
|
|
} else {
|
|
// Get the condition code for the select.
|
|
AArch64CC::CondCode CondCode2;
|
|
changeFCMPPredToAArch64CC(
|
|
(CmpInst::Predicate)CondDef->getOperand(1).getPredicate(), CondCode,
|
|
CondCode2);
|
|
|
|
// changeFCMPPredToAArch64CC sets CondCode2 to AL when we require two
|
|
// instructions to emit the comparison.
|
|
// TODO: Handle FCMP_UEQ and FCMP_ONE. After that, this check will be
|
|
// unnecessary.
|
|
if (CondCode2 != AArch64CC::AL)
|
|
return false;
|
|
|
|
// Make sure we'll be able to select the compare.
|
|
unsigned CmpOpc = selectFCMPOpc(*CondDef, MRI);
|
|
if (!CmpOpc)
|
|
return false;
|
|
|
|
// Emit a new compare.
|
|
auto Cmp = MIB.buildInstr(CmpOpc, {}, {CondDef->getOperand(2).getReg()});
|
|
if (CmpOpc != AArch64::FCMPSri && CmpOpc != AArch64::FCMPDri)
|
|
Cmp.addUse(CondDef->getOperand(3).getReg());
|
|
constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
|
|
}
|
|
|
|
// Emit the select.
|
|
unsigned CSelOpc = selectSelectOpc(I, MRI, RBI);
|
|
auto CSel =
|
|
MIB.buildInstr(CSelOpc, {I.getOperand(0).getReg()},
|
|
{I.getOperand(2).getReg(), I.getOperand(3).getReg()})
|
|
.addImm(CondCode);
|
|
constrainSelectedInstRegOperands(*CSel, TII, TRI, RBI);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
MachineInstr *AArch64InstructionSelector::tryFoldIntegerCompare(
|
|
MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
|
|
MachineIRBuilder &MIRBuilder) const {
|
|
assert(LHS.isReg() && RHS.isReg() && Predicate.isPredicate() &&
|
|
"Unexpected MachineOperand");
|
|
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
|
|
// We want to find this sort of thing:
|
|
// x = G_SUB 0, y
|
|
// G_ICMP z, x
|
|
//
|
|
// In this case, we can fold the G_SUB into the G_ICMP using a CMN instead.
|
|
// e.g:
|
|
//
|
|
// cmn z, y
|
|
|
|
// Helper lambda to detect the subtract followed by the compare.
|
|
// Takes in the def of the LHS or RHS, and checks if it's a subtract from 0.
|
|
auto IsCMN = [&](MachineInstr *DefMI, const AArch64CC::CondCode &CC) {
|
|
if (!DefMI || DefMI->getOpcode() != TargetOpcode::G_SUB)
|
|
return false;
|
|
|
|
// Need to make sure NZCV is the same at the end of the transformation.
|
|
if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
|
|
return false;
|
|
|
|
// We want to match against SUBs.
|
|
if (DefMI->getOpcode() != TargetOpcode::G_SUB)
|
|
return false;
|
|
|
|
// Make sure that we're getting
|
|
// x = G_SUB 0, y
|
|
auto ValAndVReg =
|
|
getConstantVRegValWithLookThrough(DefMI->getOperand(1).getReg(), MRI);
|
|
if (!ValAndVReg || ValAndVReg->Value != 0)
|
|
return false;
|
|
|
|
// This can safely be represented as a CMN.
|
|
return true;
|
|
};
|
|
|
|
// Check if the RHS or LHS of the G_ICMP is defined by a SUB
|
|
MachineInstr *LHSDef = getDefIgnoringCopies(LHS.getReg(), MRI);
|
|
MachineInstr *RHSDef = getDefIgnoringCopies(RHS.getReg(), MRI);
|
|
CmpInst::Predicate P = (CmpInst::Predicate)Predicate.getPredicate();
|
|
const AArch64CC::CondCode CC = changeICMPPredToAArch64CC(P);
|
|
|
|
// Given this:
|
|
//
|
|
// x = G_SUB 0, y
|
|
// G_ICMP x, z
|
|
//
|
|
// Produce this:
|
|
//
|
|
// cmn y, z
|
|
if (IsCMN(LHSDef, CC))
|
|
return emitCMN(LHSDef->getOperand(2), RHS, MIRBuilder);
|
|
|
|
// Same idea here, but with the RHS of the compare instead:
|
|
//
|
|
// Given this:
|
|
//
|
|
// x = G_SUB 0, y
|
|
// G_ICMP z, x
|
|
//
|
|
// Produce this:
|
|
//
|
|
// cmn z, y
|
|
if (IsCMN(RHSDef, CC))
|
|
return emitCMN(LHS, RHSDef->getOperand(2), MIRBuilder);
|
|
|
|
// Given this:
|
|
//
|
|
// z = G_AND x, y
|
|
// G_ICMP z, 0
|
|
//
|
|
// Produce this if the compare is signed:
|
|
//
|
|
// tst x, y
|
|
if (!isUnsignedICMPPred(P) && LHSDef &&
|
|
LHSDef->getOpcode() == TargetOpcode::G_AND) {
|
|
// Make sure that the RHS is 0.
|
|
auto ValAndVReg = getConstantVRegValWithLookThrough(RHS.getReg(), MRI);
|
|
if (!ValAndVReg || ValAndVReg->Value != 0)
|
|
return nullptr;
|
|
|
|
return emitTST(LHSDef->getOperand(1).getReg(),
|
|
LHSDef->getOperand(2).getReg(), MIRBuilder);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::tryOptVectorDup(MachineInstr &I) const {
|
|
// Try to match a vector splat operation into a dup instruction.
|
|
// We're looking for this pattern:
|
|
// %scalar:gpr(s64) = COPY $x0
|
|
// %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF
|
|
// %cst0:gpr(s32) = G_CONSTANT i32 0
|
|
// %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32)
|
|
// %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32)
|
|
// %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef,
|
|
// %zerovec(<2 x s32>)
|
|
//
|
|
// ...into:
|
|
// %splat = DUP %scalar
|
|
// We use the regbank of the scalar to determine which kind of dup to use.
|
|
MachineIRBuilder MIB(I);
|
|
MachineRegisterInfo &MRI = *MIB.getMRI();
|
|
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
|
|
using namespace TargetOpcode;
|
|
using namespace MIPatternMatch;
|
|
|
|
// Begin matching the insert.
|
|
auto *InsMI =
|
|
getOpcodeDef(G_INSERT_VECTOR_ELT, I.getOperand(1).getReg(), MRI);
|
|
if (!InsMI)
|
|
return false;
|
|
// Match the undef vector operand.
|
|
auto *UndefMI =
|
|
getOpcodeDef(G_IMPLICIT_DEF, InsMI->getOperand(1).getReg(), MRI);
|
|
if (!UndefMI)
|
|
return false;
|
|
// Match the scalar being splatted.
|
|
Register ScalarReg = InsMI->getOperand(2).getReg();
|
|
const RegisterBank *ScalarRB = RBI.getRegBank(ScalarReg, MRI, TRI);
|
|
// Match the index constant 0.
|
|
int64_t Index = 0;
|
|
if (!mi_match(InsMI->getOperand(3).getReg(), MRI, m_ICst(Index)) || Index)
|
|
return false;
|
|
|
|
// The shuffle's second operand doesn't matter if the mask is all zero.
|
|
ArrayRef<int> Mask = I.getOperand(3).getShuffleMask();
|
|
if (!all_of(Mask, [](int Elem) { return Elem == 0; }))
|
|
return false;
|
|
|
|
// We're done, now find out what kind of splat we need.
|
|
LLT VecTy = MRI.getType(I.getOperand(0).getReg());
|
|
LLT EltTy = VecTy.getElementType();
|
|
if (EltTy.getSizeInBits() < 32) {
|
|
LLVM_DEBUG(dbgs() << "Could not optimize splat pattern < 32b elts yet");
|
|
return false;
|
|
}
|
|
bool IsFP = ScalarRB->getID() == AArch64::FPRRegBankID;
|
|
unsigned Opc = 0;
|
|
if (IsFP) {
|
|
switch (EltTy.getSizeInBits()) {
|
|
case 32:
|
|
if (VecTy.getNumElements() == 2) {
|
|
Opc = AArch64::DUPv2i32lane;
|
|
} else {
|
|
Opc = AArch64::DUPv4i32lane;
|
|
assert(VecTy.getNumElements() == 4);
|
|
}
|
|
break;
|
|
case 64:
|
|
assert(VecTy.getNumElements() == 2 && "Unexpected num elts");
|
|
Opc = AArch64::DUPv2i64lane;
|
|
break;
|
|
}
|
|
} else {
|
|
switch (EltTy.getSizeInBits()) {
|
|
case 32:
|
|
if (VecTy.getNumElements() == 2) {
|
|
Opc = AArch64::DUPv2i32gpr;
|
|
} else {
|
|
Opc = AArch64::DUPv4i32gpr;
|
|
assert(VecTy.getNumElements() == 4);
|
|
}
|
|
break;
|
|
case 64:
|
|
assert(VecTy.getNumElements() == 2 && "Unexpected num elts");
|
|
Opc = AArch64::DUPv2i64gpr;
|
|
break;
|
|
}
|
|
}
|
|
assert(Opc && "Did not compute an opcode for a dup");
|
|
|
|
// For FP splats, we need to widen the scalar reg via undef too.
|
|
if (IsFP) {
|
|
MachineInstr *Widen = emitScalarToVector(
|
|
EltTy.getSizeInBits(), &AArch64::FPR128RegClass, ScalarReg, MIB);
|
|
if (!Widen)
|
|
return false;
|
|
ScalarReg = Widen->getOperand(0).getReg();
|
|
}
|
|
auto Dup = MIB.buildInstr(Opc, {I.getOperand(0).getReg()}, {ScalarReg});
|
|
if (IsFP)
|
|
Dup.addImm(0);
|
|
constrainSelectedInstRegOperands(*Dup, TII, TRI, RBI);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::tryOptVectorShuffle(MachineInstr &I) const {
|
|
if (TM.getOptLevel() == CodeGenOpt::None)
|
|
return false;
|
|
if (tryOptVectorDup(I))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectShuffleVector(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) const {
|
|
if (tryOptVectorShuffle(I))
|
|
return true;
|
|
const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
|
|
Register Src1Reg = I.getOperand(1).getReg();
|
|
const LLT Src1Ty = MRI.getType(Src1Reg);
|
|
Register Src2Reg = I.getOperand(2).getReg();
|
|
const LLT Src2Ty = MRI.getType(Src2Reg);
|
|
ArrayRef<int> Mask = I.getOperand(3).getShuffleMask();
|
|
|
|
MachineBasicBlock &MBB = *I.getParent();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
LLVMContext &Ctx = MF.getFunction().getContext();
|
|
|
|
// G_SHUFFLE_VECTOR is weird in that the source operands can be scalars, if
|
|
// it's originated from a <1 x T> type. Those should have been lowered into
|
|
// G_BUILD_VECTOR earlier.
|
|
if (!Src1Ty.isVector() || !Src2Ty.isVector()) {
|
|
LLVM_DEBUG(dbgs() << "Could not select a \"scalar\" G_SHUFFLE_VECTOR\n");
|
|
return false;
|
|
}
|
|
|
|
unsigned BytesPerElt = DstTy.getElementType().getSizeInBits() / 8;
|
|
|
|
SmallVector<Constant *, 64> CstIdxs;
|
|
for (int Val : Mask) {
|
|
// For now, any undef indexes we'll just assume to be 0. This should be
|
|
// optimized in future, e.g. to select DUP etc.
|
|
Val = Val < 0 ? 0 : Val;
|
|
for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
|
|
unsigned Offset = Byte + Val * BytesPerElt;
|
|
CstIdxs.emplace_back(ConstantInt::get(Type::getInt8Ty(Ctx), Offset));
|
|
}
|
|
}
|
|
|
|
MachineIRBuilder MIRBuilder(I);
|
|
|
|
// Use a constant pool to load the index vector for TBL.
|
|
Constant *CPVal = ConstantVector::get(CstIdxs);
|
|
MachineInstr *IndexLoad = emitLoadFromConstantPool(CPVal, MIRBuilder);
|
|
if (!IndexLoad) {
|
|
LLVM_DEBUG(dbgs() << "Could not load from a constant pool");
|
|
return false;
|
|
}
|
|
|
|
if (DstTy.getSizeInBits() != 128) {
|
|
assert(DstTy.getSizeInBits() == 64 && "Unexpected shuffle result ty");
|
|
// This case can be done with TBL1.
|
|
MachineInstr *Concat = emitVectorConcat(None, Src1Reg, Src2Reg, MIRBuilder);
|
|
if (!Concat) {
|
|
LLVM_DEBUG(dbgs() << "Could not do vector concat for tbl1");
|
|
return false;
|
|
}
|
|
|
|
// The constant pool load will be 64 bits, so need to convert to FPR128 reg.
|
|
IndexLoad =
|
|
emitScalarToVector(64, &AArch64::FPR128RegClass,
|
|
IndexLoad->getOperand(0).getReg(), MIRBuilder);
|
|
|
|
auto TBL1 = MIRBuilder.buildInstr(
|
|
AArch64::TBLv16i8One, {&AArch64::FPR128RegClass},
|
|
{Concat->getOperand(0).getReg(), IndexLoad->getOperand(0).getReg()});
|
|
constrainSelectedInstRegOperands(*TBL1, TII, TRI, RBI);
|
|
|
|
auto Copy =
|
|
MIRBuilder
|
|
.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
|
|
.addReg(TBL1.getReg(0), 0, AArch64::dsub);
|
|
RBI.constrainGenericRegister(Copy.getReg(0), AArch64::FPR64RegClass, MRI);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
// For TBL2 we need to emit a REG_SEQUENCE to tie together two consecutive
|
|
// Q registers for regalloc.
|
|
auto RegSeq = MIRBuilder
|
|
.buildInstr(TargetOpcode::REG_SEQUENCE,
|
|
{&AArch64::QQRegClass}, {Src1Reg})
|
|
.addImm(AArch64::qsub0)
|
|
.addUse(Src2Reg)
|
|
.addImm(AArch64::qsub1);
|
|
|
|
auto TBL2 = MIRBuilder.buildInstr(AArch64::TBLv16i8Two, {I.getOperand(0)},
|
|
{RegSeq, IndexLoad->getOperand(0)});
|
|
constrainSelectedInstRegOperands(*RegSeq, TII, TRI, RBI);
|
|
constrainSelectedInstRegOperands(*TBL2, TII, TRI, RBI);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
MachineInstr *AArch64InstructionSelector::emitLaneInsert(
|
|
Optional<Register> DstReg, Register SrcReg, Register EltReg,
|
|
unsigned LaneIdx, const RegisterBank &RB,
|
|
MachineIRBuilder &MIRBuilder) const {
|
|
MachineInstr *InsElt = nullptr;
|
|
const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
|
|
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
|
|
|
|
// Create a register to define with the insert if one wasn't passed in.
|
|
if (!DstReg)
|
|
DstReg = MRI.createVirtualRegister(DstRC);
|
|
|
|
unsigned EltSize = MRI.getType(EltReg).getSizeInBits();
|
|
unsigned Opc = getInsertVecEltOpInfo(RB, EltSize).first;
|
|
|
|
if (RB.getID() == AArch64::FPRRegBankID) {
|
|
auto InsSub = emitScalarToVector(EltSize, DstRC, EltReg, MIRBuilder);
|
|
InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
|
|
.addImm(LaneIdx)
|
|
.addUse(InsSub->getOperand(0).getReg())
|
|
.addImm(0);
|
|
} else {
|
|
InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
|
|
.addImm(LaneIdx)
|
|
.addUse(EltReg);
|
|
}
|
|
|
|
constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
|
|
return InsElt;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectInsertElt(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) const {
|
|
assert(I.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT);
|
|
|
|
// Get information on the destination.
|
|
Register DstReg = I.getOperand(0).getReg();
|
|
const LLT DstTy = MRI.getType(DstReg);
|
|
unsigned VecSize = DstTy.getSizeInBits();
|
|
|
|
// Get information on the element we want to insert into the destination.
|
|
Register EltReg = I.getOperand(2).getReg();
|
|
const LLT EltTy = MRI.getType(EltReg);
|
|
unsigned EltSize = EltTy.getSizeInBits();
|
|
if (EltSize < 16 || EltSize > 64)
|
|
return false; // Don't support all element types yet.
|
|
|
|
// Find the definition of the index. Bail out if it's not defined by a
|
|
// G_CONSTANT.
|
|
Register IdxReg = I.getOperand(3).getReg();
|
|
auto VRegAndVal = getConstantVRegValWithLookThrough(IdxReg, MRI);
|
|
if (!VRegAndVal)
|
|
return false;
|
|
unsigned LaneIdx = VRegAndVal->Value;
|
|
|
|
// Perform the lane insert.
|
|
Register SrcReg = I.getOperand(1).getReg();
|
|
const RegisterBank &EltRB = *RBI.getRegBank(EltReg, MRI, TRI);
|
|
MachineIRBuilder MIRBuilder(I);
|
|
|
|
if (VecSize < 128) {
|
|
// If the vector we're inserting into is smaller than 128 bits, widen it
|
|
// to 128 to do the insert.
|
|
MachineInstr *ScalarToVec = emitScalarToVector(
|
|
VecSize, &AArch64::FPR128RegClass, SrcReg, MIRBuilder);
|
|
if (!ScalarToVec)
|
|
return false;
|
|
SrcReg = ScalarToVec->getOperand(0).getReg();
|
|
}
|
|
|
|
// Create an insert into a new FPR128 register.
|
|
// Note that if our vector is already 128 bits, we end up emitting an extra
|
|
// register.
|
|
MachineInstr *InsMI =
|
|
emitLaneInsert(None, SrcReg, EltReg, LaneIdx, EltRB, MIRBuilder);
|
|
|
|
if (VecSize < 128) {
|
|
// If we had to widen to perform the insert, then we have to demote back to
|
|
// the original size to get the result we want.
|
|
Register DemoteVec = InsMI->getOperand(0).getReg();
|
|
const TargetRegisterClass *RC =
|
|
getMinClassForRegBank(*RBI.getRegBank(DemoteVec, MRI, TRI), VecSize);
|
|
if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
|
|
LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
|
|
return false;
|
|
}
|
|
unsigned SubReg = 0;
|
|
if (!getSubRegForClass(RC, TRI, SubReg))
|
|
return false;
|
|
if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
|
|
LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << VecSize
|
|
<< "\n");
|
|
return false;
|
|
}
|
|
MIRBuilder.buildInstr(TargetOpcode::COPY, {DstReg}, {})
|
|
.addReg(DemoteVec, 0, SubReg);
|
|
RBI.constrainGenericRegister(DstReg, *RC, MRI);
|
|
} else {
|
|
// No widening needed.
|
|
InsMI->getOperand(0).setReg(DstReg);
|
|
constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
|
|
}
|
|
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectBuildVector(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) const {
|
|
assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
|
|
// Until we port more of the optimized selections, for now just use a vector
|
|
// insert sequence.
|
|
const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
|
|
const LLT EltTy = MRI.getType(I.getOperand(1).getReg());
|
|
unsigned EltSize = EltTy.getSizeInBits();
|
|
if (EltSize < 16 || EltSize > 64)
|
|
return false; // Don't support all element types yet.
|
|
const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
|
|
MachineIRBuilder MIRBuilder(I);
|
|
|
|
const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
|
|
MachineInstr *ScalarToVec =
|
|
emitScalarToVector(DstTy.getElementType().getSizeInBits(), DstRC,
|
|
I.getOperand(1).getReg(), MIRBuilder);
|
|
if (!ScalarToVec)
|
|
return false;
|
|
|
|
Register DstVec = ScalarToVec->getOperand(0).getReg();
|
|
unsigned DstSize = DstTy.getSizeInBits();
|
|
|
|
// Keep track of the last MI we inserted. Later on, we might be able to save
|
|
// a copy using it.
|
|
MachineInstr *PrevMI = nullptr;
|
|
for (unsigned i = 2, e = DstSize / EltSize + 1; i < e; ++i) {
|
|
// Note that if we don't do a subregister copy, we can end up making an
|
|
// extra register.
|
|
PrevMI = &*emitLaneInsert(None, DstVec, I.getOperand(i).getReg(), i - 1, RB,
|
|
MIRBuilder);
|
|
DstVec = PrevMI->getOperand(0).getReg();
|
|
}
|
|
|
|
// If DstTy's size in bits is less than 128, then emit a subregister copy
|
|
// from DstVec to the last register we've defined.
|
|
if (DstSize < 128) {
|
|
// Force this to be FPR using the destination vector.
|
|
const TargetRegisterClass *RC =
|
|
getMinClassForRegBank(*RBI.getRegBank(DstVec, MRI, TRI), DstSize);
|
|
if (!RC)
|
|
return false;
|
|
if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
|
|
LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
|
|
return false;
|
|
}
|
|
|
|
unsigned SubReg = 0;
|
|
if (!getSubRegForClass(RC, TRI, SubReg))
|
|
return false;
|
|
if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
|
|
LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << DstSize
|
|
<< "\n");
|
|
return false;
|
|
}
|
|
|
|
Register Reg = MRI.createVirtualRegister(RC);
|
|
Register DstReg = I.getOperand(0).getReg();
|
|
|
|
MIRBuilder.buildInstr(TargetOpcode::COPY, {DstReg}, {})
|
|
.addReg(DstVec, 0, SubReg);
|
|
MachineOperand &RegOp = I.getOperand(1);
|
|
RegOp.setReg(Reg);
|
|
RBI.constrainGenericRegister(DstReg, *RC, MRI);
|
|
} else {
|
|
// We don't need a subregister copy. Save a copy by re-using the
|
|
// destination register on the final insert.
|
|
assert(PrevMI && "PrevMI was null?");
|
|
PrevMI->getOperand(0).setReg(I.getOperand(0).getReg());
|
|
constrainSelectedInstRegOperands(*PrevMI, TII, TRI, RBI);
|
|
}
|
|
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// Helper function to find an intrinsic ID on an a MachineInstr. Returns the
|
|
/// ID if it exists, and 0 otherwise.
|
|
static unsigned findIntrinsicID(MachineInstr &I) {
|
|
auto IntrinOp = find_if(I.operands(), [&](const MachineOperand &Op) {
|
|
return Op.isIntrinsicID();
|
|
});
|
|
if (IntrinOp == I.operands_end())
|
|
return 0;
|
|
return IntrinOp->getIntrinsicID();
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectIntrinsicWithSideEffects(
|
|
MachineInstr &I, MachineRegisterInfo &MRI) const {
|
|
// Find the intrinsic ID.
|
|
unsigned IntrinID = findIntrinsicID(I);
|
|
if (!IntrinID)
|
|
return false;
|
|
MachineIRBuilder MIRBuilder(I);
|
|
|
|
// Select the instruction.
|
|
switch (IntrinID) {
|
|
default:
|
|
return false;
|
|
case Intrinsic::trap:
|
|
MIRBuilder.buildInstr(AArch64::BRK, {}, {}).addImm(1);
|
|
break;
|
|
case Intrinsic::debugtrap:
|
|
if (!STI.isTargetWindows())
|
|
return false;
|
|
MIRBuilder.buildInstr(AArch64::BRK, {}, {}).addImm(0xF000);
|
|
break;
|
|
}
|
|
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::selectIntrinsic(MachineInstr &I,
|
|
MachineRegisterInfo &MRI) {
|
|
unsigned IntrinID = findIntrinsicID(I);
|
|
if (!IntrinID)
|
|
return false;
|
|
MachineIRBuilder MIRBuilder(I);
|
|
|
|
switch (IntrinID) {
|
|
default:
|
|
break;
|
|
case Intrinsic::aarch64_crypto_sha1h: {
|
|
Register DstReg = I.getOperand(0).getReg();
|
|
Register SrcReg = I.getOperand(2).getReg();
|
|
|
|
// FIXME: Should this be an assert?
|
|
if (MRI.getType(DstReg).getSizeInBits() != 32 ||
|
|
MRI.getType(SrcReg).getSizeInBits() != 32)
|
|
return false;
|
|
|
|
// The operation has to happen on FPRs. Set up some new FPR registers for
|
|
// the source and destination if they are on GPRs.
|
|
if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
|
|
SrcReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
|
|
MIRBuilder.buildCopy({SrcReg}, {I.getOperand(2)});
|
|
|
|
// Make sure the copy ends up getting constrained properly.
|
|
RBI.constrainGenericRegister(I.getOperand(2).getReg(),
|
|
AArch64::GPR32RegClass, MRI);
|
|
}
|
|
|
|
if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID)
|
|
DstReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
|
|
|
|
// Actually insert the instruction.
|
|
auto SHA1Inst = MIRBuilder.buildInstr(AArch64::SHA1Hrr, {DstReg}, {SrcReg});
|
|
constrainSelectedInstRegOperands(*SHA1Inst, TII, TRI, RBI);
|
|
|
|
// Did we create a new register for the destination?
|
|
if (DstReg != I.getOperand(0).getReg()) {
|
|
// Yep. Copy the result of the instruction back into the original
|
|
// destination.
|
|
MIRBuilder.buildCopy({I.getOperand(0)}, {DstReg});
|
|
RBI.constrainGenericRegister(I.getOperand(0).getReg(),
|
|
AArch64::GPR32RegClass, MRI);
|
|
}
|
|
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
case Intrinsic::frameaddress:
|
|
case Intrinsic::returnaddress: {
|
|
MachineFunction &MF = *I.getParent()->getParent();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
|
|
unsigned Depth = I.getOperand(2).getImm();
|
|
Register DstReg = I.getOperand(0).getReg();
|
|
RBI.constrainGenericRegister(DstReg, AArch64::GPR64RegClass, MRI);
|
|
|
|
if (Depth == 0 && IntrinID == Intrinsic::returnaddress) {
|
|
if (MFReturnAddr) {
|
|
MIRBuilder.buildCopy({DstReg}, MFReturnAddr);
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
MFI.setReturnAddressIsTaken(true);
|
|
MF.addLiveIn(AArch64::LR, &AArch64::GPR64spRegClass);
|
|
I.getParent()->addLiveIn(AArch64::LR);
|
|
// Insert the copy from LR/X30 into the entry block, before it can be
|
|
// clobbered by anything.
|
|
MachineIRBuilder EntryBuilder(MF);
|
|
EntryBuilder.setInstr(*MF.begin()->begin());
|
|
EntryBuilder.buildCopy({DstReg}, {Register(AArch64::LR)});
|
|
MFReturnAddr = DstReg;
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
MFI.setFrameAddressIsTaken(true);
|
|
Register FrameAddr(AArch64::FP);
|
|
while (Depth--) {
|
|
Register NextFrame = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
|
|
auto Ldr =
|
|
MIRBuilder.buildInstr(AArch64::LDRXui, {NextFrame}, {FrameAddr})
|
|
.addImm(0);
|
|
constrainSelectedInstRegOperands(*Ldr, TII, TRI, RBI);
|
|
FrameAddr = NextFrame;
|
|
}
|
|
|
|
if (IntrinID == Intrinsic::frameaddress)
|
|
MIRBuilder.buildCopy({DstReg}, {FrameAddr});
|
|
else {
|
|
MFI.setReturnAddressIsTaken(true);
|
|
MIRBuilder.buildInstr(AArch64::LDRXui, {DstReg}, {FrameAddr}).addImm(1);
|
|
}
|
|
|
|
I.eraseFromParent();
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static Optional<uint64_t> getImmedFromMO(const MachineOperand &Root) {
|
|
auto &MI = *Root.getParent();
|
|
auto &MBB = *MI.getParent();
|
|
auto &MF = *MBB.getParent();
|
|
auto &MRI = MF.getRegInfo();
|
|
uint64_t Immed;
|
|
if (Root.isImm())
|
|
Immed = Root.getImm();
|
|
else if (Root.isCImm())
|
|
Immed = Root.getCImm()->getZExtValue();
|
|
else if (Root.isReg()) {
|
|
auto ValAndVReg =
|
|
getConstantVRegValWithLookThrough(Root.getReg(), MRI, true);
|
|
if (!ValAndVReg)
|
|
return None;
|
|
Immed = ValAndVReg->Value;
|
|
} else
|
|
return None;
|
|
return Immed;
|
|
}
|
|
|
|
InstructionSelector::ComplexRendererFns
|
|
AArch64InstructionSelector::selectShiftA_32(const MachineOperand &Root) const {
|
|
auto MaybeImmed = getImmedFromMO(Root);
|
|
if (MaybeImmed == None || *MaybeImmed > 31)
|
|
return None;
|
|
uint64_t Enc = (32 - *MaybeImmed) & 0x1f;
|
|
return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
|
|
}
|
|
|
|
InstructionSelector::ComplexRendererFns
|
|
AArch64InstructionSelector::selectShiftB_32(const MachineOperand &Root) const {
|
|
auto MaybeImmed = getImmedFromMO(Root);
|
|
if (MaybeImmed == None || *MaybeImmed > 31)
|
|
return None;
|
|
uint64_t Enc = 31 - *MaybeImmed;
|
|
return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
|
|
}
|
|
|
|
InstructionSelector::ComplexRendererFns
|
|
AArch64InstructionSelector::selectShiftA_64(const MachineOperand &Root) const {
|
|
auto MaybeImmed = getImmedFromMO(Root);
|
|
if (MaybeImmed == None || *MaybeImmed > 63)
|
|
return None;
|
|
uint64_t Enc = (64 - *MaybeImmed) & 0x3f;
|
|
return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
|
|
}
|
|
|
|
InstructionSelector::ComplexRendererFns
|
|
AArch64InstructionSelector::selectShiftB_64(const MachineOperand &Root) const {
|
|
auto MaybeImmed = getImmedFromMO(Root);
|
|
if (MaybeImmed == None || *MaybeImmed > 63)
|
|
return None;
|
|
uint64_t Enc = 63 - *MaybeImmed;
|
|
return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
|
|
}
|
|
|
|
/// Helper to select an immediate value that can be represented as a 12-bit
|
|
/// value shifted left by either 0 or 12. If it is possible to do so, return
|
|
/// the immediate and shift value. If not, return None.
|
|
///
|
|
/// Used by selectArithImmed and selectNegArithImmed.
|
|
InstructionSelector::ComplexRendererFns
|
|
AArch64InstructionSelector::select12BitValueWithLeftShift(
|
|
uint64_t Immed) const {
|
|
unsigned ShiftAmt;
|
|
if (Immed >> 12 == 0) {
|
|
ShiftAmt = 0;
|
|
} else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
|
|
ShiftAmt = 12;
|
|
Immed = Immed >> 12;
|
|
} else
|
|
return None;
|
|
|
|
unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
|
|
return {{
|
|
[=](MachineInstrBuilder &MIB) { MIB.addImm(Immed); },
|
|
[=](MachineInstrBuilder &MIB) { MIB.addImm(ShVal); },
|
|
}};
|
|
}
|
|
|
|
/// SelectArithImmed - Select an immediate value that can be represented as
|
|
/// a 12-bit value shifted left by either 0 or 12. If so, return true with
|
|
/// Val set to the 12-bit value and Shift set to the shifter operand.
|
|
InstructionSelector::ComplexRendererFns
|
|
AArch64InstructionSelector::selectArithImmed(MachineOperand &Root) const {
|
|
// This function is called from the addsub_shifted_imm ComplexPattern,
|
|
// which lists [imm] as the list of opcode it's interested in, however
|
|
// we still need to check whether the operand is actually an immediate
|
|
// here because the ComplexPattern opcode list is only used in
|
|
// root-level opcode matching.
|
|
auto MaybeImmed = getImmedFromMO(Root);
|
|
if (MaybeImmed == None)
|
|
return None;
|
|
return select12BitValueWithLeftShift(*MaybeImmed);
|
|
}
|
|
|
|
/// SelectNegArithImmed - As above, but negates the value before trying to
|
|
/// select it.
|
|
InstructionSelector::ComplexRendererFns
|
|
AArch64InstructionSelector::selectNegArithImmed(MachineOperand &Root) const {
|
|
// We need a register here, because we need to know if we have a 64 or 32
|
|
// bit immediate.
|
|
if (!Root.isReg())
|
|
return None;
|
|
auto MaybeImmed = getImmedFromMO(Root);
|
|
if (MaybeImmed == None)
|
|
return None;
|
|
uint64_t Immed = *MaybeImmed;
|
|
|
|
// This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
|
|
// have the opposite effect on the C flag, so this pattern mustn't match under
|
|
// those circumstances.
|
|
if (Immed == 0)
|
|
return None;
|
|
|
|
// Check if we're dealing with a 32-bit type on the root or a 64-bit type on
|
|
// the root.
|
|
MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
|
|
if (MRI.getType(Root.getReg()).getSizeInBits() == 32)
|
|
Immed = ~((uint32_t)Immed) + 1;
|
|
else
|
|
Immed = ~Immed + 1ULL;
|
|
|
|
if (Immed & 0xFFFFFFFFFF000000ULL)
|
|
return None;
|
|
|
|
Immed &= 0xFFFFFFULL;
|
|
return select12BitValueWithLeftShift(Immed);
|
|
}
|
|
|
|
/// Return true if it is worth folding MI into an extended register. That is,
|
|
/// if it's safe to pull it into the addressing mode of a load or store as a
|
|
/// shift.
|
|
bool AArch64InstructionSelector::isWorthFoldingIntoExtendedReg(
|
|
MachineInstr &MI, const MachineRegisterInfo &MRI) const {
|
|
// Always fold if there is one use, or if we're optimizing for size.
|
|
Register DefReg = MI.getOperand(0).getReg();
|
|
if (MRI.hasOneUse(DefReg) ||
|
|
MI.getParent()->getParent()->getFunction().hasMinSize())
|
|
return true;
|
|
|
|
// It's better to avoid folding and recomputing shifts when we don't have a
|
|
// fastpath.
|
|
if (!STI.hasLSLFast())
|
|
return false;
|
|
|
|
// We have a fastpath, so folding a shift in and potentially computing it
|
|
// many times may be beneficial. Check if this is only used in memory ops.
|
|
// If it is, then we should fold.
|
|
return all_of(MRI.use_instructions(DefReg),
|
|
[](MachineInstr &Use) { return Use.mayLoadOrStore(); });
|
|
}
|
|
|
|
InstructionSelector::ComplexRendererFns
|
|
AArch64InstructionSelector::selectExtendedSHL(
|
|
MachineOperand &Root, MachineOperand &Base, MachineOperand &Offset,
|
|
unsigned SizeInBytes, bool WantsExt) const {
|
|
assert(Base.isReg() && "Expected base to be a register operand");
|
|
assert(Offset.isReg() && "Expected offset to be a register operand");
|
|
|
|
MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
|
|
MachineInstr *OffsetInst = MRI.getVRegDef(Offset.getReg());
|
|
if (!OffsetInst)
|
|
return None;
|
|
|
|
unsigned OffsetOpc = OffsetInst->getOpcode();
|
|
if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL)
|
|
return None;
|
|
|
|
// Make sure that the memory op is a valid size.
|
|
int64_t LegalShiftVal = Log2_32(SizeInBytes);
|
|
if (LegalShiftVal == 0)
|
|
return None;
|
|
if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI))
|
|
return None;
|
|
|
|
// Now, try to find the specific G_CONSTANT. Start by assuming that the
|
|
// register we will offset is the LHS, and the register containing the
|
|
// constant is the RHS.
|
|
Register OffsetReg = OffsetInst->getOperand(1).getReg();
|
|
Register ConstantReg = OffsetInst->getOperand(2).getReg();
|
|
auto ValAndVReg = getConstantVRegValWithLookThrough(ConstantReg, MRI);
|
|
if (!ValAndVReg) {
|
|
// We didn't get a constant on the RHS. If the opcode is a shift, then
|
|
// we're done.
|
|
if (OffsetOpc == TargetOpcode::G_SHL)
|
|
return None;
|
|
|
|
// If we have a G_MUL, we can use either register. Try looking at the RHS.
|
|
std::swap(OffsetReg, ConstantReg);
|
|
ValAndVReg = getConstantVRegValWithLookThrough(ConstantReg, MRI);
|
|
if (!ValAndVReg)
|
|
return None;
|
|
}
|
|
|
|
// The value must fit into 3 bits, and must be positive. Make sure that is
|
|
// true.
|
|
int64_t ImmVal = ValAndVReg->Value;
|
|
|
|
// Since we're going to pull this into a shift, the constant value must be
|
|
// a power of 2. If we got a multiply, then we need to check this.
|
|
if (OffsetOpc == TargetOpcode::G_MUL) {
|
|
if (!isPowerOf2_32(ImmVal))
|
|
return None;
|
|
|
|
// Got a power of 2. So, the amount we'll shift is the log base-2 of that.
|
|
ImmVal = Log2_32(ImmVal);
|
|
}
|
|
|
|
if ((ImmVal & 0x7) != ImmVal)
|
|
return None;
|
|
|
|
// We are only allowed to shift by LegalShiftVal. This shift value is built
|
|
// into the instruction, so we can't just use whatever we want.
|
|
if (ImmVal != LegalShiftVal)
|
|
return None;
|
|
|
|
unsigned SignExtend = 0;
|
|
if (WantsExt) {
|
|
// Check if the offset is defined by an extend.
|
|
MachineInstr *ExtInst = getDefIgnoringCopies(OffsetReg, MRI);
|
|
auto Ext = getExtendTypeForInst(*ExtInst, MRI, true);
|
|
if (Ext == AArch64_AM::InvalidShiftExtend)
|
|
return None;
|
|
|
|
SignExtend = Ext == AArch64_AM::SXTW;
|
|
|
|
// Need a 32-bit wide register here.
|
|
MachineIRBuilder MIB(*MRI.getVRegDef(Root.getReg()));
|
|
OffsetReg = ExtInst->getOperand(1).getReg();
|
|
OffsetReg = narrowExtendRegIfNeeded(OffsetReg, MIB);
|
|
}
|
|
|
|
// We can use the LHS of the GEP as the base, and the LHS of the shift as an
|
|
// offset. Signify that we are shifting by setting the shift flag to 1.
|
|
return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(Base.getReg()); },
|
|
[=](MachineInstrBuilder &MIB) { MIB.addUse(OffsetReg); },
|
|
[=](MachineInstrBuilder &MIB) {
|
|
// Need to add both immediates here to make sure that they are both
|
|
// added to the instruction.
|
|
MIB.addImm(SignExtend);
|
|
MIB.addImm(1);
|
|
}}};
|
|
}
|
|
|
|
/// This is used for computing addresses like this:
|
|
///
|
|
/// ldr x1, [x2, x3, lsl #3]
|
|
///
|
|
/// Where x2 is the base register, and x3 is an offset register. The shift-left
|
|
/// is a constant value specific to this load instruction. That is, we'll never
|
|
/// see anything other than a 3 here (which corresponds to the size of the
|
|
/// element being loaded.)
|
|
InstructionSelector::ComplexRendererFns
|
|
AArch64InstructionSelector::selectAddrModeShiftedExtendXReg(
|
|
MachineOperand &Root, unsigned SizeInBytes) const {
|
|
if (!Root.isReg())
|
|
return None;
|
|
MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
|
|
|
|
// We want to find something like this:
|
|
//
|
|
// val = G_CONSTANT LegalShiftVal
|
|
// shift = G_SHL off_reg val
|
|
// ptr = G_PTR_ADD base_reg shift
|
|
// x = G_LOAD ptr
|
|
//
|
|
// And fold it into this addressing mode:
|
|
//
|
|
// ldr x, [base_reg, off_reg, lsl #LegalShiftVal]
|
|
|
|
// Check if we can find the G_PTR_ADD.
|
|
MachineInstr *PtrAdd =
|
|
getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
|
|
if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI))
|
|
return None;
|
|
|
|
// Now, try to match an opcode which will match our specific offset.
|
|
// We want a G_SHL or a G_MUL.
|
|
MachineInstr *OffsetInst =
|
|
getDefIgnoringCopies(PtrAdd->getOperand(2).getReg(), MRI);
|
|
return selectExtendedSHL(Root, PtrAdd->getOperand(1),
|
|
OffsetInst->getOperand(0), SizeInBytes,
|
|
/*WantsExt=*/false);
|
|
}
|
|
|
|
/// This is used for computing addresses like this:
|
|
///
|
|
/// ldr x1, [x2, x3]
|
|
///
|
|
/// Where x2 is the base register, and x3 is an offset register.
|
|
///
|
|
/// When possible (or profitable) to fold a G_PTR_ADD into the address calculation,
|
|
/// this will do so. Otherwise, it will return None.
|
|
InstructionSelector::ComplexRendererFns
|
|
AArch64InstructionSelector::selectAddrModeRegisterOffset(
|
|
MachineOperand &Root) const {
|
|
MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
|
|
|
|
// We need a GEP.
|
|
MachineInstr *Gep = MRI.getVRegDef(Root.getReg());
|
|
if (!Gep || Gep->getOpcode() != TargetOpcode::G_PTR_ADD)
|
|
return None;
|
|
|
|
// If this is used more than once, let's not bother folding.
|
|
// TODO: Check if they are memory ops. If they are, then we can still fold
|
|
// without having to recompute anything.
|
|
if (!MRI.hasOneUse(Gep->getOperand(0).getReg()))
|
|
return None;
|
|
|
|
// Base is the GEP's LHS, offset is its RHS.
|
|
return {{[=](MachineInstrBuilder &MIB) {
|
|
MIB.addUse(Gep->getOperand(1).getReg());
|
|
},
|
|
[=](MachineInstrBuilder &MIB) {
|
|
MIB.addUse(Gep->getOperand(2).getReg());
|
|
},
|
|
[=](MachineInstrBuilder &MIB) {
|
|
// Need to add both immediates here to make sure that they are both
|
|
// added to the instruction.
|
|
MIB.addImm(0);
|
|
MIB.addImm(0);
|
|
}}};
|
|
}
|
|
|
|
/// This is intended to be equivalent to selectAddrModeXRO in
|
|
/// AArch64ISelDAGtoDAG. It's used for selecting X register offset loads.
|
|
InstructionSelector::ComplexRendererFns
|
|
AArch64InstructionSelector::selectAddrModeXRO(MachineOperand &Root,
|
|
unsigned SizeInBytes) const {
|
|
MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
|
|
|
|
// If we have a constant offset, then we probably don't want to match a
|
|
// register offset.
|
|
if (isBaseWithConstantOffset(Root, MRI))
|
|
return None;
|
|
|
|
// Try to fold shifts into the addressing mode.
|
|
auto AddrModeFns = selectAddrModeShiftedExtendXReg(Root, SizeInBytes);
|
|
if (AddrModeFns)
|
|
return AddrModeFns;
|
|
|
|
// If that doesn't work, see if it's possible to fold in registers from
|
|
// a GEP.
|
|
return selectAddrModeRegisterOffset(Root);
|
|
}
|
|
|
|
/// This is used for computing addresses like this:
|
|
///
|
|
/// ldr x0, [xBase, wOffset, sxtw #LegalShiftVal]
|
|
///
|
|
/// Where we have a 64-bit base register, a 32-bit offset register, and an
|
|
/// extend (which may or may not be signed).
|
|
InstructionSelector::ComplexRendererFns
|
|
AArch64InstructionSelector::selectAddrModeWRO(MachineOperand &Root,
|
|
unsigned SizeInBytes) const {
|
|
MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
|
|
|
|
MachineInstr *PtrAdd =
|
|
getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
|
|
if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI))
|
|
return None;
|
|
|
|
MachineOperand &LHS = PtrAdd->getOperand(1);
|
|
MachineOperand &RHS = PtrAdd->getOperand(2);
|
|
MachineInstr *OffsetInst = getDefIgnoringCopies(RHS.getReg(), MRI);
|
|
|
|
// The first case is the same as selectAddrModeXRO, except we need an extend.
|
|
// In this case, we try to find a shift and extend, and fold them into the
|
|
// addressing mode.
|
|
//
|
|
// E.g.
|
|
//
|
|
// off_reg = G_Z/S/ANYEXT ext_reg
|
|
// val = G_CONSTANT LegalShiftVal
|
|
// shift = G_SHL off_reg val
|
|
// ptr = G_PTR_ADD base_reg shift
|
|
// x = G_LOAD ptr
|
|
//
|
|
// In this case we can get a load like this:
|
|
//
|
|
// ldr x0, [base_reg, ext_reg, sxtw #LegalShiftVal]
|
|
auto ExtendedShl = selectExtendedSHL(Root, LHS, OffsetInst->getOperand(0),
|
|
SizeInBytes, /*WantsExt=*/true);
|
|
if (ExtendedShl)
|
|
return ExtendedShl;
|
|
|
|
// There was no shift. We can try and fold a G_Z/S/ANYEXT in alone though.
|
|
//
|
|
// e.g.
|
|
// ldr something, [base_reg, ext_reg, sxtw]
|
|
if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI))
|
|
return None;
|
|
|
|
// Check if this is an extend. We'll get an extend type if it is.
|
|
AArch64_AM::ShiftExtendType Ext =
|
|
getExtendTypeForInst(*OffsetInst, MRI, /*IsLoadStore=*/true);
|
|
if (Ext == AArch64_AM::InvalidShiftExtend)
|
|
return None;
|
|
|
|
// Need a 32-bit wide register.
|
|
MachineIRBuilder MIB(*PtrAdd);
|
|
Register ExtReg =
|
|
narrowExtendRegIfNeeded(OffsetInst->getOperand(1).getReg(), MIB);
|
|
unsigned SignExtend = Ext == AArch64_AM::SXTW;
|
|
|
|
// Base is LHS, offset is ExtReg.
|
|
return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(LHS.getReg()); },
|
|
[=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
|
|
[=](MachineInstrBuilder &MIB) {
|
|
MIB.addImm(SignExtend);
|
|
MIB.addImm(0);
|
|
}}};
|
|
}
|
|
|
|
/// Select a "register plus unscaled signed 9-bit immediate" address. This
|
|
/// should only match when there is an offset that is not valid for a scaled
|
|
/// immediate addressing mode. The "Size" argument is the size in bytes of the
|
|
/// memory reference, which is needed here to know what is valid for a scaled
|
|
/// immediate.
|
|
InstructionSelector::ComplexRendererFns
|
|
AArch64InstructionSelector::selectAddrModeUnscaled(MachineOperand &Root,
|
|
unsigned Size) const {
|
|
MachineRegisterInfo &MRI =
|
|
Root.getParent()->getParent()->getParent()->getRegInfo();
|
|
|
|
if (!Root.isReg())
|
|
return None;
|
|
|
|
if (!isBaseWithConstantOffset(Root, MRI))
|
|
return None;
|
|
|
|
MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
|
|
if (!RootDef)
|
|
return None;
|
|
|
|
MachineOperand &OffImm = RootDef->getOperand(2);
|
|
if (!OffImm.isReg())
|
|
return None;
|
|
MachineInstr *RHS = MRI.getVRegDef(OffImm.getReg());
|
|
if (!RHS || RHS->getOpcode() != TargetOpcode::G_CONSTANT)
|
|
return None;
|
|
int64_t RHSC;
|
|
MachineOperand &RHSOp1 = RHS->getOperand(1);
|
|
if (!RHSOp1.isCImm() || RHSOp1.getCImm()->getBitWidth() > 64)
|
|
return None;
|
|
RHSC = RHSOp1.getCImm()->getSExtValue();
|
|
|
|
// If the offset is valid as a scaled immediate, don't match here.
|
|
if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Log2_32(Size)))
|
|
return None;
|
|
if (RHSC >= -256 && RHSC < 256) {
|
|
MachineOperand &Base = RootDef->getOperand(1);
|
|
return {{
|
|
[=](MachineInstrBuilder &MIB) { MIB.add(Base); },
|
|
[=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC); },
|
|
}};
|
|
}
|
|
return None;
|
|
}
|
|
|
|
/// Select a "register plus scaled unsigned 12-bit immediate" address. The
|
|
/// "Size" argument is the size in bytes of the memory reference, which
|
|
/// determines the scale.
|
|
InstructionSelector::ComplexRendererFns
|
|
AArch64InstructionSelector::selectAddrModeIndexed(MachineOperand &Root,
|
|
unsigned Size) const {
|
|
MachineRegisterInfo &MRI =
|
|
Root.getParent()->getParent()->getParent()->getRegInfo();
|
|
|
|
if (!Root.isReg())
|
|
return None;
|
|
|
|
MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
|
|
if (!RootDef)
|
|
return None;
|
|
|
|
if (RootDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
|
|
return {{
|
|
[=](MachineInstrBuilder &MIB) { MIB.add(RootDef->getOperand(1)); },
|
|
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
|
|
}};
|
|
}
|
|
|
|
if (isBaseWithConstantOffset(Root, MRI)) {
|
|
MachineOperand &LHS = RootDef->getOperand(1);
|
|
MachineOperand &RHS = RootDef->getOperand(2);
|
|
MachineInstr *LHSDef = MRI.getVRegDef(LHS.getReg());
|
|
MachineInstr *RHSDef = MRI.getVRegDef(RHS.getReg());
|
|
if (LHSDef && RHSDef) {
|
|
int64_t RHSC = (int64_t)RHSDef->getOperand(1).getCImm()->getZExtValue();
|
|
unsigned Scale = Log2_32(Size);
|
|
if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
|
|
if (LHSDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
|
|
return {{
|
|
[=](MachineInstrBuilder &MIB) { MIB.add(LHSDef->getOperand(1)); },
|
|
[=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
|
|
}};
|
|
|
|
return {{
|
|
[=](MachineInstrBuilder &MIB) { MIB.add(LHS); },
|
|
[=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
|
|
}};
|
|
}
|
|
}
|
|
}
|
|
|
|
// Before falling back to our general case, check if the unscaled
|
|
// instructions can handle this. If so, that's preferable.
|
|
if (selectAddrModeUnscaled(Root, Size).hasValue())
|
|
return None;
|
|
|
|
return {{
|
|
[=](MachineInstrBuilder &MIB) { MIB.add(Root); },
|
|
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
|
|
}};
|
|
}
|
|
|
|
/// Given a shift instruction, return the correct shift type for that
|
|
/// instruction.
|
|
static AArch64_AM::ShiftExtendType getShiftTypeForInst(MachineInstr &MI) {
|
|
// TODO: Handle AArch64_AM::ROR
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return AArch64_AM::InvalidShiftExtend;
|
|
case TargetOpcode::G_SHL:
|
|
return AArch64_AM::LSL;
|
|
case TargetOpcode::G_LSHR:
|
|
return AArch64_AM::LSR;
|
|
case TargetOpcode::G_ASHR:
|
|
return AArch64_AM::ASR;
|
|
}
|
|
}
|
|
|
|
/// Select a "shifted register" operand. If the value is not shifted, set the
|
|
/// shift operand to a default value of "lsl 0".
|
|
///
|
|
/// TODO: Allow shifted register to be rotated in logical instructions.
|
|
InstructionSelector::ComplexRendererFns
|
|
AArch64InstructionSelector::selectShiftedRegister(MachineOperand &Root) const {
|
|
if (!Root.isReg())
|
|
return None;
|
|
MachineRegisterInfo &MRI =
|
|
Root.getParent()->getParent()->getParent()->getRegInfo();
|
|
|
|
// Check if the operand is defined by an instruction which corresponds to
|
|
// a ShiftExtendType. E.g. a G_SHL, G_LSHR, etc.
|
|
//
|
|
// TODO: Handle AArch64_AM::ROR for logical instructions.
|
|
MachineInstr *ShiftInst = MRI.getVRegDef(Root.getReg());
|
|
if (!ShiftInst)
|
|
return None;
|
|
AArch64_AM::ShiftExtendType ShType = getShiftTypeForInst(*ShiftInst);
|
|
if (ShType == AArch64_AM::InvalidShiftExtend)
|
|
return None;
|
|
if (!isWorthFoldingIntoExtendedReg(*ShiftInst, MRI))
|
|
return None;
|
|
|
|
// Need an immediate on the RHS.
|
|
MachineOperand &ShiftRHS = ShiftInst->getOperand(2);
|
|
auto Immed = getImmedFromMO(ShiftRHS);
|
|
if (!Immed)
|
|
return None;
|
|
|
|
// We have something that we can fold. Fold in the shift's LHS and RHS into
|
|
// the instruction.
|
|
MachineOperand &ShiftLHS = ShiftInst->getOperand(1);
|
|
Register ShiftReg = ShiftLHS.getReg();
|
|
|
|
unsigned NumBits = MRI.getType(ShiftReg).getSizeInBits();
|
|
unsigned Val = *Immed & (NumBits - 1);
|
|
unsigned ShiftVal = AArch64_AM::getShifterImm(ShType, Val);
|
|
|
|
return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ShiftReg); },
|
|
[=](MachineInstrBuilder &MIB) { MIB.addImm(ShiftVal); }}};
|
|
}
|
|
|
|
AArch64_AM::ShiftExtendType AArch64InstructionSelector::getExtendTypeForInst(
|
|
MachineInstr &MI, MachineRegisterInfo &MRI, bool IsLoadStore) const {
|
|
unsigned Opc = MI.getOpcode();
|
|
|
|
// Handle explicit extend instructions first.
|
|
if (Opc == TargetOpcode::G_SEXT || Opc == TargetOpcode::G_SEXT_INREG) {
|
|
unsigned Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
|
|
assert(Size != 64 && "Extend from 64 bits?");
|
|
switch (Size) {
|
|
case 8:
|
|
return AArch64_AM::SXTB;
|
|
case 16:
|
|
return AArch64_AM::SXTH;
|
|
case 32:
|
|
return AArch64_AM::SXTW;
|
|
default:
|
|
return AArch64_AM::InvalidShiftExtend;
|
|
}
|
|
}
|
|
|
|
if (Opc == TargetOpcode::G_ZEXT || Opc == TargetOpcode::G_ANYEXT) {
|
|
unsigned Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
|
|
assert(Size != 64 && "Extend from 64 bits?");
|
|
switch (Size) {
|
|
case 8:
|
|
return AArch64_AM::UXTB;
|
|
case 16:
|
|
return AArch64_AM::UXTH;
|
|
case 32:
|
|
return AArch64_AM::UXTW;
|
|
default:
|
|
return AArch64_AM::InvalidShiftExtend;
|
|
}
|
|
}
|
|
|
|
// Don't have an explicit extend. Try to handle a G_AND with a constant mask
|
|
// on the RHS.
|
|
if (Opc != TargetOpcode::G_AND)
|
|
return AArch64_AM::InvalidShiftExtend;
|
|
|
|
Optional<uint64_t> MaybeAndMask = getImmedFromMO(MI.getOperand(2));
|
|
if (!MaybeAndMask)
|
|
return AArch64_AM::InvalidShiftExtend;
|
|
uint64_t AndMask = *MaybeAndMask;
|
|
switch (AndMask) {
|
|
default:
|
|
return AArch64_AM::InvalidShiftExtend;
|
|
case 0xFF:
|
|
return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
|
|
case 0xFFFF:
|
|
return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
|
|
case 0xFFFFFFFF:
|
|
return AArch64_AM::UXTW;
|
|
}
|
|
}
|
|
|
|
Register AArch64InstructionSelector::narrowExtendRegIfNeeded(
|
|
Register ExtReg, MachineIRBuilder &MIB) const {
|
|
MachineRegisterInfo &MRI = *MIB.getMRI();
|
|
if (MRI.getType(ExtReg).getSizeInBits() == 32)
|
|
return ExtReg;
|
|
|
|
// Insert a copy to move ExtReg to GPR32.
|
|
Register NarrowReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
|
|
auto Copy = MIB.buildCopy({NarrowReg}, {ExtReg});
|
|
|
|
// Select the copy into a subregister copy.
|
|
selectCopy(*Copy, TII, MRI, TRI, RBI);
|
|
return Copy.getReg(0);
|
|
}
|
|
|
|
Register AArch64InstructionSelector::widenGPRBankRegIfNeeded(
|
|
Register Reg, unsigned WideSize, MachineIRBuilder &MIB) const {
|
|
assert(WideSize >= 8 && "WideSize is smaller than all possible registers?");
|
|
MachineRegisterInfo &MRI = *MIB.getMRI();
|
|
unsigned NarrowSize = MRI.getType(Reg).getSizeInBits();
|
|
assert(WideSize >= NarrowSize &&
|
|
"WideSize cannot be smaller than NarrowSize!");
|
|
|
|
// If the sizes match, just return the register.
|
|
//
|
|
// If NarrowSize is an s1, then we can select it to any size, so we'll treat
|
|
// it as a don't care.
|
|
if (NarrowSize == WideSize || NarrowSize == 1)
|
|
return Reg;
|
|
|
|
// Now check the register classes.
|
|
const RegisterBank *RB = RBI.getRegBank(Reg, MRI, TRI);
|
|
const TargetRegisterClass *OrigRC = getMinClassForRegBank(*RB, NarrowSize);
|
|
const TargetRegisterClass *WideRC = getMinClassForRegBank(*RB, WideSize);
|
|
assert(OrigRC && "Could not determine narrow RC?");
|
|
assert(WideRC && "Could not determine wide RC?");
|
|
|
|
// If the sizes differ, but the register classes are the same, there is no
|
|
// need to insert a SUBREG_TO_REG.
|
|
//
|
|
// For example, an s8 that's supposed to be a GPR will be selected to either
|
|
// a GPR32 or a GPR64 register. Note that this assumes that the s8 will
|
|
// always end up on a GPR32.
|
|
if (OrigRC == WideRC)
|
|
return Reg;
|
|
|
|
// We have two different register classes. Insert a SUBREG_TO_REG.
|
|
unsigned SubReg = 0;
|
|
getSubRegForClass(OrigRC, TRI, SubReg);
|
|
assert(SubReg && "Couldn't determine subregister?");
|
|
|
|
// Build the SUBREG_TO_REG and return the new, widened register.
|
|
auto SubRegToReg =
|
|
MIB.buildInstr(AArch64::SUBREG_TO_REG, {WideRC}, {})
|
|
.addImm(0)
|
|
.addUse(Reg)
|
|
.addImm(SubReg);
|
|
constrainSelectedInstRegOperands(*SubRegToReg, TII, TRI, RBI);
|
|
return SubRegToReg.getReg(0);
|
|
}
|
|
|
|
/// Select an "extended register" operand. This operand folds in an extend
|
|
/// followed by an optional left shift.
|
|
InstructionSelector::ComplexRendererFns
|
|
AArch64InstructionSelector::selectArithExtendedRegister(
|
|
MachineOperand &Root) const {
|
|
if (!Root.isReg())
|
|
return None;
|
|
MachineRegisterInfo &MRI =
|
|
Root.getParent()->getParent()->getParent()->getRegInfo();
|
|
|
|
uint64_t ShiftVal = 0;
|
|
Register ExtReg;
|
|
AArch64_AM::ShiftExtendType Ext;
|
|
MachineInstr *RootDef = getDefIgnoringCopies(Root.getReg(), MRI);
|
|
if (!RootDef)
|
|
return None;
|
|
|
|
if (!isWorthFoldingIntoExtendedReg(*RootDef, MRI))
|
|
return None;
|
|
|
|
// Check if we can fold a shift and an extend.
|
|
if (RootDef->getOpcode() == TargetOpcode::G_SHL) {
|
|
// Look for a constant on the RHS of the shift.
|
|
MachineOperand &RHS = RootDef->getOperand(2);
|
|
Optional<uint64_t> MaybeShiftVal = getImmedFromMO(RHS);
|
|
if (!MaybeShiftVal)
|
|
return None;
|
|
ShiftVal = *MaybeShiftVal;
|
|
if (ShiftVal > 4)
|
|
return None;
|
|
// Look for a valid extend instruction on the LHS of the shift.
|
|
MachineOperand &LHS = RootDef->getOperand(1);
|
|
MachineInstr *ExtDef = getDefIgnoringCopies(LHS.getReg(), MRI);
|
|
if (!ExtDef)
|
|
return None;
|
|
Ext = getExtendTypeForInst(*ExtDef, MRI);
|
|
if (Ext == AArch64_AM::InvalidShiftExtend)
|
|
return None;
|
|
ExtReg = ExtDef->getOperand(1).getReg();
|
|
} else {
|
|
// Didn't get a shift. Try just folding an extend.
|
|
Ext = getExtendTypeForInst(*RootDef, MRI);
|
|
if (Ext == AArch64_AM::InvalidShiftExtend)
|
|
return None;
|
|
ExtReg = RootDef->getOperand(1).getReg();
|
|
|
|
// If we have a 32 bit instruction which zeroes out the high half of a
|
|
// register, we get an implicit zero extend for free. Check if we have one.
|
|
// FIXME: We actually emit the extend right now even though we don't have
|
|
// to.
|
|
if (Ext == AArch64_AM::UXTW && MRI.getType(ExtReg).getSizeInBits() == 32) {
|
|
MachineInstr *ExtInst = MRI.getVRegDef(ExtReg);
|
|
if (ExtInst && isDef32(*ExtInst))
|
|
return None;
|
|
}
|
|
}
|
|
|
|
// We require a GPR32 here. Narrow the ExtReg if needed using a subregister
|
|
// copy.
|
|
MachineIRBuilder MIB(*RootDef);
|
|
ExtReg = narrowExtendRegIfNeeded(ExtReg, MIB);
|
|
|
|
return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
|
|
[=](MachineInstrBuilder &MIB) {
|
|
MIB.addImm(getArithExtendImm(Ext, ShiftVal));
|
|
}}};
|
|
}
|
|
|
|
void AArch64InstructionSelector::renderTruncImm(MachineInstrBuilder &MIB,
|
|
const MachineInstr &MI,
|
|
int OpIdx) const {
|
|
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
|
|
"Expected G_CONSTANT");
|
|
Optional<int64_t> CstVal = getConstantVRegVal(MI.getOperand(0).getReg(), MRI);
|
|
assert(CstVal && "Expected constant value");
|
|
MIB.addImm(CstVal.getValue());
|
|
}
|
|
|
|
void AArch64InstructionSelector::renderLogicalImm32(
|
|
MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const {
|
|
assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
|
|
"Expected G_CONSTANT");
|
|
uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
|
|
uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 32);
|
|
MIB.addImm(Enc);
|
|
}
|
|
|
|
void AArch64InstructionSelector::renderLogicalImm64(
|
|
MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const {
|
|
assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
|
|
"Expected G_CONSTANT");
|
|
uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
|
|
uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 64);
|
|
MIB.addImm(Enc);
|
|
}
|
|
|
|
bool AArch64InstructionSelector::isLoadStoreOfNumBytes(
|
|
const MachineInstr &MI, unsigned NumBytes) const {
|
|
if (!MI.mayLoadOrStore())
|
|
return false;
|
|
assert(MI.hasOneMemOperand() &&
|
|
"Expected load/store to have only one mem op!");
|
|
return (*MI.memoperands_begin())->getSize() == NumBytes;
|
|
}
|
|
|
|
bool AArch64InstructionSelector::isDef32(const MachineInstr &MI) const {
|
|
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
if (MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() != 32)
|
|
return false;
|
|
|
|
// Only return true if we know the operation will zero-out the high half of
|
|
// the 64-bit register. Truncates can be subregister copies, which don't
|
|
// zero out the high bits. Copies and other copy-like instructions can be
|
|
// fed by truncates, or could be lowered as subregister copies.
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return true;
|
|
case TargetOpcode::COPY:
|
|
case TargetOpcode::G_BITCAST:
|
|
case TargetOpcode::G_TRUNC:
|
|
case TargetOpcode::G_PHI:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
// Perform fixups on the given PHI instruction's operands to force them all
|
|
// to be the same as the destination regbank.
|
|
static void fixupPHIOpBanks(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
const AArch64RegisterBankInfo &RBI) {
|
|
assert(MI.getOpcode() == TargetOpcode::G_PHI && "Expected a G_PHI");
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
const RegisterBank *DstRB = MRI.getRegBankOrNull(DstReg);
|
|
assert(DstRB && "Expected PHI dst to have regbank assigned");
|
|
MachineIRBuilder MIB(MI);
|
|
|
|
// Go through each operand and ensure it has the same regbank.
|
|
for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) {
|
|
MachineOperand &MO = MI.getOperand(OpIdx);
|
|
if (!MO.isReg())
|
|
continue;
|
|
Register OpReg = MO.getReg();
|
|
const RegisterBank *RB = MRI.getRegBankOrNull(OpReg);
|
|
if (RB != DstRB) {
|
|
// Insert a cross-bank copy.
|
|
auto *OpDef = MRI.getVRegDef(OpReg);
|
|
const LLT &Ty = MRI.getType(OpReg);
|
|
MIB.setInsertPt(*OpDef->getParent(), std::next(OpDef->getIterator()));
|
|
auto Copy = MIB.buildCopy(Ty, OpReg);
|
|
MRI.setRegBank(Copy.getReg(0), *DstRB);
|
|
MO.setReg(Copy.getReg(0));
|
|
}
|
|
}
|
|
}
|
|
|
|
void AArch64InstructionSelector::processPHIs(MachineFunction &MF) {
|
|
// We're looking for PHIs, build a list so we don't invalidate iterators.
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
SmallVector<MachineInstr *, 32> Phis;
|
|
for (auto &BB : MF) {
|
|
for (auto &MI : BB) {
|
|
if (MI.getOpcode() == TargetOpcode::G_PHI)
|
|
Phis.emplace_back(&MI);
|
|
}
|
|
}
|
|
|
|
for (auto *MI : Phis) {
|
|
// We need to do some work here if the operand types are < 16 bit and they
|
|
// are split across fpr/gpr banks. Since all types <32b on gpr
|
|
// end up being assigned gpr32 regclasses, we can end up with PHIs here
|
|
// which try to select between a gpr32 and an fpr16. Ideally RBS shouldn't
|
|
// be selecting heterogenous regbanks for operands if possible, but we
|
|
// still need to be able to deal with it here.
|
|
//
|
|
// To fix this, if we have a gpr-bank operand < 32b in size and at least
|
|
// one other operand is on the fpr bank, then we add cross-bank copies
|
|
// to homogenize the operand banks. For simplicity the bank that we choose
|
|
// to settle on is whatever bank the def operand has. For example:
|
|
//
|
|
// %endbb:
|
|
// %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2:fpr(s16), %bb2
|
|
// =>
|
|
// %bb2:
|
|
// ...
|
|
// %in2_copy:gpr(s16) = COPY %in2:fpr(s16)
|
|
// ...
|
|
// %endbb:
|
|
// %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2_copy:gpr(s16), %bb2
|
|
bool HasGPROp = false, HasFPROp = false;
|
|
for (unsigned OpIdx = 1; OpIdx < MI->getNumOperands(); ++OpIdx) {
|
|
const auto &MO = MI->getOperand(OpIdx);
|
|
if (!MO.isReg())
|
|
continue;
|
|
const LLT &Ty = MRI.getType(MO.getReg());
|
|
if (!Ty.isValid() || !Ty.isScalar())
|
|
break;
|
|
if (Ty.getSizeInBits() >= 32)
|
|
break;
|
|
const RegisterBank *RB = MRI.getRegBankOrNull(MO.getReg());
|
|
// If for some reason we don't have a regbank yet. Don't try anything.
|
|
if (!RB)
|
|
break;
|
|
|
|
if (RB->getID() == AArch64::GPRRegBankID)
|
|
HasGPROp = true;
|
|
else
|
|
HasFPROp = true;
|
|
}
|
|
// We have heterogenous regbanks, need to fixup.
|
|
if (HasGPROp && HasFPROp)
|
|
fixupPHIOpBanks(*MI, MRI, RBI);
|
|
}
|
|
}
|
|
|
|
namespace llvm {
|
|
InstructionSelector *
|
|
createAArch64InstructionSelector(const AArch64TargetMachine &TM,
|
|
AArch64Subtarget &Subtarget,
|
|
AArch64RegisterBankInfo &RBI) {
|
|
return new AArch64InstructionSelector(TM, Subtarget, RBI);
|
|
}
|
|
}
|