llvm-project/llvm/lib/Target/ARM/ARMInstrVFP.td

1129 lines
42 KiB
TableGen

//===- ARMInstrVFP.td - VFP support for ARM ----------------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the ARM VFP instruction set.
//
//===----------------------------------------------------------------------===//
def SDT_FTOI : SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
def SDT_ITOF : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
def SDT_CMPFP0 : SDTypeProfile<0, 1, [SDTCisFP<0>]>;
def SDT_VMOVDRR : SDTypeProfile<1, 2, [SDTCisVT<0, f64>, SDTCisVT<1, i32>,
SDTCisSameAs<1, 2>]>;
def arm_ftoui : SDNode<"ARMISD::FTOUI", SDT_FTOI>;
def arm_ftosi : SDNode<"ARMISD::FTOSI", SDT_FTOI>;
def arm_sitof : SDNode<"ARMISD::SITOF", SDT_ITOF>;
def arm_uitof : SDNode<"ARMISD::UITOF", SDT_ITOF>;
def arm_fmstat : SDNode<"ARMISD::FMSTAT", SDTNone, [SDNPInGlue, SDNPOutGlue]>;
def arm_cmpfp : SDNode<"ARMISD::CMPFP", SDT_ARMCmp, [SDNPOutGlue]>;
def arm_cmpfp0 : SDNode<"ARMISD::CMPFPw0", SDT_CMPFP0, [SDNPOutGlue]>;
def arm_fmdrr : SDNode<"ARMISD::VMOVDRR", SDT_VMOVDRR>;
//===----------------------------------------------------------------------===//
// Operand Definitions.
//
def vfp_f32imm : Operand<f32>,
PatLeaf<(f32 fpimm), [{
return ARM::getVFPf32Imm(N->getValueAPF()) != -1;
}]> {
let PrintMethod = "printVFPf32ImmOperand";
}
def vfp_f64imm : Operand<f64>,
PatLeaf<(f64 fpimm), [{
return ARM::getVFPf64Imm(N->getValueAPF()) != -1;
}]> {
let PrintMethod = "printVFPf64ImmOperand";
}
//===----------------------------------------------------------------------===//
// Load / store Instructions.
//
let canFoldAsLoad = 1, isReMaterializable = 1 in {
def VLDRD : ADI5<0b1101, 0b01, (outs DPR:$Dd), (ins addrmode5:$addr),
IIC_fpLoad64, "vldr", ".64\t$Dd, $addr",
[(set DPR:$Dd, (f64 (load addrmode5:$addr)))]>;
def VLDRS : ASI5<0b1101, 0b01, (outs SPR:$Sd), (ins addrmode5:$addr),
IIC_fpLoad32, "vldr", ".32\t$Sd, $addr",
[(set SPR:$Sd, (load addrmode5:$addr))]> {
// Some single precision VFP instructions may be executed on both NEON and VFP
// pipelines.
let D = VFPNeonDomain;
}
} // End of 'let canFoldAsLoad = 1, isReMaterializable = 1 in'
def VSTRD : ADI5<0b1101, 0b00, (outs), (ins DPR:$Dd, addrmode5:$addr),
IIC_fpStore64, "vstr", ".64\t$Dd, $addr",
[(store (f64 DPR:$Dd), addrmode5:$addr)]>;
def VSTRS : ASI5<0b1101, 0b00, (outs), (ins SPR:$Sd, addrmode5:$addr),
IIC_fpStore32, "vstr", ".32\t$Sd, $addr",
[(store SPR:$Sd, addrmode5:$addr)]> {
// Some single precision VFP instructions may be executed on both NEON and VFP
// pipelines.
let D = VFPNeonDomain;
}
//===----------------------------------------------------------------------===//
// Load / store multiple Instructions.
//
multiclass vfp_ldst_mult<string asm, bit L_bit,
InstrItinClass itin, InstrItinClass itin_upd> {
// Double Precision
def DIA :
AXDI4<(outs), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops),
IndexModeNone, itin,
!strconcat(asm, "ia${p}\t$Rn, $regs"), "", []> {
let Inst{24-23} = 0b01; // Increment After
let Inst{21} = 0; // No writeback
let Inst{20} = L_bit;
}
def DIA_UPD :
AXDI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs,
variable_ops),
IndexModeUpd, itin_upd,
!strconcat(asm, "ia${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
let Inst{24-23} = 0b01; // Increment After
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
}
def DDB_UPD :
AXDI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs,
variable_ops),
IndexModeUpd, itin_upd,
!strconcat(asm, "db${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
let Inst{24-23} = 0b10; // Decrement Before
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
}
// Single Precision
def SIA :
AXSI4<(outs), (ins GPR:$Rn, pred:$p, spr_reglist:$regs, variable_ops),
IndexModeNone, itin,
!strconcat(asm, "ia${p}\t$Rn, $regs"), "", []> {
let Inst{24-23} = 0b01; // Increment After
let Inst{21} = 0; // No writeback
let Inst{20} = L_bit;
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines.
let D = VFPNeonDomain;
}
def SIA_UPD :
AXSI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, spr_reglist:$regs,
variable_ops),
IndexModeUpd, itin_upd,
!strconcat(asm, "ia${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
let Inst{24-23} = 0b01; // Increment After
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines.
let D = VFPNeonDomain;
}
def SDB_UPD :
AXSI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, spr_reglist:$regs,
variable_ops),
IndexModeUpd, itin_upd,
!strconcat(asm, "db${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
let Inst{24-23} = 0b10; // Decrement Before
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines.
let D = VFPNeonDomain;
}
}
let neverHasSideEffects = 1 in {
let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
defm VLDM : vfp_ldst_mult<"vldm", 1, IIC_fpLoad_m, IIC_fpLoad_mu>;
let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
defm VSTM : vfp_ldst_mult<"vstm", 0, IIC_fpLoad_m, IIC_fpLoad_mu>;
} // neverHasSideEffects
def : MnemonicAlias<"vldm", "vldmia">;
def : MnemonicAlias<"vstm", "vstmia">;
def : InstAlias<"vpush${p} $r", (VSTMDDB_UPD SP, pred:$p, dpr_reglist:$r)>,
Requires<[HasVFP2]>;
def : InstAlias<"vpush${p} $r", (VSTMSDB_UPD SP, pred:$p, spr_reglist:$r)>,
Requires<[HasVFP2]>;
def : InstAlias<"vpop${p} $r", (VLDMDIA_UPD SP, pred:$p, dpr_reglist:$r)>,
Requires<[HasVFP2]>;
def : InstAlias<"vpop${p} $r", (VLDMSIA_UPD SP, pred:$p, spr_reglist:$r)>,
Requires<[HasVFP2]>;
// FLDMX, FSTMX - mixing S/D registers for pre-armv6 cores
//===----------------------------------------------------------------------===//
// FP Binary Operations.
//
def VADDD : ADbI<0b11100, 0b11, 0, 0,
(outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
IIC_fpALU64, "vadd", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd, (fadd DPR:$Dn, (f64 DPR:$Dm)))]>;
def VADDS : ASbIn<0b11100, 0b11, 0, 0,
(outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
IIC_fpALU32, "vadd", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fadd SPR:$Sn, SPR:$Sm))]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VSUBD : ADbI<0b11100, 0b11, 1, 0,
(outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
IIC_fpALU64, "vsub", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd, (fsub DPR:$Dn, (f64 DPR:$Dm)))]>;
def VSUBS : ASbIn<0b11100, 0b11, 1, 0,
(outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
IIC_fpALU32, "vsub", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fsub SPR:$Sn, SPR:$Sm))]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VDIVD : ADbI<0b11101, 0b00, 0, 0,
(outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
IIC_fpDIV64, "vdiv", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd, (fdiv DPR:$Dn, (f64 DPR:$Dm)))]>;
def VDIVS : ASbI<0b11101, 0b00, 0, 0,
(outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
IIC_fpDIV32, "vdiv", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fdiv SPR:$Sn, SPR:$Sm))]>;
def VMULD : ADbI<0b11100, 0b10, 0, 0,
(outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
IIC_fpMUL64, "vmul", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd, (fmul DPR:$Dn, (f64 DPR:$Dm)))]>;
def VMULS : ASbIn<0b11100, 0b10, 0, 0,
(outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
IIC_fpMUL32, "vmul", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fmul SPR:$Sn, SPR:$Sm))]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VNMULD : ADbI<0b11100, 0b10, 1, 0,
(outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
IIC_fpMUL64, "vnmul", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd, (fneg (fmul DPR:$Dn, (f64 DPR:$Dm))))]>;
def VNMULS : ASbI<0b11100, 0b10, 1, 0,
(outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
IIC_fpMUL32, "vnmul", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fneg (fmul SPR:$Sn, SPR:$Sm)))]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
// Match reassociated forms only if not sign dependent rounding.
def : Pat<(fmul (fneg DPR:$a), (f64 DPR:$b)),
(VNMULD DPR:$a, DPR:$b)>, Requires<[NoHonorSignDependentRounding]>;
def : Pat<(fmul (fneg SPR:$a), SPR:$b),
(VNMULS SPR:$a, SPR:$b)>, Requires<[NoHonorSignDependentRounding]>;
// These are encoded as unary instructions.
let Defs = [FPSCR] in {
def VCMPED : ADuI<0b11101, 0b11, 0b0100, 0b11, 0,
(outs), (ins DPR:$Dd, DPR:$Dm),
IIC_fpCMP64, "vcmpe", ".f64\t$Dd, $Dm",
[(arm_cmpfp DPR:$Dd, (f64 DPR:$Dm))]>;
def VCMPES : ASuI<0b11101, 0b11, 0b0100, 0b11, 0,
(outs), (ins SPR:$Sd, SPR:$Sm),
IIC_fpCMP32, "vcmpe", ".f32\t$Sd, $Sm",
[(arm_cmpfp SPR:$Sd, SPR:$Sm)]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
// FIXME: Verify encoding after integrated assembler is working.
def VCMPD : ADuI<0b11101, 0b11, 0b0100, 0b01, 0,
(outs), (ins DPR:$Dd, DPR:$Dm),
IIC_fpCMP64, "vcmp", ".f64\t$Dd, $Dm",
[/* For disassembly only; pattern left blank */]>;
def VCMPS : ASuI<0b11101, 0b11, 0b0100, 0b01, 0,
(outs), (ins SPR:$Sd, SPR:$Sm),
IIC_fpCMP32, "vcmp", ".f32\t$Sd, $Sm",
[/* For disassembly only; pattern left blank */]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
} // Defs = [FPSCR]
//===----------------------------------------------------------------------===//
// FP Unary Operations.
//
def VABSD : ADuI<0b11101, 0b11, 0b0000, 0b11, 0,
(outs DPR:$Dd), (ins DPR:$Dm),
IIC_fpUNA64, "vabs", ".f64\t$Dd, $Dm",
[(set DPR:$Dd, (fabs (f64 DPR:$Dm)))]>;
def VABSS : ASuIn<0b11101, 0b11, 0b0000, 0b11, 0,
(outs SPR:$Sd), (ins SPR:$Sm),
IIC_fpUNA32, "vabs", ".f32\t$Sd, $Sm",
[(set SPR:$Sd, (fabs SPR:$Sm))]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
let Defs = [FPSCR] in {
def VCMPEZD : ADuI<0b11101, 0b11, 0b0101, 0b11, 0,
(outs), (ins DPR:$Dd),
IIC_fpCMP64, "vcmpe", ".f64\t$Dd, #0",
[(arm_cmpfp0 (f64 DPR:$Dd))]> {
let Inst{3-0} = 0b0000;
let Inst{5} = 0;
}
def VCMPEZS : ASuI<0b11101, 0b11, 0b0101, 0b11, 0,
(outs), (ins SPR:$Sd),
IIC_fpCMP32, "vcmpe", ".f32\t$Sd, #0",
[(arm_cmpfp0 SPR:$Sd)]> {
let Inst{3-0} = 0b0000;
let Inst{5} = 0;
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
// FIXME: Verify encoding after integrated assembler is working.
def VCMPZD : ADuI<0b11101, 0b11, 0b0101, 0b01, 0,
(outs), (ins DPR:$Dd),
IIC_fpCMP64, "vcmp", ".f64\t$Dd, #0",
[/* For disassembly only; pattern left blank */]> {
let Inst{3-0} = 0b0000;
let Inst{5} = 0;
}
def VCMPZS : ASuI<0b11101, 0b11, 0b0101, 0b01, 0,
(outs), (ins SPR:$Sd),
IIC_fpCMP32, "vcmp", ".f32\t$Sd, #0",
[/* For disassembly only; pattern left blank */]> {
let Inst{3-0} = 0b0000;
let Inst{5} = 0;
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
} // Defs = [FPSCR]
def VCVTDS : ASuI<0b11101, 0b11, 0b0111, 0b11, 0,
(outs DPR:$Dd), (ins SPR:$Sm),
IIC_fpCVTDS, "vcvt", ".f64.f32\t$Dd, $Sm",
[(set DPR:$Dd, (fextend SPR:$Sm))]> {
// Instruction operands.
bits<5> Dd;
bits<5> Sm;
// Encode instruction operands.
let Inst{3-0} = Sm{4-1};
let Inst{5} = Sm{0};
let Inst{15-12} = Dd{3-0};
let Inst{22} = Dd{4};
}
// Special case encoding: bits 11-8 is 0b1011.
def VCVTSD : VFPAI<(outs SPR:$Sd), (ins DPR:$Dm), VFPUnaryFrm,
IIC_fpCVTSD, "vcvt", ".f32.f64\t$Sd, $Dm",
[(set SPR:$Sd, (fround DPR:$Dm))]> {
// Instruction operands.
bits<5> Sd;
bits<5> Dm;
// Encode instruction operands.
let Inst{3-0} = Dm{3-0};
let Inst{5} = Dm{4};
let Inst{15-12} = Sd{4-1};
let Inst{22} = Sd{0};
let Inst{27-23} = 0b11101;
let Inst{21-16} = 0b110111;
let Inst{11-8} = 0b1011;
let Inst{7-6} = 0b11;
let Inst{4} = 0;
}
// Between half-precision and single-precision. For disassembly only.
// FIXME: Verify encoding after integrated assembler is working.
def VCVTBSH: ASuI<0b11101, 0b11, 0b0010, 0b01, 0, (outs SPR:$dst), (ins SPR:$a),
/* FIXME */ IIC_fpCVTSH, "vcvtb", ".f32.f16\t$dst, $a",
[/* For disassembly only; pattern left blank */]>;
def : ARMPat<(f32_to_f16 SPR:$a),
(i32 (COPY_TO_REGCLASS (VCVTBSH SPR:$a), GPR))>;
def VCVTBHS: ASuI<0b11101, 0b11, 0b0011, 0b01, 0, (outs SPR:$dst), (ins SPR:$a),
/* FIXME */ IIC_fpCVTHS, "vcvtb", ".f16.f32\t$dst, $a",
[/* For disassembly only; pattern left blank */]>;
def : ARMPat<(f16_to_f32 GPR:$a),
(VCVTBHS (COPY_TO_REGCLASS GPR:$a, SPR))>;
def VCVTTSH: ASuI<0b11101, 0b11, 0b0010, 0b11, 0, (outs SPR:$dst), (ins SPR:$a),
/* FIXME */ IIC_fpCVTSH, "vcvtt", ".f32.f16\t$dst, $a",
[/* For disassembly only; pattern left blank */]>;
def VCVTTHS: ASuI<0b11101, 0b11, 0b0011, 0b11, 0, (outs SPR:$dst), (ins SPR:$a),
/* FIXME */ IIC_fpCVTHS, "vcvtt", ".f16.f32\t$dst, $a",
[/* For disassembly only; pattern left blank */]>;
def VNEGD : ADuI<0b11101, 0b11, 0b0001, 0b01, 0,
(outs DPR:$Dd), (ins DPR:$Dm),
IIC_fpUNA64, "vneg", ".f64\t$Dd, $Dm",
[(set DPR:$Dd, (fneg (f64 DPR:$Dm)))]>;
def VNEGS : ASuIn<0b11101, 0b11, 0b0001, 0b01, 0,
(outs SPR:$Sd), (ins SPR:$Sm),
IIC_fpUNA32, "vneg", ".f32\t$Sd, $Sm",
[(set SPR:$Sd, (fneg SPR:$Sm))]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VSQRTD : ADuI<0b11101, 0b11, 0b0001, 0b11, 0,
(outs DPR:$Dd), (ins DPR:$Dm),
IIC_fpSQRT64, "vsqrt", ".f64\t$Dd, $Dm",
[(set DPR:$Dd, (fsqrt (f64 DPR:$Dm)))]>;
def VSQRTS : ASuI<0b11101, 0b11, 0b0001, 0b11, 0,
(outs SPR:$Sd), (ins SPR:$Sm),
IIC_fpSQRT32, "vsqrt", ".f32\t$Sd, $Sm",
[(set SPR:$Sd, (fsqrt SPR:$Sm))]>;
let neverHasSideEffects = 1 in {
def VMOVD : ADuI<0b11101, 0b11, 0b0000, 0b01, 0,
(outs DPR:$Dd), (ins DPR:$Dm),
IIC_fpUNA64, "vmov", ".f64\t$Dd, $Dm", []>;
def VMOVS : ASuI<0b11101, 0b11, 0b0000, 0b01, 0,
(outs SPR:$Sd), (ins SPR:$Sm),
IIC_fpUNA32, "vmov", ".f32\t$Sd, $Sm", []>;
} // neverHasSideEffects
//===----------------------------------------------------------------------===//
// FP <-> GPR Copies. Int <-> FP Conversions.
//
def VMOVRS : AVConv2I<0b11100001, 0b1010,
(outs GPR:$Rt), (ins SPR:$Sn),
IIC_fpMOVSI, "vmov", "\t$Rt, $Sn",
[(set GPR:$Rt, (bitconvert SPR:$Sn))]> {
// Instruction operands.
bits<4> Rt;
bits<5> Sn;
// Encode instruction operands.
let Inst{19-16} = Sn{4-1};
let Inst{7} = Sn{0};
let Inst{15-12} = Rt;
let Inst{6-5} = 0b00;
let Inst{3-0} = 0b0000;
// Some single precision VFP instructions may be executed on both NEON and VFP
// pipelines.
let D = VFPNeonDomain;
}
def VMOVSR : AVConv4I<0b11100000, 0b1010,
(outs SPR:$Sn), (ins GPR:$Rt),
IIC_fpMOVIS, "vmov", "\t$Sn, $Rt",
[(set SPR:$Sn, (bitconvert GPR:$Rt))]> {
// Instruction operands.
bits<5> Sn;
bits<4> Rt;
// Encode instruction operands.
let Inst{19-16} = Sn{4-1};
let Inst{7} = Sn{0};
let Inst{15-12} = Rt;
let Inst{6-5} = 0b00;
let Inst{3-0} = 0b0000;
// Some single precision VFP instructions may be executed on both NEON and VFP
// pipelines.
let D = VFPNeonDomain;
}
let neverHasSideEffects = 1 in {
def VMOVRRD : AVConv3I<0b11000101, 0b1011,
(outs GPR:$Rt, GPR:$Rt2), (ins DPR:$Dm),
IIC_fpMOVDI, "vmov", "\t$Rt, $Rt2, $Dm",
[/* FIXME: Can't write pattern for multiple result instr*/]> {
// Instruction operands.
bits<5> Dm;
bits<4> Rt;
bits<4> Rt2;
// Encode instruction operands.
let Inst{3-0} = Dm{3-0};
let Inst{5} = Dm{4};
let Inst{15-12} = Rt;
let Inst{19-16} = Rt2;
let Inst{7-6} = 0b00;
// Some single precision VFP instructions may be executed on both NEON and VFP
// pipelines.
let D = VFPNeonDomain;
}
def VMOVRRS : AVConv3I<0b11000101, 0b1010,
(outs GPR:$wb, GPR:$dst2), (ins SPR:$src1, SPR:$src2),
IIC_fpMOVDI, "vmov", "\t$wb, $dst2, $src1, $src2",
[/* For disassembly only; pattern left blank */]> {
let Inst{7-6} = 0b00;
// Some single precision VFP instructions may be executed on both NEON and VFP
// pipelines.
let D = VFPNeonDomain;
}
} // neverHasSideEffects
// FMDHR: GPR -> SPR
// FMDLR: GPR -> SPR
def VMOVDRR : AVConv5I<0b11000100, 0b1011,
(outs DPR:$Dm), (ins GPR:$Rt, GPR:$Rt2),
IIC_fpMOVID, "vmov", "\t$Dm, $Rt, $Rt2",
[(set DPR:$Dm, (arm_fmdrr GPR:$Rt, GPR:$Rt2))]> {
// Instruction operands.
bits<5> Dm;
bits<4> Rt;
bits<4> Rt2;
// Encode instruction operands.
let Inst{3-0} = Dm{3-0};
let Inst{5} = Dm{4};
let Inst{15-12} = Rt;
let Inst{19-16} = Rt2;
let Inst{7-6} = 0b00;
// Some single precision VFP instructions may be executed on both NEON and VFP
// pipelines.
let D = VFPNeonDomain;
}
let neverHasSideEffects = 1 in
def VMOVSRR : AVConv5I<0b11000100, 0b1010,
(outs SPR:$dst1, SPR:$dst2), (ins GPR:$src1, GPR:$src2),
IIC_fpMOVID, "vmov", "\t$dst1, $dst2, $src1, $src2",
[/* For disassembly only; pattern left blank */]> {
let Inst{7-6} = 0b00;
// Some single precision VFP instructions may be executed on both NEON and VFP
// pipelines.
let D = VFPNeonDomain;
}
// FMRDH: SPR -> GPR
// FMRDL: SPR -> GPR
// FMRRS: SPR -> GPR
// FMRX: SPR system reg -> GPR
// FMSRR: GPR -> SPR
// FMXR: GPR -> VFP system reg
// Int -> FP:
class AVConv1IDs_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3,
bits<4> opcod4, dag oops, dag iops,
InstrItinClass itin, string opc, string asm,
list<dag> pattern>
: AVConv1I<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm,
pattern> {
// Instruction operands.
bits<5> Dd;
bits<5> Sm;
// Encode instruction operands.
let Inst{3-0} = Sm{4-1};
let Inst{5} = Sm{0};
let Inst{15-12} = Dd{3-0};
let Inst{22} = Dd{4};
}
class AVConv1InSs_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3,
bits<4> opcod4, dag oops, dag iops,InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: AVConv1In<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm,
pattern> {
// Instruction operands.
bits<5> Sd;
bits<5> Sm;
// Encode instruction operands.
let Inst{3-0} = Sm{4-1};
let Inst{5} = Sm{0};
let Inst{15-12} = Sd{4-1};
let Inst{22} = Sd{0};
}
def VSITOD : AVConv1IDs_Encode<0b11101, 0b11, 0b1000, 0b1011,
(outs DPR:$Dd), (ins SPR:$Sm),
IIC_fpCVTID, "vcvt", ".f64.s32\t$Dd, $Sm",
[(set DPR:$Dd, (f64 (arm_sitof SPR:$Sm)))]> {
let Inst{7} = 1; // s32
}
def VSITOS : AVConv1InSs_Encode<0b11101, 0b11, 0b1000, 0b1010,
(outs SPR:$Sd),(ins SPR:$Sm),
IIC_fpCVTIS, "vcvt", ".f32.s32\t$Sd, $Sm",
[(set SPR:$Sd, (arm_sitof SPR:$Sm))]> {
let Inst{7} = 1; // s32
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VUITOD : AVConv1IDs_Encode<0b11101, 0b11, 0b1000, 0b1011,
(outs DPR:$Dd), (ins SPR:$Sm),
IIC_fpCVTID, "vcvt", ".f64.u32\t$Dd, $Sm",
[(set DPR:$Dd, (f64 (arm_uitof SPR:$Sm)))]> {
let Inst{7} = 0; // u32
}
def VUITOS : AVConv1InSs_Encode<0b11101, 0b11, 0b1000, 0b1010,
(outs SPR:$Sd), (ins SPR:$Sm),
IIC_fpCVTIS, "vcvt", ".f32.u32\t$Sd, $Sm",
[(set SPR:$Sd, (arm_uitof SPR:$Sm))]> {
let Inst{7} = 0; // u32
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
// FP -> Int:
class AVConv1IsD_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3,
bits<4> opcod4, dag oops, dag iops,
InstrItinClass itin, string opc, string asm,
list<dag> pattern>
: AVConv1I<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm,
pattern> {
// Instruction operands.
bits<5> Sd;
bits<5> Dm;
// Encode instruction operands.
let Inst{3-0} = Dm{3-0};
let Inst{5} = Dm{4};
let Inst{15-12} = Sd{4-1};
let Inst{22} = Sd{0};
}
class AVConv1InsS_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3,
bits<4> opcod4, dag oops, dag iops,
InstrItinClass itin, string opc, string asm,
list<dag> pattern>
: AVConv1In<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm,
pattern> {
// Instruction operands.
bits<5> Sd;
bits<5> Sm;
// Encode instruction operands.
let Inst{3-0} = Sm{4-1};
let Inst{5} = Sm{0};
let Inst{15-12} = Sd{4-1};
let Inst{22} = Sd{0};
}
// Always set Z bit in the instruction, i.e. "round towards zero" variants.
def VTOSIZD : AVConv1IsD_Encode<0b11101, 0b11, 0b1101, 0b1011,
(outs SPR:$Sd), (ins DPR:$Dm),
IIC_fpCVTDI, "vcvt", ".s32.f64\t$Sd, $Dm",
[(set SPR:$Sd, (arm_ftosi (f64 DPR:$Dm)))]> {
let Inst{7} = 1; // Z bit
}
def VTOSIZS : AVConv1InsS_Encode<0b11101, 0b11, 0b1101, 0b1010,
(outs SPR:$Sd), (ins SPR:$Sm),
IIC_fpCVTSI, "vcvt", ".s32.f32\t$Sd, $Sm",
[(set SPR:$Sd, (arm_ftosi SPR:$Sm))]> {
let Inst{7} = 1; // Z bit
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VTOUIZD : AVConv1IsD_Encode<0b11101, 0b11, 0b1100, 0b1011,
(outs SPR:$Sd), (ins DPR:$Dm),
IIC_fpCVTDI, "vcvt", ".u32.f64\t$Sd, $Dm",
[(set SPR:$Sd, (arm_ftoui (f64 DPR:$Dm)))]> {
let Inst{7} = 1; // Z bit
}
def VTOUIZS : AVConv1InsS_Encode<0b11101, 0b11, 0b1100, 0b1010,
(outs SPR:$Sd), (ins SPR:$Sm),
IIC_fpCVTSI, "vcvt", ".u32.f32\t$Sd, $Sm",
[(set SPR:$Sd, (arm_ftoui SPR:$Sm))]> {
let Inst{7} = 1; // Z bit
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
// And the Z bit '0' variants, i.e. use the rounding mode specified by FPSCR.
let Uses = [FPSCR] in {
// FIXME: Verify encoding after integrated assembler is working.
def VTOSIRD : AVConv1IsD_Encode<0b11101, 0b11, 0b1101, 0b1011,
(outs SPR:$Sd), (ins DPR:$Dm),
IIC_fpCVTDI, "vcvtr", ".s32.f64\t$Sd, $Dm",
[(set SPR:$Sd, (int_arm_vcvtr (f64 DPR:$Dm)))]>{
let Inst{7} = 0; // Z bit
}
def VTOSIRS : AVConv1InsS_Encode<0b11101, 0b11, 0b1101, 0b1010,
(outs SPR:$Sd), (ins SPR:$Sm),
IIC_fpCVTSI, "vcvtr", ".s32.f32\t$Sd, $Sm",
[(set SPR:$Sd, (int_arm_vcvtr SPR:$Sm))]> {
let Inst{7} = 0; // Z bit
}
def VTOUIRD : AVConv1IsD_Encode<0b11101, 0b11, 0b1100, 0b1011,
(outs SPR:$Sd), (ins DPR:$Dm),
IIC_fpCVTDI, "vcvtr", ".u32.f64\t$Sd, $Dm",
[(set SPR:$Sd, (int_arm_vcvtru(f64 DPR:$Dm)))]>{
let Inst{7} = 0; // Z bit
}
def VTOUIRS : AVConv1InsS_Encode<0b11101, 0b11, 0b1100, 0b1010,
(outs SPR:$Sd), (ins SPR:$Sm),
IIC_fpCVTSI, "vcvtr", ".u32.f32\t$Sd, $Sm",
[(set SPR:$Sd, (int_arm_vcvtru SPR:$Sm))]> {
let Inst{7} = 0; // Z bit
}
}
// Convert between floating-point and fixed-point
// Data type for fixed-point naming convention:
// S16 (U=0, sx=0) -> SH
// U16 (U=1, sx=0) -> UH
// S32 (U=0, sx=1) -> SL
// U32 (U=1, sx=1) -> UL
// FIXME: Marking these as codegen only seems wrong. They are real
// instructions(?)
let Constraints = "$a = $dst", isCodeGenOnly = 1 in {
// FP to Fixed-Point:
def VTOSHS : AVConv1XI<0b11101, 0b11, 0b1110, 0b1010, 0,
(outs SPR:$dst), (ins SPR:$a, i32imm:$fbits),
IIC_fpCVTSI, "vcvt", ".s16.f32\t$dst, $a, $fbits",
[/* For disassembly only; pattern left blank */]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VTOUHS : AVConv1XI<0b11101, 0b11, 0b1111, 0b1010, 0,
(outs SPR:$dst), (ins SPR:$a, i32imm:$fbits),
IIC_fpCVTSI, "vcvt", ".u16.f32\t$dst, $a, $fbits",
[/* For disassembly only; pattern left blank */]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VTOSLS : AVConv1XI<0b11101, 0b11, 0b1110, 0b1010, 1,
(outs SPR:$dst), (ins SPR:$a, i32imm:$fbits),
IIC_fpCVTSI, "vcvt", ".s32.f32\t$dst, $a, $fbits",
[/* For disassembly only; pattern left blank */]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VTOULS : AVConv1XI<0b11101, 0b11, 0b1111, 0b1010, 1,
(outs SPR:$dst), (ins SPR:$a, i32imm:$fbits),
IIC_fpCVTSI, "vcvt", ".u32.f32\t$dst, $a, $fbits",
[/* For disassembly only; pattern left blank */]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VTOSHD : AVConv1XI<0b11101, 0b11, 0b1110, 0b1011, 0,
(outs DPR:$dst), (ins DPR:$a, i32imm:$fbits),
IIC_fpCVTDI, "vcvt", ".s16.f64\t$dst, $a, $fbits",
[/* For disassembly only; pattern left blank */]>;
def VTOUHD : AVConv1XI<0b11101, 0b11, 0b1111, 0b1011, 0,
(outs DPR:$dst), (ins DPR:$a, i32imm:$fbits),
IIC_fpCVTDI, "vcvt", ".u16.f64\t$dst, $a, $fbits",
[/* For disassembly only; pattern left blank */]>;
def VTOSLD : AVConv1XI<0b11101, 0b11, 0b1110, 0b1011, 1,
(outs DPR:$dst), (ins DPR:$a, i32imm:$fbits),
IIC_fpCVTDI, "vcvt", ".s32.f64\t$dst, $a, $fbits",
[/* For disassembly only; pattern left blank */]>;
def VTOULD : AVConv1XI<0b11101, 0b11, 0b1111, 0b1011, 1,
(outs DPR:$dst), (ins DPR:$a, i32imm:$fbits),
IIC_fpCVTDI, "vcvt", ".u32.f64\t$dst, $a, $fbits",
[/* For disassembly only; pattern left blank */]>;
// Fixed-Point to FP:
def VSHTOS : AVConv1XI<0b11101, 0b11, 0b1010, 0b1010, 0,
(outs SPR:$dst), (ins SPR:$a, i32imm:$fbits),
IIC_fpCVTIS, "vcvt", ".f32.s16\t$dst, $a, $fbits",
[/* For disassembly only; pattern left blank */]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VUHTOS : AVConv1XI<0b11101, 0b11, 0b1011, 0b1010, 0,
(outs SPR:$dst), (ins SPR:$a, i32imm:$fbits),
IIC_fpCVTIS, "vcvt", ".f32.u16\t$dst, $a, $fbits",
[/* For disassembly only; pattern left blank */]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VSLTOS : AVConv1XI<0b11101, 0b11, 0b1010, 0b1010, 1,
(outs SPR:$dst), (ins SPR:$a, i32imm:$fbits),
IIC_fpCVTIS, "vcvt", ".f32.s32\t$dst, $a, $fbits",
[/* For disassembly only; pattern left blank */]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VULTOS : AVConv1XI<0b11101, 0b11, 0b1011, 0b1010, 1,
(outs SPR:$dst), (ins SPR:$a, i32imm:$fbits),
IIC_fpCVTIS, "vcvt", ".f32.u32\t$dst, $a, $fbits",
[/* For disassembly only; pattern left blank */]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def VSHTOD : AVConv1XI<0b11101, 0b11, 0b1010, 0b1011, 0,
(outs DPR:$dst), (ins DPR:$a, i32imm:$fbits),
IIC_fpCVTID, "vcvt", ".f64.s16\t$dst, $a, $fbits",
[/* For disassembly only; pattern left blank */]>;
def VUHTOD : AVConv1XI<0b11101, 0b11, 0b1011, 0b1011, 0,
(outs DPR:$dst), (ins DPR:$a, i32imm:$fbits),
IIC_fpCVTID, "vcvt", ".f64.u16\t$dst, $a, $fbits",
[/* For disassembly only; pattern left blank */]>;
def VSLTOD : AVConv1XI<0b11101, 0b11, 0b1010, 0b1011, 1,
(outs DPR:$dst), (ins DPR:$a, i32imm:$fbits),
IIC_fpCVTID, "vcvt", ".f64.s32\t$dst, $a, $fbits",
[/* For disassembly only; pattern left blank */]>;
def VULTOD : AVConv1XI<0b11101, 0b11, 0b1011, 0b1011, 1,
(outs DPR:$dst), (ins DPR:$a, i32imm:$fbits),
IIC_fpCVTID, "vcvt", ".f64.u32\t$dst, $a, $fbits",
[/* For disassembly only; pattern left blank */]>;
} // End of 'let Constraints = "$a = $dst", isCodeGenOnly = 1 in'
//===----------------------------------------------------------------------===//
// FP Multiply-Accumulate Operations.
//
def VMLAD : ADbI<0b11100, 0b00, 0, 0,
(outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
IIC_fpMAC64, "vmla", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd, (fadd_mlx (fmul_su DPR:$Dn, DPR:$Dm),
(f64 DPR:$Ddin)))]>,
RegConstraint<"$Ddin = $Dd">,
Requires<[HasVFP2,UseFPVMLx]>;
def VMLAS : ASbIn<0b11100, 0b00, 0, 0,
(outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
IIC_fpMAC32, "vmla", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fadd_mlx (fmul_su SPR:$Sn, SPR:$Sm),
SPR:$Sdin))]>,
RegConstraint<"$Sdin = $Sd">,
Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def : Pat<(fadd_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))),
(VMLAD DPR:$dstin, DPR:$a, DPR:$b)>,
Requires<[HasVFP2,UseFPVMLx]>;
def : Pat<(fadd_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)),
(VMLAS SPR:$dstin, SPR:$a, SPR:$b)>,
Requires<[HasVFP2,DontUseNEONForFP, UseFPVMLx]>;
def VMLSD : ADbI<0b11100, 0b00, 1, 0,
(outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
IIC_fpMAC64, "vmls", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd, (fadd_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)),
(f64 DPR:$Ddin)))]>,
RegConstraint<"$Ddin = $Dd">,
Requires<[HasVFP2,UseFPVMLx]>;
def VMLSS : ASbIn<0b11100, 0b00, 1, 0,
(outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
IIC_fpMAC32, "vmls", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fadd_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)),
SPR:$Sdin))]>,
RegConstraint<"$Sdin = $Sd">,
Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def : Pat<(fsub_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))),
(VMLSD DPR:$dstin, DPR:$a, DPR:$b)>,
Requires<[HasVFP2,UseFPVMLx]>;
def : Pat<(fsub_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)),
(VMLSS SPR:$dstin, SPR:$a, SPR:$b)>,
Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]>;
def VNMLAD : ADbI<0b11100, 0b01, 1, 0,
(outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
IIC_fpMAC64, "vnmla", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd,(fsub_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)),
(f64 DPR:$Ddin)))]>,
RegConstraint<"$Ddin = $Dd">,
Requires<[HasVFP2,UseFPVMLx]>;
def VNMLAS : ASbI<0b11100, 0b01, 1, 0,
(outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
IIC_fpMAC32, "vnmla", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fsub_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)),
SPR:$Sdin))]>,
RegConstraint<"$Sdin = $Sd">,
Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def : Pat<(fsub_mlx (fneg (fmul_su DPR:$a, (f64 DPR:$b))), DPR:$dstin),
(VNMLAD DPR:$dstin, DPR:$a, DPR:$b)>,
Requires<[HasVFP2,UseFPVMLx]>;
def : Pat<(fsub_mlx (fneg (fmul_su SPR:$a, SPR:$b)), SPR:$dstin),
(VNMLAS SPR:$dstin, SPR:$a, SPR:$b)>,
Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]>;
def VNMLSD : ADbI<0b11100, 0b01, 0, 0,
(outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
IIC_fpMAC64, "vnmls", ".f64\t$Dd, $Dn, $Dm",
[(set DPR:$Dd, (fsub_mlx (fmul_su DPR:$Dn, DPR:$Dm),
(f64 DPR:$Ddin)))]>,
RegConstraint<"$Ddin = $Dd">,
Requires<[HasVFP2,UseFPVMLx]>;
def VNMLSS : ASbI<0b11100, 0b01, 0, 0,
(outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
IIC_fpMAC32, "vnmls", ".f32\t$Sd, $Sn, $Sm",
[(set SPR:$Sd, (fsub_mlx (fmul_su SPR:$Sn, SPR:$Sm), SPR:$Sdin))]>,
RegConstraint<"$Sdin = $Sd">,
Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]> {
// Some single precision VFP instructions may be executed on both NEON and
// VFP pipelines on A8.
let D = VFPNeonA8Domain;
}
def : Pat<(fsub_mlx (fmul_su DPR:$a, (f64 DPR:$b)), DPR:$dstin),
(VNMLSD DPR:$dstin, DPR:$a, DPR:$b)>,
Requires<[HasVFP2,UseFPVMLx]>;
def : Pat<(fsub_mlx (fmul_su SPR:$a, SPR:$b), SPR:$dstin),
(VNMLSS SPR:$dstin, SPR:$a, SPR:$b)>,
Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]>;
//===----------------------------------------------------------------------===//
// FP Conditional moves.
//
let neverHasSideEffects = 1 in {
def VMOVDcc : ARMPseudoInst<(outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm, pred:$p),
Size4Bytes, IIC_fpUNA64,
[/*(set DPR:$Dd, (ARMcmov DPR:$Dn, DPR:$Dm, imm:$cc))*/]>,
RegConstraint<"$Dn = $Dd">;
def VMOVScc : ARMPseudoInst<(outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm, pred:$p),
Size4Bytes, IIC_fpUNA32,
[/*(set SPR:$Sd, (ARMcmov SPR:$Sn, SPR:$Sm, imm:$cc))*/]>,
RegConstraint<"$Sn = $Sd">;
} // neverHasSideEffects
//===----------------------------------------------------------------------===//
// Move from VFP System Register to ARM core register.
//
class MovFromVFP<bits<4> opc19_16, dag oops, dag iops, string opc, string asm,
list<dag> pattern>:
VFPAI<oops, iops, VFPMiscFrm, IIC_fpSTAT, opc, asm, pattern> {
// Instruction operand.
bits<4> Rt;
let Inst{27-20} = 0b11101111;
let Inst{19-16} = opc19_16;
let Inst{15-12} = Rt;
let Inst{11-8} = 0b1010;
let Inst{7} = 0;
let Inst{6-5} = 0b00;
let Inst{4} = 1;
let Inst{3-0} = 0b0000;
}
// APSR is the application level alias of CPSR. This FPSCR N, Z, C, V flags
// to APSR.
let Defs = [CPSR], Uses = [FPSCR], Rt = 0b1111 /* apsr_nzcv */ in
def FMSTAT : MovFromVFP<0b0001 /* fpscr */, (outs), (ins),
"vmrs", "\tapsr_nzcv, fpscr", [(arm_fmstat)]>;
// Application level FPSCR -> GPR
let hasSideEffects = 1, Uses = [FPSCR] in
def VMRS : MovFromVFP<0b0001 /* fpscr */, (outs GPR:$Rt), (ins),
"vmrs", "\t$Rt, fpscr",
[(set GPR:$Rt, (int_arm_get_fpscr))]>;
// System level FPEXC, FPSID -> GPR
let Uses = [FPSCR] in {
def VMRS_FPEXC : MovFromVFP<0b1000 /* fpexc */, (outs GPR:$Rt), (ins),
"vmrs", "\t$Rt, fpexc", []>;
def VMRS_FPSID : MovFromVFP<0b0000 /* fpsid */, (outs GPR:$Rt), (ins),
"vmrs", "\t$Rt, fpsid", []>;
}
//===----------------------------------------------------------------------===//
// Move from ARM core register to VFP System Register.
//
class MovToVFP<bits<4> opc19_16, dag oops, dag iops, string opc, string asm,
list<dag> pattern>:
VFPAI<oops, iops, VFPMiscFrm, IIC_fpSTAT, opc, asm, pattern> {
// Instruction operand.
bits<4> src;
// Encode instruction operand.
let Inst{15-12} = src;
let Inst{27-20} = 0b11101110;
let Inst{19-16} = opc19_16;
let Inst{11-8} = 0b1010;
let Inst{7} = 0;
let Inst{4} = 1;
}
let Defs = [FPSCR] in {
// Application level GPR -> FPSCR
def VMSR : MovToVFP<0b0001 /* fpscr */, (outs), (ins GPR:$src),
"vmsr", "\tfpscr, $src", [(int_arm_set_fpscr GPR:$src)]>;
// System level GPR -> FPEXC
def VMSR_FPEXC : MovToVFP<0b1000 /* fpexc */, (outs), (ins GPR:$src),
"vmsr", "\tfpexc, $src", []>;
// System level GPR -> FPSID
def VMSR_FPSID : MovToVFP<0b0000 /* fpsid */, (outs), (ins GPR:$src),
"vmsr", "\tfpsid, $src", []>;
}
//===----------------------------------------------------------------------===//
// Misc.
//
// Materialize FP immediates. VFP3 only.
let isReMaterializable = 1 in {
def FCONSTD : VFPAI<(outs DPR:$Dd), (ins vfp_f64imm:$imm),
VFPMiscFrm, IIC_fpUNA64,
"vmov", ".f64\t$Dd, $imm",
[(set DPR:$Dd, vfp_f64imm:$imm)]>, Requires<[HasVFP3]> {
// Instruction operands.
bits<5> Dd;
bits<32> imm;
// Encode instruction operands.
let Inst{15-12} = Dd{3-0};
let Inst{22} = Dd{4};
let Inst{19} = imm{31};
let Inst{18-16} = imm{22-20};
let Inst{3-0} = imm{19-16};
// Encode remaining instruction bits.
let Inst{27-23} = 0b11101;
let Inst{21-20} = 0b11;
let Inst{11-9} = 0b101;
let Inst{8} = 1; // Double precision.
let Inst{7-4} = 0b0000;
}
def FCONSTS : VFPAI<(outs SPR:$Sd), (ins vfp_f32imm:$imm),
VFPMiscFrm, IIC_fpUNA32,
"vmov", ".f32\t$Sd, $imm",
[(set SPR:$Sd, vfp_f32imm:$imm)]>, Requires<[HasVFP3]> {
// Instruction operands.
bits<5> Sd;
bits<32> imm;
// Encode instruction operands.
let Inst{15-12} = Sd{4-1};
let Inst{22} = Sd{0};
let Inst{19} = imm{31}; // The immediate is handled as a double.
let Inst{18-16} = imm{22-20};
let Inst{3-0} = imm{19-16};
// Encode remaining instruction bits.
let Inst{27-23} = 0b11101;
let Inst{21-20} = 0b11;
let Inst{11-9} = 0b101;
let Inst{8} = 0; // Single precision.
let Inst{7-4} = 0b0000;
}
}