forked from OSchip/llvm-project
3945 lines
119 KiB
C
3945 lines
119 KiB
C
/*
|
||
* Copyright 2008-2009 Katholieke Universiteit Leuven
|
||
* Copyright 2010 INRIA Saclay
|
||
* Copyright 2012-2013 Ecole Normale Superieure
|
||
* Copyright 2014 INRIA Rocquencourt
|
||
* Copyright 2016 INRIA Paris
|
||
*
|
||
* Use of this software is governed by the MIT license
|
||
*
|
||
* Written by Sven Verdoolaege, K.U.Leuven, Departement
|
||
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
|
||
* and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
|
||
* ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
|
||
* and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
|
||
* and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
|
||
* B.P. 105 - 78153 Le Chesnay, France
|
||
* and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
|
||
* CS 42112, 75589 Paris Cedex 12, France
|
||
*/
|
||
|
||
#include <isl_ctx_private.h>
|
||
#include "isl_map_private.h"
|
||
#include <isl_seq.h>
|
||
#include <isl/options.h>
|
||
#include "isl_tab.h"
|
||
#include <isl_mat_private.h>
|
||
#include <isl_local_space_private.h>
|
||
#include <isl_val_private.h>
|
||
#include <isl_vec_private.h>
|
||
#include <isl_aff_private.h>
|
||
#include <isl_equalities.h>
|
||
#include <isl_constraint_private.h>
|
||
|
||
#include <set_to_map.c>
|
||
#include <set_from_map.c>
|
||
|
||
#define STATUS_ERROR -1
|
||
#define STATUS_REDUNDANT 1
|
||
#define STATUS_VALID 2
|
||
#define STATUS_SEPARATE 3
|
||
#define STATUS_CUT 4
|
||
#define STATUS_ADJ_EQ 5
|
||
#define STATUS_ADJ_INEQ 6
|
||
|
||
static int status_in(isl_int *ineq, struct isl_tab *tab)
|
||
{
|
||
enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
|
||
switch (type) {
|
||
default:
|
||
case isl_ineq_error: return STATUS_ERROR;
|
||
case isl_ineq_redundant: return STATUS_VALID;
|
||
case isl_ineq_separate: return STATUS_SEPARATE;
|
||
case isl_ineq_cut: return STATUS_CUT;
|
||
case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
|
||
case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
|
||
}
|
||
}
|
||
|
||
/* Compute the position of the equalities of basic map "bmap_i"
|
||
* with respect to the basic map represented by "tab_j".
|
||
* The resulting array has twice as many entries as the number
|
||
* of equalities corresponding to the two inequalities to which
|
||
* each equality corresponds.
|
||
*/
|
||
static int *eq_status_in(__isl_keep isl_basic_map *bmap_i,
|
||
struct isl_tab *tab_j)
|
||
{
|
||
int k, l;
|
||
int *eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq);
|
||
unsigned dim;
|
||
|
||
if (!eq)
|
||
return NULL;
|
||
|
||
dim = isl_basic_map_total_dim(bmap_i);
|
||
for (k = 0; k < bmap_i->n_eq; ++k) {
|
||
for (l = 0; l < 2; ++l) {
|
||
isl_seq_neg(bmap_i->eq[k], bmap_i->eq[k], 1+dim);
|
||
eq[2 * k + l] = status_in(bmap_i->eq[k], tab_j);
|
||
if (eq[2 * k + l] == STATUS_ERROR)
|
||
goto error;
|
||
}
|
||
}
|
||
|
||
return eq;
|
||
error:
|
||
free(eq);
|
||
return NULL;
|
||
}
|
||
|
||
/* Compute the position of the inequalities of basic map "bmap_i"
|
||
* (also represented by "tab_i", if not NULL) with respect to the basic map
|
||
* represented by "tab_j".
|
||
*/
|
||
static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i,
|
||
struct isl_tab *tab_i, struct isl_tab *tab_j)
|
||
{
|
||
int k;
|
||
unsigned n_eq = bmap_i->n_eq;
|
||
int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq);
|
||
|
||
if (!ineq)
|
||
return NULL;
|
||
|
||
for (k = 0; k < bmap_i->n_ineq; ++k) {
|
||
if (tab_i && isl_tab_is_redundant(tab_i, n_eq + k)) {
|
||
ineq[k] = STATUS_REDUNDANT;
|
||
continue;
|
||
}
|
||
ineq[k] = status_in(bmap_i->ineq[k], tab_j);
|
||
if (ineq[k] == STATUS_ERROR)
|
||
goto error;
|
||
if (ineq[k] == STATUS_SEPARATE)
|
||
break;
|
||
}
|
||
|
||
return ineq;
|
||
error:
|
||
free(ineq);
|
||
return NULL;
|
||
}
|
||
|
||
static int any(int *con, unsigned len, int status)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < len ; ++i)
|
||
if (con[i] == status)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Return the first position of "status" in the list "con" of length "len".
|
||
* Return -1 if there is no such entry.
|
||
*/
|
||
static int find(int *con, unsigned len, int status)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < len ; ++i)
|
||
if (con[i] == status)
|
||
return i;
|
||
return -1;
|
||
}
|
||
|
||
static int count(int *con, unsigned len, int status)
|
||
{
|
||
int i;
|
||
int c = 0;
|
||
|
||
for (i = 0; i < len ; ++i)
|
||
if (con[i] == status)
|
||
c++;
|
||
return c;
|
||
}
|
||
|
||
static int all(int *con, unsigned len, int status)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < len ; ++i) {
|
||
if (con[i] == STATUS_REDUNDANT)
|
||
continue;
|
||
if (con[i] != status)
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Internal information associated to a basic map in a map
|
||
* that is to be coalesced by isl_map_coalesce.
|
||
*
|
||
* "bmap" is the basic map itself (or NULL if "removed" is set)
|
||
* "tab" is the corresponding tableau (or NULL if "removed" is set)
|
||
* "hull_hash" identifies the affine space in which "bmap" lives.
|
||
* "removed" is set if this basic map has been removed from the map
|
||
* "simplify" is set if this basic map may have some unknown integer
|
||
* divisions that were not present in the input basic maps. The basic
|
||
* map should then be simplified such that we may be able to find
|
||
* a definition among the constraints.
|
||
*
|
||
* "eq" and "ineq" are only set if we are currently trying to coalesce
|
||
* this basic map with another basic map, in which case they represent
|
||
* the position of the inequalities of this basic map with respect to
|
||
* the other basic map. The number of elements in the "eq" array
|
||
* is twice the number of equalities in the "bmap", corresponding
|
||
* to the two inequalities that make up each equality.
|
||
*/
|
||
struct isl_coalesce_info {
|
||
isl_basic_map *bmap;
|
||
struct isl_tab *tab;
|
||
uint32_t hull_hash;
|
||
int removed;
|
||
int simplify;
|
||
int *eq;
|
||
int *ineq;
|
||
};
|
||
|
||
/* Is there any (half of an) equality constraint in the description
|
||
* of the basic map represented by "info" that
|
||
* has position "status" with respect to the other basic map?
|
||
*/
|
||
static int any_eq(struct isl_coalesce_info *info, int status)
|
||
{
|
||
unsigned n_eq;
|
||
|
||
n_eq = isl_basic_map_n_equality(info->bmap);
|
||
return any(info->eq, 2 * n_eq, status);
|
||
}
|
||
|
||
/* Is there any inequality constraint in the description
|
||
* of the basic map represented by "info" that
|
||
* has position "status" with respect to the other basic map?
|
||
*/
|
||
static int any_ineq(struct isl_coalesce_info *info, int status)
|
||
{
|
||
unsigned n_ineq;
|
||
|
||
n_ineq = isl_basic_map_n_inequality(info->bmap);
|
||
return any(info->ineq, n_ineq, status);
|
||
}
|
||
|
||
/* Return the position of the first half on an equality constraint
|
||
* in the description of the basic map represented by "info" that
|
||
* has position "status" with respect to the other basic map.
|
||
* The returned value is twice the position of the equality constraint
|
||
* plus zero for the negative half and plus one for the positive half.
|
||
* Return -1 if there is no such entry.
|
||
*/
|
||
static int find_eq(struct isl_coalesce_info *info, int status)
|
||
{
|
||
unsigned n_eq;
|
||
|
||
n_eq = isl_basic_map_n_equality(info->bmap);
|
||
return find(info->eq, 2 * n_eq, status);
|
||
}
|
||
|
||
/* Return the position of the first inequality constraint in the description
|
||
* of the basic map represented by "info" that
|
||
* has position "status" with respect to the other basic map.
|
||
* Return -1 if there is no such entry.
|
||
*/
|
||
static int find_ineq(struct isl_coalesce_info *info, int status)
|
||
{
|
||
unsigned n_ineq;
|
||
|
||
n_ineq = isl_basic_map_n_inequality(info->bmap);
|
||
return find(info->ineq, n_ineq, status);
|
||
}
|
||
|
||
/* Return the number of (halves of) equality constraints in the description
|
||
* of the basic map represented by "info" that
|
||
* have position "status" with respect to the other basic map.
|
||
*/
|
||
static int count_eq(struct isl_coalesce_info *info, int status)
|
||
{
|
||
unsigned n_eq;
|
||
|
||
n_eq = isl_basic_map_n_equality(info->bmap);
|
||
return count(info->eq, 2 * n_eq, status);
|
||
}
|
||
|
||
/* Return the number of inequality constraints in the description
|
||
* of the basic map represented by "info" that
|
||
* have position "status" with respect to the other basic map.
|
||
*/
|
||
static int count_ineq(struct isl_coalesce_info *info, int status)
|
||
{
|
||
unsigned n_ineq;
|
||
|
||
n_ineq = isl_basic_map_n_inequality(info->bmap);
|
||
return count(info->ineq, n_ineq, status);
|
||
}
|
||
|
||
/* Are all non-redundant constraints of the basic map represented by "info"
|
||
* either valid or cut constraints with respect to the other basic map?
|
||
*/
|
||
static int all_valid_or_cut(struct isl_coalesce_info *info)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < 2 * info->bmap->n_eq; ++i) {
|
||
if (info->eq[i] == STATUS_REDUNDANT)
|
||
continue;
|
||
if (info->eq[i] == STATUS_VALID)
|
||
continue;
|
||
if (info->eq[i] == STATUS_CUT)
|
||
continue;
|
||
return 0;
|
||
}
|
||
|
||
for (i = 0; i < info->bmap->n_ineq; ++i) {
|
||
if (info->ineq[i] == STATUS_REDUNDANT)
|
||
continue;
|
||
if (info->ineq[i] == STATUS_VALID)
|
||
continue;
|
||
if (info->ineq[i] == STATUS_CUT)
|
||
continue;
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Compute the hash of the (apparent) affine hull of info->bmap (with
|
||
* the existentially quantified variables removed) and store it
|
||
* in info->hash.
|
||
*/
|
||
static int coalesce_info_set_hull_hash(struct isl_coalesce_info *info)
|
||
{
|
||
isl_basic_map *hull;
|
||
unsigned n_div;
|
||
|
||
hull = isl_basic_map_copy(info->bmap);
|
||
hull = isl_basic_map_plain_affine_hull(hull);
|
||
n_div = isl_basic_map_dim(hull, isl_dim_div);
|
||
hull = isl_basic_map_drop_constraints_involving_dims(hull,
|
||
isl_dim_div, 0, n_div);
|
||
info->hull_hash = isl_basic_map_get_hash(hull);
|
||
isl_basic_map_free(hull);
|
||
|
||
return hull ? 0 : -1;
|
||
}
|
||
|
||
/* Free all the allocated memory in an array
|
||
* of "n" isl_coalesce_info elements.
|
||
*/
|
||
static void clear_coalesce_info(int n, struct isl_coalesce_info *info)
|
||
{
|
||
int i;
|
||
|
||
if (!info)
|
||
return;
|
||
|
||
for (i = 0; i < n; ++i) {
|
||
isl_basic_map_free(info[i].bmap);
|
||
isl_tab_free(info[i].tab);
|
||
}
|
||
|
||
free(info);
|
||
}
|
||
|
||
/* Drop the basic map represented by "info".
|
||
* That is, clear the memory associated to the entry and
|
||
* mark it as having been removed.
|
||
*/
|
||
static void drop(struct isl_coalesce_info *info)
|
||
{
|
||
info->bmap = isl_basic_map_free(info->bmap);
|
||
isl_tab_free(info->tab);
|
||
info->tab = NULL;
|
||
info->removed = 1;
|
||
}
|
||
|
||
/* Exchange the information in "info1" with that in "info2".
|
||
*/
|
||
static void exchange(struct isl_coalesce_info *info1,
|
||
struct isl_coalesce_info *info2)
|
||
{
|
||
struct isl_coalesce_info info;
|
||
|
||
info = *info1;
|
||
*info1 = *info2;
|
||
*info2 = info;
|
||
}
|
||
|
||
/* This type represents the kind of change that has been performed
|
||
* while trying to coalesce two basic maps.
|
||
*
|
||
* isl_change_none: nothing was changed
|
||
* isl_change_drop_first: the first basic map was removed
|
||
* isl_change_drop_second: the second basic map was removed
|
||
* isl_change_fuse: the two basic maps were replaced by a new basic map.
|
||
*/
|
||
enum isl_change {
|
||
isl_change_error = -1,
|
||
isl_change_none = 0,
|
||
isl_change_drop_first,
|
||
isl_change_drop_second,
|
||
isl_change_fuse,
|
||
};
|
||
|
||
/* Update "change" based on an interchange of the first and the second
|
||
* basic map. That is, interchange isl_change_drop_first and
|
||
* isl_change_drop_second.
|
||
*/
|
||
static enum isl_change invert_change(enum isl_change change)
|
||
{
|
||
switch (change) {
|
||
case isl_change_error:
|
||
return isl_change_error;
|
||
case isl_change_none:
|
||
return isl_change_none;
|
||
case isl_change_drop_first:
|
||
return isl_change_drop_second;
|
||
case isl_change_drop_second:
|
||
return isl_change_drop_first;
|
||
case isl_change_fuse:
|
||
return isl_change_fuse;
|
||
}
|
||
|
||
return isl_change_error;
|
||
}
|
||
|
||
/* Add the valid constraints of the basic map represented by "info"
|
||
* to "bmap". "len" is the size of the constraints.
|
||
* If only one of the pair of inequalities that make up an equality
|
||
* is valid, then add that inequality.
|
||
*/
|
||
static __isl_give isl_basic_map *add_valid_constraints(
|
||
__isl_take isl_basic_map *bmap, struct isl_coalesce_info *info,
|
||
unsigned len)
|
||
{
|
||
int k, l;
|
||
|
||
if (!bmap)
|
||
return NULL;
|
||
|
||
for (k = 0; k < info->bmap->n_eq; ++k) {
|
||
if (info->eq[2 * k] == STATUS_VALID &&
|
||
info->eq[2 * k + 1] == STATUS_VALID) {
|
||
l = isl_basic_map_alloc_equality(bmap);
|
||
if (l < 0)
|
||
return isl_basic_map_free(bmap);
|
||
isl_seq_cpy(bmap->eq[l], info->bmap->eq[k], len);
|
||
} else if (info->eq[2 * k] == STATUS_VALID) {
|
||
l = isl_basic_map_alloc_inequality(bmap);
|
||
if (l < 0)
|
||
return isl_basic_map_free(bmap);
|
||
isl_seq_neg(bmap->ineq[l], info->bmap->eq[k], len);
|
||
} else if (info->eq[2 * k + 1] == STATUS_VALID) {
|
||
l = isl_basic_map_alloc_inequality(bmap);
|
||
if (l < 0)
|
||
return isl_basic_map_free(bmap);
|
||
isl_seq_cpy(bmap->ineq[l], info->bmap->eq[k], len);
|
||
}
|
||
}
|
||
|
||
for (k = 0; k < info->bmap->n_ineq; ++k) {
|
||
if (info->ineq[k] != STATUS_VALID)
|
||
continue;
|
||
l = isl_basic_map_alloc_inequality(bmap);
|
||
if (l < 0)
|
||
return isl_basic_map_free(bmap);
|
||
isl_seq_cpy(bmap->ineq[l], info->bmap->ineq[k], len);
|
||
}
|
||
|
||
return bmap;
|
||
}
|
||
|
||
/* Is "bmap" defined by a number of (non-redundant) constraints that
|
||
* is greater than the number of constraints of basic maps i and j combined?
|
||
* Equalities are counted as two inequalities.
|
||
*/
|
||
static int number_of_constraints_increases(int i, int j,
|
||
struct isl_coalesce_info *info,
|
||
__isl_keep isl_basic_map *bmap, struct isl_tab *tab)
|
||
{
|
||
int k, n_old, n_new;
|
||
|
||
n_old = 2 * info[i].bmap->n_eq + info[i].bmap->n_ineq;
|
||
n_old += 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq;
|
||
|
||
n_new = 2 * bmap->n_eq;
|
||
for (k = 0; k < bmap->n_ineq; ++k)
|
||
if (!isl_tab_is_redundant(tab, bmap->n_eq + k))
|
||
++n_new;
|
||
|
||
return n_new > n_old;
|
||
}
|
||
|
||
/* Replace the pair of basic maps i and j by the basic map bounded
|
||
* by the valid constraints in both basic maps and the constraints
|
||
* in extra (if not NULL).
|
||
* Place the fused basic map in the position that is the smallest of i and j.
|
||
*
|
||
* If "detect_equalities" is set, then look for equalities encoded
|
||
* as pairs of inequalities.
|
||
* If "check_number" is set, then the original basic maps are only
|
||
* replaced if the total number of constraints does not increase.
|
||
* While the number of integer divisions in the two basic maps
|
||
* is assumed to be the same, the actual definitions may be different.
|
||
* We only copy the definition from one of the basic map if it is
|
||
* the same as that of the other basic map. Otherwise, we mark
|
||
* the integer division as unknown and simplify the basic map
|
||
* in an attempt to recover the integer division definition.
|
||
*/
|
||
static enum isl_change fuse(int i, int j, struct isl_coalesce_info *info,
|
||
__isl_keep isl_mat *extra, int detect_equalities, int check_number)
|
||
{
|
||
int k, l;
|
||
struct isl_basic_map *fused = NULL;
|
||
struct isl_tab *fused_tab = NULL;
|
||
unsigned total = isl_basic_map_total_dim(info[i].bmap);
|
||
unsigned extra_rows = extra ? extra->n_row : 0;
|
||
unsigned n_eq, n_ineq;
|
||
int simplify = 0;
|
||
|
||
if (j < i)
|
||
return fuse(j, i, info, extra, detect_equalities, check_number);
|
||
|
||
n_eq = info[i].bmap->n_eq + info[j].bmap->n_eq;
|
||
n_ineq = info[i].bmap->n_ineq + info[j].bmap->n_ineq;
|
||
fused = isl_basic_map_alloc_space(isl_space_copy(info[i].bmap->dim),
|
||
info[i].bmap->n_div, n_eq, n_eq + n_ineq + extra_rows);
|
||
fused = add_valid_constraints(fused, &info[i], 1 + total);
|
||
fused = add_valid_constraints(fused, &info[j], 1 + total);
|
||
if (!fused)
|
||
goto error;
|
||
if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) &&
|
||
ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
|
||
ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
|
||
|
||
for (k = 0; k < info[i].bmap->n_div; ++k) {
|
||
int l = isl_basic_map_alloc_div(fused);
|
||
if (l < 0)
|
||
goto error;
|
||
if (isl_seq_eq(info[i].bmap->div[k], info[j].bmap->div[k],
|
||
1 + 1 + total)) {
|
||
isl_seq_cpy(fused->div[l], info[i].bmap->div[k],
|
||
1 + 1 + total);
|
||
} else {
|
||
isl_int_set_si(fused->div[l][0], 0);
|
||
simplify = 1;
|
||
}
|
||
}
|
||
|
||
for (k = 0; k < extra_rows; ++k) {
|
||
l = isl_basic_map_alloc_inequality(fused);
|
||
if (l < 0)
|
||
goto error;
|
||
isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
|
||
}
|
||
|
||
if (detect_equalities)
|
||
fused = isl_basic_map_detect_inequality_pairs(fused, NULL);
|
||
fused = isl_basic_map_gauss(fused, NULL);
|
||
if (simplify || info[j].simplify) {
|
||
fused = isl_basic_map_simplify(fused);
|
||
info[i].simplify = 0;
|
||
}
|
||
fused = isl_basic_map_finalize(fused);
|
||
|
||
fused_tab = isl_tab_from_basic_map(fused, 0);
|
||
if (isl_tab_detect_redundant(fused_tab) < 0)
|
||
goto error;
|
||
|
||
if (check_number &&
|
||
number_of_constraints_increases(i, j, info, fused, fused_tab)) {
|
||
isl_tab_free(fused_tab);
|
||
isl_basic_map_free(fused);
|
||
return isl_change_none;
|
||
}
|
||
|
||
isl_basic_map_free(info[i].bmap);
|
||
info[i].bmap = fused;
|
||
isl_tab_free(info[i].tab);
|
||
info[i].tab = fused_tab;
|
||
drop(&info[j]);
|
||
|
||
return isl_change_fuse;
|
||
error:
|
||
isl_tab_free(fused_tab);
|
||
isl_basic_map_free(fused);
|
||
return isl_change_error;
|
||
}
|
||
|
||
/* Given a pair of basic maps i and j such that all constraints are either
|
||
* "valid" or "cut", check if the facets corresponding to the "cut"
|
||
* constraints of i lie entirely within basic map j.
|
||
* If so, replace the pair by the basic map consisting of the valid
|
||
* constraints in both basic maps.
|
||
* Checking whether the facet lies entirely within basic map j
|
||
* is performed by checking whether the constraints of basic map j
|
||
* are valid for the facet. These tests are performed on a rational
|
||
* tableau to avoid the theoretical possibility that a constraint
|
||
* that was considered to be a cut constraint for the entire basic map i
|
||
* happens to be considered to be a valid constraint for the facet,
|
||
* even though it cuts off the same rational points.
|
||
*
|
||
* To see that we are not introducing any extra points, call the
|
||
* two basic maps A and B and the resulting map U and let x
|
||
* be an element of U \setminus ( A \cup B ).
|
||
* A line connecting x with an element of A \cup B meets a facet F
|
||
* of either A or B. Assume it is a facet of B and let c_1 be
|
||
* the corresponding facet constraint. We have c_1(x) < 0 and
|
||
* so c_1 is a cut constraint. This implies that there is some
|
||
* (possibly rational) point x' satisfying the constraints of A
|
||
* and the opposite of c_1 as otherwise c_1 would have been marked
|
||
* valid for A. The line connecting x and x' meets a facet of A
|
||
* in a (possibly rational) point that also violates c_1, but this
|
||
* is impossible since all cut constraints of B are valid for all
|
||
* cut facets of A.
|
||
* In case F is a facet of A rather than B, then we can apply the
|
||
* above reasoning to find a facet of B separating x from A \cup B first.
|
||
*/
|
||
static enum isl_change check_facets(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
int k, l;
|
||
struct isl_tab_undo *snap, *snap2;
|
||
unsigned n_eq = info[i].bmap->n_eq;
|
||
|
||
snap = isl_tab_snap(info[i].tab);
|
||
if (isl_tab_mark_rational(info[i].tab) < 0)
|
||
return isl_change_error;
|
||
snap2 = isl_tab_snap(info[i].tab);
|
||
|
||
for (k = 0; k < info[i].bmap->n_ineq; ++k) {
|
||
if (info[i].ineq[k] != STATUS_CUT)
|
||
continue;
|
||
if (isl_tab_select_facet(info[i].tab, n_eq + k) < 0)
|
||
return isl_change_error;
|
||
for (l = 0; l < info[j].bmap->n_ineq; ++l) {
|
||
int stat;
|
||
if (info[j].ineq[l] != STATUS_CUT)
|
||
continue;
|
||
stat = status_in(info[j].bmap->ineq[l], info[i].tab);
|
||
if (stat < 0)
|
||
return isl_change_error;
|
||
if (stat != STATUS_VALID)
|
||
break;
|
||
}
|
||
if (isl_tab_rollback(info[i].tab, snap2) < 0)
|
||
return isl_change_error;
|
||
if (l < info[j].bmap->n_ineq)
|
||
break;
|
||
}
|
||
|
||
if (k < info[i].bmap->n_ineq) {
|
||
if (isl_tab_rollback(info[i].tab, snap) < 0)
|
||
return isl_change_error;
|
||
return isl_change_none;
|
||
}
|
||
return fuse(i, j, info, NULL, 0, 0);
|
||
}
|
||
|
||
/* Check if info->bmap contains the basic map represented
|
||
* by the tableau "tab".
|
||
* For each equality, we check both the constraint itself
|
||
* (as an inequality) and its negation. Make sure the
|
||
* equality is returned to its original state before returning.
|
||
*/
|
||
static isl_bool contains(struct isl_coalesce_info *info, struct isl_tab *tab)
|
||
{
|
||
int k;
|
||
unsigned dim;
|
||
isl_basic_map *bmap = info->bmap;
|
||
|
||
dim = isl_basic_map_total_dim(bmap);
|
||
for (k = 0; k < bmap->n_eq; ++k) {
|
||
int stat;
|
||
isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
|
||
stat = status_in(bmap->eq[k], tab);
|
||
isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
|
||
if (stat < 0)
|
||
return isl_bool_error;
|
||
if (stat != STATUS_VALID)
|
||
return isl_bool_false;
|
||
stat = status_in(bmap->eq[k], tab);
|
||
if (stat < 0)
|
||
return isl_bool_error;
|
||
if (stat != STATUS_VALID)
|
||
return isl_bool_false;
|
||
}
|
||
|
||
for (k = 0; k < bmap->n_ineq; ++k) {
|
||
int stat;
|
||
if (info->ineq[k] == STATUS_REDUNDANT)
|
||
continue;
|
||
stat = status_in(bmap->ineq[k], tab);
|
||
if (stat < 0)
|
||
return isl_bool_error;
|
||
if (stat != STATUS_VALID)
|
||
return isl_bool_false;
|
||
}
|
||
return isl_bool_true;
|
||
}
|
||
|
||
/* Basic map "i" has an inequality (say "k") that is adjacent
|
||
* to some inequality of basic map "j". All the other inequalities
|
||
* are valid for "j".
|
||
* Check if basic map "j" forms an extension of basic map "i".
|
||
*
|
||
* Note that this function is only called if some of the equalities or
|
||
* inequalities of basic map "j" do cut basic map "i". The function is
|
||
* correct even if there are no such cut constraints, but in that case
|
||
* the additional checks performed by this function are overkill.
|
||
*
|
||
* In particular, we replace constraint k, say f >= 0, by constraint
|
||
* f <= -1, add the inequalities of "j" that are valid for "i"
|
||
* and check if the result is a subset of basic map "j".
|
||
* To improve the chances of the subset relation being detected,
|
||
* any variable that only attains a single integer value
|
||
* in the tableau of "i" is first fixed to that value.
|
||
* If the result is a subset, then we know that this result is exactly equal
|
||
* to basic map "j" since all its constraints are valid for basic map "j".
|
||
* By combining the valid constraints of "i" (all equalities and all
|
||
* inequalities except "k") and the valid constraints of "j" we therefore
|
||
* obtain a basic map that is equal to their union.
|
||
* In this case, there is no need to perform a rollback of the tableau
|
||
* since it is going to be destroyed in fuse().
|
||
*
|
||
*
|
||
* |\__ |\__
|
||
* | \__ | \__
|
||
* | \_ => | \__
|
||
* |_______| _ |_________\
|
||
*
|
||
*
|
||
* |\ |\
|
||
* | \ | \
|
||
* | \ | \
|
||
* | | | \
|
||
* | ||\ => | \
|
||
* | || \ | \
|
||
* | || | | |
|
||
* |__||_/ |_____/
|
||
*/
|
||
static enum isl_change is_adj_ineq_extension(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
int k;
|
||
struct isl_tab_undo *snap;
|
||
unsigned n_eq = info[i].bmap->n_eq;
|
||
unsigned total = isl_basic_map_total_dim(info[i].bmap);
|
||
isl_stat r;
|
||
isl_bool super;
|
||
|
||
if (isl_tab_extend_cons(info[i].tab, 1 + info[j].bmap->n_ineq) < 0)
|
||
return isl_change_error;
|
||
|
||
k = find_ineq(&info[i], STATUS_ADJ_INEQ);
|
||
if (k < 0)
|
||
isl_die(isl_basic_map_get_ctx(info[i].bmap), isl_error_internal,
|
||
"info[i].ineq should have exactly one STATUS_ADJ_INEQ",
|
||
return isl_change_error);
|
||
|
||
snap = isl_tab_snap(info[i].tab);
|
||
|
||
if (isl_tab_unrestrict(info[i].tab, n_eq + k) < 0)
|
||
return isl_change_error;
|
||
|
||
isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
|
||
isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
|
||
r = isl_tab_add_ineq(info[i].tab, info[i].bmap->ineq[k]);
|
||
isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
|
||
isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
|
||
if (r < 0)
|
||
return isl_change_error;
|
||
|
||
for (k = 0; k < info[j].bmap->n_ineq; ++k) {
|
||
if (info[j].ineq[k] != STATUS_VALID)
|
||
continue;
|
||
if (isl_tab_add_ineq(info[i].tab, info[j].bmap->ineq[k]) < 0)
|
||
return isl_change_error;
|
||
}
|
||
if (isl_tab_detect_constants(info[i].tab) < 0)
|
||
return isl_change_error;
|
||
|
||
super = contains(&info[j], info[i].tab);
|
||
if (super < 0)
|
||
return isl_change_error;
|
||
if (super)
|
||
return fuse(i, j, info, NULL, 0, 0);
|
||
|
||
if (isl_tab_rollback(info[i].tab, snap) < 0)
|
||
return isl_change_error;
|
||
|
||
return isl_change_none;
|
||
}
|
||
|
||
|
||
/* Both basic maps have at least one inequality with and adjacent
|
||
* (but opposite) inequality in the other basic map.
|
||
* Check that there are no cut constraints and that there is only
|
||
* a single pair of adjacent inequalities.
|
||
* If so, we can replace the pair by a single basic map described
|
||
* by all but the pair of adjacent inequalities.
|
||
* Any additional points introduced lie strictly between the two
|
||
* adjacent hyperplanes and can therefore be integral.
|
||
*
|
||
* ____ _____
|
||
* / ||\ / \
|
||
* / || \ / \
|
||
* \ || \ => \ \
|
||
* \ || / \ /
|
||
* \___||_/ \_____/
|
||
*
|
||
* The test for a single pair of adjancent inequalities is important
|
||
* for avoiding the combination of two basic maps like the following
|
||
*
|
||
* /|
|
||
* / |
|
||
* /__|
|
||
* _____
|
||
* | |
|
||
* | |
|
||
* |___|
|
||
*
|
||
* If there are some cut constraints on one side, then we may
|
||
* still be able to fuse the two basic maps, but we need to perform
|
||
* some additional checks in is_adj_ineq_extension.
|
||
*/
|
||
static enum isl_change check_adj_ineq(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
int count_i, count_j;
|
||
int cut_i, cut_j;
|
||
|
||
count_i = count_ineq(&info[i], STATUS_ADJ_INEQ);
|
||
count_j = count_ineq(&info[j], STATUS_ADJ_INEQ);
|
||
|
||
if (count_i != 1 && count_j != 1)
|
||
return isl_change_none;
|
||
|
||
cut_i = any_eq(&info[i], STATUS_CUT) || any_ineq(&info[i], STATUS_CUT);
|
||
cut_j = any_eq(&info[j], STATUS_CUT) || any_ineq(&info[j], STATUS_CUT);
|
||
|
||
if (!cut_i && !cut_j && count_i == 1 && count_j == 1)
|
||
return fuse(i, j, info, NULL, 0, 0);
|
||
|
||
if (count_i == 1 && !cut_i)
|
||
return is_adj_ineq_extension(i, j, info);
|
||
|
||
if (count_j == 1 && !cut_j)
|
||
return is_adj_ineq_extension(j, i, info);
|
||
|
||
return isl_change_none;
|
||
}
|
||
|
||
/* Given an affine transformation matrix "T", does row "row" represent
|
||
* anything other than a unit vector (possibly shifted by a constant)
|
||
* that is not involved in any of the other rows?
|
||
*
|
||
* That is, if a constraint involves the variable corresponding to
|
||
* the row, then could its preimage by "T" have any coefficients
|
||
* that are different from those in the original constraint?
|
||
*/
|
||
static int not_unique_unit_row(__isl_keep isl_mat *T, int row)
|
||
{
|
||
int i, j;
|
||
int len = T->n_col - 1;
|
||
|
||
i = isl_seq_first_non_zero(T->row[row] + 1, len);
|
||
if (i < 0)
|
||
return 1;
|
||
if (!isl_int_is_one(T->row[row][1 + i]) &&
|
||
!isl_int_is_negone(T->row[row][1 + i]))
|
||
return 1;
|
||
|
||
j = isl_seq_first_non_zero(T->row[row] + 1 + i + 1, len - (i + 1));
|
||
if (j >= 0)
|
||
return 1;
|
||
|
||
for (j = 1; j < T->n_row; ++j) {
|
||
if (j == row)
|
||
continue;
|
||
if (!isl_int_is_zero(T->row[j][1 + i]))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Does inequality constraint "ineq" of "bmap" involve any of
|
||
* the variables marked in "affected"?
|
||
* "total" is the total number of variables, i.e., the number
|
||
* of entries in "affected".
|
||
*/
|
||
static isl_bool is_affected(__isl_keep isl_basic_map *bmap, int ineq,
|
||
int *affected, int total)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < total; ++i) {
|
||
if (!affected[i])
|
||
continue;
|
||
if (!isl_int_is_zero(bmap->ineq[ineq][1 + i]))
|
||
return isl_bool_true;
|
||
}
|
||
|
||
return isl_bool_false;
|
||
}
|
||
|
||
/* Given the compressed version of inequality constraint "ineq"
|
||
* of info->bmap in "v", check if the constraint can be tightened,
|
||
* where the compression is based on an equality constraint valid
|
||
* for info->tab.
|
||
* If so, add the tightened version of the inequality constraint
|
||
* to info->tab. "v" may be modified by this function.
|
||
*
|
||
* That is, if the compressed constraint is of the form
|
||
*
|
||
* m f() + c >= 0
|
||
*
|
||
* with 0 < c < m, then it is equivalent to
|
||
*
|
||
* f() >= 0
|
||
*
|
||
* This means that c can also be subtracted from the original,
|
||
* uncompressed constraint without affecting the integer points
|
||
* in info->tab. Add this tightened constraint as an extra row
|
||
* to info->tab to make this information explicitly available.
|
||
*/
|
||
static __isl_give isl_vec *try_tightening(struct isl_coalesce_info *info,
|
||
int ineq, __isl_take isl_vec *v)
|
||
{
|
||
isl_ctx *ctx;
|
||
isl_stat r;
|
||
|
||
if (!v)
|
||
return NULL;
|
||
|
||
ctx = isl_vec_get_ctx(v);
|
||
isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
|
||
if (isl_int_is_zero(ctx->normalize_gcd) ||
|
||
isl_int_is_one(ctx->normalize_gcd)) {
|
||
return v;
|
||
}
|
||
|
||
v = isl_vec_cow(v);
|
||
if (!v)
|
||
return NULL;
|
||
|
||
isl_int_fdiv_r(v->el[0], v->el[0], ctx->normalize_gcd);
|
||
if (isl_int_is_zero(v->el[0]))
|
||
return v;
|
||
|
||
if (isl_tab_extend_cons(info->tab, 1) < 0)
|
||
return isl_vec_free(v);
|
||
|
||
isl_int_sub(info->bmap->ineq[ineq][0],
|
||
info->bmap->ineq[ineq][0], v->el[0]);
|
||
r = isl_tab_add_ineq(info->tab, info->bmap->ineq[ineq]);
|
||
isl_int_add(info->bmap->ineq[ineq][0],
|
||
info->bmap->ineq[ineq][0], v->el[0]);
|
||
|
||
if (r < 0)
|
||
return isl_vec_free(v);
|
||
|
||
return v;
|
||
}
|
||
|
||
/* Tighten the (non-redundant) constraints on the facet represented
|
||
* by info->tab.
|
||
* In particular, on input, info->tab represents the result
|
||
* of relaxing the "n" inequality constraints of info->bmap in "relaxed"
|
||
* by one, i.e., replacing f_i >= 0 by f_i + 1 >= 0, and then
|
||
* replacing the one at index "l" by the corresponding equality,
|
||
* i.e., f_k + 1 = 0, with k = relaxed[l].
|
||
*
|
||
* Compute a variable compression from the equality constraint f_k + 1 = 0
|
||
* and use it to tighten the other constraints of info->bmap
|
||
* (that is, all constraints that have not been relaxed),
|
||
* updating info->tab (and leaving info->bmap untouched).
|
||
* The compression handles essentially two cases, one where a variable
|
||
* is assigned a fixed value and can therefore be eliminated, and one
|
||
* where one variable is a shifted multiple of some other variable and
|
||
* can therefore be replaced by that multiple.
|
||
* Gaussian elimination would also work for the first case, but for
|
||
* the second case, the effectiveness would depend on the order
|
||
* of the variables.
|
||
* After compression, some of the constraints may have coefficients
|
||
* with a common divisor. If this divisor does not divide the constant
|
||
* term, then the constraint can be tightened.
|
||
* The tightening is performed on the tableau info->tab by introducing
|
||
* extra (temporary) constraints.
|
||
*
|
||
* Only constraints that are possibly affected by the compression are
|
||
* considered. In particular, if the constraint only involves variables
|
||
* that are directly mapped to a distinct set of other variables, then
|
||
* no common divisor can be introduced and no tightening can occur.
|
||
*
|
||
* It is important to only consider the non-redundant constraints
|
||
* since the facet constraint has been relaxed prior to the call
|
||
* to this function, meaning that the constraints that were redundant
|
||
* prior to the relaxation may no longer be redundant.
|
||
* These constraints will be ignored in the fused result, so
|
||
* the fusion detection should not exploit them.
|
||
*/
|
||
static isl_stat tighten_on_relaxed_facet(struct isl_coalesce_info *info,
|
||
int n, int *relaxed, int l)
|
||
{
|
||
unsigned total;
|
||
isl_ctx *ctx;
|
||
isl_vec *v = NULL;
|
||
isl_mat *T;
|
||
int i;
|
||
int k;
|
||
int *affected;
|
||
|
||
k = relaxed[l];
|
||
ctx = isl_basic_map_get_ctx(info->bmap);
|
||
total = isl_basic_map_total_dim(info->bmap);
|
||
isl_int_add_ui(info->bmap->ineq[k][0], info->bmap->ineq[k][0], 1);
|
||
T = isl_mat_sub_alloc6(ctx, info->bmap->ineq, k, 1, 0, 1 + total);
|
||
T = isl_mat_variable_compression(T, NULL);
|
||
isl_int_sub_ui(info->bmap->ineq[k][0], info->bmap->ineq[k][0], 1);
|
||
if (!T)
|
||
return isl_stat_error;
|
||
if (T->n_col == 0) {
|
||
isl_mat_free(T);
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
affected = isl_alloc_array(ctx, int, total);
|
||
if (!affected)
|
||
goto error;
|
||
|
||
for (i = 0; i < total; ++i)
|
||
affected[i] = not_unique_unit_row(T, 1 + i);
|
||
|
||
for (i = 0; i < info->bmap->n_ineq; ++i) {
|
||
isl_bool handle;
|
||
if (any(relaxed, n, i))
|
||
continue;
|
||
if (info->ineq[i] == STATUS_REDUNDANT)
|
||
continue;
|
||
handle = is_affected(info->bmap, i, affected, total);
|
||
if (handle < 0)
|
||
goto error;
|
||
if (!handle)
|
||
continue;
|
||
v = isl_vec_alloc(ctx, 1 + total);
|
||
if (!v)
|
||
goto error;
|
||
isl_seq_cpy(v->el, info->bmap->ineq[i], 1 + total);
|
||
v = isl_vec_mat_product(v, isl_mat_copy(T));
|
||
v = try_tightening(info, i, v);
|
||
isl_vec_free(v);
|
||
if (!v)
|
||
goto error;
|
||
}
|
||
|
||
isl_mat_free(T);
|
||
free(affected);
|
||
return isl_stat_ok;
|
||
error:
|
||
isl_mat_free(T);
|
||
free(affected);
|
||
return isl_stat_error;
|
||
}
|
||
|
||
/* Replace the basic maps "i" and "j" by an extension of "i"
|
||
* along the "n" inequality constraints in "relax" by one.
|
||
* The tableau info[i].tab has already been extended.
|
||
* Extend info[i].bmap accordingly by relaxing all constraints in "relax"
|
||
* by one.
|
||
* Each integer division that does not have exactly the same
|
||
* definition in "i" and "j" is marked unknown and the basic map
|
||
* is scheduled to be simplified in an attempt to recover
|
||
* the integer division definition.
|
||
* Place the extension in the position that is the smallest of i and j.
|
||
*/
|
||
static enum isl_change extend(int i, int j, int n, int *relax,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
int l;
|
||
unsigned total;
|
||
|
||
info[i].bmap = isl_basic_map_cow(info[i].bmap);
|
||
if (!info[i].bmap)
|
||
return isl_change_error;
|
||
total = isl_basic_map_total_dim(info[i].bmap);
|
||
for (l = 0; l < info[i].bmap->n_div; ++l)
|
||
if (!isl_seq_eq(info[i].bmap->div[l],
|
||
info[j].bmap->div[l], 1 + 1 + total)) {
|
||
isl_int_set_si(info[i].bmap->div[l][0], 0);
|
||
info[i].simplify = 1;
|
||
}
|
||
for (l = 0; l < n; ++l)
|
||
isl_int_add_ui(info[i].bmap->ineq[relax[l]][0],
|
||
info[i].bmap->ineq[relax[l]][0], 1);
|
||
ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_FINAL);
|
||
drop(&info[j]);
|
||
if (j < i)
|
||
exchange(&info[i], &info[j]);
|
||
return isl_change_fuse;
|
||
}
|
||
|
||
/* Basic map "i" has "n" inequality constraints (collected in "relax")
|
||
* that are such that they include basic map "j" if they are relaxed
|
||
* by one. All the other inequalities are valid for "j".
|
||
* Check if basic map "j" forms an extension of basic map "i".
|
||
*
|
||
* In particular, relax the constraints in "relax", compute the corresponding
|
||
* facets one by one and check whether each of these is included
|
||
* in the other basic map.
|
||
* Before testing for inclusion, the constraints on each facet
|
||
* are tightened to increase the chance of an inclusion being detected.
|
||
* (Adding the valid constraints of "j" to the tableau of "i", as is done
|
||
* in is_adj_ineq_extension, may further increase those chances, but this
|
||
* is not currently done.)
|
||
* If each facet is included, we know that relaxing the constraints extends
|
||
* the basic map with exactly the other basic map (we already know that this
|
||
* other basic map is included in the extension, because all other
|
||
* inequality constraints are valid of "j") and we can replace the
|
||
* two basic maps by this extension.
|
||
*
|
||
* If any of the relaxed constraints turn out to be redundant, then bail out.
|
||
* isl_tab_select_facet refuses to handle such constraints. It may be
|
||
* possible to handle them anyway by making a distinction between
|
||
* redundant constraints with a corresponding facet that still intersects
|
||
* the set (allowing isl_tab_select_facet to handle them) and
|
||
* those where the facet does not intersect the set (which can be ignored
|
||
* because the empty facet is trivially included in the other disjunct).
|
||
* However, relaxed constraints that turn out to be redundant should
|
||
* be fairly rare and no such instance has been reported where
|
||
* coalescing would be successful.
|
||
* ____ _____
|
||
* / || / |
|
||
* / || / |
|
||
* \ || => \ |
|
||
* \ || \ |
|
||
* \___|| \____|
|
||
*
|
||
*
|
||
* \ |\
|
||
* |\\ | \
|
||
* | \\ | \
|
||
* | | => | /
|
||
* | / | /
|
||
* |/ |/
|
||
*/
|
||
static enum isl_change is_relaxed_extension(int i, int j, int n, int *relax,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
int l;
|
||
isl_bool super;
|
||
struct isl_tab_undo *snap, *snap2;
|
||
unsigned n_eq = info[i].bmap->n_eq;
|
||
|
||
for (l = 0; l < n; ++l)
|
||
if (isl_tab_is_equality(info[i].tab, n_eq + relax[l]))
|
||
return isl_change_none;
|
||
|
||
snap = isl_tab_snap(info[i].tab);
|
||
for (l = 0; l < n; ++l)
|
||
if (isl_tab_relax(info[i].tab, n_eq + relax[l]) < 0)
|
||
return isl_change_error;
|
||
for (l = 0; l < n; ++l) {
|
||
if (!isl_tab_is_redundant(info[i].tab, n_eq + relax[l]))
|
||
continue;
|
||
if (isl_tab_rollback(info[i].tab, snap) < 0)
|
||
return isl_change_error;
|
||
return isl_change_none;
|
||
}
|
||
snap2 = isl_tab_snap(info[i].tab);
|
||
for (l = 0; l < n; ++l) {
|
||
if (isl_tab_rollback(info[i].tab, snap2) < 0)
|
||
return isl_change_error;
|
||
if (isl_tab_select_facet(info[i].tab, n_eq + relax[l]) < 0)
|
||
return isl_change_error;
|
||
if (tighten_on_relaxed_facet(&info[i], n, relax, l) < 0)
|
||
return isl_change_error;
|
||
super = contains(&info[j], info[i].tab);
|
||
if (super < 0)
|
||
return isl_change_error;
|
||
if (super)
|
||
continue;
|
||
if (isl_tab_rollback(info[i].tab, snap) < 0)
|
||
return isl_change_error;
|
||
return isl_change_none;
|
||
}
|
||
|
||
if (isl_tab_rollback(info[i].tab, snap2) < 0)
|
||
return isl_change_error;
|
||
return extend(i, j, n, relax, info);
|
||
}
|
||
|
||
/* Data structure that keeps track of the wrapping constraints
|
||
* and of information to bound the coefficients of those constraints.
|
||
*
|
||
* bound is set if we want to apply a bound on the coefficients
|
||
* mat contains the wrapping constraints
|
||
* max is the bound on the coefficients (if bound is set)
|
||
*/
|
||
struct isl_wraps {
|
||
int bound;
|
||
isl_mat *mat;
|
||
isl_int max;
|
||
};
|
||
|
||
/* Update wraps->max to be greater than or equal to the coefficients
|
||
* in the equalities and inequalities of info->bmap that can be removed
|
||
* if we end up applying wrapping.
|
||
*/
|
||
static isl_stat wraps_update_max(struct isl_wraps *wraps,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
int k;
|
||
isl_int max_k;
|
||
unsigned total = isl_basic_map_total_dim(info->bmap);
|
||
|
||
isl_int_init(max_k);
|
||
|
||
for (k = 0; k < info->bmap->n_eq; ++k) {
|
||
if (info->eq[2 * k] == STATUS_VALID &&
|
||
info->eq[2 * k + 1] == STATUS_VALID)
|
||
continue;
|
||
isl_seq_abs_max(info->bmap->eq[k] + 1, total, &max_k);
|
||
if (isl_int_abs_gt(max_k, wraps->max))
|
||
isl_int_set(wraps->max, max_k);
|
||
}
|
||
|
||
for (k = 0; k < info->bmap->n_ineq; ++k) {
|
||
if (info->ineq[k] == STATUS_VALID ||
|
||
info->ineq[k] == STATUS_REDUNDANT)
|
||
continue;
|
||
isl_seq_abs_max(info->bmap->ineq[k] + 1, total, &max_k);
|
||
if (isl_int_abs_gt(max_k, wraps->max))
|
||
isl_int_set(wraps->max, max_k);
|
||
}
|
||
|
||
isl_int_clear(max_k);
|
||
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
/* Initialize the isl_wraps data structure.
|
||
* If we want to bound the coefficients of the wrapping constraints,
|
||
* we set wraps->max to the largest coefficient
|
||
* in the equalities and inequalities that can be removed if we end up
|
||
* applying wrapping.
|
||
*/
|
||
static isl_stat wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat,
|
||
struct isl_coalesce_info *info, int i, int j)
|
||
{
|
||
isl_ctx *ctx;
|
||
|
||
wraps->bound = 0;
|
||
wraps->mat = mat;
|
||
if (!mat)
|
||
return isl_stat_error;
|
||
ctx = isl_mat_get_ctx(mat);
|
||
wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx);
|
||
if (!wraps->bound)
|
||
return isl_stat_ok;
|
||
isl_int_init(wraps->max);
|
||
isl_int_set_si(wraps->max, 0);
|
||
if (wraps_update_max(wraps, &info[i]) < 0)
|
||
return isl_stat_error;
|
||
if (wraps_update_max(wraps, &info[j]) < 0)
|
||
return isl_stat_error;
|
||
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
/* Free the contents of the isl_wraps data structure.
|
||
*/
|
||
static void wraps_free(struct isl_wraps *wraps)
|
||
{
|
||
isl_mat_free(wraps->mat);
|
||
if (wraps->bound)
|
||
isl_int_clear(wraps->max);
|
||
}
|
||
|
||
/* Is the wrapping constraint in row "row" allowed?
|
||
*
|
||
* If wraps->bound is set, we check that none of the coefficients
|
||
* is greater than wraps->max.
|
||
*/
|
||
static int allow_wrap(struct isl_wraps *wraps, int row)
|
||
{
|
||
int i;
|
||
|
||
if (!wraps->bound)
|
||
return 1;
|
||
|
||
for (i = 1; i < wraps->mat->n_col; ++i)
|
||
if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Wrap "ineq" (or its opposite if "negate" is set) around "bound"
|
||
* to include "set" and add the result in position "w" of "wraps".
|
||
* "len" is the total number of coefficients in "bound" and "ineq".
|
||
* Return 1 on success, 0 on failure and -1 on error.
|
||
* Wrapping can fail if the result of wrapping is equal to "bound"
|
||
* or if we want to bound the sizes of the coefficients and
|
||
* the wrapped constraint does not satisfy this bound.
|
||
*/
|
||
static int add_wrap(struct isl_wraps *wraps, int w, isl_int *bound,
|
||
isl_int *ineq, unsigned len, __isl_keep isl_set *set, int negate)
|
||
{
|
||
isl_seq_cpy(wraps->mat->row[w], bound, len);
|
||
if (negate) {
|
||
isl_seq_neg(wraps->mat->row[w + 1], ineq, len);
|
||
ineq = wraps->mat->row[w + 1];
|
||
}
|
||
if (!isl_set_wrap_facet(set, wraps->mat->row[w], ineq))
|
||
return -1;
|
||
if (isl_seq_eq(wraps->mat->row[w], bound, len))
|
||
return 0;
|
||
if (!allow_wrap(wraps, w))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* For each constraint in info->bmap that is not redundant (as determined
|
||
* by info->tab) and that is not a valid constraint for the other basic map,
|
||
* wrap the constraint around "bound" such that it includes the whole
|
||
* set "set" and append the resulting constraint to "wraps".
|
||
* Note that the constraints that are valid for the other basic map
|
||
* will be added to the combined basic map by default, so there is
|
||
* no need to wrap them.
|
||
* The caller wrap_in_facets even relies on this function not wrapping
|
||
* any constraints that are already valid.
|
||
* "wraps" is assumed to have been pre-allocated to the appropriate size.
|
||
* wraps->n_row is the number of actual wrapped constraints that have
|
||
* been added.
|
||
* If any of the wrapping problems results in a constraint that is
|
||
* identical to "bound", then this means that "set" is unbounded in such
|
||
* way that no wrapping is possible. If this happens then wraps->n_row
|
||
* is reset to zero.
|
||
* Similarly, if we want to bound the coefficients of the wrapping
|
||
* constraints and a newly added wrapping constraint does not
|
||
* satisfy the bound, then wraps->n_row is also reset to zero.
|
||
*/
|
||
static isl_stat add_wraps(struct isl_wraps *wraps,
|
||
struct isl_coalesce_info *info, isl_int *bound, __isl_keep isl_set *set)
|
||
{
|
||
int l, m;
|
||
int w;
|
||
int added;
|
||
isl_basic_map *bmap = info->bmap;
|
||
unsigned len = 1 + isl_basic_map_total_dim(bmap);
|
||
|
||
w = wraps->mat->n_row;
|
||
|
||
for (l = 0; l < bmap->n_ineq; ++l) {
|
||
if (info->ineq[l] == STATUS_VALID ||
|
||
info->ineq[l] == STATUS_REDUNDANT)
|
||
continue;
|
||
if (isl_seq_is_neg(bound, bmap->ineq[l], len))
|
||
continue;
|
||
if (isl_seq_eq(bound, bmap->ineq[l], len))
|
||
continue;
|
||
if (isl_tab_is_redundant(info->tab, bmap->n_eq + l))
|
||
continue;
|
||
|
||
added = add_wrap(wraps, w, bound, bmap->ineq[l], len, set, 0);
|
||
if (added < 0)
|
||
return isl_stat_error;
|
||
if (!added)
|
||
goto unbounded;
|
||
++w;
|
||
}
|
||
for (l = 0; l < bmap->n_eq; ++l) {
|
||
if (isl_seq_is_neg(bound, bmap->eq[l], len))
|
||
continue;
|
||
if (isl_seq_eq(bound, bmap->eq[l], len))
|
||
continue;
|
||
|
||
for (m = 0; m < 2; ++m) {
|
||
if (info->eq[2 * l + m] == STATUS_VALID)
|
||
continue;
|
||
added = add_wrap(wraps, w, bound, bmap->eq[l], len,
|
||
set, !m);
|
||
if (added < 0)
|
||
return isl_stat_error;
|
||
if (!added)
|
||
goto unbounded;
|
||
++w;
|
||
}
|
||
}
|
||
|
||
wraps->mat->n_row = w;
|
||
return isl_stat_ok;
|
||
unbounded:
|
||
wraps->mat->n_row = 0;
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
/* Check if the constraints in "wraps" from "first" until the last
|
||
* are all valid for the basic set represented by "tab".
|
||
* If not, wraps->n_row is set to zero.
|
||
*/
|
||
static int check_wraps(__isl_keep isl_mat *wraps, int first,
|
||
struct isl_tab *tab)
|
||
{
|
||
int i;
|
||
|
||
for (i = first; i < wraps->n_row; ++i) {
|
||
enum isl_ineq_type type;
|
||
type = isl_tab_ineq_type(tab, wraps->row[i]);
|
||
if (type == isl_ineq_error)
|
||
return -1;
|
||
if (type == isl_ineq_redundant)
|
||
continue;
|
||
wraps->n_row = 0;
|
||
return 0;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return a set that corresponds to the non-redundant constraints
|
||
* (as recorded in tab) of bmap.
|
||
*
|
||
* It's important to remove the redundant constraints as some
|
||
* of the other constraints may have been modified after the
|
||
* constraints were marked redundant.
|
||
* In particular, a constraint may have been relaxed.
|
||
* Redundant constraints are ignored when a constraint is relaxed
|
||
* and should therefore continue to be ignored ever after.
|
||
* Otherwise, the relaxation might be thwarted by some of
|
||
* these constraints.
|
||
*
|
||
* Update the underlying set to ensure that the dimension doesn't change.
|
||
* Otherwise the integer divisions could get dropped if the tab
|
||
* turns out to be empty.
|
||
*/
|
||
static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap,
|
||
struct isl_tab *tab)
|
||
{
|
||
isl_basic_set *bset;
|
||
|
||
bmap = isl_basic_map_copy(bmap);
|
||
bset = isl_basic_map_underlying_set(bmap);
|
||
bset = isl_basic_set_cow(bset);
|
||
bset = isl_basic_set_update_from_tab(bset, tab);
|
||
return isl_set_from_basic_set(bset);
|
||
}
|
||
|
||
/* Wrap the constraints of info->bmap that bound the facet defined
|
||
* by inequality "k" around (the opposite of) this inequality to
|
||
* include "set". "bound" may be used to store the negated inequality.
|
||
* Since the wrapped constraints are not guaranteed to contain the whole
|
||
* of info->bmap, we check them in check_wraps.
|
||
* If any of the wrapped constraints turn out to be invalid, then
|
||
* check_wraps will reset wrap->n_row to zero.
|
||
*/
|
||
static isl_stat add_wraps_around_facet(struct isl_wraps *wraps,
|
||
struct isl_coalesce_info *info, int k, isl_int *bound,
|
||
__isl_keep isl_set *set)
|
||
{
|
||
struct isl_tab_undo *snap;
|
||
int n;
|
||
unsigned total = isl_basic_map_total_dim(info->bmap);
|
||
|
||
snap = isl_tab_snap(info->tab);
|
||
|
||
if (isl_tab_select_facet(info->tab, info->bmap->n_eq + k) < 0)
|
||
return isl_stat_error;
|
||
if (isl_tab_detect_redundant(info->tab) < 0)
|
||
return isl_stat_error;
|
||
|
||
isl_seq_neg(bound, info->bmap->ineq[k], 1 + total);
|
||
|
||
n = wraps->mat->n_row;
|
||
if (add_wraps(wraps, info, bound, set) < 0)
|
||
return isl_stat_error;
|
||
|
||
if (isl_tab_rollback(info->tab, snap) < 0)
|
||
return isl_stat_error;
|
||
if (check_wraps(wraps->mat, n, info->tab) < 0)
|
||
return isl_stat_error;
|
||
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
/* Given a basic set i with a constraint k that is adjacent to
|
||
* basic set j, check if we can wrap
|
||
* both the facet corresponding to k (if "wrap_facet" is set) and basic map j
|
||
* (always) around their ridges to include the other set.
|
||
* If so, replace the pair of basic sets by their union.
|
||
*
|
||
* All constraints of i (except k) are assumed to be valid or
|
||
* cut constraints for j.
|
||
* Wrapping the cut constraints to include basic map j may result
|
||
* in constraints that are no longer valid of basic map i
|
||
* we have to check that the resulting wrapping constraints are valid for i.
|
||
* If "wrap_facet" is not set, then all constraints of i (except k)
|
||
* are assumed to be valid for j.
|
||
* ____ _____
|
||
* / | / \
|
||
* / || / |
|
||
* \ || => \ |
|
||
* \ || \ |
|
||
* \___|| \____|
|
||
*
|
||
*/
|
||
static enum isl_change can_wrap_in_facet(int i, int j, int k,
|
||
struct isl_coalesce_info *info, int wrap_facet)
|
||
{
|
||
enum isl_change change = isl_change_none;
|
||
struct isl_wraps wraps;
|
||
isl_ctx *ctx;
|
||
isl_mat *mat;
|
||
struct isl_set *set_i = NULL;
|
||
struct isl_set *set_j = NULL;
|
||
struct isl_vec *bound = NULL;
|
||
unsigned total = isl_basic_map_total_dim(info[i].bmap);
|
||
|
||
set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
|
||
set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
|
||
ctx = isl_basic_map_get_ctx(info[i].bmap);
|
||
mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
|
||
info[i].bmap->n_ineq + info[j].bmap->n_ineq,
|
||
1 + total);
|
||
if (wraps_init(&wraps, mat, info, i, j) < 0)
|
||
goto error;
|
||
bound = isl_vec_alloc(ctx, 1 + total);
|
||
if (!set_i || !set_j || !bound)
|
||
goto error;
|
||
|
||
isl_seq_cpy(bound->el, info[i].bmap->ineq[k], 1 + total);
|
||
isl_int_add_ui(bound->el[0], bound->el[0], 1);
|
||
isl_seq_normalize(ctx, bound->el, 1 + total);
|
||
|
||
isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
|
||
wraps.mat->n_row = 1;
|
||
|
||
if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
|
||
goto error;
|
||
if (!wraps.mat->n_row)
|
||
goto unbounded;
|
||
|
||
if (wrap_facet) {
|
||
if (add_wraps_around_facet(&wraps, &info[i], k,
|
||
bound->el, set_j) < 0)
|
||
goto error;
|
||
if (!wraps.mat->n_row)
|
||
goto unbounded;
|
||
}
|
||
|
||
change = fuse(i, j, info, wraps.mat, 0, 0);
|
||
|
||
unbounded:
|
||
wraps_free(&wraps);
|
||
|
||
isl_set_free(set_i);
|
||
isl_set_free(set_j);
|
||
|
||
isl_vec_free(bound);
|
||
|
||
return change;
|
||
error:
|
||
wraps_free(&wraps);
|
||
isl_vec_free(bound);
|
||
isl_set_free(set_i);
|
||
isl_set_free(set_j);
|
||
return isl_change_error;
|
||
}
|
||
|
||
/* Given a cut constraint t(x) >= 0 of basic map i, stored in row "w"
|
||
* of wrap.mat, replace it by its relaxed version t(x) + 1 >= 0, and
|
||
* add wrapping constraints to wrap.mat for all constraints
|
||
* of basic map j that bound the part of basic map j that sticks out
|
||
* of the cut constraint.
|
||
* "set_i" is the underlying set of basic map i.
|
||
* If any wrapping fails, then wraps->mat.n_row is reset to zero.
|
||
*
|
||
* In particular, we first intersect basic map j with t(x) + 1 = 0.
|
||
* If the result is empty, then t(x) >= 0 was actually a valid constraint
|
||
* (with respect to the integer points), so we add t(x) >= 0 instead.
|
||
* Otherwise, we wrap the constraints of basic map j that are not
|
||
* redundant in this intersection and that are not already valid
|
||
* for basic map i over basic map i.
|
||
* Note that it is sufficient to wrap the constraints to include
|
||
* basic map i, because we will only wrap the constraints that do
|
||
* not include basic map i already. The wrapped constraint will
|
||
* therefore be more relaxed compared to the original constraint.
|
||
* Since the original constraint is valid for basic map j, so is
|
||
* the wrapped constraint.
|
||
*/
|
||
static isl_stat wrap_in_facet(struct isl_wraps *wraps, int w,
|
||
struct isl_coalesce_info *info_j, __isl_keep isl_set *set_i,
|
||
struct isl_tab_undo *snap)
|
||
{
|
||
isl_int_add_ui(wraps->mat->row[w][0], wraps->mat->row[w][0], 1);
|
||
if (isl_tab_add_eq(info_j->tab, wraps->mat->row[w]) < 0)
|
||
return isl_stat_error;
|
||
if (isl_tab_detect_redundant(info_j->tab) < 0)
|
||
return isl_stat_error;
|
||
|
||
if (info_j->tab->empty)
|
||
isl_int_sub_ui(wraps->mat->row[w][0], wraps->mat->row[w][0], 1);
|
||
else if (add_wraps(wraps, info_j, wraps->mat->row[w], set_i) < 0)
|
||
return isl_stat_error;
|
||
|
||
if (isl_tab_rollback(info_j->tab, snap) < 0)
|
||
return isl_stat_error;
|
||
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
/* Given a pair of basic maps i and j such that j sticks out
|
||
* of i at n cut constraints, each time by at most one,
|
||
* try to compute wrapping constraints and replace the two
|
||
* basic maps by a single basic map.
|
||
* The other constraints of i are assumed to be valid for j.
|
||
* "set_i" is the underlying set of basic map i.
|
||
* "wraps" has been initialized to be of the right size.
|
||
*
|
||
* For each cut constraint t(x) >= 0 of i, we add the relaxed version
|
||
* t(x) + 1 >= 0, along with wrapping constraints for all constraints
|
||
* of basic map j that bound the part of basic map j that sticks out
|
||
* of the cut constraint.
|
||
*
|
||
* If any wrapping fails, i.e., if we cannot wrap to touch
|
||
* the union, then we give up.
|
||
* Otherwise, the pair of basic maps is replaced by their union.
|
||
*/
|
||
static enum isl_change try_wrap_in_facets(int i, int j,
|
||
struct isl_coalesce_info *info, struct isl_wraps *wraps,
|
||
__isl_keep isl_set *set_i)
|
||
{
|
||
int k, l, w;
|
||
unsigned total;
|
||
struct isl_tab_undo *snap;
|
||
|
||
total = isl_basic_map_total_dim(info[i].bmap);
|
||
|
||
snap = isl_tab_snap(info[j].tab);
|
||
|
||
wraps->mat->n_row = 0;
|
||
|
||
for (k = 0; k < info[i].bmap->n_eq; ++k) {
|
||
for (l = 0; l < 2; ++l) {
|
||
if (info[i].eq[2 * k + l] != STATUS_CUT)
|
||
continue;
|
||
w = wraps->mat->n_row++;
|
||
if (l == 0)
|
||
isl_seq_neg(wraps->mat->row[w],
|
||
info[i].bmap->eq[k], 1 + total);
|
||
else
|
||
isl_seq_cpy(wraps->mat->row[w],
|
||
info[i].bmap->eq[k], 1 + total);
|
||
if (wrap_in_facet(wraps, w, &info[j], set_i, snap) < 0)
|
||
return isl_change_error;
|
||
|
||
if (!wraps->mat->n_row)
|
||
return isl_change_none;
|
||
}
|
||
}
|
||
|
||
for (k = 0; k < info[i].bmap->n_ineq; ++k) {
|
||
if (info[i].ineq[k] != STATUS_CUT)
|
||
continue;
|
||
w = wraps->mat->n_row++;
|
||
isl_seq_cpy(wraps->mat->row[w],
|
||
info[i].bmap->ineq[k], 1 + total);
|
||
if (wrap_in_facet(wraps, w, &info[j], set_i, snap) < 0)
|
||
return isl_change_error;
|
||
|
||
if (!wraps->mat->n_row)
|
||
return isl_change_none;
|
||
}
|
||
|
||
return fuse(i, j, info, wraps->mat, 0, 1);
|
||
}
|
||
|
||
/* Given a pair of basic maps i and j such that j sticks out
|
||
* of i at n cut constraints, each time by at most one,
|
||
* try to compute wrapping constraints and replace the two
|
||
* basic maps by a single basic map.
|
||
* The other constraints of i are assumed to be valid for j.
|
||
*
|
||
* The core computation is performed by try_wrap_in_facets.
|
||
* This function simply extracts an underlying set representation
|
||
* of basic map i and initializes the data structure for keeping
|
||
* track of wrapping constraints.
|
||
*/
|
||
static enum isl_change wrap_in_facets(int i, int j, int n,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
enum isl_change change = isl_change_none;
|
||
struct isl_wraps wraps;
|
||
isl_ctx *ctx;
|
||
isl_mat *mat;
|
||
isl_set *set_i = NULL;
|
||
unsigned total = isl_basic_map_total_dim(info[i].bmap);
|
||
int max_wrap;
|
||
|
||
if (isl_tab_extend_cons(info[j].tab, 1) < 0)
|
||
return isl_change_error;
|
||
|
||
max_wrap = 1 + 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq;
|
||
max_wrap *= n;
|
||
|
||
set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
|
||
ctx = isl_basic_map_get_ctx(info[i].bmap);
|
||
mat = isl_mat_alloc(ctx, max_wrap, 1 + total);
|
||
if (wraps_init(&wraps, mat, info, i, j) < 0)
|
||
goto error;
|
||
if (!set_i)
|
||
goto error;
|
||
|
||
change = try_wrap_in_facets(i, j, info, &wraps, set_i);
|
||
|
||
wraps_free(&wraps);
|
||
isl_set_free(set_i);
|
||
|
||
return change;
|
||
error:
|
||
wraps_free(&wraps);
|
||
isl_set_free(set_i);
|
||
return isl_change_error;
|
||
}
|
||
|
||
/* Return the effect of inequality "ineq" on the tableau "tab",
|
||
* after relaxing the constant term of "ineq" by one.
|
||
*/
|
||
static enum isl_ineq_type type_of_relaxed(struct isl_tab *tab, isl_int *ineq)
|
||
{
|
||
enum isl_ineq_type type;
|
||
|
||
isl_int_add_ui(ineq[0], ineq[0], 1);
|
||
type = isl_tab_ineq_type(tab, ineq);
|
||
isl_int_sub_ui(ineq[0], ineq[0], 1);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Given two basic sets i and j,
|
||
* check if relaxing all the cut constraints of i by one turns
|
||
* them into valid constraint for j and check if we can wrap in
|
||
* the bits that are sticking out.
|
||
* If so, replace the pair by their union.
|
||
*
|
||
* We first check if all relaxed cut inequalities of i are valid for j
|
||
* and then try to wrap in the intersections of the relaxed cut inequalities
|
||
* with j.
|
||
*
|
||
* During this wrapping, we consider the points of j that lie at a distance
|
||
* of exactly 1 from i. In particular, we ignore the points that lie in
|
||
* between this lower-dimensional space and the basic map i.
|
||
* We can therefore only apply this to integer maps.
|
||
* ____ _____
|
||
* / ___|_ / \
|
||
* / | | / |
|
||
* \ | | => \ |
|
||
* \|____| \ |
|
||
* \___| \____/
|
||
*
|
||
* _____ ______
|
||
* | ____|_ | \
|
||
* | | | | |
|
||
* | | | => | |
|
||
* |_| | | |
|
||
* |_____| \______|
|
||
*
|
||
* _______
|
||
* | |
|
||
* | |\ |
|
||
* | | \ |
|
||
* | | \ |
|
||
* | | \|
|
||
* | | \
|
||
* | |_____\
|
||
* | |
|
||
* |_______|
|
||
*
|
||
* Wrapping can fail if the result of wrapping one of the facets
|
||
* around its edges does not produce any new facet constraint.
|
||
* In particular, this happens when we try to wrap in unbounded sets.
|
||
*
|
||
* _______________________________________________________________________
|
||
* |
|
||
* | ___
|
||
* | | |
|
||
* |_| |_________________________________________________________________
|
||
* |___|
|
||
*
|
||
* The following is not an acceptable result of coalescing the above two
|
||
* sets as it includes extra integer points.
|
||
* _______________________________________________________________________
|
||
* |
|
||
* |
|
||
* |
|
||
* |
|
||
* \______________________________________________________________________
|
||
*/
|
||
static enum isl_change can_wrap_in_set(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
int k, l;
|
||
int n;
|
||
unsigned total;
|
||
|
||
if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) ||
|
||
ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
|
||
return isl_change_none;
|
||
|
||
n = count_eq(&info[i], STATUS_CUT) + count_ineq(&info[i], STATUS_CUT);
|
||
if (n == 0)
|
||
return isl_change_none;
|
||
|
||
total = isl_basic_map_total_dim(info[i].bmap);
|
||
for (k = 0; k < info[i].bmap->n_eq; ++k) {
|
||
for (l = 0; l < 2; ++l) {
|
||
enum isl_ineq_type type;
|
||
|
||
if (info[i].eq[2 * k + l] != STATUS_CUT)
|
||
continue;
|
||
|
||
if (l == 0)
|
||
isl_seq_neg(info[i].bmap->eq[k],
|
||
info[i].bmap->eq[k], 1 + total);
|
||
type = type_of_relaxed(info[j].tab,
|
||
info[i].bmap->eq[k]);
|
||
if (l == 0)
|
||
isl_seq_neg(info[i].bmap->eq[k],
|
||
info[i].bmap->eq[k], 1 + total);
|
||
if (type == isl_ineq_error)
|
||
return isl_change_error;
|
||
if (type != isl_ineq_redundant)
|
||
return isl_change_none;
|
||
}
|
||
}
|
||
|
||
for (k = 0; k < info[i].bmap->n_ineq; ++k) {
|
||
enum isl_ineq_type type;
|
||
|
||
if (info[i].ineq[k] != STATUS_CUT)
|
||
continue;
|
||
|
||
type = type_of_relaxed(info[j].tab, info[i].bmap->ineq[k]);
|
||
if (type == isl_ineq_error)
|
||
return isl_change_error;
|
||
if (type != isl_ineq_redundant)
|
||
return isl_change_none;
|
||
}
|
||
|
||
return wrap_in_facets(i, j, n, info);
|
||
}
|
||
|
||
/* Check if either i or j has only cut constraints that can
|
||
* be used to wrap in (a facet of) the other basic set.
|
||
* if so, replace the pair by their union.
|
||
*/
|
||
static enum isl_change check_wrap(int i, int j, struct isl_coalesce_info *info)
|
||
{
|
||
enum isl_change change = isl_change_none;
|
||
|
||
change = can_wrap_in_set(i, j, info);
|
||
if (change != isl_change_none)
|
||
return change;
|
||
|
||
change = can_wrap_in_set(j, i, info);
|
||
return change;
|
||
}
|
||
|
||
/* Check if all inequality constraints of "i" that cut "j" cease
|
||
* to be cut constraints if they are relaxed by one.
|
||
* If so, collect the cut constraints in "list".
|
||
* The caller is responsible for allocating "list".
|
||
*/
|
||
static isl_bool all_cut_by_one(int i, int j, struct isl_coalesce_info *info,
|
||
int *list)
|
||
{
|
||
int l, n;
|
||
|
||
n = 0;
|
||
for (l = 0; l < info[i].bmap->n_ineq; ++l) {
|
||
enum isl_ineq_type type;
|
||
|
||
if (info[i].ineq[l] != STATUS_CUT)
|
||
continue;
|
||
type = type_of_relaxed(info[j].tab, info[i].bmap->ineq[l]);
|
||
if (type == isl_ineq_error)
|
||
return isl_bool_error;
|
||
if (type != isl_ineq_redundant)
|
||
return isl_bool_false;
|
||
list[n++] = l;
|
||
}
|
||
|
||
return isl_bool_true;
|
||
}
|
||
|
||
/* Given two basic maps such that "j" has at least one equality constraint
|
||
* that is adjacent to an inequality constraint of "i" and such that "i" has
|
||
* exactly one inequality constraint that is adjacent to an equality
|
||
* constraint of "j", check whether "i" can be extended to include "j" or
|
||
* whether "j" can be wrapped into "i".
|
||
* All remaining constraints of "i" and "j" are assumed to be valid
|
||
* or cut constraints of the other basic map.
|
||
* However, none of the equality constraints of "i" are cut constraints.
|
||
*
|
||
* If "i" has any "cut" inequality constraints, then check if relaxing
|
||
* each of them by one is sufficient for them to become valid.
|
||
* If so, check if the inequality constraint adjacent to an equality
|
||
* constraint of "j" along with all these cut constraints
|
||
* can be relaxed by one to contain exactly "j".
|
||
* Otherwise, or if this fails, check if "j" can be wrapped into "i".
|
||
*/
|
||
static enum isl_change check_single_adj_eq(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
enum isl_change change = isl_change_none;
|
||
int k;
|
||
int n_cut;
|
||
int *relax;
|
||
isl_ctx *ctx;
|
||
isl_bool try_relax;
|
||
|
||
n_cut = count_ineq(&info[i], STATUS_CUT);
|
||
|
||
k = find_ineq(&info[i], STATUS_ADJ_EQ);
|
||
|
||
if (n_cut > 0) {
|
||
ctx = isl_basic_map_get_ctx(info[i].bmap);
|
||
relax = isl_calloc_array(ctx, int, 1 + n_cut);
|
||
if (!relax)
|
||
return isl_change_error;
|
||
relax[0] = k;
|
||
try_relax = all_cut_by_one(i, j, info, relax + 1);
|
||
if (try_relax < 0)
|
||
change = isl_change_error;
|
||
} else {
|
||
try_relax = isl_bool_true;
|
||
relax = &k;
|
||
}
|
||
if (try_relax && change == isl_change_none)
|
||
change = is_relaxed_extension(i, j, 1 + n_cut, relax, info);
|
||
if (n_cut > 0)
|
||
free(relax);
|
||
if (change != isl_change_none)
|
||
return change;
|
||
|
||
change = can_wrap_in_facet(i, j, k, info, n_cut > 0);
|
||
|
||
return change;
|
||
}
|
||
|
||
/* At least one of the basic maps has an equality that is adjacent
|
||
* to an inequality. Make sure that only one of the basic maps has
|
||
* such an equality and that the other basic map has exactly one
|
||
* inequality adjacent to an equality.
|
||
* If the other basic map does not have such an inequality, then
|
||
* check if all its constraints are either valid or cut constraints
|
||
* and, if so, try wrapping in the first map into the second.
|
||
* Otherwise, try to extend one basic map with the other or
|
||
* wrap one basic map in the other.
|
||
*/
|
||
static enum isl_change check_adj_eq(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
if (any_eq(&info[i], STATUS_ADJ_INEQ) &&
|
||
any_eq(&info[j], STATUS_ADJ_INEQ))
|
||
/* ADJ EQ TOO MANY */
|
||
return isl_change_none;
|
||
|
||
if (any_eq(&info[i], STATUS_ADJ_INEQ))
|
||
return check_adj_eq(j, i, info);
|
||
|
||
/* j has an equality adjacent to an inequality in i */
|
||
|
||
if (count_ineq(&info[i], STATUS_ADJ_EQ) != 1) {
|
||
if (all_valid_or_cut(&info[i]))
|
||
return can_wrap_in_set(i, j, info);
|
||
return isl_change_none;
|
||
}
|
||
if (any_eq(&info[i], STATUS_CUT))
|
||
return isl_change_none;
|
||
if (any_ineq(&info[j], STATUS_ADJ_EQ) ||
|
||
any_ineq(&info[i], STATUS_ADJ_INEQ) ||
|
||
any_ineq(&info[j], STATUS_ADJ_INEQ))
|
||
/* ADJ EQ TOO MANY */
|
||
return isl_change_none;
|
||
|
||
return check_single_adj_eq(i, j, info);
|
||
}
|
||
|
||
/* Disjunct "j" lies on a hyperplane that is adjacent to disjunct "i".
|
||
* In particular, disjunct "i" has an inequality constraint that is adjacent
|
||
* to a (combination of) equality constraint(s) of disjunct "j",
|
||
* but disjunct "j" has no explicit equality constraint adjacent
|
||
* to an inequality constraint of disjunct "i".
|
||
*
|
||
* Disjunct "i" is already known not to have any equality constraints
|
||
* that are adjacent to an equality or inequality constraint.
|
||
* Check that, other than the inequality constraint mentioned above,
|
||
* all other constraints of disjunct "i" are valid for disjunct "j".
|
||
* If so, try and wrap in disjunct "j".
|
||
*/
|
||
static enum isl_change check_ineq_adj_eq(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
int k;
|
||
|
||
if (any_eq(&info[i], STATUS_CUT))
|
||
return isl_change_none;
|
||
if (any_ineq(&info[i], STATUS_CUT))
|
||
return isl_change_none;
|
||
if (any_ineq(&info[i], STATUS_ADJ_INEQ))
|
||
return isl_change_none;
|
||
if (count_ineq(&info[i], STATUS_ADJ_EQ) != 1)
|
||
return isl_change_none;
|
||
|
||
k = find_ineq(&info[i], STATUS_ADJ_EQ);
|
||
|
||
return can_wrap_in_facet(i, j, k, info, 0);
|
||
}
|
||
|
||
/* The two basic maps lie on adjacent hyperplanes. In particular,
|
||
* basic map "i" has an equality that lies parallel to basic map "j".
|
||
* Check if we can wrap the facets around the parallel hyperplanes
|
||
* to include the other set.
|
||
*
|
||
* We perform basically the same operations as can_wrap_in_facet,
|
||
* except that we don't need to select a facet of one of the sets.
|
||
* _
|
||
* \\ \\
|
||
* \\ => \\
|
||
* \ \|
|
||
*
|
||
* If there is more than one equality of "i" adjacent to an equality of "j",
|
||
* then the result will satisfy one or more equalities that are a linear
|
||
* combination of these equalities. These will be encoded as pairs
|
||
* of inequalities in the wrapping constraints and need to be made
|
||
* explicit.
|
||
*/
|
||
static enum isl_change check_eq_adj_eq(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
int k;
|
||
enum isl_change change = isl_change_none;
|
||
int detect_equalities = 0;
|
||
struct isl_wraps wraps;
|
||
isl_ctx *ctx;
|
||
isl_mat *mat;
|
||
struct isl_set *set_i = NULL;
|
||
struct isl_set *set_j = NULL;
|
||
struct isl_vec *bound = NULL;
|
||
unsigned total = isl_basic_map_total_dim(info[i].bmap);
|
||
|
||
if (count_eq(&info[i], STATUS_ADJ_EQ) != 1)
|
||
detect_equalities = 1;
|
||
|
||
k = find_eq(&info[i], STATUS_ADJ_EQ);
|
||
|
||
set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
|
||
set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
|
||
ctx = isl_basic_map_get_ctx(info[i].bmap);
|
||
mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
|
||
info[i].bmap->n_ineq + info[j].bmap->n_ineq,
|
||
1 + total);
|
||
if (wraps_init(&wraps, mat, info, i, j) < 0)
|
||
goto error;
|
||
bound = isl_vec_alloc(ctx, 1 + total);
|
||
if (!set_i || !set_j || !bound)
|
||
goto error;
|
||
|
||
if (k % 2 == 0)
|
||
isl_seq_neg(bound->el, info[i].bmap->eq[k / 2], 1 + total);
|
||
else
|
||
isl_seq_cpy(bound->el, info[i].bmap->eq[k / 2], 1 + total);
|
||
isl_int_add_ui(bound->el[0], bound->el[0], 1);
|
||
|
||
isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
|
||
wraps.mat->n_row = 1;
|
||
|
||
if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
|
||
goto error;
|
||
if (!wraps.mat->n_row)
|
||
goto unbounded;
|
||
|
||
isl_int_sub_ui(bound->el[0], bound->el[0], 1);
|
||
isl_seq_neg(bound->el, bound->el, 1 + total);
|
||
|
||
isl_seq_cpy(wraps.mat->row[wraps.mat->n_row], bound->el, 1 + total);
|
||
wraps.mat->n_row++;
|
||
|
||
if (add_wraps(&wraps, &info[i], bound->el, set_j) < 0)
|
||
goto error;
|
||
if (!wraps.mat->n_row)
|
||
goto unbounded;
|
||
|
||
change = fuse(i, j, info, wraps.mat, detect_equalities, 0);
|
||
|
||
if (0) {
|
||
error: change = isl_change_error;
|
||
}
|
||
unbounded:
|
||
|
||
wraps_free(&wraps);
|
||
isl_set_free(set_i);
|
||
isl_set_free(set_j);
|
||
isl_vec_free(bound);
|
||
|
||
return change;
|
||
}
|
||
|
||
/* Initialize the "eq" and "ineq" fields of "info".
|
||
*/
|
||
static void init_status(struct isl_coalesce_info *info)
|
||
{
|
||
info->eq = info->ineq = NULL;
|
||
}
|
||
|
||
/* Set info->eq to the positions of the equalities of info->bmap
|
||
* with respect to the basic map represented by "tab".
|
||
* If info->eq has already been computed, then do not compute it again.
|
||
*/
|
||
static void set_eq_status_in(struct isl_coalesce_info *info,
|
||
struct isl_tab *tab)
|
||
{
|
||
if (info->eq)
|
||
return;
|
||
info->eq = eq_status_in(info->bmap, tab);
|
||
}
|
||
|
||
/* Set info->ineq to the positions of the inequalities of info->bmap
|
||
* with respect to the basic map represented by "tab".
|
||
* If info->ineq has already been computed, then do not compute it again.
|
||
*/
|
||
static void set_ineq_status_in(struct isl_coalesce_info *info,
|
||
struct isl_tab *tab)
|
||
{
|
||
if (info->ineq)
|
||
return;
|
||
info->ineq = ineq_status_in(info->bmap, info->tab, tab);
|
||
}
|
||
|
||
/* Free the memory allocated by the "eq" and "ineq" fields of "info".
|
||
* This function assumes that init_status has been called on "info" first,
|
||
* after which the "eq" and "ineq" fields may or may not have been
|
||
* assigned a newly allocated array.
|
||
*/
|
||
static void clear_status(struct isl_coalesce_info *info)
|
||
{
|
||
free(info->eq);
|
||
free(info->ineq);
|
||
}
|
||
|
||
/* Are all inequality constraints of the basic map represented by "info"
|
||
* valid for the other basic map, except for a single constraint
|
||
* that is adjacent to an inequality constraint of the other basic map?
|
||
*/
|
||
static int all_ineq_valid_or_single_adj_ineq(struct isl_coalesce_info *info)
|
||
{
|
||
int i;
|
||
int k = -1;
|
||
|
||
for (i = 0; i < info->bmap->n_ineq; ++i) {
|
||
if (info->ineq[i] == STATUS_REDUNDANT)
|
||
continue;
|
||
if (info->ineq[i] == STATUS_VALID)
|
||
continue;
|
||
if (info->ineq[i] != STATUS_ADJ_INEQ)
|
||
return 0;
|
||
if (k != -1)
|
||
return 0;
|
||
k = i;
|
||
}
|
||
|
||
return k != -1;
|
||
}
|
||
|
||
/* Basic map "i" has one or more equality constraints that separate it
|
||
* from basic map "j". Check if it happens to be an extension
|
||
* of basic map "j".
|
||
* In particular, check that all constraints of "j" are valid for "i",
|
||
* except for one inequality constraint that is adjacent
|
||
* to an inequality constraints of "i".
|
||
* If so, check for "i" being an extension of "j" by calling
|
||
* is_adj_ineq_extension.
|
||
*
|
||
* Clean up the memory allocated for keeping track of the status
|
||
* of the constraints before returning.
|
||
*/
|
||
static enum isl_change separating_equality(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
enum isl_change change = isl_change_none;
|
||
|
||
if (all(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_VALID) &&
|
||
all_ineq_valid_or_single_adj_ineq(&info[j]))
|
||
change = is_adj_ineq_extension(j, i, info);
|
||
|
||
clear_status(&info[i]);
|
||
clear_status(&info[j]);
|
||
return change;
|
||
}
|
||
|
||
/* Check if the union of the given pair of basic maps
|
||
* can be represented by a single basic map.
|
||
* If so, replace the pair by the single basic map and return
|
||
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
|
||
* Otherwise, return isl_change_none.
|
||
* The two basic maps are assumed to live in the same local space.
|
||
* The "eq" and "ineq" fields of info[i] and info[j] are assumed
|
||
* to have been initialized by the caller, either to NULL or
|
||
* to valid information.
|
||
*
|
||
* We first check the effect of each constraint of one basic map
|
||
* on the other basic map.
|
||
* The constraint may be
|
||
* redundant the constraint is redundant in its own
|
||
* basic map and should be ignore and removed
|
||
* in the end
|
||
* valid all (integer) points of the other basic map
|
||
* satisfy the constraint
|
||
* separate no (integer) point of the other basic map
|
||
* satisfies the constraint
|
||
* cut some but not all points of the other basic map
|
||
* satisfy the constraint
|
||
* adj_eq the given constraint is adjacent (on the outside)
|
||
* to an equality of the other basic map
|
||
* adj_ineq the given constraint is adjacent (on the outside)
|
||
* to an inequality of the other basic map
|
||
*
|
||
* We consider seven cases in which we can replace the pair by a single
|
||
* basic map. We ignore all "redundant" constraints.
|
||
*
|
||
* 1. all constraints of one basic map are valid
|
||
* => the other basic map is a subset and can be removed
|
||
*
|
||
* 2. all constraints of both basic maps are either "valid" or "cut"
|
||
* and the facets corresponding to the "cut" constraints
|
||
* of one of the basic maps lies entirely inside the other basic map
|
||
* => the pair can be replaced by a basic map consisting
|
||
* of the valid constraints in both basic maps
|
||
*
|
||
* 3. there is a single pair of adjacent inequalities
|
||
* (all other constraints are "valid")
|
||
* => the pair can be replaced by a basic map consisting
|
||
* of the valid constraints in both basic maps
|
||
*
|
||
* 4. one basic map has a single adjacent inequality, while the other
|
||
* constraints are "valid". The other basic map has some
|
||
* "cut" constraints, but replacing the adjacent inequality by
|
||
* its opposite and adding the valid constraints of the other
|
||
* basic map results in a subset of the other basic map
|
||
* => the pair can be replaced by a basic map consisting
|
||
* of the valid constraints in both basic maps
|
||
*
|
||
* 5. there is a single adjacent pair of an inequality and an equality,
|
||
* the other constraints of the basic map containing the inequality are
|
||
* "valid". Moreover, if the inequality the basic map is relaxed
|
||
* and then turned into an equality, then resulting facet lies
|
||
* entirely inside the other basic map
|
||
* => the pair can be replaced by the basic map containing
|
||
* the inequality, with the inequality relaxed.
|
||
*
|
||
* 6. there is a single inequality adjacent to an equality,
|
||
* the other constraints of the basic map containing the inequality are
|
||
* "valid". Moreover, the facets corresponding to both
|
||
* the inequality and the equality can be wrapped around their
|
||
* ridges to include the other basic map
|
||
* => the pair can be replaced by a basic map consisting
|
||
* of the valid constraints in both basic maps together
|
||
* with all wrapping constraints
|
||
*
|
||
* 7. one of the basic maps extends beyond the other by at most one.
|
||
* Moreover, the facets corresponding to the cut constraints and
|
||
* the pieces of the other basic map at offset one from these cut
|
||
* constraints can be wrapped around their ridges to include
|
||
* the union of the two basic maps
|
||
* => the pair can be replaced by a basic map consisting
|
||
* of the valid constraints in both basic maps together
|
||
* with all wrapping constraints
|
||
*
|
||
* 8. the two basic maps live in adjacent hyperplanes. In principle
|
||
* such sets can always be combined through wrapping, but we impose
|
||
* that there is only one such pair, to avoid overeager coalescing.
|
||
*
|
||
* Throughout the computation, we maintain a collection of tableaus
|
||
* corresponding to the basic maps. When the basic maps are dropped
|
||
* or combined, the tableaus are modified accordingly.
|
||
*/
|
||
static enum isl_change coalesce_local_pair_reuse(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
enum isl_change change = isl_change_none;
|
||
|
||
set_ineq_status_in(&info[i], info[j].tab);
|
||
if (info[i].bmap->n_ineq && !info[i].ineq)
|
||
goto error;
|
||
if (any_ineq(&info[i], STATUS_ERROR))
|
||
goto error;
|
||
if (any_ineq(&info[i], STATUS_SEPARATE))
|
||
goto done;
|
||
|
||
set_ineq_status_in(&info[j], info[i].tab);
|
||
if (info[j].bmap->n_ineq && !info[j].ineq)
|
||
goto error;
|
||
if (any_ineq(&info[j], STATUS_ERROR))
|
||
goto error;
|
||
if (any_ineq(&info[j], STATUS_SEPARATE))
|
||
goto done;
|
||
|
||
set_eq_status_in(&info[i], info[j].tab);
|
||
if (info[i].bmap->n_eq && !info[i].eq)
|
||
goto error;
|
||
if (any_eq(&info[i], STATUS_ERROR))
|
||
goto error;
|
||
|
||
set_eq_status_in(&info[j], info[i].tab);
|
||
if (info[j].bmap->n_eq && !info[j].eq)
|
||
goto error;
|
||
if (any_eq(&info[j], STATUS_ERROR))
|
||
goto error;
|
||
|
||
if (any_eq(&info[i], STATUS_SEPARATE))
|
||
return separating_equality(i, j, info);
|
||
if (any_eq(&info[j], STATUS_SEPARATE))
|
||
return separating_equality(j, i, info);
|
||
|
||
if (all(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_VALID) &&
|
||
all(info[i].ineq, info[i].bmap->n_ineq, STATUS_VALID)) {
|
||
drop(&info[j]);
|
||
change = isl_change_drop_second;
|
||
} else if (all(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_VALID) &&
|
||
all(info[j].ineq, info[j].bmap->n_ineq, STATUS_VALID)) {
|
||
drop(&info[i]);
|
||
change = isl_change_drop_first;
|
||
} else if (any_eq(&info[i], STATUS_ADJ_EQ)) {
|
||
change = check_eq_adj_eq(i, j, info);
|
||
} else if (any_eq(&info[j], STATUS_ADJ_EQ)) {
|
||
change = check_eq_adj_eq(j, i, info);
|
||
} else if (any_eq(&info[i], STATUS_ADJ_INEQ) ||
|
||
any_eq(&info[j], STATUS_ADJ_INEQ)) {
|
||
change = check_adj_eq(i, j, info);
|
||
} else if (any_ineq(&info[i], STATUS_ADJ_EQ)) {
|
||
change = check_ineq_adj_eq(i, j, info);
|
||
} else if (any_ineq(&info[j], STATUS_ADJ_EQ)) {
|
||
change = check_ineq_adj_eq(j, i, info);
|
||
} else if (any_ineq(&info[i], STATUS_ADJ_INEQ) ||
|
||
any_ineq(&info[j], STATUS_ADJ_INEQ)) {
|
||
change = check_adj_ineq(i, j, info);
|
||
} else {
|
||
if (!any_eq(&info[i], STATUS_CUT) &&
|
||
!any_eq(&info[j], STATUS_CUT))
|
||
change = check_facets(i, j, info);
|
||
if (change == isl_change_none)
|
||
change = check_wrap(i, j, info);
|
||
}
|
||
|
||
done:
|
||
clear_status(&info[i]);
|
||
clear_status(&info[j]);
|
||
return change;
|
||
error:
|
||
clear_status(&info[i]);
|
||
clear_status(&info[j]);
|
||
return isl_change_error;
|
||
}
|
||
|
||
/* Check if the union of the given pair of basic maps
|
||
* can be represented by a single basic map.
|
||
* If so, replace the pair by the single basic map and return
|
||
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
|
||
* Otherwise, return isl_change_none.
|
||
* The two basic maps are assumed to live in the same local space.
|
||
*/
|
||
static enum isl_change coalesce_local_pair(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
init_status(&info[i]);
|
||
init_status(&info[j]);
|
||
return coalesce_local_pair_reuse(i, j, info);
|
||
}
|
||
|
||
/* Shift the integer division at position "div" of the basic map
|
||
* represented by "info" by "shift".
|
||
*
|
||
* That is, if the integer division has the form
|
||
*
|
||
* floor(f(x)/d)
|
||
*
|
||
* then replace it by
|
||
*
|
||
* floor((f(x) + shift * d)/d) - shift
|
||
*/
|
||
static isl_stat shift_div(struct isl_coalesce_info *info, int div,
|
||
isl_int shift)
|
||
{
|
||
unsigned total;
|
||
|
||
info->bmap = isl_basic_map_shift_div(info->bmap, div, 0, shift);
|
||
if (!info->bmap)
|
||
return isl_stat_error;
|
||
|
||
total = isl_basic_map_dim(info->bmap, isl_dim_all);
|
||
total -= isl_basic_map_dim(info->bmap, isl_dim_div);
|
||
if (isl_tab_shift_var(info->tab, total + div, shift) < 0)
|
||
return isl_stat_error;
|
||
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
/* If the integer division at position "div" is defined by an equality,
|
||
* i.e., a stride constraint, then change the integer division expression
|
||
* to have a constant term equal to zero.
|
||
*
|
||
* Let the equality constraint be
|
||
*
|
||
* c + f + m a = 0
|
||
*
|
||
* The integer division expression is then typically of the form
|
||
*
|
||
* a = floor((-f - c')/m)
|
||
*
|
||
* The integer division is first shifted by t = floor(c/m),
|
||
* turning the equality constraint into
|
||
*
|
||
* c - m floor(c/m) + f + m a' = 0
|
||
*
|
||
* i.e.,
|
||
*
|
||
* (c mod m) + f + m a' = 0
|
||
*
|
||
* That is,
|
||
*
|
||
* a' = (-f - (c mod m))/m = floor((-f)/m)
|
||
*
|
||
* because a' is an integer and 0 <= (c mod m) < m.
|
||
* The constant term of a' can therefore be zeroed out,
|
||
* but only if the integer division expression is of the expected form.
|
||
*/
|
||
static isl_stat normalize_stride_div(struct isl_coalesce_info *info, int div)
|
||
{
|
||
isl_bool defined, valid;
|
||
isl_stat r;
|
||
isl_constraint *c;
|
||
isl_int shift, stride;
|
||
|
||
defined = isl_basic_map_has_defining_equality(info->bmap, isl_dim_div,
|
||
div, &c);
|
||
if (defined < 0)
|
||
return isl_stat_error;
|
||
if (!defined)
|
||
return isl_stat_ok;
|
||
if (!c)
|
||
return isl_stat_error;
|
||
valid = isl_constraint_is_div_equality(c, div);
|
||
isl_int_init(shift);
|
||
isl_int_init(stride);
|
||
isl_constraint_get_constant(c, &shift);
|
||
isl_constraint_get_coefficient(c, isl_dim_div, div, &stride);
|
||
isl_int_fdiv_q(shift, shift, stride);
|
||
r = shift_div(info, div, shift);
|
||
isl_int_clear(stride);
|
||
isl_int_clear(shift);
|
||
isl_constraint_free(c);
|
||
if (r < 0 || valid < 0)
|
||
return isl_stat_error;
|
||
if (!valid)
|
||
return isl_stat_ok;
|
||
info->bmap = isl_basic_map_set_div_expr_constant_num_si_inplace(
|
||
info->bmap, div, 0);
|
||
if (!info->bmap)
|
||
return isl_stat_error;
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
/* The basic maps represented by "info1" and "info2" are known
|
||
* to have the same number of integer divisions.
|
||
* Check if pairs of integer divisions are equal to each other
|
||
* despite the fact that they differ by a rational constant.
|
||
*
|
||
* In particular, look for any pair of integer divisions that
|
||
* only differ in their constant terms.
|
||
* If either of these integer divisions is defined
|
||
* by stride constraints, then modify it to have a zero constant term.
|
||
* If both are defined by stride constraints then in the end they will have
|
||
* the same (zero) constant term.
|
||
*/
|
||
static isl_stat harmonize_stride_divs(struct isl_coalesce_info *info1,
|
||
struct isl_coalesce_info *info2)
|
||
{
|
||
int i, n;
|
||
|
||
n = isl_basic_map_dim(info1->bmap, isl_dim_div);
|
||
for (i = 0; i < n; ++i) {
|
||
isl_bool known, harmonize;
|
||
|
||
known = isl_basic_map_div_is_known(info1->bmap, i);
|
||
if (known >= 0 && known)
|
||
known = isl_basic_map_div_is_known(info2->bmap, i);
|
||
if (known < 0)
|
||
return isl_stat_error;
|
||
if (!known)
|
||
continue;
|
||
harmonize = isl_basic_map_equal_div_expr_except_constant(
|
||
info1->bmap, i, info2->bmap, i);
|
||
if (harmonize < 0)
|
||
return isl_stat_error;
|
||
if (!harmonize)
|
||
continue;
|
||
if (normalize_stride_div(info1, i) < 0)
|
||
return isl_stat_error;
|
||
if (normalize_stride_div(info2, i) < 0)
|
||
return isl_stat_error;
|
||
}
|
||
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
/* If "shift" is an integer constant, then shift the integer division
|
||
* at position "div" of the basic map represented by "info" by "shift".
|
||
* If "shift" is not an integer constant, then do nothing.
|
||
* If "shift" is equal to zero, then no shift needs to be performed either.
|
||
*
|
||
* That is, if the integer division has the form
|
||
*
|
||
* floor(f(x)/d)
|
||
*
|
||
* then replace it by
|
||
*
|
||
* floor((f(x) + shift * d)/d) - shift
|
||
*/
|
||
static isl_stat shift_if_cst_int(struct isl_coalesce_info *info, int div,
|
||
__isl_keep isl_aff *shift)
|
||
{
|
||
isl_bool cst;
|
||
isl_stat r;
|
||
isl_int d;
|
||
isl_val *c;
|
||
|
||
cst = isl_aff_is_cst(shift);
|
||
if (cst < 0 || !cst)
|
||
return cst < 0 ? isl_stat_error : isl_stat_ok;
|
||
|
||
c = isl_aff_get_constant_val(shift);
|
||
cst = isl_val_is_int(c);
|
||
if (cst >= 0 && cst)
|
||
cst = isl_bool_not(isl_val_is_zero(c));
|
||
if (cst < 0 || !cst) {
|
||
isl_val_free(c);
|
||
return cst < 0 ? isl_stat_error : isl_stat_ok;
|
||
}
|
||
|
||
isl_int_init(d);
|
||
r = isl_val_get_num_isl_int(c, &d);
|
||
if (r >= 0)
|
||
r = shift_div(info, div, d);
|
||
isl_int_clear(d);
|
||
|
||
isl_val_free(c);
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Check if some of the divs in the basic map represented by "info1"
|
||
* are shifts of the corresponding divs in the basic map represented
|
||
* by "info2", taking into account the equality constraints "eq1" of "info1"
|
||
* and "eq2" of "info2". If so, align them with those of "info2".
|
||
* "info1" and "info2" are assumed to have the same number
|
||
* of integer divisions.
|
||
*
|
||
* An integer division is considered to be a shift of another integer
|
||
* division if, after simplification with respect to the equality
|
||
* constraints of the other basic map, one is equal to the other
|
||
* plus a constant.
|
||
*
|
||
* In particular, for each pair of integer divisions, if both are known,
|
||
* have the same denominator and are not already equal to each other,
|
||
* simplify each with respect to the equality constraints
|
||
* of the other basic map. If the difference is an integer constant,
|
||
* then move this difference outside.
|
||
* That is, if, after simplification, one integer division is of the form
|
||
*
|
||
* floor((f(x) + c_1)/d)
|
||
*
|
||
* while the other is of the form
|
||
*
|
||
* floor((f(x) + c_2)/d)
|
||
*
|
||
* and n = (c_2 - c_1)/d is an integer, then replace the first
|
||
* integer division by
|
||
*
|
||
* floor((f_1(x) + c_1 + n * d)/d) - n,
|
||
*
|
||
* where floor((f_1(x) + c_1 + n * d)/d) = floor((f2(x) + c_2)/d)
|
||
* after simplification with respect to the equality constraints.
|
||
*/
|
||
static isl_stat harmonize_divs_with_hulls(struct isl_coalesce_info *info1,
|
||
struct isl_coalesce_info *info2, __isl_keep isl_basic_set *eq1,
|
||
__isl_keep isl_basic_set *eq2)
|
||
{
|
||
int i;
|
||
int total;
|
||
isl_local_space *ls1, *ls2;
|
||
|
||
total = isl_basic_map_total_dim(info1->bmap);
|
||
ls1 = isl_local_space_wrap(isl_basic_map_get_local_space(info1->bmap));
|
||
ls2 = isl_local_space_wrap(isl_basic_map_get_local_space(info2->bmap));
|
||
for (i = 0; i < info1->bmap->n_div; ++i) {
|
||
isl_stat r;
|
||
isl_aff *div1, *div2;
|
||
|
||
if (!isl_local_space_div_is_known(ls1, i) ||
|
||
!isl_local_space_div_is_known(ls2, i))
|
||
continue;
|
||
if (isl_int_ne(info1->bmap->div[i][0], info2->bmap->div[i][0]))
|
||
continue;
|
||
if (isl_seq_eq(info1->bmap->div[i] + 1,
|
||
info2->bmap->div[i] + 1, 1 + total))
|
||
continue;
|
||
div1 = isl_local_space_get_div(ls1, i);
|
||
div2 = isl_local_space_get_div(ls2, i);
|
||
div1 = isl_aff_substitute_equalities(div1,
|
||
isl_basic_set_copy(eq2));
|
||
div2 = isl_aff_substitute_equalities(div2,
|
||
isl_basic_set_copy(eq1));
|
||
div2 = isl_aff_sub(div2, div1);
|
||
r = shift_if_cst_int(info1, i, div2);
|
||
isl_aff_free(div2);
|
||
if (r < 0)
|
||
break;
|
||
}
|
||
isl_local_space_free(ls1);
|
||
isl_local_space_free(ls2);
|
||
|
||
if (i < info1->bmap->n_div)
|
||
return isl_stat_error;
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
/* Check if some of the divs in the basic map represented by "info1"
|
||
* are shifts of the corresponding divs in the basic map represented
|
||
* by "info2". If so, align them with those of "info2".
|
||
* Only do this if "info1" and "info2" have the same number
|
||
* of integer divisions.
|
||
*
|
||
* An integer division is considered to be a shift of another integer
|
||
* division if, after simplification with respect to the equality
|
||
* constraints of the other basic map, one is equal to the other
|
||
* plus a constant.
|
||
*
|
||
* First check if pairs of integer divisions are equal to each other
|
||
* despite the fact that they differ by a rational constant.
|
||
* If so, try and arrange for them to have the same constant term.
|
||
*
|
||
* Then, extract the equality constraints and continue with
|
||
* harmonize_divs_with_hulls.
|
||
*
|
||
* If the equality constraints of both basic maps are the same,
|
||
* then there is no need to perform any shifting since
|
||
* the coefficients of the integer divisions should have been
|
||
* reduced in the same way.
|
||
*/
|
||
static isl_stat harmonize_divs(struct isl_coalesce_info *info1,
|
||
struct isl_coalesce_info *info2)
|
||
{
|
||
isl_bool equal;
|
||
isl_basic_map *bmap1, *bmap2;
|
||
isl_basic_set *eq1, *eq2;
|
||
isl_stat r;
|
||
|
||
if (!info1->bmap || !info2->bmap)
|
||
return isl_stat_error;
|
||
|
||
if (info1->bmap->n_div != info2->bmap->n_div)
|
||
return isl_stat_ok;
|
||
if (info1->bmap->n_div == 0)
|
||
return isl_stat_ok;
|
||
|
||
if (harmonize_stride_divs(info1, info2) < 0)
|
||
return isl_stat_error;
|
||
|
||
bmap1 = isl_basic_map_copy(info1->bmap);
|
||
bmap2 = isl_basic_map_copy(info2->bmap);
|
||
eq1 = isl_basic_map_wrap(isl_basic_map_plain_affine_hull(bmap1));
|
||
eq2 = isl_basic_map_wrap(isl_basic_map_plain_affine_hull(bmap2));
|
||
equal = isl_basic_set_plain_is_equal(eq1, eq2);
|
||
if (equal < 0)
|
||
r = isl_stat_error;
|
||
else if (equal)
|
||
r = isl_stat_ok;
|
||
else
|
||
r = harmonize_divs_with_hulls(info1, info2, eq1, eq2);
|
||
isl_basic_set_free(eq1);
|
||
isl_basic_set_free(eq2);
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Do the two basic maps live in the same local space, i.e.,
|
||
* do they have the same (known) divs?
|
||
* If either basic map has any unknown divs, then we can only assume
|
||
* that they do not live in the same local space.
|
||
*/
|
||
static isl_bool same_divs(__isl_keep isl_basic_map *bmap1,
|
||
__isl_keep isl_basic_map *bmap2)
|
||
{
|
||
int i;
|
||
isl_bool known;
|
||
int total;
|
||
|
||
if (!bmap1 || !bmap2)
|
||
return isl_bool_error;
|
||
if (bmap1->n_div != bmap2->n_div)
|
||
return isl_bool_false;
|
||
|
||
if (bmap1->n_div == 0)
|
||
return isl_bool_true;
|
||
|
||
known = isl_basic_map_divs_known(bmap1);
|
||
if (known < 0 || !known)
|
||
return known;
|
||
known = isl_basic_map_divs_known(bmap2);
|
||
if (known < 0 || !known)
|
||
return known;
|
||
|
||
total = isl_basic_map_total_dim(bmap1);
|
||
for (i = 0; i < bmap1->n_div; ++i)
|
||
if (!isl_seq_eq(bmap1->div[i], bmap2->div[i], 2 + total))
|
||
return isl_bool_false;
|
||
|
||
return isl_bool_true;
|
||
}
|
||
|
||
/* Assuming that "tab" contains the equality constraints and
|
||
* the initial inequality constraints of "bmap", copy the remaining
|
||
* inequality constraints of "bmap" to "Tab".
|
||
*/
|
||
static isl_stat copy_ineq(struct isl_tab *tab, __isl_keep isl_basic_map *bmap)
|
||
{
|
||
int i, n_ineq;
|
||
|
||
if (!bmap)
|
||
return isl_stat_error;
|
||
|
||
n_ineq = tab->n_con - tab->n_eq;
|
||
for (i = n_ineq; i < bmap->n_ineq; ++i)
|
||
if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0)
|
||
return isl_stat_error;
|
||
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
/* Description of an integer division that is added
|
||
* during an expansion.
|
||
* "pos" is the position of the corresponding variable.
|
||
* "cst" indicates whether this integer division has a fixed value.
|
||
* "val" contains the fixed value, if the value is fixed.
|
||
*/
|
||
struct isl_expanded {
|
||
int pos;
|
||
isl_bool cst;
|
||
isl_int val;
|
||
};
|
||
|
||
/* For each of the "n" integer division variables "expanded",
|
||
* if the variable has a fixed value, then add two inequality
|
||
* constraints expressing the fixed value.
|
||
* Otherwise, add the corresponding div constraints.
|
||
* The caller is responsible for removing the div constraints
|
||
* that it added for all these "n" integer divisions.
|
||
*
|
||
* The div constraints and the pair of inequality constraints
|
||
* forcing the fixed value cannot both be added for a given variable
|
||
* as the combination may render some of the original constraints redundant.
|
||
* These would then be ignored during the coalescing detection,
|
||
* while they could remain in the fused result.
|
||
*
|
||
* The two added inequality constraints are
|
||
*
|
||
* -a + v >= 0
|
||
* a - v >= 0
|
||
*
|
||
* with "a" the variable and "v" its fixed value.
|
||
* The facet corresponding to one of these two constraints is selected
|
||
* in the tableau to ensure that the pair of inequality constraints
|
||
* is treated as an equality constraint.
|
||
*
|
||
* The information in info->ineq is thrown away because it was
|
||
* computed in terms of div constraints, while some of those
|
||
* have now been replaced by these pairs of inequality constraints.
|
||
*/
|
||
static isl_stat fix_constant_divs(struct isl_coalesce_info *info,
|
||
int n, struct isl_expanded *expanded)
|
||
{
|
||
unsigned o_div;
|
||
int i;
|
||
isl_vec *ineq;
|
||
|
||
o_div = isl_basic_map_offset(info->bmap, isl_dim_div) - 1;
|
||
ineq = isl_vec_alloc(isl_tab_get_ctx(info->tab), 1 + info->tab->n_var);
|
||
if (!ineq)
|
||
return isl_stat_error;
|
||
isl_seq_clr(ineq->el + 1, info->tab->n_var);
|
||
|
||
for (i = 0; i < n; ++i) {
|
||
if (!expanded[i].cst) {
|
||
info->bmap = isl_basic_map_extend_constraints(
|
||
info->bmap, 0, 2);
|
||
if (isl_basic_map_add_div_constraints(info->bmap,
|
||
expanded[i].pos - o_div) < 0)
|
||
break;
|
||
} else {
|
||
isl_int_set_si(ineq->el[1 + expanded[i].pos], -1);
|
||
isl_int_set(ineq->el[0], expanded[i].val);
|
||
info->bmap = isl_basic_map_add_ineq(info->bmap,
|
||
ineq->el);
|
||
isl_int_set_si(ineq->el[1 + expanded[i].pos], 1);
|
||
isl_int_neg(ineq->el[0], expanded[i].val);
|
||
info->bmap = isl_basic_map_add_ineq(info->bmap,
|
||
ineq->el);
|
||
isl_int_set_si(ineq->el[1 + expanded[i].pos], 0);
|
||
}
|
||
if (copy_ineq(info->tab, info->bmap) < 0)
|
||
break;
|
||
if (expanded[i].cst &&
|
||
isl_tab_select_facet(info->tab, info->tab->n_con - 1) < 0)
|
||
break;
|
||
}
|
||
|
||
isl_vec_free(ineq);
|
||
|
||
clear_status(info);
|
||
init_status(info);
|
||
|
||
return i < n ? isl_stat_error : isl_stat_ok;
|
||
}
|
||
|
||
/* Insert the "n" integer division variables "expanded"
|
||
* into info->tab and info->bmap and
|
||
* update info->ineq with respect to the redundant constraints
|
||
* in the resulting tableau.
|
||
* "bmap" contains the result of this insertion in info->bmap,
|
||
* while info->bmap is the original version
|
||
* of "bmap", i.e., the one that corresponds to the current
|
||
* state of info->tab. The number of constraints in info->bmap
|
||
* is assumed to be the same as the number of constraints
|
||
* in info->tab. This is required to be able to detect
|
||
* the extra constraints in "bmap".
|
||
*
|
||
* In particular, introduce extra variables corresponding
|
||
* to the extra integer divisions and add the div constraints
|
||
* that were added to "bmap" after info->tab was created
|
||
* from info->bmap.
|
||
* Furthermore, check if these extra integer divisions happen
|
||
* to attain a fixed integer value in info->tab.
|
||
* If so, replace the corresponding div constraints by pairs
|
||
* of inequality constraints that fix these
|
||
* integer divisions to their single integer values.
|
||
* Replace info->bmap by "bmap" to match the changes to info->tab.
|
||
* info->ineq was computed without a tableau and therefore
|
||
* does not take into account the redundant constraints
|
||
* in the tableau. Mark them here.
|
||
* There is no need to check the newly added div constraints
|
||
* since they cannot be redundant.
|
||
* The redundancy check is not performed when constants have been discovered
|
||
* since info->ineq is completely thrown away in this case.
|
||
*/
|
||
static isl_stat tab_insert_divs(struct isl_coalesce_info *info,
|
||
int n, struct isl_expanded *expanded, __isl_take isl_basic_map *bmap)
|
||
{
|
||
int i, n_ineq;
|
||
unsigned n_eq;
|
||
struct isl_tab_undo *snap;
|
||
int any;
|
||
|
||
if (!bmap)
|
||
return isl_stat_error;
|
||
if (info->bmap->n_eq + info->bmap->n_ineq != info->tab->n_con)
|
||
isl_die(isl_basic_map_get_ctx(bmap), isl_error_internal,
|
||
"original tableau does not correspond "
|
||
"to original basic map", goto error);
|
||
|
||
if (isl_tab_extend_vars(info->tab, n) < 0)
|
||
goto error;
|
||
if (isl_tab_extend_cons(info->tab, 2 * n) < 0)
|
||
goto error;
|
||
|
||
for (i = 0; i < n; ++i) {
|
||
if (isl_tab_insert_var(info->tab, expanded[i].pos) < 0)
|
||
goto error;
|
||
}
|
||
|
||
snap = isl_tab_snap(info->tab);
|
||
|
||
n_ineq = info->tab->n_con - info->tab->n_eq;
|
||
if (copy_ineq(info->tab, bmap) < 0)
|
||
goto error;
|
||
|
||
isl_basic_map_free(info->bmap);
|
||
info->bmap = bmap;
|
||
|
||
any = 0;
|
||
for (i = 0; i < n; ++i) {
|
||
expanded[i].cst = isl_tab_is_constant(info->tab,
|
||
expanded[i].pos, &expanded[i].val);
|
||
if (expanded[i].cst < 0)
|
||
return isl_stat_error;
|
||
if (expanded[i].cst)
|
||
any = 1;
|
||
}
|
||
|
||
if (any) {
|
||
if (isl_tab_rollback(info->tab, snap) < 0)
|
||
return isl_stat_error;
|
||
info->bmap = isl_basic_map_cow(info->bmap);
|
||
if (isl_basic_map_free_inequality(info->bmap, 2 * n) < 0)
|
||
return isl_stat_error;
|
||
|
||
return fix_constant_divs(info, n, expanded);
|
||
}
|
||
|
||
n_eq = info->bmap->n_eq;
|
||
for (i = 0; i < n_ineq; ++i) {
|
||
if (isl_tab_is_redundant(info->tab, n_eq + i))
|
||
info->ineq[i] = STATUS_REDUNDANT;
|
||
}
|
||
|
||
return isl_stat_ok;
|
||
error:
|
||
isl_basic_map_free(bmap);
|
||
return isl_stat_error;
|
||
}
|
||
|
||
/* Expand info->tab and info->bmap in the same way "bmap" was expanded
|
||
* in isl_basic_map_expand_divs using the expansion "exp" and
|
||
* update info->ineq with respect to the redundant constraints
|
||
* in the resulting tableau. info->bmap is the original version
|
||
* of "bmap", i.e., the one that corresponds to the current
|
||
* state of info->tab. The number of constraints in info->bmap
|
||
* is assumed to be the same as the number of constraints
|
||
* in info->tab. This is required to be able to detect
|
||
* the extra constraints in "bmap".
|
||
*
|
||
* Extract the positions where extra local variables are introduced
|
||
* from "exp" and call tab_insert_divs.
|
||
*/
|
||
static isl_stat expand_tab(struct isl_coalesce_info *info, int *exp,
|
||
__isl_take isl_basic_map *bmap)
|
||
{
|
||
isl_ctx *ctx;
|
||
struct isl_expanded *expanded;
|
||
int i, j, k, n;
|
||
int extra_var;
|
||
unsigned total, pos, n_div;
|
||
isl_stat r;
|
||
|
||
total = isl_basic_map_dim(bmap, isl_dim_all);
|
||
n_div = isl_basic_map_dim(bmap, isl_dim_div);
|
||
pos = total - n_div;
|
||
extra_var = total - info->tab->n_var;
|
||
n = n_div - extra_var;
|
||
|
||
ctx = isl_basic_map_get_ctx(bmap);
|
||
expanded = isl_calloc_array(ctx, struct isl_expanded, extra_var);
|
||
if (extra_var && !expanded)
|
||
goto error;
|
||
|
||
i = 0;
|
||
k = 0;
|
||
for (j = 0; j < n_div; ++j) {
|
||
if (i < n && exp[i] == j) {
|
||
++i;
|
||
continue;
|
||
}
|
||
expanded[k++].pos = pos + j;
|
||
}
|
||
|
||
for (k = 0; k < extra_var; ++k)
|
||
isl_int_init(expanded[k].val);
|
||
|
||
r = tab_insert_divs(info, extra_var, expanded, bmap);
|
||
|
||
for (k = 0; k < extra_var; ++k)
|
||
isl_int_clear(expanded[k].val);
|
||
free(expanded);
|
||
|
||
return r;
|
||
error:
|
||
isl_basic_map_free(bmap);
|
||
return isl_stat_error;
|
||
}
|
||
|
||
/* Check if the union of the basic maps represented by info[i] and info[j]
|
||
* can be represented by a single basic map,
|
||
* after expanding the divs of info[i] to match those of info[j].
|
||
* If so, replace the pair by the single basic map and return
|
||
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
|
||
* Otherwise, return isl_change_none.
|
||
*
|
||
* The caller has already checked for info[j] being a subset of info[i].
|
||
* If some of the divs of info[j] are unknown, then the expanded info[i]
|
||
* will not have the corresponding div constraints. The other patterns
|
||
* therefore cannot apply. Skip the computation in this case.
|
||
*
|
||
* The expansion is performed using the divs "div" and expansion "exp"
|
||
* computed by the caller.
|
||
* info[i].bmap has already been expanded and the result is passed in
|
||
* as "bmap".
|
||
* The "eq" and "ineq" fields of info[i] reflect the status of
|
||
* the constraints of the expanded "bmap" with respect to info[j].tab.
|
||
* However, inequality constraints that are redundant in info[i].tab
|
||
* have not yet been marked as such because no tableau was available.
|
||
*
|
||
* Replace info[i].bmap by "bmap" and expand info[i].tab as well,
|
||
* updating info[i].ineq with respect to the redundant constraints.
|
||
* Then try and coalesce the expanded info[i] with info[j],
|
||
* reusing the information in info[i].eq and info[i].ineq.
|
||
* If this does not result in any coalescing or if it results in info[j]
|
||
* getting dropped (which should not happen in practice, since the case
|
||
* of info[j] being a subset of info[i] has already been checked by
|
||
* the caller), then revert info[i] to its original state.
|
||
*/
|
||
static enum isl_change coalesce_expand_tab_divs(__isl_take isl_basic_map *bmap,
|
||
int i, int j, struct isl_coalesce_info *info, __isl_keep isl_mat *div,
|
||
int *exp)
|
||
{
|
||
isl_bool known;
|
||
isl_basic_map *bmap_i;
|
||
struct isl_tab_undo *snap;
|
||
enum isl_change change = isl_change_none;
|
||
|
||
known = isl_basic_map_divs_known(info[j].bmap);
|
||
if (known < 0 || !known) {
|
||
clear_status(&info[i]);
|
||
isl_basic_map_free(bmap);
|
||
return known < 0 ? isl_change_error : isl_change_none;
|
||
}
|
||
|
||
bmap_i = isl_basic_map_copy(info[i].bmap);
|
||
snap = isl_tab_snap(info[i].tab);
|
||
if (expand_tab(&info[i], exp, bmap) < 0)
|
||
change = isl_change_error;
|
||
|
||
init_status(&info[j]);
|
||
if (change == isl_change_none)
|
||
change = coalesce_local_pair_reuse(i, j, info);
|
||
else
|
||
clear_status(&info[i]);
|
||
if (change != isl_change_none && change != isl_change_drop_second) {
|
||
isl_basic_map_free(bmap_i);
|
||
} else {
|
||
isl_basic_map_free(info[i].bmap);
|
||
info[i].bmap = bmap_i;
|
||
|
||
if (isl_tab_rollback(info[i].tab, snap) < 0)
|
||
change = isl_change_error;
|
||
}
|
||
|
||
return change;
|
||
}
|
||
|
||
/* Check if the union of "bmap" and the basic map represented by info[j]
|
||
* can be represented by a single basic map,
|
||
* after expanding the divs of "bmap" to match those of info[j].
|
||
* If so, replace the pair by the single basic map and return
|
||
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
|
||
* Otherwise, return isl_change_none.
|
||
*
|
||
* In particular, check if the expanded "bmap" contains the basic map
|
||
* represented by the tableau info[j].tab.
|
||
* The expansion is performed using the divs "div" and expansion "exp"
|
||
* computed by the caller.
|
||
* Then we check if all constraints of the expanded "bmap" are valid for
|
||
* info[j].tab.
|
||
*
|
||
* If "i" is not equal to -1, then "bmap" is equal to info[i].bmap.
|
||
* In this case, the positions of the constraints of info[i].bmap
|
||
* with respect to the basic map represented by info[j] are stored
|
||
* in info[i].
|
||
*
|
||
* If the expanded "bmap" does not contain the basic map
|
||
* represented by the tableau info[j].tab and if "i" is not -1,
|
||
* i.e., if the original "bmap" is info[i].bmap, then expand info[i].tab
|
||
* as well and check if that results in coalescing.
|
||
*/
|
||
static enum isl_change coalesce_with_expanded_divs(
|
||
__isl_keep isl_basic_map *bmap, int i, int j,
|
||
struct isl_coalesce_info *info, __isl_keep isl_mat *div, int *exp)
|
||
{
|
||
enum isl_change change = isl_change_none;
|
||
struct isl_coalesce_info info_local, *info_i;
|
||
|
||
info_i = i >= 0 ? &info[i] : &info_local;
|
||
init_status(info_i);
|
||
bmap = isl_basic_map_copy(bmap);
|
||
bmap = isl_basic_map_expand_divs(bmap, isl_mat_copy(div), exp);
|
||
bmap = isl_basic_map_mark_final(bmap);
|
||
|
||
if (!bmap)
|
||
goto error;
|
||
|
||
info_local.bmap = bmap;
|
||
info_i->eq = eq_status_in(bmap, info[j].tab);
|
||
if (bmap->n_eq && !info_i->eq)
|
||
goto error;
|
||
if (any_eq(info_i, STATUS_ERROR))
|
||
goto error;
|
||
if (any_eq(info_i, STATUS_SEPARATE))
|
||
goto done;
|
||
|
||
info_i->ineq = ineq_status_in(bmap, NULL, info[j].tab);
|
||
if (bmap->n_ineq && !info_i->ineq)
|
||
goto error;
|
||
if (any_ineq(info_i, STATUS_ERROR))
|
||
goto error;
|
||
if (any_ineq(info_i, STATUS_SEPARATE))
|
||
goto done;
|
||
|
||
if (all(info_i->eq, 2 * bmap->n_eq, STATUS_VALID) &&
|
||
all(info_i->ineq, bmap->n_ineq, STATUS_VALID)) {
|
||
drop(&info[j]);
|
||
change = isl_change_drop_second;
|
||
}
|
||
|
||
if (change == isl_change_none && i != -1)
|
||
return coalesce_expand_tab_divs(bmap, i, j, info, div, exp);
|
||
|
||
done:
|
||
isl_basic_map_free(bmap);
|
||
clear_status(info_i);
|
||
return change;
|
||
error:
|
||
isl_basic_map_free(bmap);
|
||
clear_status(info_i);
|
||
return isl_change_error;
|
||
}
|
||
|
||
/* Check if the union of "bmap_i" and the basic map represented by info[j]
|
||
* can be represented by a single basic map,
|
||
* after aligning the divs of "bmap_i" to match those of info[j].
|
||
* If so, replace the pair by the single basic map and return
|
||
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
|
||
* Otherwise, return isl_change_none.
|
||
*
|
||
* In particular, check if "bmap_i" contains the basic map represented by
|
||
* info[j] after aligning the divs of "bmap_i" to those of info[j].
|
||
* Note that this can only succeed if the number of divs of "bmap_i"
|
||
* is smaller than (or equal to) the number of divs of info[j].
|
||
*
|
||
* We first check if the divs of "bmap_i" are all known and form a subset
|
||
* of those of info[j].bmap. If so, we pass control over to
|
||
* coalesce_with_expanded_divs.
|
||
*
|
||
* If "i" is not equal to -1, then "bmap" is equal to info[i].bmap.
|
||
*/
|
||
static enum isl_change coalesce_after_aligning_divs(
|
||
__isl_keep isl_basic_map *bmap_i, int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
isl_bool known;
|
||
isl_mat *div_i, *div_j, *div;
|
||
int *exp1 = NULL;
|
||
int *exp2 = NULL;
|
||
isl_ctx *ctx;
|
||
enum isl_change change;
|
||
|
||
known = isl_basic_map_divs_known(bmap_i);
|
||
if (known < 0)
|
||
return isl_change_error;
|
||
if (!known)
|
||
return isl_change_none;
|
||
|
||
ctx = isl_basic_map_get_ctx(bmap_i);
|
||
|
||
div_i = isl_basic_map_get_divs(bmap_i);
|
||
div_j = isl_basic_map_get_divs(info[j].bmap);
|
||
|
||
if (!div_i || !div_j)
|
||
goto error;
|
||
|
||
exp1 = isl_alloc_array(ctx, int, div_i->n_row);
|
||
exp2 = isl_alloc_array(ctx, int, div_j->n_row);
|
||
if ((div_i->n_row && !exp1) || (div_j->n_row && !exp2))
|
||
goto error;
|
||
|
||
div = isl_merge_divs(div_i, div_j, exp1, exp2);
|
||
if (!div)
|
||
goto error;
|
||
|
||
if (div->n_row == div_j->n_row)
|
||
change = coalesce_with_expanded_divs(bmap_i,
|
||
i, j, info, div, exp1);
|
||
else
|
||
change = isl_change_none;
|
||
|
||
isl_mat_free(div);
|
||
|
||
isl_mat_free(div_i);
|
||
isl_mat_free(div_j);
|
||
|
||
free(exp2);
|
||
free(exp1);
|
||
|
||
return change;
|
||
error:
|
||
isl_mat_free(div_i);
|
||
isl_mat_free(div_j);
|
||
free(exp1);
|
||
free(exp2);
|
||
return isl_change_error;
|
||
}
|
||
|
||
/* Check if basic map "j" is a subset of basic map "i" after
|
||
* exploiting the extra equalities of "j" to simplify the divs of "i".
|
||
* If so, remove basic map "j" and return isl_change_drop_second.
|
||
*
|
||
* If "j" does not have any equalities or if they are the same
|
||
* as those of "i", then we cannot exploit them to simplify the divs.
|
||
* Similarly, if there are no divs in "i", then they cannot be simplified.
|
||
* If, on the other hand, the affine hulls of "i" and "j" do not intersect,
|
||
* then "j" cannot be a subset of "i".
|
||
*
|
||
* Otherwise, we intersect "i" with the affine hull of "j" and then
|
||
* check if "j" is a subset of the result after aligning the divs.
|
||
* If so, then "j" is definitely a subset of "i" and can be removed.
|
||
* Note that if after intersection with the affine hull of "j".
|
||
* "i" still has more divs than "j", then there is no way we can
|
||
* align the divs of "i" to those of "j".
|
||
*/
|
||
static enum isl_change coalesce_subset_with_equalities(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
isl_basic_map *hull_i, *hull_j, *bmap_i;
|
||
int equal, empty;
|
||
enum isl_change change;
|
||
|
||
if (info[j].bmap->n_eq == 0)
|
||
return isl_change_none;
|
||
if (info[i].bmap->n_div == 0)
|
||
return isl_change_none;
|
||
|
||
hull_i = isl_basic_map_copy(info[i].bmap);
|
||
hull_i = isl_basic_map_plain_affine_hull(hull_i);
|
||
hull_j = isl_basic_map_copy(info[j].bmap);
|
||
hull_j = isl_basic_map_plain_affine_hull(hull_j);
|
||
|
||
hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i));
|
||
equal = isl_basic_map_plain_is_equal(hull_i, hull_j);
|
||
empty = isl_basic_map_plain_is_empty(hull_j);
|
||
isl_basic_map_free(hull_i);
|
||
|
||
if (equal < 0 || equal || empty < 0 || empty) {
|
||
isl_basic_map_free(hull_j);
|
||
if (equal < 0 || empty < 0)
|
||
return isl_change_error;
|
||
return isl_change_none;
|
||
}
|
||
|
||
bmap_i = isl_basic_map_copy(info[i].bmap);
|
||
bmap_i = isl_basic_map_intersect(bmap_i, hull_j);
|
||
if (!bmap_i)
|
||
return isl_change_error;
|
||
|
||
if (bmap_i->n_div > info[j].bmap->n_div) {
|
||
isl_basic_map_free(bmap_i);
|
||
return isl_change_none;
|
||
}
|
||
|
||
change = coalesce_after_aligning_divs(bmap_i, -1, j, info);
|
||
|
||
isl_basic_map_free(bmap_i);
|
||
|
||
return change;
|
||
}
|
||
|
||
/* Check if the union of and the basic maps represented by info[i] and info[j]
|
||
* can be represented by a single basic map, by aligning or equating
|
||
* their integer divisions.
|
||
* If so, replace the pair by the single basic map and return
|
||
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
|
||
* Otherwise, return isl_change_none.
|
||
*
|
||
* Note that we only perform any test if the number of divs is different
|
||
* in the two basic maps. In case the number of divs is the same,
|
||
* we have already established that the divs are different
|
||
* in the two basic maps.
|
||
* In particular, if the number of divs of basic map i is smaller than
|
||
* the number of divs of basic map j, then we check if j is a subset of i
|
||
* and vice versa.
|
||
*/
|
||
static enum isl_change coalesce_divs(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
enum isl_change change = isl_change_none;
|
||
|
||
if (info[i].bmap->n_div < info[j].bmap->n_div)
|
||
change = coalesce_after_aligning_divs(info[i].bmap, i, j, info);
|
||
if (change != isl_change_none)
|
||
return change;
|
||
|
||
if (info[j].bmap->n_div < info[i].bmap->n_div)
|
||
change = coalesce_after_aligning_divs(info[j].bmap, j, i, info);
|
||
if (change != isl_change_none)
|
||
return invert_change(change);
|
||
|
||
change = coalesce_subset_with_equalities(i, j, info);
|
||
if (change != isl_change_none)
|
||
return change;
|
||
|
||
change = coalesce_subset_with_equalities(j, i, info);
|
||
if (change != isl_change_none)
|
||
return invert_change(change);
|
||
|
||
return isl_change_none;
|
||
}
|
||
|
||
/* Does "bmap" involve any divs that themselves refer to divs?
|
||
*/
|
||
static isl_bool has_nested_div(__isl_keep isl_basic_map *bmap)
|
||
{
|
||
int i;
|
||
unsigned total;
|
||
unsigned n_div;
|
||
|
||
total = isl_basic_map_dim(bmap, isl_dim_all);
|
||
n_div = isl_basic_map_dim(bmap, isl_dim_div);
|
||
total -= n_div;
|
||
|
||
for (i = 0; i < n_div; ++i)
|
||
if (isl_seq_first_non_zero(bmap->div[i] + 2 + total,
|
||
n_div) != -1)
|
||
return isl_bool_true;
|
||
|
||
return isl_bool_false;
|
||
}
|
||
|
||
/* Return a list of affine expressions, one for each integer division
|
||
* in "bmap_i". For each integer division that also appears in "bmap_j",
|
||
* the affine expression is set to NaN. The number of NaNs in the list
|
||
* is equal to the number of integer divisions in "bmap_j".
|
||
* For the other integer divisions of "bmap_i", the corresponding
|
||
* element in the list is a purely affine expression equal to the integer
|
||
* division in "hull".
|
||
* If no such list can be constructed, then the number of elements
|
||
* in the returned list is smaller than the number of integer divisions
|
||
* in "bmap_i".
|
||
*/
|
||
static __isl_give isl_aff_list *set_up_substitutions(
|
||
__isl_keep isl_basic_map *bmap_i, __isl_keep isl_basic_map *bmap_j,
|
||
__isl_take isl_basic_map *hull)
|
||
{
|
||
unsigned n_div_i, n_div_j, total;
|
||
isl_ctx *ctx;
|
||
isl_local_space *ls;
|
||
isl_basic_set *wrap_hull;
|
||
isl_aff *aff_nan;
|
||
isl_aff_list *list;
|
||
int i, j;
|
||
|
||
if (!hull)
|
||
return NULL;
|
||
|
||
ctx = isl_basic_map_get_ctx(hull);
|
||
|
||
n_div_i = isl_basic_map_dim(bmap_i, isl_dim_div);
|
||
n_div_j = isl_basic_map_dim(bmap_j, isl_dim_div);
|
||
total = isl_basic_map_total_dim(bmap_i) - n_div_i;
|
||
|
||
ls = isl_basic_map_get_local_space(bmap_i);
|
||
ls = isl_local_space_wrap(ls);
|
||
wrap_hull = isl_basic_map_wrap(hull);
|
||
|
||
aff_nan = isl_aff_nan_on_domain(isl_local_space_copy(ls));
|
||
list = isl_aff_list_alloc(ctx, n_div_i);
|
||
|
||
j = 0;
|
||
for (i = 0; i < n_div_i; ++i) {
|
||
isl_aff *aff;
|
||
|
||
if (j < n_div_j &&
|
||
isl_basic_map_equal_div_expr_part(bmap_i, i, bmap_j, j,
|
||
0, 2 + total)) {
|
||
++j;
|
||
list = isl_aff_list_add(list, isl_aff_copy(aff_nan));
|
||
continue;
|
||
}
|
||
if (n_div_i - i <= n_div_j - j)
|
||
break;
|
||
|
||
aff = isl_local_space_get_div(ls, i);
|
||
aff = isl_aff_substitute_equalities(aff,
|
||
isl_basic_set_copy(wrap_hull));
|
||
aff = isl_aff_floor(aff);
|
||
if (!aff)
|
||
goto error;
|
||
if (isl_aff_dim(aff, isl_dim_div) != 0) {
|
||
isl_aff_free(aff);
|
||
break;
|
||
}
|
||
|
||
list = isl_aff_list_add(list, aff);
|
||
}
|
||
|
||
isl_aff_free(aff_nan);
|
||
isl_local_space_free(ls);
|
||
isl_basic_set_free(wrap_hull);
|
||
|
||
return list;
|
||
error:
|
||
isl_aff_free(aff_nan);
|
||
isl_local_space_free(ls);
|
||
isl_basic_set_free(wrap_hull);
|
||
isl_aff_list_free(list);
|
||
return NULL;
|
||
}
|
||
|
||
/* Add variables to info->bmap and info->tab corresponding to the elements
|
||
* in "list" that are not set to NaN.
|
||
* "extra_var" is the number of these elements.
|
||
* "dim" is the offset in the variables of "tab" where we should
|
||
* start considering the elements in "list".
|
||
* When this function returns, the total number of variables in "tab"
|
||
* is equal to "dim" plus the number of elements in "list".
|
||
*
|
||
* The newly added existentially quantified variables are not given
|
||
* an explicit representation because the corresponding div constraints
|
||
* do not appear in info->bmap. These constraints are not added
|
||
* to info->bmap because for internal consistency, they would need to
|
||
* be added to info->tab as well, where they could combine with the equality
|
||
* that is added later to result in constraints that do not hold
|
||
* in the original input.
|
||
*/
|
||
static isl_stat add_sub_vars(struct isl_coalesce_info *info,
|
||
__isl_keep isl_aff_list *list, int dim, int extra_var)
|
||
{
|
||
int i, j, n, d;
|
||
isl_space *space;
|
||
|
||
space = isl_basic_map_get_space(info->bmap);
|
||
info->bmap = isl_basic_map_cow(info->bmap);
|
||
info->bmap = isl_basic_map_extend_space(info->bmap, space,
|
||
extra_var, 0, 0);
|
||
if (!info->bmap)
|
||
return isl_stat_error;
|
||
n = isl_aff_list_n_aff(list);
|
||
for (i = 0; i < n; ++i) {
|
||
int is_nan;
|
||
isl_aff *aff;
|
||
|
||
aff = isl_aff_list_get_aff(list, i);
|
||
is_nan = isl_aff_is_nan(aff);
|
||
isl_aff_free(aff);
|
||
if (is_nan < 0)
|
||
return isl_stat_error;
|
||
if (is_nan)
|
||
continue;
|
||
|
||
if (isl_tab_insert_var(info->tab, dim + i) < 0)
|
||
return isl_stat_error;
|
||
d = isl_basic_map_alloc_div(info->bmap);
|
||
if (d < 0)
|
||
return isl_stat_error;
|
||
info->bmap = isl_basic_map_mark_div_unknown(info->bmap, d);
|
||
if (!info->bmap)
|
||
return isl_stat_error;
|
||
for (j = d; j > i; --j)
|
||
isl_basic_map_swap_div(info->bmap, j - 1, j);
|
||
}
|
||
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
/* For each element in "list" that is not set to NaN, fix the corresponding
|
||
* variable in "tab" to the purely affine expression defined by the element.
|
||
* "dim" is the offset in the variables of "tab" where we should
|
||
* start considering the elements in "list".
|
||
*
|
||
* This function assumes that a sufficient number of rows and
|
||
* elements in the constraint array are available in the tableau.
|
||
*/
|
||
static int add_sub_equalities(struct isl_tab *tab,
|
||
__isl_keep isl_aff_list *list, int dim)
|
||
{
|
||
int i, n;
|
||
isl_ctx *ctx;
|
||
isl_vec *sub;
|
||
isl_aff *aff;
|
||
|
||
n = isl_aff_list_n_aff(list);
|
||
|
||
ctx = isl_tab_get_ctx(tab);
|
||
sub = isl_vec_alloc(ctx, 1 + dim + n);
|
||
if (!sub)
|
||
return -1;
|
||
isl_seq_clr(sub->el + 1 + dim, n);
|
||
|
||
for (i = 0; i < n; ++i) {
|
||
aff = isl_aff_list_get_aff(list, i);
|
||
if (!aff)
|
||
goto error;
|
||
if (isl_aff_is_nan(aff)) {
|
||
isl_aff_free(aff);
|
||
continue;
|
||
}
|
||
isl_seq_cpy(sub->el, aff->v->el + 1, 1 + dim);
|
||
isl_int_neg(sub->el[1 + dim + i], aff->v->el[0]);
|
||
if (isl_tab_add_eq(tab, sub->el) < 0)
|
||
goto error;
|
||
isl_int_set_si(sub->el[1 + dim + i], 0);
|
||
isl_aff_free(aff);
|
||
}
|
||
|
||
isl_vec_free(sub);
|
||
return 0;
|
||
error:
|
||
isl_aff_free(aff);
|
||
isl_vec_free(sub);
|
||
return -1;
|
||
}
|
||
|
||
/* Add variables to info->tab and info->bmap corresponding to the elements
|
||
* in "list" that are not set to NaN. The value of the added variable
|
||
* in info->tab is fixed to the purely affine expression defined by the element.
|
||
* "dim" is the offset in the variables of info->tab where we should
|
||
* start considering the elements in "list".
|
||
* When this function returns, the total number of variables in info->tab
|
||
* is equal to "dim" plus the number of elements in "list".
|
||
*/
|
||
static int add_subs(struct isl_coalesce_info *info,
|
||
__isl_keep isl_aff_list *list, int dim)
|
||
{
|
||
int extra_var;
|
||
int n;
|
||
|
||
if (!list)
|
||
return -1;
|
||
|
||
n = isl_aff_list_n_aff(list);
|
||
extra_var = n - (info->tab->n_var - dim);
|
||
|
||
if (isl_tab_extend_vars(info->tab, extra_var) < 0)
|
||
return -1;
|
||
if (isl_tab_extend_cons(info->tab, 2 * extra_var) < 0)
|
||
return -1;
|
||
if (add_sub_vars(info, list, dim, extra_var) < 0)
|
||
return -1;
|
||
|
||
return add_sub_equalities(info->tab, list, dim);
|
||
}
|
||
|
||
/* Coalesce basic map "j" into basic map "i" after adding the extra integer
|
||
* divisions in "i" but not in "j" to basic map "j", with values
|
||
* specified by "list". The total number of elements in "list"
|
||
* is equal to the number of integer divisions in "i", while the number
|
||
* of NaN elements in the list is equal to the number of integer divisions
|
||
* in "j".
|
||
*
|
||
* If no coalescing can be performed, then we need to revert basic map "j"
|
||
* to its original state. We do the same if basic map "i" gets dropped
|
||
* during the coalescing, even though this should not happen in practice
|
||
* since we have already checked for "j" being a subset of "i"
|
||
* before we reach this stage.
|
||
*/
|
||
static enum isl_change coalesce_with_subs(int i, int j,
|
||
struct isl_coalesce_info *info, __isl_keep isl_aff_list *list)
|
||
{
|
||
isl_basic_map *bmap_j;
|
||
struct isl_tab_undo *snap;
|
||
unsigned dim;
|
||
enum isl_change change;
|
||
|
||
bmap_j = isl_basic_map_copy(info[j].bmap);
|
||
snap = isl_tab_snap(info[j].tab);
|
||
|
||
dim = isl_basic_map_dim(bmap_j, isl_dim_all);
|
||
dim -= isl_basic_map_dim(bmap_j, isl_dim_div);
|
||
if (add_subs(&info[j], list, dim) < 0)
|
||
goto error;
|
||
|
||
change = coalesce_local_pair(i, j, info);
|
||
if (change != isl_change_none && change != isl_change_drop_first) {
|
||
isl_basic_map_free(bmap_j);
|
||
} else {
|
||
isl_basic_map_free(info[j].bmap);
|
||
info[j].bmap = bmap_j;
|
||
|
||
if (isl_tab_rollback(info[j].tab, snap) < 0)
|
||
return isl_change_error;
|
||
}
|
||
|
||
return change;
|
||
error:
|
||
isl_basic_map_free(bmap_j);
|
||
return isl_change_error;
|
||
}
|
||
|
||
/* Check if we can coalesce basic map "j" into basic map "i" after copying
|
||
* those extra integer divisions in "i" that can be simplified away
|
||
* using the extra equalities in "j".
|
||
* All divs are assumed to be known and not contain any nested divs.
|
||
*
|
||
* We first check if there are any extra equalities in "j" that we
|
||
* can exploit. Then we check if every integer division in "i"
|
||
* either already appears in "j" or can be simplified using the
|
||
* extra equalities to a purely affine expression.
|
||
* If these tests succeed, then we try to coalesce the two basic maps
|
||
* by introducing extra dimensions in "j" corresponding to
|
||
* the extra integer divsisions "i" fixed to the corresponding
|
||
* purely affine expression.
|
||
*/
|
||
static enum isl_change check_coalesce_into_eq(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
unsigned n_div_i, n_div_j;
|
||
isl_basic_map *hull_i, *hull_j;
|
||
int equal, empty;
|
||
isl_aff_list *list;
|
||
enum isl_change change;
|
||
|
||
n_div_i = isl_basic_map_dim(info[i].bmap, isl_dim_div);
|
||
n_div_j = isl_basic_map_dim(info[j].bmap, isl_dim_div);
|
||
if (n_div_i <= n_div_j)
|
||
return isl_change_none;
|
||
if (info[j].bmap->n_eq == 0)
|
||
return isl_change_none;
|
||
|
||
hull_i = isl_basic_map_copy(info[i].bmap);
|
||
hull_i = isl_basic_map_plain_affine_hull(hull_i);
|
||
hull_j = isl_basic_map_copy(info[j].bmap);
|
||
hull_j = isl_basic_map_plain_affine_hull(hull_j);
|
||
|
||
hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i));
|
||
equal = isl_basic_map_plain_is_equal(hull_i, hull_j);
|
||
empty = isl_basic_map_plain_is_empty(hull_j);
|
||
isl_basic_map_free(hull_i);
|
||
|
||
if (equal < 0 || empty < 0)
|
||
goto error;
|
||
if (equal || empty) {
|
||
isl_basic_map_free(hull_j);
|
||
return isl_change_none;
|
||
}
|
||
|
||
list = set_up_substitutions(info[i].bmap, info[j].bmap, hull_j);
|
||
if (!list)
|
||
return isl_change_error;
|
||
if (isl_aff_list_n_aff(list) < n_div_i)
|
||
change = isl_change_none;
|
||
else
|
||
change = coalesce_with_subs(i, j, info, list);
|
||
|
||
isl_aff_list_free(list);
|
||
|
||
return change;
|
||
error:
|
||
isl_basic_map_free(hull_j);
|
||
return isl_change_error;
|
||
}
|
||
|
||
/* Check if we can coalesce basic maps "i" and "j" after copying
|
||
* those extra integer divisions in one of the basic maps that can
|
||
* be simplified away using the extra equalities in the other basic map.
|
||
* We require all divs to be known in both basic maps.
|
||
* Furthermore, to simplify the comparison of div expressions,
|
||
* we do not allow any nested integer divisions.
|
||
*/
|
||
static enum isl_change check_coalesce_eq(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
isl_bool known, nested;
|
||
enum isl_change change;
|
||
|
||
known = isl_basic_map_divs_known(info[i].bmap);
|
||
if (known < 0 || !known)
|
||
return known < 0 ? isl_change_error : isl_change_none;
|
||
known = isl_basic_map_divs_known(info[j].bmap);
|
||
if (known < 0 || !known)
|
||
return known < 0 ? isl_change_error : isl_change_none;
|
||
nested = has_nested_div(info[i].bmap);
|
||
if (nested < 0 || nested)
|
||
return nested < 0 ? isl_change_error : isl_change_none;
|
||
nested = has_nested_div(info[j].bmap);
|
||
if (nested < 0 || nested)
|
||
return nested < 0 ? isl_change_error : isl_change_none;
|
||
|
||
change = check_coalesce_into_eq(i, j, info);
|
||
if (change != isl_change_none)
|
||
return change;
|
||
change = check_coalesce_into_eq(j, i, info);
|
||
if (change != isl_change_none)
|
||
return invert_change(change);
|
||
|
||
return isl_change_none;
|
||
}
|
||
|
||
/* Check if the union of the given pair of basic maps
|
||
* can be represented by a single basic map.
|
||
* If so, replace the pair by the single basic map and return
|
||
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
|
||
* Otherwise, return isl_change_none.
|
||
*
|
||
* We first check if the two basic maps live in the same local space,
|
||
* after aligning the divs that differ by only an integer constant.
|
||
* If so, we do the complete check. Otherwise, we check if they have
|
||
* the same number of integer divisions and can be coalesced, if one is
|
||
* an obvious subset of the other or if the extra integer divisions
|
||
* of one basic map can be simplified away using the extra equalities
|
||
* of the other basic map.
|
||
*
|
||
* Note that trying to coalesce pairs of disjuncts with the same
|
||
* number, but different local variables may drop the explicit
|
||
* representation of some of these local variables.
|
||
* This operation is therefore not performed when
|
||
* the "coalesce_preserve_locals" option is set.
|
||
*/
|
||
static enum isl_change coalesce_pair(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
int preserve;
|
||
isl_bool same;
|
||
enum isl_change change;
|
||
isl_ctx *ctx;
|
||
|
||
if (harmonize_divs(&info[i], &info[j]) < 0)
|
||
return isl_change_error;
|
||
same = same_divs(info[i].bmap, info[j].bmap);
|
||
if (same < 0)
|
||
return isl_change_error;
|
||
if (same)
|
||
return coalesce_local_pair(i, j, info);
|
||
|
||
ctx = isl_basic_map_get_ctx(info[i].bmap);
|
||
preserve = isl_options_get_coalesce_preserve_locals(ctx);
|
||
if (!preserve && info[i].bmap->n_div == info[j].bmap->n_div) {
|
||
change = coalesce_local_pair(i, j, info);
|
||
if (change != isl_change_none)
|
||
return change;
|
||
}
|
||
|
||
change = coalesce_divs(i, j, info);
|
||
if (change != isl_change_none)
|
||
return change;
|
||
|
||
return check_coalesce_eq(i, j, info);
|
||
}
|
||
|
||
/* Return the maximum of "a" and "b".
|
||
*/
|
||
static int isl_max(int a, int b)
|
||
{
|
||
return a > b ? a : b;
|
||
}
|
||
|
||
/* Pairwise coalesce the basic maps in the range [start1, end1[ of "info"
|
||
* with those in the range [start2, end2[, skipping basic maps
|
||
* that have been removed (either before or within this function).
|
||
*
|
||
* For each basic map i in the first range, we check if it can be coalesced
|
||
* with respect to any previously considered basic map j in the second range.
|
||
* If i gets dropped (because it was a subset of some j), then
|
||
* we can move on to the next basic map.
|
||
* If j gets dropped, we need to continue checking against the other
|
||
* previously considered basic maps.
|
||
* If the two basic maps got fused, then we recheck the fused basic map
|
||
* against the previously considered basic maps, starting at i + 1
|
||
* (even if start2 is greater than i + 1).
|
||
*/
|
||
static int coalesce_range(isl_ctx *ctx, struct isl_coalesce_info *info,
|
||
int start1, int end1, int start2, int end2)
|
||
{
|
||
int i, j;
|
||
|
||
for (i = end1 - 1; i >= start1; --i) {
|
||
if (info[i].removed)
|
||
continue;
|
||
for (j = isl_max(i + 1, start2); j < end2; ++j) {
|
||
enum isl_change changed;
|
||
|
||
if (info[j].removed)
|
||
continue;
|
||
if (info[i].removed)
|
||
isl_die(ctx, isl_error_internal,
|
||
"basic map unexpectedly removed",
|
||
return -1);
|
||
changed = coalesce_pair(i, j, info);
|
||
switch (changed) {
|
||
case isl_change_error:
|
||
return -1;
|
||
case isl_change_none:
|
||
case isl_change_drop_second:
|
||
continue;
|
||
case isl_change_drop_first:
|
||
j = end2;
|
||
break;
|
||
case isl_change_fuse:
|
||
j = i;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Pairwise coalesce the basic maps described by the "n" elements of "info".
|
||
*
|
||
* We consider groups of basic maps that live in the same apparent
|
||
* affine hull and we first coalesce within such a group before we
|
||
* coalesce the elements in the group with elements of previously
|
||
* considered groups. If a fuse happens during the second phase,
|
||
* then we also reconsider the elements within the group.
|
||
*/
|
||
static int coalesce(isl_ctx *ctx, int n, struct isl_coalesce_info *info)
|
||
{
|
||
int start, end;
|
||
|
||
for (end = n; end > 0; end = start) {
|
||
start = end - 1;
|
||
while (start >= 1 &&
|
||
info[start - 1].hull_hash == info[start].hull_hash)
|
||
start--;
|
||
if (coalesce_range(ctx, info, start, end, start, end) < 0)
|
||
return -1;
|
||
if (coalesce_range(ctx, info, start, end, end, n) < 0)
|
||
return -1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Update the basic maps in "map" based on the information in "info".
|
||
* In particular, remove the basic maps that have been marked removed and
|
||
* update the others based on the information in the corresponding tableau.
|
||
* Since we detected implicit equalities without calling
|
||
* isl_basic_map_gauss, we need to do it now.
|
||
* Also call isl_basic_map_simplify if we may have lost the definition
|
||
* of one or more integer divisions.
|
||
*/
|
||
static __isl_give isl_map *update_basic_maps(__isl_take isl_map *map,
|
||
int n, struct isl_coalesce_info *info)
|
||
{
|
||
int i;
|
||
|
||
if (!map)
|
||
return NULL;
|
||
|
||
for (i = n - 1; i >= 0; --i) {
|
||
if (info[i].removed) {
|
||
isl_basic_map_free(map->p[i]);
|
||
if (i != map->n - 1)
|
||
map->p[i] = map->p[map->n - 1];
|
||
map->n--;
|
||
continue;
|
||
}
|
||
|
||
info[i].bmap = isl_basic_map_update_from_tab(info[i].bmap,
|
||
info[i].tab);
|
||
info[i].bmap = isl_basic_map_gauss(info[i].bmap, NULL);
|
||
if (info[i].simplify)
|
||
info[i].bmap = isl_basic_map_simplify(info[i].bmap);
|
||
info[i].bmap = isl_basic_map_finalize(info[i].bmap);
|
||
if (!info[i].bmap)
|
||
return isl_map_free(map);
|
||
ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT);
|
||
ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT);
|
||
isl_basic_map_free(map->p[i]);
|
||
map->p[i] = info[i].bmap;
|
||
info[i].bmap = NULL;
|
||
}
|
||
|
||
return map;
|
||
}
|
||
|
||
/* For each pair of basic maps in the map, check if the union of the two
|
||
* can be represented by a single basic map.
|
||
* If so, replace the pair by the single basic map and start over.
|
||
*
|
||
* We factor out any (hidden) common factor from the constraint
|
||
* coefficients to improve the detection of adjacent constraints.
|
||
*
|
||
* Since we are constructing the tableaus of the basic maps anyway,
|
||
* we exploit them to detect implicit equalities and redundant constraints.
|
||
* This also helps the coalescing as it can ignore the redundant constraints.
|
||
* In order to avoid confusion, we make all implicit equalities explicit
|
||
* in the basic maps. We don't call isl_basic_map_gauss, though,
|
||
* as that may affect the number of constraints.
|
||
* This means that we have to call isl_basic_map_gauss at the end
|
||
* of the computation (in update_basic_maps) to ensure that
|
||
* the basic maps are not left in an unexpected state.
|
||
* For each basic map, we also compute the hash of the apparent affine hull
|
||
* for use in coalesce.
|
||
*/
|
||
__isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map)
|
||
{
|
||
int i;
|
||
unsigned n;
|
||
isl_ctx *ctx;
|
||
struct isl_coalesce_info *info = NULL;
|
||
|
||
map = isl_map_remove_empty_parts(map);
|
||
if (!map)
|
||
return NULL;
|
||
|
||
if (map->n <= 1)
|
||
return map;
|
||
|
||
ctx = isl_map_get_ctx(map);
|
||
map = isl_map_sort_divs(map);
|
||
map = isl_map_cow(map);
|
||
|
||
if (!map)
|
||
return NULL;
|
||
|
||
n = map->n;
|
||
|
||
info = isl_calloc_array(map->ctx, struct isl_coalesce_info, n);
|
||
if (!info)
|
||
goto error;
|
||
|
||
for (i = 0; i < map->n; ++i) {
|
||
map->p[i] = isl_basic_map_reduce_coefficients(map->p[i]);
|
||
if (!map->p[i])
|
||
goto error;
|
||
info[i].bmap = isl_basic_map_copy(map->p[i]);
|
||
info[i].tab = isl_tab_from_basic_map(info[i].bmap, 0);
|
||
if (!info[i].tab)
|
||
goto error;
|
||
if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT))
|
||
if (isl_tab_detect_implicit_equalities(info[i].tab) < 0)
|
||
goto error;
|
||
info[i].bmap = isl_tab_make_equalities_explicit(info[i].tab,
|
||
info[i].bmap);
|
||
if (!info[i].bmap)
|
||
goto error;
|
||
if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT))
|
||
if (isl_tab_detect_redundant(info[i].tab) < 0)
|
||
goto error;
|
||
if (coalesce_info_set_hull_hash(&info[i]) < 0)
|
||
goto error;
|
||
}
|
||
for (i = map->n - 1; i >= 0; --i)
|
||
if (info[i].tab->empty)
|
||
drop(&info[i]);
|
||
|
||
if (coalesce(ctx, n, info) < 0)
|
||
goto error;
|
||
|
||
map = update_basic_maps(map, n, info);
|
||
|
||
clear_coalesce_info(n, info);
|
||
|
||
return map;
|
||
error:
|
||
clear_coalesce_info(n, info);
|
||
isl_map_free(map);
|
||
return NULL;
|
||
}
|
||
|
||
/* For each pair of basic sets in the set, check if the union of the two
|
||
* can be represented by a single basic set.
|
||
* If so, replace the pair by the single basic set and start over.
|
||
*/
|
||
struct isl_set *isl_set_coalesce(struct isl_set *set)
|
||
{
|
||
return set_from_map(isl_map_coalesce(set_to_map(set)));
|
||
}
|