forked from OSchip/llvm-project
485 lines
16 KiB
C++
485 lines
16 KiB
C++
//===- AMDGPURewriteOutArgumentsPass.cpp - Create struct returns ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file This pass attempts to replace out argument usage with a return of a
|
|
/// struct.
|
|
///
|
|
/// We can support returning a lot of values directly in registers, but
|
|
/// idiomatic C code frequently uses a pointer argument to return a second value
|
|
/// rather than returning a struct by value. GPU stack access is also quite
|
|
/// painful, so we want to avoid that if possible. Passing a stack object
|
|
/// pointer to a function also requires an additional address expansion code
|
|
/// sequence to convert the pointer to be relative to the kernel's scratch wave
|
|
/// offset register since the callee doesn't know what stack frame the incoming
|
|
/// pointer is relative to.
|
|
///
|
|
/// The goal is to try rewriting code that looks like this:
|
|
///
|
|
/// int foo(int a, int b, int* out) {
|
|
/// *out = bar();
|
|
/// return a + b;
|
|
/// }
|
|
///
|
|
/// into something like this:
|
|
///
|
|
/// std::pair<int, int> foo(int a, int b) {
|
|
/// return std::make_pair(a + b, bar());
|
|
/// }
|
|
///
|
|
/// Typically the incoming pointer is a simple alloca for a temporary variable
|
|
/// to use the API, which if replaced with a struct return will be easily SROA'd
|
|
/// out when the stub function we create is inlined
|
|
///
|
|
/// This pass introduces the struct return, but leaves the unused pointer
|
|
/// arguments and introduces a new stub function calling the struct returning
|
|
/// body. DeadArgumentElimination should be run after this to clean these up.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
#include <utility>
|
|
|
|
#define DEBUG_TYPE "amdgpu-rewrite-out-arguments"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> AnyAddressSpace(
|
|
"amdgpu-any-address-space-out-arguments",
|
|
cl::desc("Replace pointer out arguments with "
|
|
"struct returns for non-private address space"),
|
|
cl::Hidden,
|
|
cl::init(false));
|
|
|
|
static cl::opt<unsigned> MaxNumRetRegs(
|
|
"amdgpu-max-return-arg-num-regs",
|
|
cl::desc("Approximately limit number of return registers for replacing out arguments"),
|
|
cl::Hidden,
|
|
cl::init(16));
|
|
|
|
STATISTIC(NumOutArgumentsReplaced,
|
|
"Number out arguments moved to struct return values");
|
|
STATISTIC(NumOutArgumentFunctionsReplaced,
|
|
"Number of functions with out arguments moved to struct return values");
|
|
|
|
namespace {
|
|
|
|
class AMDGPURewriteOutArguments : public FunctionPass {
|
|
private:
|
|
const DataLayout *DL = nullptr;
|
|
MemoryDependenceResults *MDA = nullptr;
|
|
|
|
bool checkArgumentUses(Value &Arg) const;
|
|
bool isOutArgumentCandidate(Argument &Arg) const;
|
|
|
|
#ifndef NDEBUG
|
|
bool isVec3ToVec4Shuffle(Type *Ty0, Type* Ty1) const;
|
|
#endif
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
AMDGPURewriteOutArguments() : FunctionPass(ID) {}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<MemoryDependenceWrapperPass>();
|
|
FunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool doInitialization(Module &M) override;
|
|
bool runOnFunction(Function &F) override;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
INITIALIZE_PASS_BEGIN(AMDGPURewriteOutArguments, DEBUG_TYPE,
|
|
"AMDGPU Rewrite Out Arguments", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
|
|
INITIALIZE_PASS_END(AMDGPURewriteOutArguments, DEBUG_TYPE,
|
|
"AMDGPU Rewrite Out Arguments", false, false)
|
|
|
|
char AMDGPURewriteOutArguments::ID = 0;
|
|
|
|
bool AMDGPURewriteOutArguments::checkArgumentUses(Value &Arg) const {
|
|
const int MaxUses = 10;
|
|
int UseCount = 0;
|
|
|
|
for (Use &U : Arg.uses()) {
|
|
StoreInst *SI = dyn_cast<StoreInst>(U.getUser());
|
|
if (UseCount > MaxUses)
|
|
return false;
|
|
|
|
if (!SI) {
|
|
auto *BCI = dyn_cast<BitCastInst>(U.getUser());
|
|
if (!BCI || !BCI->hasOneUse())
|
|
return false;
|
|
|
|
// We don't handle multiple stores currently, so stores to aggregate
|
|
// pointers aren't worth the trouble since they are canonically split up.
|
|
Type *DestEltTy = BCI->getType()->getPointerElementType();
|
|
if (DestEltTy->isAggregateType())
|
|
return false;
|
|
|
|
// We could handle these if we had a convenient way to bitcast between
|
|
// them.
|
|
Type *SrcEltTy = Arg.getType()->getPointerElementType();
|
|
if (SrcEltTy->isArrayTy())
|
|
return false;
|
|
|
|
// Special case handle structs with single members. It is useful to handle
|
|
// some casts between structs and non-structs, but we can't bitcast
|
|
// directly between them. directly bitcast between them. Blender uses
|
|
// some casts that look like { <3 x float> }* to <4 x float>*
|
|
if ((SrcEltTy->isStructTy() && (SrcEltTy->getStructNumElements() != 1)))
|
|
return false;
|
|
|
|
// Clang emits OpenCL 3-vector type accesses with a bitcast to the
|
|
// equivalent 4-element vector and accesses that, and we're looking for
|
|
// this pointer cast.
|
|
if (DL->getTypeAllocSize(SrcEltTy) != DL->getTypeAllocSize(DestEltTy))
|
|
return false;
|
|
|
|
return checkArgumentUses(*BCI);
|
|
}
|
|
|
|
if (!SI->isSimple() ||
|
|
U.getOperandNo() != StoreInst::getPointerOperandIndex())
|
|
return false;
|
|
|
|
++UseCount;
|
|
}
|
|
|
|
// Skip unused arguments.
|
|
return UseCount > 0;
|
|
}
|
|
|
|
bool AMDGPURewriteOutArguments::isOutArgumentCandidate(Argument &Arg) const {
|
|
const unsigned MaxOutArgSizeBytes = 4 * MaxNumRetRegs;
|
|
PointerType *ArgTy = dyn_cast<PointerType>(Arg.getType());
|
|
|
|
// TODO: It might be useful for any out arguments, not just privates.
|
|
if (!ArgTy || (ArgTy->getAddressSpace() != DL->getAllocaAddrSpace() &&
|
|
!AnyAddressSpace) ||
|
|
Arg.hasByValAttr() || Arg.hasStructRetAttr() ||
|
|
DL->getTypeStoreSize(ArgTy->getPointerElementType()) > MaxOutArgSizeBytes) {
|
|
return false;
|
|
}
|
|
|
|
return checkArgumentUses(Arg);
|
|
}
|
|
|
|
bool AMDGPURewriteOutArguments::doInitialization(Module &M) {
|
|
DL = &M.getDataLayout();
|
|
return false;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
bool AMDGPURewriteOutArguments::isVec3ToVec4Shuffle(Type *Ty0, Type* Ty1) const {
|
|
VectorType *VT0 = dyn_cast<VectorType>(Ty0);
|
|
VectorType *VT1 = dyn_cast<VectorType>(Ty1);
|
|
if (!VT0 || !VT1)
|
|
return false;
|
|
|
|
if (VT0->getNumElements() != 3 ||
|
|
VT1->getNumElements() != 4)
|
|
return false;
|
|
|
|
return DL->getTypeSizeInBits(VT0->getElementType()) ==
|
|
DL->getTypeSizeInBits(VT1->getElementType());
|
|
}
|
|
#endif
|
|
|
|
bool AMDGPURewriteOutArguments::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
// TODO: Could probably handle variadic functions.
|
|
if (F.isVarArg() || F.hasStructRetAttr() ||
|
|
AMDGPU::isEntryFunctionCC(F.getCallingConv()))
|
|
return false;
|
|
|
|
MDA = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
|
|
|
|
unsigned ReturnNumRegs = 0;
|
|
SmallSet<int, 4> OutArgIndexes;
|
|
SmallVector<Type *, 4> ReturnTypes;
|
|
Type *RetTy = F.getReturnType();
|
|
if (!RetTy->isVoidTy()) {
|
|
ReturnNumRegs = DL->getTypeStoreSize(RetTy) / 4;
|
|
|
|
if (ReturnNumRegs >= MaxNumRetRegs)
|
|
return false;
|
|
|
|
ReturnTypes.push_back(RetTy);
|
|
}
|
|
|
|
SmallVector<Argument *, 4> OutArgs;
|
|
for (Argument &Arg : F.args()) {
|
|
if (isOutArgumentCandidate(Arg)) {
|
|
LLVM_DEBUG(dbgs() << "Found possible out argument " << Arg
|
|
<< " in function " << F.getName() << '\n');
|
|
OutArgs.push_back(&Arg);
|
|
}
|
|
}
|
|
|
|
if (OutArgs.empty())
|
|
return false;
|
|
|
|
using ReplacementVec = SmallVector<std::pair<Argument *, Value *>, 4>;
|
|
|
|
DenseMap<ReturnInst *, ReplacementVec> Replacements;
|
|
|
|
SmallVector<ReturnInst *, 4> Returns;
|
|
for (BasicBlock &BB : F) {
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(&BB.back()))
|
|
Returns.push_back(RI);
|
|
}
|
|
|
|
if (Returns.empty())
|
|
return false;
|
|
|
|
bool Changing;
|
|
|
|
do {
|
|
Changing = false;
|
|
|
|
// Keep retrying if we are able to successfully eliminate an argument. This
|
|
// helps with cases with multiple arguments which may alias, such as in a
|
|
// sincos implemntation. If we have 2 stores to arguments, on the first
|
|
// attempt the MDA query will succeed for the second store but not the
|
|
// first. On the second iteration we've removed that out clobbering argument
|
|
// (by effectively moving it into another function) and will find the second
|
|
// argument is OK to move.
|
|
for (Argument *OutArg : OutArgs) {
|
|
bool ThisReplaceable = true;
|
|
SmallVector<std::pair<ReturnInst *, StoreInst *>, 4> ReplaceableStores;
|
|
|
|
Type *ArgTy = OutArg->getType()->getPointerElementType();
|
|
|
|
// Skip this argument if converting it will push us over the register
|
|
// count to return limit.
|
|
|
|
// TODO: This is an approximation. When legalized this could be more. We
|
|
// can ask TLI for exactly how many.
|
|
unsigned ArgNumRegs = DL->getTypeStoreSize(ArgTy) / 4;
|
|
if (ArgNumRegs + ReturnNumRegs > MaxNumRetRegs)
|
|
continue;
|
|
|
|
// An argument is convertible only if all exit blocks are able to replace
|
|
// it.
|
|
for (ReturnInst *RI : Returns) {
|
|
BasicBlock *BB = RI->getParent();
|
|
|
|
MemDepResult Q = MDA->getPointerDependencyFrom(MemoryLocation(OutArg),
|
|
true, BB->end(), BB, RI);
|
|
StoreInst *SI = nullptr;
|
|
if (Q.isDef())
|
|
SI = dyn_cast<StoreInst>(Q.getInst());
|
|
|
|
if (SI) {
|
|
LLVM_DEBUG(dbgs() << "Found out argument store: " << *SI << '\n');
|
|
ReplaceableStores.emplace_back(RI, SI);
|
|
} else {
|
|
ThisReplaceable = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!ThisReplaceable)
|
|
continue; // Try the next argument candidate.
|
|
|
|
for (std::pair<ReturnInst *, StoreInst *> Store : ReplaceableStores) {
|
|
Value *ReplVal = Store.second->getValueOperand();
|
|
|
|
auto &ValVec = Replacements[Store.first];
|
|
if (llvm::find_if(ValVec,
|
|
[OutArg](const std::pair<Argument *, Value *> &Entry) {
|
|
return Entry.first == OutArg;}) != ValVec.end()) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Saw multiple out arg stores" << *OutArg << '\n');
|
|
// It is possible to see stores to the same argument multiple times,
|
|
// but we expect these would have been optimized out already.
|
|
ThisReplaceable = false;
|
|
break;
|
|
}
|
|
|
|
ValVec.emplace_back(OutArg, ReplVal);
|
|
Store.second->eraseFromParent();
|
|
}
|
|
|
|
if (ThisReplaceable) {
|
|
ReturnTypes.push_back(ArgTy);
|
|
OutArgIndexes.insert(OutArg->getArgNo());
|
|
++NumOutArgumentsReplaced;
|
|
Changing = true;
|
|
}
|
|
}
|
|
} while (Changing);
|
|
|
|
if (Replacements.empty())
|
|
return false;
|
|
|
|
LLVMContext &Ctx = F.getParent()->getContext();
|
|
StructType *NewRetTy = StructType::create(Ctx, ReturnTypes, F.getName());
|
|
|
|
FunctionType *NewFuncTy = FunctionType::get(NewRetTy,
|
|
F.getFunctionType()->params(),
|
|
F.isVarArg());
|
|
|
|
LLVM_DEBUG(dbgs() << "Computed new return type: " << *NewRetTy << '\n');
|
|
|
|
Function *NewFunc = Function::Create(NewFuncTy, Function::PrivateLinkage,
|
|
F.getName() + ".body");
|
|
F.getParent()->getFunctionList().insert(F.getIterator(), NewFunc);
|
|
NewFunc->copyAttributesFrom(&F);
|
|
NewFunc->setComdat(F.getComdat());
|
|
|
|
// We want to preserve the function and param attributes, but need to strip
|
|
// off any return attributes, e.g. zeroext doesn't make sense with a struct.
|
|
NewFunc->stealArgumentListFrom(F);
|
|
|
|
AttrBuilder RetAttrs;
|
|
RetAttrs.addAttribute(Attribute::SExt);
|
|
RetAttrs.addAttribute(Attribute::ZExt);
|
|
RetAttrs.addAttribute(Attribute::NoAlias);
|
|
NewFunc->removeAttributes(AttributeList::ReturnIndex, RetAttrs);
|
|
// TODO: How to preserve metadata?
|
|
|
|
// Move the body of the function into the new rewritten function, and replace
|
|
// this function with a stub.
|
|
NewFunc->getBasicBlockList().splice(NewFunc->begin(), F.getBasicBlockList());
|
|
|
|
for (std::pair<ReturnInst *, ReplacementVec> &Replacement : Replacements) {
|
|
ReturnInst *RI = Replacement.first;
|
|
IRBuilder<> B(RI);
|
|
B.SetCurrentDebugLocation(RI->getDebugLoc());
|
|
|
|
int RetIdx = 0;
|
|
Value *NewRetVal = UndefValue::get(NewRetTy);
|
|
|
|
Value *RetVal = RI->getReturnValue();
|
|
if (RetVal)
|
|
NewRetVal = B.CreateInsertValue(NewRetVal, RetVal, RetIdx++);
|
|
|
|
for (std::pair<Argument *, Value *> ReturnPoint : Replacement.second) {
|
|
Argument *Arg = ReturnPoint.first;
|
|
Value *Val = ReturnPoint.second;
|
|
Type *EltTy = Arg->getType()->getPointerElementType();
|
|
if (Val->getType() != EltTy) {
|
|
Type *EffectiveEltTy = EltTy;
|
|
if (StructType *CT = dyn_cast<StructType>(EltTy)) {
|
|
assert(CT->getNumElements() == 1);
|
|
EffectiveEltTy = CT->getElementType(0);
|
|
}
|
|
|
|
if (DL->getTypeSizeInBits(EffectiveEltTy) !=
|
|
DL->getTypeSizeInBits(Val->getType())) {
|
|
assert(isVec3ToVec4Shuffle(EffectiveEltTy, Val->getType()));
|
|
Val = B.CreateShuffleVector(Val, UndefValue::get(Val->getType()),
|
|
{ 0, 1, 2 });
|
|
}
|
|
|
|
Val = B.CreateBitCast(Val, EffectiveEltTy);
|
|
|
|
// Re-create single element composite.
|
|
if (EltTy != EffectiveEltTy)
|
|
Val = B.CreateInsertValue(UndefValue::get(EltTy), Val, 0);
|
|
}
|
|
|
|
NewRetVal = B.CreateInsertValue(NewRetVal, Val, RetIdx++);
|
|
}
|
|
|
|
if (RetVal)
|
|
RI->setOperand(0, NewRetVal);
|
|
else {
|
|
B.CreateRet(NewRetVal);
|
|
RI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
SmallVector<Value *, 16> StubCallArgs;
|
|
for (Argument &Arg : F.args()) {
|
|
if (OutArgIndexes.count(Arg.getArgNo())) {
|
|
// It's easier to preserve the type of the argument list. We rely on
|
|
// DeadArgumentElimination to take care of these.
|
|
StubCallArgs.push_back(UndefValue::get(Arg.getType()));
|
|
} else {
|
|
StubCallArgs.push_back(&Arg);
|
|
}
|
|
}
|
|
|
|
BasicBlock *StubBB = BasicBlock::Create(Ctx, "", &F);
|
|
IRBuilder<> B(StubBB);
|
|
CallInst *StubCall = B.CreateCall(NewFunc, StubCallArgs);
|
|
|
|
int RetIdx = RetTy->isVoidTy() ? 0 : 1;
|
|
for (Argument &Arg : F.args()) {
|
|
if (!OutArgIndexes.count(Arg.getArgNo()))
|
|
continue;
|
|
|
|
PointerType *ArgType = cast<PointerType>(Arg.getType());
|
|
|
|
auto *EltTy = ArgType->getElementType();
|
|
unsigned Align = Arg.getParamAlignment();
|
|
if (Align == 0)
|
|
Align = DL->getABITypeAlignment(EltTy);
|
|
|
|
Value *Val = B.CreateExtractValue(StubCall, RetIdx++);
|
|
Type *PtrTy = Val->getType()->getPointerTo(ArgType->getAddressSpace());
|
|
|
|
// We can peek through bitcasts, so the type may not match.
|
|
Value *PtrVal = B.CreateBitCast(&Arg, PtrTy);
|
|
|
|
B.CreateAlignedStore(Val, PtrVal, Align);
|
|
}
|
|
|
|
if (!RetTy->isVoidTy()) {
|
|
B.CreateRet(B.CreateExtractValue(StubCall, 0));
|
|
} else {
|
|
B.CreateRetVoid();
|
|
}
|
|
|
|
// The function is now a stub we want to inline.
|
|
F.addFnAttr(Attribute::AlwaysInline);
|
|
|
|
++NumOutArgumentFunctionsReplaced;
|
|
return true;
|
|
}
|
|
|
|
FunctionPass *llvm::createAMDGPURewriteOutArgumentsPass() {
|
|
return new AMDGPURewriteOutArguments();
|
|
}
|