forked from OSchip/llvm-project
302 lines
12 KiB
C++
302 lines
12 KiB
C++
//===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
|
|
#include "mlir/IR/SymbolTable.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
|
|
using namespace mlir;
|
|
|
|
/// Build a symbol table with the symbols within the given operation.
|
|
SymbolTable::SymbolTable(Operation *op) : context(op->getContext()) {
|
|
assert(op->hasTrait<OpTrait::SymbolTable>() &&
|
|
"expected operation to have SymbolTable trait");
|
|
assert(op->getNumRegions() == 1 &&
|
|
"expected operation to have a single region");
|
|
|
|
for (auto &block : op->getRegion(0)) {
|
|
for (auto &op : block) {
|
|
auto nameAttr = op.getAttrOfType<StringAttr>(getSymbolAttrName());
|
|
if (!nameAttr)
|
|
continue;
|
|
|
|
auto inserted = symbolTable.insert({nameAttr.getValue(), &op});
|
|
(void)inserted;
|
|
assert(inserted.second &&
|
|
"expected region to contain uniquely named symbol operations");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Look up a symbol with the specified name, returning null if no such name
|
|
/// exists. Names never include the @ on them.
|
|
Operation *SymbolTable::lookup(StringRef name) const {
|
|
return symbolTable.lookup(name);
|
|
}
|
|
|
|
/// Erase the given symbol from the table.
|
|
void SymbolTable::erase(Operation *symbol) {
|
|
auto nameAttr = symbol->getAttrOfType<StringAttr>(getSymbolAttrName());
|
|
assert(nameAttr && "expected valid 'name' attribute");
|
|
|
|
auto it = symbolTable.find(nameAttr.getValue());
|
|
if (it != symbolTable.end() && it->second == symbol)
|
|
symbolTable.erase(it);
|
|
}
|
|
|
|
/// Insert a new symbol into the table, and rename it as necessary to avoid
|
|
/// collisions.
|
|
void SymbolTable::insert(Operation *symbol) {
|
|
auto nameAttr = symbol->getAttrOfType<StringAttr>(getSymbolAttrName());
|
|
assert(nameAttr && "expected valid 'name' attribute");
|
|
|
|
// Add this symbol to the symbol table, uniquing the name if a conflict is
|
|
// detected.
|
|
if (symbolTable.insert({nameAttr.getValue(), symbol}).second)
|
|
return;
|
|
|
|
// If a conflict was detected, then the symbol will not have been added to
|
|
// the symbol table. Try suffixes until we get to a unique name that works.
|
|
SmallString<128> nameBuffer(nameAttr.getValue());
|
|
unsigned originalLength = nameBuffer.size();
|
|
|
|
// Iteratively try suffixes until we find one that isn't used.
|
|
do {
|
|
nameBuffer.resize(originalLength);
|
|
nameBuffer += '_';
|
|
nameBuffer += std::to_string(uniquingCounter++);
|
|
} while (!symbolTable.insert({nameBuffer, symbol}).second);
|
|
symbol->setAttr(getSymbolAttrName(), StringAttr::get(nameBuffer, context));
|
|
}
|
|
|
|
/// Returns the operation registered with the given symbol name with the
|
|
/// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation
|
|
/// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol
|
|
/// was found.
|
|
Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
|
|
StringRef symbol) {
|
|
assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
|
|
|
|
// Look for a symbol with the given name.
|
|
for (auto &block : symbolTableOp->getRegion(0)) {
|
|
for (auto &op : block) {
|
|
auto nameAttr = op.template getAttrOfType<StringAttr>(
|
|
mlir::SymbolTable::getSymbolAttrName());
|
|
if (nameAttr && nameAttr.getValue() == symbol)
|
|
return &op;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Returns the operation registered with the given symbol name within the
|
|
/// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns
|
|
/// nullptr if no valid symbol was found.
|
|
Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
|
|
StringRef symbol) {
|
|
while (from && !from->hasTrait<OpTrait::SymbolTable>())
|
|
from = from->getParentOp();
|
|
return from ? lookupSymbolIn(from, symbol) : nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SymbolTable Trait Types
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult OpTrait::impl::verifySymbolTable(Operation *op) {
|
|
if (op->getNumRegions() != 1)
|
|
return op->emitOpError()
|
|
<< "Operations with a 'SymbolTable' must have exactly one region";
|
|
|
|
// Check that all symboles are uniquely named within child regions.
|
|
llvm::StringMap<Location> nameToOrigLoc;
|
|
for (auto &block : op->getRegion(0)) {
|
|
for (auto &op : block) {
|
|
// Check for a symbol name attribute.
|
|
auto nameAttr =
|
|
op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName());
|
|
if (!nameAttr)
|
|
continue;
|
|
|
|
// Try to insert this symbol into the table.
|
|
auto it = nameToOrigLoc.try_emplace(nameAttr.getValue(), op.getLoc());
|
|
if (!it.second)
|
|
return op.emitError()
|
|
.append("redefinition of symbol named '", nameAttr.getValue(), "'")
|
|
.attachNote(it.first->second)
|
|
.append("see existing symbol definition here");
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SymbolTable Trait Types
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// A utility result for walking a nested attribute for symbol uses.
|
|
enum HandlerResult {
|
|
/// The walk of the containter can continue.
|
|
Continue = 0,
|
|
/// The walk should recurse into the given attribute, as it is a container.
|
|
RecurseNestedAttribute,
|
|
/// The walk should end immediately, as an interrupt has been signaled.
|
|
Interrupt
|
|
};
|
|
|
|
/// Utility function used to handle a nested attribute during a walk of symbol
|
|
/// uses. It returns the above HandlerResult signaling the next action for the
|
|
/// walk.
|
|
HandlerResult handleAttrDuringSymbolWalk(
|
|
Operation *op, Attribute attr,
|
|
SmallVectorImpl<std::pair<Attribute, unsigned>> &worklist,
|
|
function_ref<WalkResult(SymbolTable::SymbolUse)> callback) {
|
|
switch (attr.getKind()) {
|
|
/// Check for a nested container attribute, these will also need to be
|
|
/// walked.
|
|
case StandardAttributes::Array:
|
|
case StandardAttributes::Dictionary: {
|
|
worklist.push_back({attr, /*index*/ 0});
|
|
return HandlerResult::RecurseNestedAttribute;
|
|
}
|
|
|
|
// Invoke the provided callback if we find a symbol use and check for a
|
|
// requested interrupt.
|
|
case StandardAttributes::SymbolRef: {
|
|
SymbolTable::SymbolUse use(op, attr.cast<SymbolRefAttr>());
|
|
return callback(use).wasInterrupted() ? HandlerResult::Interrupt
|
|
: HandlerResult::Continue;
|
|
}
|
|
default:
|
|
return HandlerResult::Continue;
|
|
}
|
|
}
|
|
|
|
/// Walk all of the symbol references within the given operation, invoking the
|
|
/// provided callback for each found use.
|
|
static WalkResult
|
|
walkSymbolRefs(Operation *op,
|
|
function_ref<WalkResult(SymbolTable::SymbolUse)> callback) {
|
|
// Check to see if the operation has any attributes.
|
|
DictionaryAttr attrDict = op->getAttrList().getDictionary();
|
|
if (!attrDict)
|
|
return WalkResult::advance();
|
|
|
|
// A worklist of a container attribute and the current index into the held
|
|
// attribute list.
|
|
SmallVector<std::pair<Attribute, unsigned>, 1> worklist;
|
|
worklist.push_back({attrDict, /*index*/ 0});
|
|
while (!worklist.empty()) {
|
|
Attribute attr = worklist.back().first;
|
|
unsigned &index = worklist.back().second;
|
|
|
|
// Iterate over the given attribute, which is guaranteed to be a container.
|
|
HandlerResult handlerResult = HandlerResult::Continue;
|
|
if (auto arrayAttr = attr.dyn_cast<ArrayAttr>()) {
|
|
ArrayRef<Attribute> attrs = arrayAttr.getValue();
|
|
unsigned attrSize = attrs.size();
|
|
while (index != attrSize)
|
|
if ((handlerResult = handleAttrDuringSymbolWalk(op, attrs[index++],
|
|
worklist, callback)))
|
|
break;
|
|
} else {
|
|
auto dictAttr = attr.cast<DictionaryAttr>();
|
|
ArrayRef<NamedAttribute> attrs = dictAttr.getValue();
|
|
unsigned attrSize = attrs.size();
|
|
while (index != attrSize)
|
|
if ((handlerResult = handleAttrDuringSymbolWalk(
|
|
op, attrs[index++].second, worklist, callback)))
|
|
break;
|
|
}
|
|
if (handlerResult == HandlerResult::Interrupt)
|
|
return WalkResult::interrupt();
|
|
|
|
// If we didn't encounter a nested attribute, pop the last item from the
|
|
// worklist.
|
|
if (handlerResult != HandlerResult::RecurseNestedAttribute)
|
|
worklist.pop_back();
|
|
}
|
|
return WalkResult::advance();
|
|
}
|
|
|
|
/// Walk all of the uses, for any symbol, that are nested within the given
|
|
/// operation 'from', invoking the provided callback for each. This does not
|
|
/// traverse into any nested symbol tables, and will also only return uses on
|
|
/// 'from' if it does not also define a symbol table.
|
|
WalkResult
|
|
SymbolTable::walkSymbolUses(Operation *from,
|
|
function_ref<WalkResult(SymbolUse)> callback) {
|
|
// If from is not a symbol table, check for uses. A symbol table defines a new
|
|
// scope, so we can't walk the attributes from the symbol table op.
|
|
if (!from->hasTrait<OpTrait::SymbolTable>()) {
|
|
if (walkSymbolRefs(from, callback).wasInterrupted())
|
|
return WalkResult::interrupt();
|
|
}
|
|
|
|
SmallVector<Region *, 1> worklist;
|
|
worklist.reserve(from->getNumRegions());
|
|
for (Region ®ion : from->getRegions())
|
|
worklist.push_back(®ion);
|
|
|
|
while (!worklist.empty()) {
|
|
Region *region = worklist.pop_back_val();
|
|
for (Block &block : *region) {
|
|
for (Operation &op : block) {
|
|
if (walkSymbolRefs(&op, callback).wasInterrupted())
|
|
return WalkResult::interrupt();
|
|
|
|
// If this op defines a new symbol table scope, we can't traverse. Any
|
|
// symbol references nested within 'op' are different semantically.
|
|
if (!op.hasTrait<OpTrait::SymbolTable>()) {
|
|
for (Region ®ion : op.getRegions())
|
|
worklist.push_back(®ion);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return WalkResult::advance();
|
|
}
|
|
|
|
/// Walk all of the uses, for any symbol, that are nested within the given
|
|
/// operation 'from', invoking the provided callback for each. This does not
|
|
/// traverse into any nested symbol tables, and will also only return uses on
|
|
/// 'from' if it does not also define a symbol table.
|
|
WalkResult
|
|
SymbolTable::walkSymbolUses(StringRef symbol, Operation *from,
|
|
function_ref<WalkResult(SymbolUse)> callback) {
|
|
SymbolRefAttr symbolRefAttr = SymbolRefAttr::get(symbol, from->getContext());
|
|
return walkSymbolUses(from, [&](SymbolUse symbolUse) {
|
|
if (symbolUse.getSymbolRef() != symbolRefAttr)
|
|
return WalkResult::advance();
|
|
return callback(std::move(symbolUse));
|
|
});
|
|
}
|
|
|
|
/// Return if the given symbol has no uses that are nested within the given
|
|
/// operation 'from'. This does not traverse into any nested symbol tables,
|
|
/// and will also only count uses on 'from' if it does not also define a
|
|
/// symbol table.
|
|
bool SymbolTable::symbol_use_empty(StringRef symbol, Operation *from) {
|
|
SymbolRefAttr symbolRefAttr = SymbolRefAttr::get(symbol, from->getContext());
|
|
|
|
// Walk all of the symbol uses looking for a reference to 'symbol'.
|
|
auto walkResult = walkSymbolUses(from, [&](SymbolUse symbolUse) {
|
|
return symbolUse.getSymbolRef() == symbolRefAttr ? WalkResult::interrupt()
|
|
: WalkResult::advance();
|
|
});
|
|
return !walkResult.wasInterrupted();
|
|
}
|