llvm-project/clang/lib/Basic/Targets/NVPTX.cpp

197 lines
7.2 KiB
C++

//===--- NVPTX.cpp - Implement NVPTX target feature support ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements NVPTX TargetInfo objects.
//
//===----------------------------------------------------------------------===//
#include "NVPTX.h"
#include "Targets.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/MacroBuilder.h"
#include "clang/Basic/TargetBuiltins.h"
#include "llvm/ADT/StringSwitch.h"
using namespace clang;
using namespace clang::targets;
const Builtin::Info NVPTXTargetInfo::BuiltinInfo[] = {
#define BUILTIN(ID, TYPE, ATTRS) \
{#ID, TYPE, ATTRS, nullptr, ALL_LANGUAGES, nullptr},
#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) \
{#ID, TYPE, ATTRS, HEADER, ALL_LANGUAGES, nullptr},
#define TARGET_BUILTIN(ID, TYPE, ATTRS, FEATURE) \
{#ID, TYPE, ATTRS, nullptr, ALL_LANGUAGES, FEATURE},
#include "clang/Basic/BuiltinsNVPTX.def"
};
const char *const NVPTXTargetInfo::GCCRegNames[] = {"r0"};
NVPTXTargetInfo::NVPTXTargetInfo(const llvm::Triple &Triple,
const TargetOptions &Opts,
unsigned TargetPointerWidth)
: TargetInfo(Triple) {
assert((TargetPointerWidth == 32 || TargetPointerWidth == 64) &&
"NVPTX only supports 32- and 64-bit modes.");
TLSSupported = false;
AddrSpaceMap = &NVPTXAddrSpaceMap;
UseAddrSpaceMapMangling = true;
// Define available target features
// These must be defined in sorted order!
NoAsmVariants = true;
GPU = CudaArch::SM_20;
if (TargetPointerWidth == 32)
resetDataLayout("e-p:32:32-i64:64-i128:128-v16:16-v32:32-n16:32:64");
else
resetDataLayout("e-i64:64-i128:128-v16:16-v32:32-n16:32:64");
// If possible, get a TargetInfo for our host triple, so we can match its
// types.
llvm::Triple HostTriple(Opts.HostTriple);
if (!HostTriple.isNVPTX())
HostTarget.reset(AllocateTarget(llvm::Triple(Opts.HostTriple), Opts));
// If no host target, make some guesses about the data layout and return.
if (!HostTarget) {
LongWidth = LongAlign = TargetPointerWidth;
PointerWidth = PointerAlign = TargetPointerWidth;
switch (TargetPointerWidth) {
case 32:
SizeType = TargetInfo::UnsignedInt;
PtrDiffType = TargetInfo::SignedInt;
IntPtrType = TargetInfo::SignedInt;
break;
case 64:
SizeType = TargetInfo::UnsignedLong;
PtrDiffType = TargetInfo::SignedLong;
IntPtrType = TargetInfo::SignedLong;
break;
default:
llvm_unreachable("TargetPointerWidth must be 32 or 64");
}
return;
}
// Copy properties from host target.
PointerWidth = HostTarget->getPointerWidth(/* AddrSpace = */ 0);
PointerAlign = HostTarget->getPointerAlign(/* AddrSpace = */ 0);
BoolWidth = HostTarget->getBoolWidth();
BoolAlign = HostTarget->getBoolAlign();
IntWidth = HostTarget->getIntWidth();
IntAlign = HostTarget->getIntAlign();
HalfWidth = HostTarget->getHalfWidth();
HalfAlign = HostTarget->getHalfAlign();
FloatWidth = HostTarget->getFloatWidth();
FloatAlign = HostTarget->getFloatAlign();
DoubleWidth = HostTarget->getDoubleWidth();
DoubleAlign = HostTarget->getDoubleAlign();
LongWidth = HostTarget->getLongWidth();
LongAlign = HostTarget->getLongAlign();
LongLongWidth = HostTarget->getLongLongWidth();
LongLongAlign = HostTarget->getLongLongAlign();
MinGlobalAlign = HostTarget->getMinGlobalAlign();
NewAlign = HostTarget->getNewAlign();
DefaultAlignForAttributeAligned =
HostTarget->getDefaultAlignForAttributeAligned();
SizeType = HostTarget->getSizeType();
IntMaxType = HostTarget->getIntMaxType();
PtrDiffType = HostTarget->getPtrDiffType(/* AddrSpace = */ 0);
IntPtrType = HostTarget->getIntPtrType();
WCharType = HostTarget->getWCharType();
WIntType = HostTarget->getWIntType();
Char16Type = HostTarget->getChar16Type();
Char32Type = HostTarget->getChar32Type();
Int64Type = HostTarget->getInt64Type();
SigAtomicType = HostTarget->getSigAtomicType();
ProcessIDType = HostTarget->getProcessIDType();
UseBitFieldTypeAlignment = HostTarget->useBitFieldTypeAlignment();
UseZeroLengthBitfieldAlignment = HostTarget->useZeroLengthBitfieldAlignment();
UseExplicitBitFieldAlignment = HostTarget->useExplicitBitFieldAlignment();
ZeroLengthBitfieldBoundary = HostTarget->getZeroLengthBitfieldBoundary();
// This is a bit of a lie, but it controls __GCC_ATOMIC_XXX_LOCK_FREE, and
// we need those macros to be identical on host and device, because (among
// other things) they affect which standard library classes are defined, and
// we need all classes to be defined on both the host and device.
MaxAtomicInlineWidth = HostTarget->getMaxAtomicInlineWidth();
// Properties intentionally not copied from host:
// - LargeArrayMinWidth, LargeArrayAlign: Not visible across the
// host/device boundary.
// - SuitableAlign: Not visible across the host/device boundary, and may
// correctly be different on host/device, e.g. if host has wider vector
// types than device.
// - LongDoubleWidth, LongDoubleAlign: nvptx's long double type is the same
// as its double type, but that's not necessarily true on the host.
// TODO: nvcc emits a warning when using long double on device; we should
// do the same.
}
ArrayRef<const char *> NVPTXTargetInfo::getGCCRegNames() const {
return llvm::makeArrayRef(GCCRegNames);
}
bool NVPTXTargetInfo::hasFeature(StringRef Feature) const {
return llvm::StringSwitch<bool>(Feature)
.Cases("ptx", "nvptx", true)
.Case("satom", GPU >= CudaArch::SM_60) // Atomics w/ scope.
.Default(false);
}
void NVPTXTargetInfo::getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
Builder.defineMacro("__PTX__");
Builder.defineMacro("__NVPTX__");
if (Opts.CUDAIsDevice) {
// Set __CUDA_ARCH__ for the GPU specified.
std::string CUDAArchCode = [this] {
switch (GPU) {
case CudaArch::UNKNOWN:
assert(false && "No GPU arch when compiling CUDA device code.");
return "";
case CudaArch::SM_20:
return "200";
case CudaArch::SM_21:
return "210";
case CudaArch::SM_30:
return "300";
case CudaArch::SM_32:
return "320";
case CudaArch::SM_35:
return "350";
case CudaArch::SM_37:
return "370";
case CudaArch::SM_50:
return "500";
case CudaArch::SM_52:
return "520";
case CudaArch::SM_53:
return "530";
case CudaArch::SM_60:
return "600";
case CudaArch::SM_61:
return "610";
case CudaArch::SM_62:
return "620";
}
llvm_unreachable("unhandled CudaArch");
}();
Builder.defineMacro("__CUDA_ARCH__", CUDAArchCode);
}
}
ArrayRef<Builtin::Info> NVPTXTargetInfo::getTargetBuiltins() const {
return llvm::makeArrayRef(BuiltinInfo, clang::NVPTX::LastTSBuiltin -
Builtin::FirstTSBuiltin);
}