forked from OSchip/llvm-project
512 lines
17 KiB
C++
512 lines
17 KiB
C++
//===- SIMachineFunctionInfo.cpp - SI Machine Function Info ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "AMDGPUArgumentUsageInfo.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "SIRegisterInfo.h"
|
|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include <cassert>
|
|
#include <vector>
|
|
|
|
#define MAX_LANES 64
|
|
|
|
using namespace llvm;
|
|
|
|
SIMachineFunctionInfo::SIMachineFunctionInfo(const MachineFunction &MF)
|
|
: AMDGPUMachineFunction(MF),
|
|
PrivateSegmentBuffer(false),
|
|
DispatchPtr(false),
|
|
QueuePtr(false),
|
|
KernargSegmentPtr(false),
|
|
DispatchID(false),
|
|
FlatScratchInit(false),
|
|
WorkGroupIDX(false),
|
|
WorkGroupIDY(false),
|
|
WorkGroupIDZ(false),
|
|
WorkGroupInfo(false),
|
|
PrivateSegmentWaveByteOffset(false),
|
|
WorkItemIDX(false),
|
|
WorkItemIDY(false),
|
|
WorkItemIDZ(false),
|
|
ImplicitBufferPtr(false),
|
|
ImplicitArgPtr(false),
|
|
GITPtrHigh(0xffffffff),
|
|
HighBitsOf32BitAddress(0),
|
|
GDSSize(0) {
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
const Function &F = MF.getFunction();
|
|
FlatWorkGroupSizes = ST.getFlatWorkGroupSizes(F);
|
|
WavesPerEU = ST.getWavesPerEU(F);
|
|
|
|
Occupancy = ST.computeOccupancy(MF, getLDSSize());
|
|
CallingConv::ID CC = F.getCallingConv();
|
|
|
|
if (CC == CallingConv::AMDGPU_KERNEL || CC == CallingConv::SPIR_KERNEL) {
|
|
if (!F.arg_empty())
|
|
KernargSegmentPtr = true;
|
|
WorkGroupIDX = true;
|
|
WorkItemIDX = true;
|
|
} else if (CC == CallingConv::AMDGPU_PS) {
|
|
PSInputAddr = AMDGPU::getInitialPSInputAddr(F);
|
|
}
|
|
|
|
if (!isEntryFunction()) {
|
|
// Non-entry functions have no special inputs for now, other registers
|
|
// required for scratch access.
|
|
ScratchRSrcReg = AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3;
|
|
ScratchWaveOffsetReg = AMDGPU::SGPR33;
|
|
|
|
// TODO: Pick a high register, and shift down, similar to a kernel.
|
|
FrameOffsetReg = AMDGPU::SGPR34;
|
|
StackPtrOffsetReg = AMDGPU::SGPR32;
|
|
|
|
ArgInfo.PrivateSegmentBuffer =
|
|
ArgDescriptor::createRegister(ScratchRSrcReg);
|
|
ArgInfo.PrivateSegmentWaveByteOffset =
|
|
ArgDescriptor::createRegister(ScratchWaveOffsetReg);
|
|
|
|
if (F.hasFnAttribute("amdgpu-implicitarg-ptr"))
|
|
ImplicitArgPtr = true;
|
|
} else {
|
|
if (F.hasFnAttribute("amdgpu-implicitarg-ptr")) {
|
|
KernargSegmentPtr = true;
|
|
MaxKernArgAlign = std::max(ST.getAlignmentForImplicitArgPtr(),
|
|
MaxKernArgAlign);
|
|
}
|
|
}
|
|
|
|
if (F.hasFnAttribute("amdgpu-work-group-id-x"))
|
|
WorkGroupIDX = true;
|
|
|
|
if (F.hasFnAttribute("amdgpu-work-group-id-y"))
|
|
WorkGroupIDY = true;
|
|
|
|
if (F.hasFnAttribute("amdgpu-work-group-id-z"))
|
|
WorkGroupIDZ = true;
|
|
|
|
if (F.hasFnAttribute("amdgpu-work-item-id-x"))
|
|
WorkItemIDX = true;
|
|
|
|
if (F.hasFnAttribute("amdgpu-work-item-id-y"))
|
|
WorkItemIDY = true;
|
|
|
|
if (F.hasFnAttribute("amdgpu-work-item-id-z"))
|
|
WorkItemIDZ = true;
|
|
|
|
const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
|
|
bool HasStackObjects = FrameInfo.hasStackObjects();
|
|
|
|
if (isEntryFunction()) {
|
|
// X, XY, and XYZ are the only supported combinations, so make sure Y is
|
|
// enabled if Z is.
|
|
if (WorkItemIDZ)
|
|
WorkItemIDY = true;
|
|
|
|
PrivateSegmentWaveByteOffset = true;
|
|
|
|
// HS and GS always have the scratch wave offset in SGPR5 on GFX9.
|
|
if (ST.getGeneration() >= AMDGPUSubtarget::GFX9 &&
|
|
(CC == CallingConv::AMDGPU_HS || CC == CallingConv::AMDGPU_GS))
|
|
ArgInfo.PrivateSegmentWaveByteOffset =
|
|
ArgDescriptor::createRegister(AMDGPU::SGPR5);
|
|
}
|
|
|
|
bool isAmdHsaOrMesa = ST.isAmdHsaOrMesa(F);
|
|
if (isAmdHsaOrMesa) {
|
|
PrivateSegmentBuffer = true;
|
|
|
|
if (F.hasFnAttribute("amdgpu-dispatch-ptr"))
|
|
DispatchPtr = true;
|
|
|
|
if (F.hasFnAttribute("amdgpu-queue-ptr"))
|
|
QueuePtr = true;
|
|
|
|
if (F.hasFnAttribute("amdgpu-dispatch-id"))
|
|
DispatchID = true;
|
|
} else if (ST.isMesaGfxShader(F)) {
|
|
ImplicitBufferPtr = true;
|
|
}
|
|
|
|
if (F.hasFnAttribute("amdgpu-kernarg-segment-ptr"))
|
|
KernargSegmentPtr = true;
|
|
|
|
if (ST.hasFlatAddressSpace() && isEntryFunction() && isAmdHsaOrMesa) {
|
|
auto hasNonSpillStackObjects = [&]() {
|
|
// Avoid expensive checking if there's no stack objects.
|
|
if (!HasStackObjects)
|
|
return false;
|
|
for (auto OI = FrameInfo.getObjectIndexBegin(),
|
|
OE = FrameInfo.getObjectIndexEnd(); OI != OE; ++OI)
|
|
if (!FrameInfo.isSpillSlotObjectIndex(OI))
|
|
return true;
|
|
// All stack objects are spill slots.
|
|
return false;
|
|
};
|
|
// TODO: This could be refined a lot. The attribute is a poor way of
|
|
// detecting calls that may require it before argument lowering.
|
|
if (hasNonSpillStackObjects() || F.hasFnAttribute("amdgpu-flat-scratch"))
|
|
FlatScratchInit = true;
|
|
}
|
|
|
|
Attribute A = F.getFnAttribute("amdgpu-git-ptr-high");
|
|
StringRef S = A.getValueAsString();
|
|
if (!S.empty())
|
|
S.consumeInteger(0, GITPtrHigh);
|
|
|
|
A = F.getFnAttribute("amdgpu-32bit-address-high-bits");
|
|
S = A.getValueAsString();
|
|
if (!S.empty())
|
|
S.consumeInteger(0, HighBitsOf32BitAddress);
|
|
|
|
S = F.getFnAttribute("amdgpu-gds-size").getValueAsString();
|
|
if (!S.empty())
|
|
S.consumeInteger(0, GDSSize);
|
|
}
|
|
|
|
void SIMachineFunctionInfo::limitOccupancy(const MachineFunction &MF) {
|
|
limitOccupancy(getMaxWavesPerEU());
|
|
const GCNSubtarget& ST = MF.getSubtarget<GCNSubtarget>();
|
|
limitOccupancy(ST.getOccupancyWithLocalMemSize(getLDSSize(),
|
|
MF.getFunction()));
|
|
}
|
|
|
|
unsigned SIMachineFunctionInfo::addPrivateSegmentBuffer(
|
|
const SIRegisterInfo &TRI) {
|
|
ArgInfo.PrivateSegmentBuffer =
|
|
ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SGPR_128RegClass));
|
|
NumUserSGPRs += 4;
|
|
return ArgInfo.PrivateSegmentBuffer.getRegister();
|
|
}
|
|
|
|
unsigned SIMachineFunctionInfo::addDispatchPtr(const SIRegisterInfo &TRI) {
|
|
ArgInfo.DispatchPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
|
NumUserSGPRs += 2;
|
|
return ArgInfo.DispatchPtr.getRegister();
|
|
}
|
|
|
|
unsigned SIMachineFunctionInfo::addQueuePtr(const SIRegisterInfo &TRI) {
|
|
ArgInfo.QueuePtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
|
NumUserSGPRs += 2;
|
|
return ArgInfo.QueuePtr.getRegister();
|
|
}
|
|
|
|
unsigned SIMachineFunctionInfo::addKernargSegmentPtr(const SIRegisterInfo &TRI) {
|
|
ArgInfo.KernargSegmentPtr
|
|
= ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
|
NumUserSGPRs += 2;
|
|
return ArgInfo.KernargSegmentPtr.getRegister();
|
|
}
|
|
|
|
unsigned SIMachineFunctionInfo::addDispatchID(const SIRegisterInfo &TRI) {
|
|
ArgInfo.DispatchID = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
|
NumUserSGPRs += 2;
|
|
return ArgInfo.DispatchID.getRegister();
|
|
}
|
|
|
|
unsigned SIMachineFunctionInfo::addFlatScratchInit(const SIRegisterInfo &TRI) {
|
|
ArgInfo.FlatScratchInit = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
|
NumUserSGPRs += 2;
|
|
return ArgInfo.FlatScratchInit.getRegister();
|
|
}
|
|
|
|
unsigned SIMachineFunctionInfo::addImplicitBufferPtr(const SIRegisterInfo &TRI) {
|
|
ArgInfo.ImplicitBufferPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
|
NumUserSGPRs += 2;
|
|
return ArgInfo.ImplicitBufferPtr.getRegister();
|
|
}
|
|
|
|
static bool isCalleeSavedReg(const MCPhysReg *CSRegs, MCPhysReg Reg) {
|
|
for (unsigned I = 0; CSRegs[I]; ++I) {
|
|
if (CSRegs[I] == Reg)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \p returns true if \p NumLanes slots are available in VGPRs already used for
|
|
/// SGPR spilling.
|
|
//
|
|
// FIXME: This only works after processFunctionBeforeFrameFinalized
|
|
bool SIMachineFunctionInfo::haveFreeLanesForSGPRSpill(const MachineFunction &MF,
|
|
unsigned NumNeed) const {
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
unsigned WaveSize = ST.getWavefrontSize();
|
|
return NumVGPRSpillLanes + NumNeed <= WaveSize * SpillVGPRs.size();
|
|
}
|
|
|
|
/// Reserve a slice of a VGPR to support spilling for FrameIndex \p FI.
|
|
bool SIMachineFunctionInfo::allocateSGPRSpillToVGPR(MachineFunction &MF,
|
|
int FI) {
|
|
std::vector<SpilledReg> &SpillLanes = SGPRToVGPRSpills[FI];
|
|
|
|
// This has already been allocated.
|
|
if (!SpillLanes.empty())
|
|
return true;
|
|
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
MachineFrameInfo &FrameInfo = MF.getFrameInfo();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
unsigned WaveSize = ST.getWavefrontSize();
|
|
|
|
unsigned Size = FrameInfo.getObjectSize(FI);
|
|
assert(Size >= 4 && Size <= 64 && "invalid sgpr spill size");
|
|
assert(TRI->spillSGPRToVGPR() && "not spilling SGPRs to VGPRs");
|
|
|
|
int NumLanes = Size / 4;
|
|
|
|
const MCPhysReg *CSRegs = MRI.getCalleeSavedRegs();
|
|
|
|
// Make sure to handle the case where a wide SGPR spill may span between two
|
|
// VGPRs.
|
|
for (int I = 0; I < NumLanes; ++I, ++NumVGPRSpillLanes) {
|
|
unsigned LaneVGPR;
|
|
unsigned VGPRIndex = (NumVGPRSpillLanes % WaveSize);
|
|
|
|
if (VGPRIndex == 0) {
|
|
LaneVGPR = TRI->findUnusedRegister(MRI, &AMDGPU::VGPR_32RegClass, MF);
|
|
if (LaneVGPR == AMDGPU::NoRegister) {
|
|
// We have no VGPRs left for spilling SGPRs. Reset because we will not
|
|
// partially spill the SGPR to VGPRs.
|
|
SGPRToVGPRSpills.erase(FI);
|
|
NumVGPRSpillLanes -= I;
|
|
return false;
|
|
}
|
|
|
|
Optional<int> CSRSpillFI;
|
|
if ((FrameInfo.hasCalls() || !isEntryFunction()) && CSRegs &&
|
|
isCalleeSavedReg(CSRegs, LaneVGPR)) {
|
|
CSRSpillFI = FrameInfo.CreateSpillStackObject(4, 4);
|
|
}
|
|
|
|
SpillVGPRs.push_back(SGPRSpillVGPRCSR(LaneVGPR, CSRSpillFI));
|
|
|
|
// Add this register as live-in to all blocks to avoid machine verifer
|
|
// complaining about use of an undefined physical register.
|
|
for (MachineBasicBlock &BB : MF)
|
|
BB.addLiveIn(LaneVGPR);
|
|
} else {
|
|
LaneVGPR = SpillVGPRs.back().VGPR;
|
|
}
|
|
|
|
SpillLanes.push_back(SpilledReg(LaneVGPR, VGPRIndex));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Reserve AGPRs or VGPRs to support spilling for FrameIndex \p FI.
|
|
/// Either AGPR is spilled to VGPR to vice versa.
|
|
/// Returns true if a \p FI can be eliminated completely.
|
|
bool SIMachineFunctionInfo::allocateVGPRSpillToAGPR(MachineFunction &MF,
|
|
int FI,
|
|
bool isAGPRtoVGPR) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
MachineFrameInfo &FrameInfo = MF.getFrameInfo();
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
|
|
assert(ST.hasMAIInsts() && FrameInfo.isSpillSlotObjectIndex(FI));
|
|
|
|
auto &Spill = VGPRToAGPRSpills[FI];
|
|
|
|
// This has already been allocated.
|
|
if (!Spill.Lanes.empty())
|
|
return Spill.FullyAllocated;
|
|
|
|
unsigned Size = FrameInfo.getObjectSize(FI);
|
|
unsigned NumLanes = Size / 4;
|
|
Spill.Lanes.resize(NumLanes, AMDGPU::NoRegister);
|
|
|
|
const TargetRegisterClass &RC =
|
|
isAGPRtoVGPR ? AMDGPU::VGPR_32RegClass : AMDGPU::AGPR_32RegClass;
|
|
auto Regs = RC.getRegisters();
|
|
|
|
auto &SpillRegs = isAGPRtoVGPR ? SpillAGPR : SpillVGPR;
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
Spill.FullyAllocated = true;
|
|
|
|
// FIXME: Move allocation logic out of MachineFunctionInfo and initialize
|
|
// once.
|
|
BitVector OtherUsedRegs;
|
|
OtherUsedRegs.resize(TRI->getNumRegs());
|
|
|
|
const uint32_t *CSRMask =
|
|
TRI->getCallPreservedMask(MF, MF.getFunction().getCallingConv());
|
|
if (CSRMask)
|
|
OtherUsedRegs.setBitsInMask(CSRMask);
|
|
|
|
// TODO: Should include register tuples, but doesn't matter with current
|
|
// usage.
|
|
for (MCPhysReg Reg : SpillAGPR)
|
|
OtherUsedRegs.set(Reg);
|
|
for (MCPhysReg Reg : SpillVGPR)
|
|
OtherUsedRegs.set(Reg);
|
|
|
|
SmallVectorImpl<MCPhysReg>::const_iterator NextSpillReg = Regs.begin();
|
|
for (unsigned I = 0; I < NumLanes; ++I) {
|
|
NextSpillReg = std::find_if(
|
|
NextSpillReg, Regs.end(), [&MRI, &OtherUsedRegs](MCPhysReg Reg) {
|
|
return MRI.isAllocatable(Reg) && !MRI.isPhysRegUsed(Reg) &&
|
|
!OtherUsedRegs[Reg];
|
|
});
|
|
|
|
if (NextSpillReg == Regs.end()) { // Registers exhausted
|
|
Spill.FullyAllocated = false;
|
|
break;
|
|
}
|
|
|
|
OtherUsedRegs.set(*NextSpillReg);
|
|
SpillRegs.push_back(*NextSpillReg);
|
|
Spill.Lanes[I] = *NextSpillReg++;
|
|
}
|
|
|
|
return Spill.FullyAllocated;
|
|
}
|
|
|
|
void SIMachineFunctionInfo::removeDeadFrameIndices(MachineFrameInfo &MFI) {
|
|
// The FP spill hasn't been inserted yet, so keep it around.
|
|
for (auto &R : SGPRToVGPRSpills) {
|
|
if (R.first != FramePointerSaveIndex)
|
|
MFI.RemoveStackObject(R.first);
|
|
}
|
|
|
|
// All other SPGRs must be allocated on the default stack, so reset the stack
|
|
// ID.
|
|
for (int i = MFI.getObjectIndexBegin(), e = MFI.getObjectIndexEnd(); i != e;
|
|
++i)
|
|
if (i != FramePointerSaveIndex)
|
|
MFI.setStackID(i, TargetStackID::Default);
|
|
|
|
for (auto &R : VGPRToAGPRSpills) {
|
|
if (R.second.FullyAllocated)
|
|
MFI.RemoveStackObject(R.first);
|
|
}
|
|
}
|
|
|
|
MCPhysReg SIMachineFunctionInfo::getNextUserSGPR() const {
|
|
assert(NumSystemSGPRs == 0 && "System SGPRs must be added after user SGPRs");
|
|
return AMDGPU::SGPR0 + NumUserSGPRs;
|
|
}
|
|
|
|
MCPhysReg SIMachineFunctionInfo::getNextSystemSGPR() const {
|
|
return AMDGPU::SGPR0 + NumUserSGPRs + NumSystemSGPRs;
|
|
}
|
|
|
|
static yaml::StringValue regToString(unsigned Reg,
|
|
const TargetRegisterInfo &TRI) {
|
|
yaml::StringValue Dest;
|
|
{
|
|
raw_string_ostream OS(Dest.Value);
|
|
OS << printReg(Reg, &TRI);
|
|
}
|
|
return Dest;
|
|
}
|
|
|
|
static Optional<yaml::SIArgumentInfo>
|
|
convertArgumentInfo(const AMDGPUFunctionArgInfo &ArgInfo,
|
|
const TargetRegisterInfo &TRI) {
|
|
yaml::SIArgumentInfo AI;
|
|
|
|
auto convertArg = [&](Optional<yaml::SIArgument> &A,
|
|
const ArgDescriptor &Arg) {
|
|
if (!Arg)
|
|
return false;
|
|
|
|
// Create a register or stack argument.
|
|
yaml::SIArgument SA = yaml::SIArgument::createArgument(Arg.isRegister());
|
|
if (Arg.isRegister()) {
|
|
raw_string_ostream OS(SA.RegisterName.Value);
|
|
OS << printReg(Arg.getRegister(), &TRI);
|
|
} else
|
|
SA.StackOffset = Arg.getStackOffset();
|
|
// Check and update the optional mask.
|
|
if (Arg.isMasked())
|
|
SA.Mask = Arg.getMask();
|
|
|
|
A = SA;
|
|
return true;
|
|
};
|
|
|
|
bool Any = false;
|
|
Any |= convertArg(AI.PrivateSegmentBuffer, ArgInfo.PrivateSegmentBuffer);
|
|
Any |= convertArg(AI.DispatchPtr, ArgInfo.DispatchPtr);
|
|
Any |= convertArg(AI.QueuePtr, ArgInfo.QueuePtr);
|
|
Any |= convertArg(AI.KernargSegmentPtr, ArgInfo.KernargSegmentPtr);
|
|
Any |= convertArg(AI.DispatchID, ArgInfo.DispatchID);
|
|
Any |= convertArg(AI.FlatScratchInit, ArgInfo.FlatScratchInit);
|
|
Any |= convertArg(AI.PrivateSegmentSize, ArgInfo.PrivateSegmentSize);
|
|
Any |= convertArg(AI.WorkGroupIDX, ArgInfo.WorkGroupIDX);
|
|
Any |= convertArg(AI.WorkGroupIDY, ArgInfo.WorkGroupIDY);
|
|
Any |= convertArg(AI.WorkGroupIDZ, ArgInfo.WorkGroupIDZ);
|
|
Any |= convertArg(AI.WorkGroupInfo, ArgInfo.WorkGroupInfo);
|
|
Any |= convertArg(AI.PrivateSegmentWaveByteOffset,
|
|
ArgInfo.PrivateSegmentWaveByteOffset);
|
|
Any |= convertArg(AI.ImplicitArgPtr, ArgInfo.ImplicitArgPtr);
|
|
Any |= convertArg(AI.ImplicitBufferPtr, ArgInfo.ImplicitBufferPtr);
|
|
Any |= convertArg(AI.WorkItemIDX, ArgInfo.WorkItemIDX);
|
|
Any |= convertArg(AI.WorkItemIDY, ArgInfo.WorkItemIDY);
|
|
Any |= convertArg(AI.WorkItemIDZ, ArgInfo.WorkItemIDZ);
|
|
|
|
if (Any)
|
|
return AI;
|
|
|
|
return None;
|
|
}
|
|
|
|
yaml::SIMachineFunctionInfo::SIMachineFunctionInfo(
|
|
const llvm::SIMachineFunctionInfo& MFI,
|
|
const TargetRegisterInfo &TRI)
|
|
: ExplicitKernArgSize(MFI.getExplicitKernArgSize()),
|
|
MaxKernArgAlign(MFI.getMaxKernArgAlign()),
|
|
LDSSize(MFI.getLDSSize()),
|
|
IsEntryFunction(MFI.isEntryFunction()),
|
|
NoSignedZerosFPMath(MFI.hasNoSignedZerosFPMath()),
|
|
MemoryBound(MFI.isMemoryBound()),
|
|
WaveLimiter(MFI.needsWaveLimiter()),
|
|
HighBitsOf32BitAddress(MFI.get32BitAddressHighBits()),
|
|
ScratchRSrcReg(regToString(MFI.getScratchRSrcReg(), TRI)),
|
|
ScratchWaveOffsetReg(regToString(MFI.getScratchWaveOffsetReg(), TRI)),
|
|
FrameOffsetReg(regToString(MFI.getFrameOffsetReg(), TRI)),
|
|
StackPtrOffsetReg(regToString(MFI.getStackPtrOffsetReg(), TRI)),
|
|
ArgInfo(convertArgumentInfo(MFI.getArgInfo(), TRI)),
|
|
Mode(MFI.getMode()) {}
|
|
|
|
void yaml::SIMachineFunctionInfo::mappingImpl(yaml::IO &YamlIO) {
|
|
MappingTraits<SIMachineFunctionInfo>::mapping(YamlIO, *this);
|
|
}
|
|
|
|
bool SIMachineFunctionInfo::initializeBaseYamlFields(
|
|
const yaml::SIMachineFunctionInfo &YamlMFI) {
|
|
ExplicitKernArgSize = YamlMFI.ExplicitKernArgSize;
|
|
MaxKernArgAlign = assumeAligned(YamlMFI.MaxKernArgAlign);
|
|
LDSSize = YamlMFI.LDSSize;
|
|
HighBitsOf32BitAddress = YamlMFI.HighBitsOf32BitAddress;
|
|
IsEntryFunction = YamlMFI.IsEntryFunction;
|
|
NoSignedZerosFPMath = YamlMFI.NoSignedZerosFPMath;
|
|
MemoryBound = YamlMFI.MemoryBound;
|
|
WaveLimiter = YamlMFI.WaveLimiter;
|
|
return false;
|
|
}
|