llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyTargetMachine.cpp

218 lines
7.8 KiB
C++

//===- WebAssemblyTargetMachine.cpp - Define TargetMachine for WebAssembly -==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file defines the WebAssembly-specific subclass of TargetMachine.
///
//===----------------------------------------------------------------------===//
#include "WebAssembly.h"
#include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
#include "WebAssemblyTargetMachine.h"
#include "WebAssemblyTargetObjectFile.h"
#include "WebAssemblyTargetTransformInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Scalar.h"
using namespace llvm;
#define DEBUG_TYPE "wasm"
extern "C" void LLVMInitializeWebAssemblyTarget() {
// Register the target.
RegisterTargetMachine<WebAssemblyTargetMachine> X(TheWebAssemblyTarget32);
RegisterTargetMachine<WebAssemblyTargetMachine> Y(TheWebAssemblyTarget64);
}
//===----------------------------------------------------------------------===//
// WebAssembly Lowering public interface.
//===----------------------------------------------------------------------===//
/// Create an WebAssembly architecture model.
///
WebAssemblyTargetMachine::WebAssemblyTargetMachine(
const Target &T, const Triple &TT, StringRef CPU, StringRef FS,
const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: LLVMTargetMachine(T,
TT.isArch64Bit() ? "e-m:e-p:64:64-i64:64-n32:64-S128"
: "e-m:e-p:32:32-i64:64-n32:64-S128",
TT, CPU, FS, Options, RM, CM, OL),
TLOF(make_unique<WebAssemblyTargetObjectFile>()) {
// WebAssembly type-checks expressions, but a noreturn function with a return
// type that doesn't match the context will cause a check failure. So we lower
// LLVM 'unreachable' to ISD::TRAP and then lower that to WebAssembly's
// 'unreachable' expression which is meant for that case.
this->Options.TrapUnreachable = true;
initAsmInfo();
// We need a reducible CFG, so disable some optimizations which tend to
// introduce irreducibility.
setRequiresStructuredCFG(true);
}
WebAssemblyTargetMachine::~WebAssemblyTargetMachine() {}
const WebAssemblySubtarget *
WebAssemblyTargetMachine::getSubtargetImpl(const Function &F) const {
Attribute CPUAttr = F.getFnAttribute("target-cpu");
Attribute FSAttr = F.getFnAttribute("target-features");
std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
? CPUAttr.getValueAsString().str()
: TargetCPU;
std::string FS = !FSAttr.hasAttribute(Attribute::None)
? FSAttr.getValueAsString().str()
: TargetFS;
auto &I = SubtargetMap[CPU + FS];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
I = llvm::make_unique<WebAssemblySubtarget>(TargetTriple, CPU, FS, *this);
}
return I.get();
}
namespace {
/// WebAssembly Code Generator Pass Configuration Options.
class WebAssemblyPassConfig final : public TargetPassConfig {
public:
WebAssemblyPassConfig(WebAssemblyTargetMachine *TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
WebAssemblyTargetMachine &getWebAssemblyTargetMachine() const {
return getTM<WebAssemblyTargetMachine>();
}
FunctionPass *createTargetRegisterAllocator(bool) override;
void addIRPasses() override;
bool addInstSelector() override;
bool addILPOpts() override;
void addPreRegAlloc() override;
void addPostRegAlloc() override;
void addPreEmitPass() override;
};
} // end anonymous namespace
TargetIRAnalysis WebAssemblyTargetMachine::getTargetIRAnalysis() {
return TargetIRAnalysis([this](const Function &F) {
return TargetTransformInfo(WebAssemblyTTIImpl(this, F));
});
}
TargetPassConfig *
WebAssemblyTargetMachine::createPassConfig(PassManagerBase &PM) {
return new WebAssemblyPassConfig(this, PM);
}
FunctionPass *WebAssemblyPassConfig::createTargetRegisterAllocator(bool) {
return nullptr; // No reg alloc
}
//===----------------------------------------------------------------------===//
// The following functions are called from lib/CodeGen/Passes.cpp to modify
// the CodeGen pass sequence.
//===----------------------------------------------------------------------===//
void WebAssemblyPassConfig::addIRPasses() {
if (TM->Options.ThreadModel == ThreadModel::Single)
// In "single" mode, atomics get lowered to non-atomics.
addPass(createLowerAtomicPass());
else
// Expand some atomic operations. WebAssemblyTargetLowering has hooks which
// control specifically what gets lowered.
addPass(createAtomicExpandPass(TM));
// Optimize "returned" function attributes.
if (getOptLevel() != CodeGenOpt::None)
addPass(createWebAssemblyOptimizeReturned());
TargetPassConfig::addIRPasses();
}
bool WebAssemblyPassConfig::addInstSelector() {
(void)TargetPassConfig::addInstSelector();
addPass(
createWebAssemblyISelDag(getWebAssemblyTargetMachine(), getOptLevel()));
// Run the argument-move pass immediately after the ScheduleDAG scheduler
// so that we can fix up the ARGUMENT instructions before anything else
// sees them in the wrong place.
addPass(createWebAssemblyArgumentMove());
// Set the p2align operands. This information is present during ISel, however
// it's inconvenient to collect. Collect it now, and update the immediate
// operands.
addPass(createWebAssemblySetP2AlignOperands());
return false;
}
bool WebAssemblyPassConfig::addILPOpts() {
(void)TargetPassConfig::addILPOpts();
return true;
}
void WebAssemblyPassConfig::addPreRegAlloc() {
TargetPassConfig::addPreRegAlloc();
// Prepare store instructions for register stackifying.
if (getOptLevel() != CodeGenOpt::None)
addPass(createWebAssemblyStoreResults());
}
void WebAssemblyPassConfig::addPostRegAlloc() {
// TODO: The following CodeGen passes don't currently support code containing
// virtual registers. Consider removing their restrictions and re-enabling
// them.
//
// We use our own PrologEpilogInserter which is very slightly modified to
// tolerate virtual registers.
disablePass(&PrologEpilogCodeInserterID);
// Fails with: should be run after register allocation.
disablePass(&MachineCopyPropagationID);
// Mark registers as representing wasm's expression stack.
addPass(createWebAssemblyRegStackify());
// Run the register coloring pass to reduce the total number of registers.
addPass(createWebAssemblyRegColoring());
TargetPassConfig::addPostRegAlloc();
// Run WebAssembly's version of the PrologEpilogInserter. Target-independent
// PEI runs after PostRegAlloc and after ShrinkWrap. Putting it here will run
// PEI before ShrinkWrap but otherwise in the same position in the order.
addPass(createWebAssemblyPEI());
}
void WebAssemblyPassConfig::addPreEmitPass() {
TargetPassConfig::addPreEmitPass();
// Put the CFG in structured form; insert BLOCK and LOOP markers.
addPass(createWebAssemblyCFGStackify());
// Lower br_unless into br_if.
addPass(createWebAssemblyLowerBrUnless());
// Create a mapping from LLVM CodeGen virtual registers to wasm registers.
addPass(createWebAssemblyRegNumbering());
// Perform the very last peephole optimizations on the code.
if (getOptLevel() != CodeGenOpt::None)
addPass(createWebAssemblyPeephole());
}