llvm-project/mlir/lib/IR/SymbolTable.cpp

302 lines
12 KiB
C++

//===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/IR/SymbolTable.h"
#include "llvm/ADT/SmallString.h"
using namespace mlir;
/// Build a symbol table with the symbols within the given operation.
SymbolTable::SymbolTable(Operation *op) : context(op->getContext()) {
assert(op->hasTrait<OpTrait::SymbolTable>() &&
"expected operation to have SymbolTable trait");
assert(op->getNumRegions() == 1 &&
"expected operation to have a single region");
for (auto &block : op->getRegion(0)) {
for (auto &op : block) {
auto nameAttr = op.getAttrOfType<StringAttr>(getSymbolAttrName());
if (!nameAttr)
continue;
auto inserted = symbolTable.insert({nameAttr.getValue(), &op});
(void)inserted;
assert(inserted.second &&
"expected region to contain uniquely named symbol operations");
}
}
}
/// Look up a symbol with the specified name, returning null if no such name
/// exists. Names never include the @ on them.
Operation *SymbolTable::lookup(StringRef name) const {
return symbolTable.lookup(name);
}
/// Erase the given symbol from the table.
void SymbolTable::erase(Operation *symbol) {
auto nameAttr = symbol->getAttrOfType<StringAttr>(getSymbolAttrName());
assert(nameAttr && "expected valid 'name' attribute");
auto it = symbolTable.find(nameAttr.getValue());
if (it != symbolTable.end() && it->second == symbol)
symbolTable.erase(it);
}
/// Insert a new symbol into the table, and rename it as necessary to avoid
/// collisions.
void SymbolTable::insert(Operation *symbol) {
auto nameAttr = symbol->getAttrOfType<StringAttr>(getSymbolAttrName());
assert(nameAttr && "expected valid 'name' attribute");
// Add this symbol to the symbol table, uniquing the name if a conflict is
// detected.
if (symbolTable.insert({nameAttr.getValue(), symbol}).second)
return;
// If a conflict was detected, then the symbol will not have been added to
// the symbol table. Try suffixes until we get to a unique name that works.
SmallString<128> nameBuffer(nameAttr.getValue());
unsigned originalLength = nameBuffer.size();
// Iteratively try suffixes until we find one that isn't used.
do {
nameBuffer.resize(originalLength);
nameBuffer += '_';
nameBuffer += std::to_string(uniquingCounter++);
} while (!symbolTable.insert({nameBuffer, symbol}).second);
symbol->setAttr(getSymbolAttrName(), StringAttr::get(nameBuffer, context));
}
/// Returns the operation registered with the given symbol name with the
/// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation
/// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol
/// was found.
Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
StringRef symbol) {
assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
// Look for a symbol with the given name.
for (auto &block : symbolTableOp->getRegion(0)) {
for (auto &op : block) {
auto nameAttr = op.template getAttrOfType<StringAttr>(
mlir::SymbolTable::getSymbolAttrName());
if (nameAttr && nameAttr.getValue() == symbol)
return &op;
}
}
return nullptr;
}
/// Returns the operation registered with the given symbol name within the
/// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns
/// nullptr if no valid symbol was found.
Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
StringRef symbol) {
while (from && !from->hasTrait<OpTrait::SymbolTable>())
from = from->getParentOp();
return from ? lookupSymbolIn(from, symbol) : nullptr;
}
//===----------------------------------------------------------------------===//
// SymbolTable Trait Types
//===----------------------------------------------------------------------===//
LogicalResult OpTrait::impl::verifySymbolTable(Operation *op) {
if (op->getNumRegions() != 1)
return op->emitOpError()
<< "Operations with a 'SymbolTable' must have exactly one region";
// Check that all symboles are uniquely named within child regions.
llvm::StringMap<Location> nameToOrigLoc;
for (auto &block : op->getRegion(0)) {
for (auto &op : block) {
// Check for a symbol name attribute.
auto nameAttr =
op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName());
if (!nameAttr)
continue;
// Try to insert this symbol into the table.
auto it = nameToOrigLoc.try_emplace(nameAttr.getValue(), op.getLoc());
if (!it.second)
return op.emitError()
.append("redefinition of symbol named '", nameAttr.getValue(), "'")
.attachNote(it.first->second)
.append("see existing symbol definition here");
}
}
return success();
}
//===----------------------------------------------------------------------===//
// SymbolTable Trait Types
//===----------------------------------------------------------------------===//
/// A utility result for walking a nested attribute for symbol uses.
enum HandlerResult {
/// The walk of the containter can continue.
Continue = 0,
/// The walk should recurse into the given attribute, as it is a container.
RecurseNestedAttribute,
/// The walk should end immediately, as an interrupt has been signaled.
Interrupt
};
/// Utility function used to handle a nested attribute during a walk of symbol
/// uses. It returns the above HandlerResult signaling the next action for the
/// walk.
HandlerResult handleAttrDuringSymbolWalk(
Operation *op, Attribute attr,
SmallVectorImpl<std::pair<Attribute, unsigned>> &worklist,
function_ref<WalkResult(SymbolTable::SymbolUse)> callback) {
switch (attr.getKind()) {
/// Check for a nested container attribute, these will also need to be
/// walked.
case StandardAttributes::Array:
case StandardAttributes::Dictionary: {
worklist.push_back({attr, /*index*/ 0});
return HandlerResult::RecurseNestedAttribute;
}
// Invoke the provided callback if we find a symbol use and check for a
// requested interrupt.
case StandardAttributes::SymbolRef: {
SymbolTable::SymbolUse use(op, attr.cast<SymbolRefAttr>());
return callback(use).wasInterrupted() ? HandlerResult::Interrupt
: HandlerResult::Continue;
}
default:
return HandlerResult::Continue;
}
}
/// Walk all of the symbol references within the given operation, invoking the
/// provided callback for each found use.
static WalkResult
walkSymbolRefs(Operation *op,
function_ref<WalkResult(SymbolTable::SymbolUse)> callback) {
// Check to see if the operation has any attributes.
DictionaryAttr attrDict = op->getAttrList().getDictionary();
if (!attrDict)
return WalkResult::advance();
// A worklist of a container attribute and the current index into the held
// attribute list.
SmallVector<std::pair<Attribute, unsigned>, 1> worklist;
worklist.push_back({attrDict, /*index*/ 0});
while (!worklist.empty()) {
Attribute attr = worklist.back().first;
unsigned &index = worklist.back().second;
// Iterate over the given attribute, which is guaranteed to be a container.
HandlerResult handlerResult = HandlerResult::Continue;
if (auto arrayAttr = attr.dyn_cast<ArrayAttr>()) {
ArrayRef<Attribute> attrs = arrayAttr.getValue();
unsigned attrSize = attrs.size();
while (index != attrSize)
if ((handlerResult = handleAttrDuringSymbolWalk(op, attrs[index++],
worklist, callback)))
break;
} else {
auto dictAttr = attr.cast<DictionaryAttr>();
ArrayRef<NamedAttribute> attrs = dictAttr.getValue();
unsigned attrSize = attrs.size();
while (index != attrSize)
if ((handlerResult = handleAttrDuringSymbolWalk(
op, attrs[index++].second, worklist, callback)))
break;
}
if (handlerResult == HandlerResult::Interrupt)
return WalkResult::interrupt();
// If we didn't encounter a nested attribute, pop the last item from the
// worklist.
if (handlerResult != HandlerResult::RecurseNestedAttribute)
worklist.pop_back();
}
return WalkResult::advance();
}
/// Walk all of the uses, for any symbol, that are nested within the given
/// operation 'from', invoking the provided callback for each. This does not
/// traverse into any nested symbol tables, and will also only return uses on
/// 'from' if it does not also define a symbol table.
WalkResult
SymbolTable::walkSymbolUses(Operation *from,
function_ref<WalkResult(SymbolUse)> callback) {
// If from is not a symbol table, check for uses. A symbol table defines a new
// scope, so we can't walk the attributes from the symbol table op.
if (!from->hasTrait<OpTrait::SymbolTable>()) {
if (walkSymbolRefs(from, callback).wasInterrupted())
return WalkResult::interrupt();
}
SmallVector<Region *, 1> worklist;
worklist.reserve(from->getNumRegions());
for (Region &region : from->getRegions())
worklist.push_back(&region);
while (!worklist.empty()) {
Region *region = worklist.pop_back_val();
for (Block &block : *region) {
for (Operation &op : block) {
if (walkSymbolRefs(&op, callback).wasInterrupted())
return WalkResult::interrupt();
// If this op defines a new symbol table scope, we can't traverse. Any
// symbol references nested within 'op' are different semantically.
if (!op.hasTrait<OpTrait::SymbolTable>()) {
for (Region &region : op.getRegions())
worklist.push_back(&region);
}
}
}
}
return WalkResult::advance();
}
/// Walk all of the uses, for any symbol, that are nested within the given
/// operation 'from', invoking the provided callback for each. This does not
/// traverse into any nested symbol tables, and will also only return uses on
/// 'from' if it does not also define a symbol table.
WalkResult
SymbolTable::walkSymbolUses(StringRef symbol, Operation *from,
function_ref<WalkResult(SymbolUse)> callback) {
SymbolRefAttr symbolRefAttr = SymbolRefAttr::get(symbol, from->getContext());
return walkSymbolUses(from, [&](SymbolUse symbolUse) {
if (symbolUse.getSymbolRef() != symbolRefAttr)
return WalkResult::advance();
return callback(std::move(symbolUse));
});
}
/// Return if the given symbol has no uses that are nested within the given
/// operation 'from'. This does not traverse into any nested symbol tables,
/// and will also only count uses on 'from' if it does not also define a
/// symbol table.
bool SymbolTable::symbol_use_empty(StringRef symbol, Operation *from) {
SymbolRefAttr symbolRefAttr = SymbolRefAttr::get(symbol, from->getContext());
// Walk all of the symbol uses looking for a reference to 'symbol'.
auto walkResult = walkSymbolUses(from, [&](SymbolUse symbolUse) {
return symbolUse.getSymbolRef() == symbolRefAttr ? WalkResult::interrupt()
: WalkResult::advance();
});
return !walkResult.wasInterrupted();
}