llvm-project/lldb/source/Symbol/ClangASTContext.cpp

9272 lines
393 KiB
C++

//===-- ClangASTContext.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Symbol/ClangASTContext.h"
// C Includes
// C++ Includes
#include <mutex> // std::once
#include <string>
#include <vector>
// Other libraries and framework includes
// Clang headers like to use NDEBUG inside of them to enable/disable debug
// related features using "#ifndef NDEBUG" preprocessor blocks to do one thing
// or another. This is bad because it means that if clang was built in release
// mode, it assumes that you are building in release mode which is not always
// the case. You can end up with functions that are defined as empty in header
// files when NDEBUG is not defined, and this can cause link errors with the
// clang .a files that you have since you might be missing functions in the .a
// file. So we have to define NDEBUG when including clang headers to avoid any
// mismatches. This is covered by rdar://problem/8691220
#if !defined(NDEBUG) && !defined(LLVM_NDEBUG_OFF)
#define LLDB_DEFINED_NDEBUG_FOR_CLANG
#define NDEBUG
// Need to include assert.h so it is as clang would expect it to be (disabled)
#include <assert.h>
#endif
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTImporter.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/Type.h"
#include "clang/AST/VTableBuilder.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/FileSystemOptions.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Frontend/FrontendOptions.h"
#include "clang/Frontend/LangStandard.h"
#ifdef LLDB_DEFINED_NDEBUG_FOR_CLANG
#undef NDEBUG
#undef LLDB_DEFINED_NDEBUG_FOR_CLANG
// Need to re-include assert.h so it is as _we_ would expect it to be (enabled)
#include <assert.h>
#endif
#include "llvm/Support/Signals.h"
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/Flags.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/RegularExpression.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Core/ThreadSafeDenseMap.h"
#include "lldb/Core/UniqueCStringMap.h"
#include "Plugins/ExpressionParser/Clang/ClangUserExpression.h"
#include "Plugins/ExpressionParser/Clang/ClangFunctionCaller.h"
#include "Plugins/ExpressionParser/Clang/ClangUtilityFunction.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/ClangExternalASTSourceCallbacks.h"
#include "lldb/Symbol/ClangExternalASTSourceCommon.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/SymbolFile.h"
#include "lldb/Symbol/VerifyDecl.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Language.h"
#include "lldb/Target/ObjCLanguageRuntime.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "Plugins/SymbolFile/DWARF/DWARFASTParserClang.h"
#include <stdio.h>
#include <mutex>
using namespace lldb;
using namespace lldb_private;
using namespace llvm;
using namespace clang;
namespace
{
static inline bool ClangASTContextSupportsLanguage (lldb::LanguageType language)
{
return language == eLanguageTypeUnknown || // Clang is the default type system
Language::LanguageIsC (language) ||
Language::LanguageIsCPlusPlus (language) ||
Language::LanguageIsObjC (language);
}
}
typedef lldb_private::ThreadSafeDenseMap<clang::ASTContext *, ClangASTContext*> ClangASTMap;
static ClangASTMap &
GetASTMap()
{
static ClangASTMap *g_map_ptr = nullptr;
static std::once_flag g_once_flag;
std::call_once(g_once_flag, []() {
g_map_ptr = new ClangASTMap(); // leaked on purpose to avoid spins
});
return *g_map_ptr;
}
clang::AccessSpecifier
ClangASTContext::ConvertAccessTypeToAccessSpecifier (AccessType access)
{
switch (access)
{
default: break;
case eAccessNone: return AS_none;
case eAccessPublic: return AS_public;
case eAccessPrivate: return AS_private;
case eAccessProtected: return AS_protected;
}
return AS_none;
}
static void
ParseLangArgs (LangOptions &Opts, InputKind IK, const char* triple)
{
// FIXME: Cleanup per-file based stuff.
// Set some properties which depend solely on the input kind; it would be nice
// to move these to the language standard, and have the driver resolve the
// input kind + language standard.
if (IK == IK_Asm) {
Opts.AsmPreprocessor = 1;
} else if (IK == IK_ObjC ||
IK == IK_ObjCXX ||
IK == IK_PreprocessedObjC ||
IK == IK_PreprocessedObjCXX) {
Opts.ObjC1 = Opts.ObjC2 = 1;
}
LangStandard::Kind LangStd = LangStandard::lang_unspecified;
if (LangStd == LangStandard::lang_unspecified) {
// Based on the base language, pick one.
switch (IK) {
case IK_None:
case IK_AST:
case IK_LLVM_IR:
assert (!"Invalid input kind!");
case IK_OpenCL:
LangStd = LangStandard::lang_opencl;
break;
case IK_CUDA:
case IK_PreprocessedCuda:
LangStd = LangStandard::lang_cuda;
break;
case IK_Asm:
case IK_C:
case IK_PreprocessedC:
case IK_ObjC:
case IK_PreprocessedObjC:
LangStd = LangStandard::lang_gnu99;
break;
case IK_CXX:
case IK_PreprocessedCXX:
case IK_ObjCXX:
case IK_PreprocessedObjCXX:
LangStd = LangStandard::lang_gnucxx98;
break;
}
}
const LangStandard &Std = LangStandard::getLangStandardForKind(LangStd);
Opts.LineComment = Std.hasLineComments();
Opts.C99 = Std.isC99();
Opts.CPlusPlus = Std.isCPlusPlus();
Opts.CPlusPlus11 = Std.isCPlusPlus11();
Opts.Digraphs = Std.hasDigraphs();
Opts.GNUMode = Std.isGNUMode();
Opts.GNUInline = !Std.isC99();
Opts.HexFloats = Std.hasHexFloats();
Opts.ImplicitInt = Std.hasImplicitInt();
Opts.WChar = true;
// OpenCL has some additional defaults.
if (LangStd == LangStandard::lang_opencl) {
Opts.OpenCL = 1;
Opts.AltiVec = 1;
Opts.CXXOperatorNames = 1;
Opts.LaxVectorConversions = 1;
}
// OpenCL and C++ both have bool, true, false keywords.
Opts.Bool = Opts.OpenCL || Opts.CPlusPlus;
// if (Opts.CPlusPlus)
// Opts.CXXOperatorNames = !Args.hasArg(OPT_fno_operator_names);
//
// if (Args.hasArg(OPT_fobjc_gc_only))
// Opts.setGCMode(LangOptions::GCOnly);
// else if (Args.hasArg(OPT_fobjc_gc))
// Opts.setGCMode(LangOptions::HybridGC);
//
// if (Args.hasArg(OPT_print_ivar_layout))
// Opts.ObjCGCBitmapPrint = 1;
//
// if (Args.hasArg(OPT_faltivec))
// Opts.AltiVec = 1;
//
// if (Args.hasArg(OPT_pthread))
// Opts.POSIXThreads = 1;
//
// llvm::StringRef Vis = getLastArgValue(Args, OPT_fvisibility,
// "default");
// if (Vis == "default")
Opts.setValueVisibilityMode(DefaultVisibility);
// else if (Vis == "hidden")
// Opts.setVisibilityMode(LangOptions::Hidden);
// else if (Vis == "protected")
// Opts.setVisibilityMode(LangOptions::Protected);
// else
// Diags.Report(diag::err_drv_invalid_value)
// << Args.getLastArg(OPT_fvisibility)->getAsString(Args) << Vis;
// Opts.OverflowChecking = Args.hasArg(OPT_ftrapv);
// Mimicing gcc's behavior, trigraphs are only enabled if -trigraphs
// is specified, or -std is set to a conforming mode.
Opts.Trigraphs = !Opts.GNUMode;
// if (Args.hasArg(OPT_trigraphs))
// Opts.Trigraphs = 1;
//
// Opts.DollarIdents = Args.hasFlag(OPT_fdollars_in_identifiers,
// OPT_fno_dollars_in_identifiers,
// !Opts.AsmPreprocessor);
// Opts.PascalStrings = Args.hasArg(OPT_fpascal_strings);
// Opts.Microsoft = Args.hasArg(OPT_fms_extensions);
// Opts.WritableStrings = Args.hasArg(OPT_fwritable_strings);
// if (Args.hasArg(OPT_fno_lax_vector_conversions))
// Opts.LaxVectorConversions = 0;
// Opts.Exceptions = Args.hasArg(OPT_fexceptions);
// Opts.RTTI = !Args.hasArg(OPT_fno_rtti);
// Opts.Blocks = Args.hasArg(OPT_fblocks);
Opts.CharIsSigned = ArchSpec(triple).CharIsSignedByDefault();
// Opts.ShortWChar = Args.hasArg(OPT_fshort_wchar);
// Opts.Freestanding = Args.hasArg(OPT_ffreestanding);
// Opts.NoBuiltin = Args.hasArg(OPT_fno_builtin) || Opts.Freestanding;
// Opts.AssumeSaneOperatorNew = !Args.hasArg(OPT_fno_assume_sane_operator_new);
// Opts.HeinousExtensions = Args.hasArg(OPT_fheinous_gnu_extensions);
// Opts.AccessControl = Args.hasArg(OPT_faccess_control);
// Opts.ElideConstructors = !Args.hasArg(OPT_fno_elide_constructors);
// Opts.MathErrno = !Args.hasArg(OPT_fno_math_errno);
// Opts.InstantiationDepth = getLastArgIntValue(Args, OPT_ftemplate_depth, 99,
// Diags);
// Opts.NeXTRuntime = !Args.hasArg(OPT_fgnu_runtime);
// Opts.ObjCConstantStringClass = getLastArgValue(Args,
// OPT_fconstant_string_class);
// Opts.ObjCNonFragileABI = Args.hasArg(OPT_fobjc_nonfragile_abi);
// Opts.CatchUndefined = Args.hasArg(OPT_fcatch_undefined_behavior);
// Opts.EmitAllDecls = Args.hasArg(OPT_femit_all_decls);
// Opts.PICLevel = getLastArgIntValue(Args, OPT_pic_level, 0, Diags);
// Opts.Static = Args.hasArg(OPT_static_define);
Opts.OptimizeSize = 0;
// FIXME: Eliminate this dependency.
// unsigned Opt =
// Args.hasArg(OPT_Os) ? 2 : getLastArgIntValue(Args, OPT_O, 0, Diags);
// Opts.Optimize = Opt != 0;
unsigned Opt = 0;
// This is the __NO_INLINE__ define, which just depends on things like the
// optimization level and -fno-inline, not actually whether the backend has
// inlining enabled.
//
// FIXME: This is affected by other options (-fno-inline).
Opts.NoInlineDefine = !Opt;
// unsigned SSP = getLastArgIntValue(Args, OPT_stack_protector, 0, Diags);
// switch (SSP) {
// default:
// Diags.Report(diag::err_drv_invalid_value)
// << Args.getLastArg(OPT_stack_protector)->getAsString(Args) << SSP;
// break;
// case 0: Opts.setStackProtectorMode(LangOptions::SSPOff); break;
// case 1: Opts.setStackProtectorMode(LangOptions::SSPOn); break;
// case 2: Opts.setStackProtectorMode(LangOptions::SSPReq); break;
// }
}
ClangASTContext::ClangASTContext (const char *target_triple) :
TypeSystem (TypeSystem::eKindClang),
m_target_triple (),
m_ast_ap (),
m_language_options_ap (),
m_source_manager_ap (),
m_diagnostics_engine_ap (),
m_target_options_rp (),
m_target_info_ap (),
m_identifier_table_ap (),
m_selector_table_ap (),
m_builtins_ap (),
m_callback_tag_decl (nullptr),
m_callback_objc_decl (nullptr),
m_callback_baton (nullptr),
m_pointer_byte_size (0),
m_ast_owned (false)
{
if (target_triple && target_triple[0])
SetTargetTriple (target_triple);
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
ClangASTContext::~ClangASTContext()
{
if (m_ast_ap.get())
{
GetASTMap().Erase(m_ast_ap.get());
if (!m_ast_owned)
m_ast_ap.release();
}
m_builtins_ap.reset();
m_selector_table_ap.reset();
m_identifier_table_ap.reset();
m_target_info_ap.reset();
m_target_options_rp.reset();
m_diagnostics_engine_ap.reset();
m_source_manager_ap.reset();
m_language_options_ap.reset();
m_ast_ap.reset();
}
ConstString
ClangASTContext::GetPluginNameStatic()
{
return ConstString("clang");
}
ConstString
ClangASTContext::GetPluginName()
{
return ClangASTContext::GetPluginNameStatic();
}
uint32_t
ClangASTContext::GetPluginVersion()
{
return 1;
}
lldb::TypeSystemSP
ClangASTContext::CreateInstance (lldb::LanguageType language,
lldb_private::Module *module,
Target *target)
{
if (ClangASTContextSupportsLanguage(language))
{
ArchSpec arch;
if (module)
arch = module->GetArchitecture();
else if (target)
arch = target->GetArchitecture();
if (arch.IsValid())
{
ArchSpec fixed_arch = arch;
// LLVM wants this to be set to iOS or MacOSX; if we're working on
// a bare-boards type image, change the triple for llvm's benefit.
if (fixed_arch.GetTriple().getVendor() == llvm::Triple::Apple &&
fixed_arch.GetTriple().getOS() == llvm::Triple::UnknownOS)
{
if (fixed_arch.GetTriple().getArch() == llvm::Triple::arm ||
fixed_arch.GetTriple().getArch() == llvm::Triple::aarch64 ||
fixed_arch.GetTriple().getArch() == llvm::Triple::thumb)
{
fixed_arch.GetTriple().setOS(llvm::Triple::IOS);
}
else
{
fixed_arch.GetTriple().setOS(llvm::Triple::MacOSX);
}
}
if (module)
{
std::shared_ptr<ClangASTContext> ast_sp(new ClangASTContext);
if (ast_sp)
{
ast_sp->SetArchitecture (fixed_arch);
}
return ast_sp;
}
else if (target)
{
std::shared_ptr<ClangASTContextForExpressions> ast_sp(new ClangASTContextForExpressions(*target));
if (ast_sp)
{
ast_sp->SetArchitecture(fixed_arch);
ast_sp->m_scratch_ast_source_ap.reset (new ClangASTSource(target->shared_from_this()));
ast_sp->m_scratch_ast_source_ap->InstallASTContext(ast_sp->getASTContext());
llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> proxy_ast_source(ast_sp->m_scratch_ast_source_ap->CreateProxy());
ast_sp->SetExternalSource(proxy_ast_source);
return ast_sp;
}
}
}
}
return lldb::TypeSystemSP();
}
void
ClangASTContext::EnumerateSupportedLanguages(std::set<lldb::LanguageType> &languages_for_types, std::set<lldb::LanguageType> &languages_for_expressions)
{
static std::vector<lldb::LanguageType> s_supported_languages_for_types({
lldb::eLanguageTypeC89,
lldb::eLanguageTypeC,
lldb::eLanguageTypeC11,
lldb::eLanguageTypeC_plus_plus,
lldb::eLanguageTypeC99,
lldb::eLanguageTypeObjC,
lldb::eLanguageTypeObjC_plus_plus,
lldb::eLanguageTypeC_plus_plus_03,
lldb::eLanguageTypeC_plus_plus_11,
lldb::eLanguageTypeC11,
lldb::eLanguageTypeC_plus_plus_14});
static std::vector<lldb::LanguageType> s_supported_languages_for_expressions({
lldb::eLanguageTypeC_plus_plus,
lldb::eLanguageTypeObjC_plus_plus,
lldb::eLanguageTypeC_plus_plus_03,
lldb::eLanguageTypeC_plus_plus_11,
lldb::eLanguageTypeC_plus_plus_14});
languages_for_types.insert(s_supported_languages_for_types.begin(), s_supported_languages_for_types.end());
languages_for_expressions.insert(s_supported_languages_for_expressions.begin(), s_supported_languages_for_expressions.end());
}
void
ClangASTContext::Initialize()
{
PluginManager::RegisterPlugin (GetPluginNameStatic(),
"clang base AST context plug-in",
CreateInstance,
EnumerateSupportedLanguages);
}
void
ClangASTContext::Terminate()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
void
ClangASTContext::Clear()
{
m_ast_ap.reset();
m_language_options_ap.reset();
m_source_manager_ap.reset();
m_diagnostics_engine_ap.reset();
m_target_options_rp.reset();
m_target_info_ap.reset();
m_identifier_table_ap.reset();
m_selector_table_ap.reset();
m_builtins_ap.reset();
m_pointer_byte_size = 0;
}
const char *
ClangASTContext::GetTargetTriple ()
{
return m_target_triple.c_str();
}
void
ClangASTContext::SetTargetTriple (const char *target_triple)
{
Clear();
m_target_triple.assign(target_triple);
}
void
ClangASTContext::SetArchitecture (const ArchSpec &arch)
{
SetTargetTriple(arch.GetTriple().str().c_str());
}
bool
ClangASTContext::HasExternalSource ()
{
ASTContext *ast = getASTContext();
if (ast)
return ast->getExternalSource () != nullptr;
return false;
}
void
ClangASTContext::SetExternalSource (llvm::IntrusiveRefCntPtr<ExternalASTSource> &ast_source_ap)
{
ASTContext *ast = getASTContext();
if (ast)
{
ast->setExternalSource (ast_source_ap);
ast->getTranslationUnitDecl()->setHasExternalLexicalStorage(true);
//ast->getTranslationUnitDecl()->setHasExternalVisibleStorage(true);
}
}
void
ClangASTContext::RemoveExternalSource ()
{
ASTContext *ast = getASTContext();
if (ast)
{
llvm::IntrusiveRefCntPtr<ExternalASTSource> empty_ast_source_ap;
ast->setExternalSource (empty_ast_source_ap);
ast->getTranslationUnitDecl()->setHasExternalLexicalStorage(false);
//ast->getTranslationUnitDecl()->setHasExternalVisibleStorage(false);
}
}
void
ClangASTContext::setASTContext(clang::ASTContext *ast_ctx)
{
if (!m_ast_owned) {
m_ast_ap.release();
}
m_ast_owned = false;
m_ast_ap.reset(ast_ctx);
GetASTMap().Insert(ast_ctx, this);
}
ASTContext *
ClangASTContext::getASTContext()
{
if (m_ast_ap.get() == nullptr)
{
m_ast_owned = true;
m_ast_ap.reset(new ASTContext (*getLanguageOptions(),
*getSourceManager(),
*getIdentifierTable(),
*getSelectorTable(),
*getBuiltinContext()));
m_ast_ap->getDiagnostics().setClient(getDiagnosticConsumer(), false);
// This can be NULL if we don't know anything about the architecture or if the
// target for an architecture isn't enabled in the llvm/clang that we built
TargetInfo *target_info = getTargetInfo();
if (target_info)
m_ast_ap->InitBuiltinTypes(*target_info);
if ((m_callback_tag_decl || m_callback_objc_decl) && m_callback_baton)
{
m_ast_ap->getTranslationUnitDecl()->setHasExternalLexicalStorage();
//m_ast_ap->getTranslationUnitDecl()->setHasExternalVisibleStorage();
}
GetASTMap().Insert(m_ast_ap.get(), this);
llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> ast_source_ap (new ClangExternalASTSourceCallbacks (ClangASTContext::CompleteTagDecl,
ClangASTContext::CompleteObjCInterfaceDecl,
nullptr,
ClangASTContext::LayoutRecordType,
this));
SetExternalSource (ast_source_ap);
}
return m_ast_ap.get();
}
ClangASTContext*
ClangASTContext::GetASTContext (clang::ASTContext* ast)
{
ClangASTContext *clang_ast = GetASTMap().Lookup(ast);
return clang_ast;
}
Builtin::Context *
ClangASTContext::getBuiltinContext()
{
if (m_builtins_ap.get() == nullptr)
m_builtins_ap.reset (new Builtin::Context());
return m_builtins_ap.get();
}
IdentifierTable *
ClangASTContext::getIdentifierTable()
{
if (m_identifier_table_ap.get() == nullptr)
m_identifier_table_ap.reset(new IdentifierTable (*ClangASTContext::getLanguageOptions(), nullptr));
return m_identifier_table_ap.get();
}
LangOptions *
ClangASTContext::getLanguageOptions()
{
if (m_language_options_ap.get() == nullptr)
{
m_language_options_ap.reset(new LangOptions());
ParseLangArgs(*m_language_options_ap, IK_ObjCXX, GetTargetTriple());
// InitializeLangOptions(*m_language_options_ap, IK_ObjCXX);
}
return m_language_options_ap.get();
}
SelectorTable *
ClangASTContext::getSelectorTable()
{
if (m_selector_table_ap.get() == nullptr)
m_selector_table_ap.reset (new SelectorTable());
return m_selector_table_ap.get();
}
clang::FileManager *
ClangASTContext::getFileManager()
{
if (m_file_manager_ap.get() == nullptr)
{
clang::FileSystemOptions file_system_options;
m_file_manager_ap.reset(new clang::FileManager(file_system_options));
}
return m_file_manager_ap.get();
}
clang::SourceManager *
ClangASTContext::getSourceManager()
{
if (m_source_manager_ap.get() == nullptr)
m_source_manager_ap.reset(new clang::SourceManager(*getDiagnosticsEngine(), *getFileManager()));
return m_source_manager_ap.get();
}
clang::DiagnosticsEngine *
ClangASTContext::getDiagnosticsEngine()
{
if (m_diagnostics_engine_ap.get() == nullptr)
{
llvm::IntrusiveRefCntPtr<DiagnosticIDs> diag_id_sp(new DiagnosticIDs());
m_diagnostics_engine_ap.reset(new DiagnosticsEngine(diag_id_sp, new DiagnosticOptions()));
}
return m_diagnostics_engine_ap.get();
}
class NullDiagnosticConsumer : public DiagnosticConsumer
{
public:
NullDiagnosticConsumer ()
{
m_log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS);
}
void HandleDiagnostic (DiagnosticsEngine::Level DiagLevel, const Diagnostic &info)
{
if (m_log)
{
llvm::SmallVector<char, 32> diag_str(10);
info.FormatDiagnostic(diag_str);
diag_str.push_back('\0');
m_log->Printf("Compiler diagnostic: %s\n", diag_str.data());
}
}
DiagnosticConsumer *clone (DiagnosticsEngine &Diags) const
{
return new NullDiagnosticConsumer ();
}
private:
Log * m_log;
};
DiagnosticConsumer *
ClangASTContext::getDiagnosticConsumer()
{
if (m_diagnostic_consumer_ap.get() == nullptr)
m_diagnostic_consumer_ap.reset(new NullDiagnosticConsumer);
return m_diagnostic_consumer_ap.get();
}
std::shared_ptr<TargetOptions> &
ClangASTContext::getTargetOptions() {
if (m_target_options_rp.get() == nullptr && !m_target_triple.empty())
{
m_target_options_rp = std::make_shared<TargetOptions>();
if (m_target_options_rp.get() != nullptr)
m_target_options_rp->Triple = m_target_triple;
}
return m_target_options_rp;
}
TargetInfo *
ClangASTContext::getTargetInfo()
{
// target_triple should be something like "x86_64-apple-macosx"
if (m_target_info_ap.get() == nullptr && !m_target_triple.empty())
m_target_info_ap.reset (TargetInfo::CreateTargetInfo(*getDiagnosticsEngine(), getTargetOptions()));
return m_target_info_ap.get();
}
#pragma mark Basic Types
static inline bool
QualTypeMatchesBitSize(const uint64_t bit_size, ASTContext *ast, QualType qual_type)
{
uint64_t qual_type_bit_size = ast->getTypeSize(qual_type);
if (qual_type_bit_size == bit_size)
return true;
return false;
}
CompilerType
ClangASTContext::GetBuiltinTypeForEncodingAndBitSize (Encoding encoding, size_t bit_size)
{
return ClangASTContext::GetBuiltinTypeForEncodingAndBitSize (getASTContext(), encoding, bit_size);
}
CompilerType
ClangASTContext::GetBuiltinTypeForEncodingAndBitSize (ASTContext *ast, Encoding encoding, uint32_t bit_size)
{
if (!ast)
return CompilerType();
switch (encoding)
{
case eEncodingInvalid:
if (QualTypeMatchesBitSize (bit_size, ast, ast->VoidPtrTy))
return CompilerType (ast, ast->VoidPtrTy);
break;
case eEncodingUint:
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedCharTy))
return CompilerType (ast, ast->UnsignedCharTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedShortTy))
return CompilerType (ast, ast->UnsignedShortTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedIntTy))
return CompilerType (ast, ast->UnsignedIntTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedLongTy))
return CompilerType (ast, ast->UnsignedLongTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedLongLongTy))
return CompilerType (ast, ast->UnsignedLongLongTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedInt128Ty))
return CompilerType (ast, ast->UnsignedInt128Ty);
break;
case eEncodingSint:
if (QualTypeMatchesBitSize (bit_size, ast, ast->CharTy))
return CompilerType (ast, ast->CharTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->ShortTy))
return CompilerType (ast, ast->ShortTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->IntTy))
return CompilerType (ast, ast->IntTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->LongTy))
return CompilerType (ast, ast->LongTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->LongLongTy))
return CompilerType (ast, ast->LongLongTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->Int128Ty))
return CompilerType (ast, ast->Int128Ty);
break;
case eEncodingIEEE754:
if (QualTypeMatchesBitSize (bit_size, ast, ast->FloatTy))
return CompilerType (ast, ast->FloatTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->DoubleTy))
return CompilerType (ast, ast->DoubleTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->LongDoubleTy))
return CompilerType (ast, ast->LongDoubleTy);
break;
case eEncodingVector:
// Sanity check that bit_size is a multiple of 8's.
if (bit_size && !(bit_size & 0x7u))
return CompilerType (ast, ast->getExtVectorType (ast->UnsignedCharTy, bit_size/8));
break;
}
return CompilerType();
}
lldb::BasicType
ClangASTContext::GetBasicTypeEnumeration (const ConstString &name)
{
if (name)
{
typedef UniqueCStringMap<lldb::BasicType> TypeNameToBasicTypeMap;
static TypeNameToBasicTypeMap g_type_map;
static std::once_flag g_once_flag;
std::call_once(g_once_flag, [](){
// "void"
g_type_map.Append(ConstString("void").GetCString(), eBasicTypeVoid);
// "char"
g_type_map.Append(ConstString("char").GetCString(), eBasicTypeChar);
g_type_map.Append(ConstString("signed char").GetCString(), eBasicTypeSignedChar);
g_type_map.Append(ConstString("unsigned char").GetCString(), eBasicTypeUnsignedChar);
g_type_map.Append(ConstString("wchar_t").GetCString(), eBasicTypeWChar);
g_type_map.Append(ConstString("signed wchar_t").GetCString(), eBasicTypeSignedWChar);
g_type_map.Append(ConstString("unsigned wchar_t").GetCString(), eBasicTypeUnsignedWChar);
// "short"
g_type_map.Append(ConstString("short").GetCString(), eBasicTypeShort);
g_type_map.Append(ConstString("short int").GetCString(), eBasicTypeShort);
g_type_map.Append(ConstString("unsigned short").GetCString(), eBasicTypeUnsignedShort);
g_type_map.Append(ConstString("unsigned short int").GetCString(), eBasicTypeUnsignedShort);
// "int"
g_type_map.Append(ConstString("int").GetCString(), eBasicTypeInt);
g_type_map.Append(ConstString("signed int").GetCString(), eBasicTypeInt);
g_type_map.Append(ConstString("unsigned int").GetCString(), eBasicTypeUnsignedInt);
g_type_map.Append(ConstString("unsigned").GetCString(), eBasicTypeUnsignedInt);
// "long"
g_type_map.Append(ConstString("long").GetCString(), eBasicTypeLong);
g_type_map.Append(ConstString("long int").GetCString(), eBasicTypeLong);
g_type_map.Append(ConstString("unsigned long").GetCString(), eBasicTypeUnsignedLong);
g_type_map.Append(ConstString("unsigned long int").GetCString(), eBasicTypeUnsignedLong);
// "long long"
g_type_map.Append(ConstString("long long").GetCString(), eBasicTypeLongLong);
g_type_map.Append(ConstString("long long int").GetCString(), eBasicTypeLongLong);
g_type_map.Append(ConstString("unsigned long long").GetCString(), eBasicTypeUnsignedLongLong);
g_type_map.Append(ConstString("unsigned long long int").GetCString(), eBasicTypeUnsignedLongLong);
// "int128"
g_type_map.Append(ConstString("__int128_t").GetCString(), eBasicTypeInt128);
g_type_map.Append(ConstString("__uint128_t").GetCString(), eBasicTypeUnsignedInt128);
// Miscellaneous
g_type_map.Append(ConstString("bool").GetCString(), eBasicTypeBool);
g_type_map.Append(ConstString("float").GetCString(), eBasicTypeFloat);
g_type_map.Append(ConstString("double").GetCString(), eBasicTypeDouble);
g_type_map.Append(ConstString("long double").GetCString(), eBasicTypeLongDouble);
g_type_map.Append(ConstString("id").GetCString(), eBasicTypeObjCID);
g_type_map.Append(ConstString("SEL").GetCString(), eBasicTypeObjCSel);
g_type_map.Append(ConstString("nullptr").GetCString(), eBasicTypeNullPtr);
g_type_map.Sort();
});
return g_type_map.Find(name.GetCString(), eBasicTypeInvalid);
}
return eBasicTypeInvalid;
}
CompilerType
ClangASTContext::GetBasicType (ASTContext *ast, const ConstString &name)
{
if (ast)
{
lldb::BasicType basic_type = ClangASTContext::GetBasicTypeEnumeration (name);
return ClangASTContext::GetBasicType (ast, basic_type);
}
return CompilerType();
}
uint32_t
ClangASTContext::GetPointerByteSize ()
{
if (m_pointer_byte_size == 0)
m_pointer_byte_size = GetBasicType(lldb::eBasicTypeVoid).GetPointerType().GetByteSize(nullptr);
return m_pointer_byte_size;
}
CompilerType
ClangASTContext::GetBasicType (lldb::BasicType basic_type)
{
return GetBasicType (getASTContext(), basic_type);
}
CompilerType
ClangASTContext::GetBasicType (ASTContext *ast, lldb::BasicType basic_type)
{
if (ast)
{
lldb::opaque_compiler_type_t clang_type = nullptr;
switch (basic_type)
{
case eBasicTypeInvalid:
case eBasicTypeOther:
break;
case eBasicTypeVoid:
clang_type = ast->VoidTy.getAsOpaquePtr();
break;
case eBasicTypeChar:
clang_type = ast->CharTy.getAsOpaquePtr();
break;
case eBasicTypeSignedChar:
clang_type = ast->SignedCharTy.getAsOpaquePtr();
break;
case eBasicTypeUnsignedChar:
clang_type = ast->UnsignedCharTy.getAsOpaquePtr();
break;
case eBasicTypeWChar:
clang_type = ast->getWCharType().getAsOpaquePtr();
break;
case eBasicTypeSignedWChar:
clang_type = ast->getSignedWCharType().getAsOpaquePtr();
break;
case eBasicTypeUnsignedWChar:
clang_type = ast->getUnsignedWCharType().getAsOpaquePtr();
break;
case eBasicTypeChar16:
clang_type = ast->Char16Ty.getAsOpaquePtr();
break;
case eBasicTypeChar32:
clang_type = ast->Char32Ty.getAsOpaquePtr();
break;
case eBasicTypeShort:
clang_type = ast->ShortTy.getAsOpaquePtr();
break;
case eBasicTypeUnsignedShort:
clang_type = ast->UnsignedShortTy.getAsOpaquePtr();
break;
case eBasicTypeInt:
clang_type = ast->IntTy.getAsOpaquePtr();
break;
case eBasicTypeUnsignedInt:
clang_type = ast->UnsignedIntTy.getAsOpaquePtr();
break;
case eBasicTypeLong:
clang_type = ast->LongTy.getAsOpaquePtr();
break;
case eBasicTypeUnsignedLong:
clang_type = ast->UnsignedLongTy.getAsOpaquePtr();
break;
case eBasicTypeLongLong:
clang_type = ast->LongLongTy.getAsOpaquePtr();
break;
case eBasicTypeUnsignedLongLong:
clang_type = ast->UnsignedLongLongTy.getAsOpaquePtr();
break;
case eBasicTypeInt128:
clang_type = ast->Int128Ty.getAsOpaquePtr();
break;
case eBasicTypeUnsignedInt128:
clang_type = ast->UnsignedInt128Ty.getAsOpaquePtr();
break;
case eBasicTypeBool:
clang_type = ast->BoolTy.getAsOpaquePtr();
break;
case eBasicTypeHalf:
clang_type = ast->HalfTy.getAsOpaquePtr();
break;
case eBasicTypeFloat:
clang_type = ast->FloatTy.getAsOpaquePtr();
break;
case eBasicTypeDouble:
clang_type = ast->DoubleTy.getAsOpaquePtr();
break;
case eBasicTypeLongDouble:
clang_type = ast->LongDoubleTy.getAsOpaquePtr();
break;
case eBasicTypeFloatComplex:
clang_type = ast->FloatComplexTy.getAsOpaquePtr();
break;
case eBasicTypeDoubleComplex:
clang_type = ast->DoubleComplexTy.getAsOpaquePtr();
break;
case eBasicTypeLongDoubleComplex:
clang_type = ast->LongDoubleComplexTy.getAsOpaquePtr();
break;
case eBasicTypeObjCID:
clang_type = ast->getObjCIdType().getAsOpaquePtr();
break;
case eBasicTypeObjCClass:
clang_type = ast->getObjCClassType().getAsOpaquePtr();
break;
case eBasicTypeObjCSel:
clang_type = ast->getObjCSelType().getAsOpaquePtr();
break;
case eBasicTypeNullPtr:
clang_type = ast->NullPtrTy.getAsOpaquePtr();
break;
}
if (clang_type)
return CompilerType (GetASTContext(ast), clang_type);
}
return CompilerType();
}
CompilerType
ClangASTContext::GetBuiltinTypeForDWARFEncodingAndBitSize (const char *type_name, uint32_t dw_ate, uint32_t bit_size)
{
ASTContext *ast = getASTContext();
#define streq(a,b) strcmp(a,b) == 0
assert (ast != nullptr);
if (ast)
{
switch (dw_ate)
{
default:
break;
case DW_ATE_address:
if (QualTypeMatchesBitSize (bit_size, ast, ast->VoidPtrTy))
return CompilerType (ast, ast->VoidPtrTy);
break;
case DW_ATE_boolean:
if (QualTypeMatchesBitSize (bit_size, ast, ast->BoolTy))
return CompilerType (ast, ast->BoolTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedCharTy))
return CompilerType (ast, ast->UnsignedCharTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedShortTy))
return CompilerType (ast, ast->UnsignedShortTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedIntTy))
return CompilerType (ast, ast->UnsignedIntTy);
break;
case DW_ATE_lo_user:
// This has been seen to mean DW_AT_complex_integer
if (type_name)
{
if (::strstr(type_name, "complex"))
{
CompilerType complex_int_clang_type = GetBuiltinTypeForDWARFEncodingAndBitSize ("int", DW_ATE_signed, bit_size/2);
return CompilerType (ast, ast->getComplexType (GetQualType(complex_int_clang_type)));
}
}
break;
case DW_ATE_complex_float:
if (QualTypeMatchesBitSize (bit_size, ast, ast->FloatComplexTy))
return CompilerType (ast, ast->FloatComplexTy);
else if (QualTypeMatchesBitSize (bit_size, ast, ast->DoubleComplexTy))
return CompilerType (ast, ast->DoubleComplexTy);
else if (QualTypeMatchesBitSize (bit_size, ast, ast->LongDoubleComplexTy))
return CompilerType (ast, ast->LongDoubleComplexTy);
else
{
CompilerType complex_float_clang_type = GetBuiltinTypeForDWARFEncodingAndBitSize ("float", DW_ATE_float, bit_size/2);
return CompilerType (ast, ast->getComplexType (GetQualType(complex_float_clang_type)));
}
break;
case DW_ATE_float:
if (streq(type_name, "float") && QualTypeMatchesBitSize (bit_size, ast, ast->FloatTy))
return CompilerType (ast, ast->FloatTy);
if (streq(type_name, "double") && QualTypeMatchesBitSize (bit_size, ast, ast->DoubleTy))
return CompilerType (ast, ast->DoubleTy);
if (streq(type_name, "long double") && QualTypeMatchesBitSize (bit_size, ast, ast->LongDoubleTy))
return CompilerType (ast, ast->LongDoubleTy);
// Fall back to not requiring a name match
if (QualTypeMatchesBitSize (bit_size, ast, ast->FloatTy))
return CompilerType (ast, ast->FloatTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->DoubleTy))
return CompilerType (ast, ast->DoubleTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->LongDoubleTy))
return CompilerType (ast, ast->LongDoubleTy);
break;
case DW_ATE_signed:
if (type_name)
{
if (streq(type_name, "wchar_t") &&
QualTypeMatchesBitSize (bit_size, ast, ast->WCharTy) &&
(getTargetInfo() && TargetInfo::isTypeSigned (getTargetInfo()->getWCharType())))
return CompilerType (ast, ast->WCharTy);
if (streq(type_name, "void") &&
QualTypeMatchesBitSize (bit_size, ast, ast->VoidTy))
return CompilerType (ast, ast->VoidTy);
if (strstr(type_name, "long long") &&
QualTypeMatchesBitSize (bit_size, ast, ast->LongLongTy))
return CompilerType (ast, ast->LongLongTy);
if (strstr(type_name, "long") &&
QualTypeMatchesBitSize (bit_size, ast, ast->LongTy))
return CompilerType (ast, ast->LongTy);
if (strstr(type_name, "short") &&
QualTypeMatchesBitSize (bit_size, ast, ast->ShortTy))
return CompilerType (ast, ast->ShortTy);
if (strstr(type_name, "char"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->CharTy))
return CompilerType (ast, ast->CharTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->SignedCharTy))
return CompilerType (ast, ast->SignedCharTy);
}
if (strstr(type_name, "int"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->IntTy))
return CompilerType (ast, ast->IntTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->Int128Ty))
return CompilerType (ast, ast->Int128Ty);
}
}
// We weren't able to match up a type name, just search by size
if (QualTypeMatchesBitSize (bit_size, ast, ast->CharTy))
return CompilerType (ast, ast->CharTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->ShortTy))
return CompilerType (ast, ast->ShortTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->IntTy))
return CompilerType (ast, ast->IntTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->LongTy))
return CompilerType (ast, ast->LongTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->LongLongTy))
return CompilerType (ast, ast->LongLongTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->Int128Ty))
return CompilerType (ast, ast->Int128Ty);
break;
case DW_ATE_signed_char:
if (ast->getLangOpts().CharIsSigned && type_name && streq(type_name, "char"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->CharTy))
return CompilerType (ast, ast->CharTy);
}
if (QualTypeMatchesBitSize (bit_size, ast, ast->SignedCharTy))
return CompilerType (ast, ast->SignedCharTy);
break;
case DW_ATE_unsigned:
if (type_name)
{
if (streq(type_name, "wchar_t"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->WCharTy))
{
if (!(getTargetInfo() && TargetInfo::isTypeSigned (getTargetInfo()->getWCharType())))
return CompilerType (ast, ast->WCharTy);
}
}
if (strstr(type_name, "long long"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedLongLongTy))
return CompilerType (ast, ast->UnsignedLongLongTy);
}
else if (strstr(type_name, "long"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedLongTy))
return CompilerType (ast, ast->UnsignedLongTy);
}
else if (strstr(type_name, "short"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedShortTy))
return CompilerType (ast, ast->UnsignedShortTy);
}
else if (strstr(type_name, "char"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedCharTy))
return CompilerType (ast, ast->UnsignedCharTy);
}
else if (strstr(type_name, "int"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedIntTy))
return CompilerType (ast, ast->UnsignedIntTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedInt128Ty))
return CompilerType (ast, ast->UnsignedInt128Ty);
}
}
// We weren't able to match up a type name, just search by size
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedCharTy))
return CompilerType (ast, ast->UnsignedCharTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedShortTy))
return CompilerType (ast, ast->UnsignedShortTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedIntTy))
return CompilerType (ast, ast->UnsignedIntTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedLongTy))
return CompilerType (ast, ast->UnsignedLongTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedLongLongTy))
return CompilerType (ast, ast->UnsignedLongLongTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedInt128Ty))
return CompilerType (ast, ast->UnsignedInt128Ty);
break;
case DW_ATE_unsigned_char:
if (!ast->getLangOpts().CharIsSigned && type_name && streq(type_name, "char"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->CharTy))
return CompilerType (ast, ast->CharTy);
}
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedCharTy))
return CompilerType (ast, ast->UnsignedCharTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedShortTy))
return CompilerType (ast, ast->UnsignedShortTy);
break;
case DW_ATE_imaginary_float:
break;
case DW_ATE_UTF:
if (type_name)
{
if (streq(type_name, "char16_t"))
{
return CompilerType (ast, ast->Char16Ty);
}
else if (streq(type_name, "char32_t"))
{
return CompilerType (ast, ast->Char32Ty);
}
}
break;
}
}
// This assert should fire for anything that we don't catch above so we know
// to fix any issues we run into.
if (type_name)
{
Host::SystemLog (Host::eSystemLogError, "error: need to add support for DW_TAG_base_type '%s' encoded with DW_ATE = 0x%x, bit_size = %u\n", type_name, dw_ate, bit_size);
}
else
{
Host::SystemLog (Host::eSystemLogError, "error: need to add support for DW_TAG_base_type encoded with DW_ATE = 0x%x, bit_size = %u\n", dw_ate, bit_size);
}
return CompilerType ();
}
CompilerType
ClangASTContext::GetUnknownAnyType(clang::ASTContext *ast)
{
if (ast)
return CompilerType (ast, ast->UnknownAnyTy);
return CompilerType();
}
CompilerType
ClangASTContext::GetCStringType (bool is_const)
{
ASTContext *ast = getASTContext();
QualType char_type(ast->CharTy);
if (is_const)
char_type.addConst();
return CompilerType (ast, ast->getPointerType(char_type));
}
clang::DeclContext *
ClangASTContext::GetTranslationUnitDecl (clang::ASTContext *ast)
{
return ast->getTranslationUnitDecl();
}
clang::Decl *
ClangASTContext::CopyDecl (ASTContext *dst_ast,
ASTContext *src_ast,
clang::Decl *source_decl)
{
FileSystemOptions file_system_options;
FileManager file_manager (file_system_options);
ASTImporter importer(*dst_ast, file_manager,
*src_ast, file_manager,
false);
return importer.Import(source_decl);
}
bool
ClangASTContext::AreTypesSame (CompilerType type1,
CompilerType type2,
bool ignore_qualifiers)
{
ClangASTContext *ast = llvm::dyn_cast_or_null<ClangASTContext>(type1.GetTypeSystem());
if (!ast || ast != type2.GetTypeSystem())
return false;
if (type1.GetOpaqueQualType() == type2.GetOpaqueQualType())
return true;
QualType type1_qual = GetQualType(type1);
QualType type2_qual = GetQualType(type2);
if (ignore_qualifiers)
{
type1_qual = type1_qual.getUnqualifiedType();
type2_qual = type2_qual.getUnqualifiedType();
}
return ast->getASTContext()->hasSameType (type1_qual, type2_qual);
}
CompilerType
ClangASTContext::GetTypeForDecl (clang::NamedDecl *decl)
{
if (clang::ObjCInterfaceDecl *interface_decl = llvm::dyn_cast<clang::ObjCInterfaceDecl>(decl))
return GetTypeForDecl(interface_decl);
if (clang::TagDecl *tag_decl = llvm::dyn_cast<clang::TagDecl>(decl))
return GetTypeForDecl(tag_decl);
return CompilerType();
}
CompilerType
ClangASTContext::GetTypeForDecl (TagDecl *decl)
{
// No need to call the getASTContext() accessor (which can create the AST
// if it isn't created yet, because we can't have created a decl in this
// AST if our AST didn't already exist...
ASTContext *ast = &decl->getASTContext();
if (ast)
return CompilerType (ast, ast->getTagDeclType(decl));
return CompilerType();
}
CompilerType
ClangASTContext::GetTypeForDecl (ObjCInterfaceDecl *decl)
{
// No need to call the getASTContext() accessor (which can create the AST
// if it isn't created yet, because we can't have created a decl in this
// AST if our AST didn't already exist...
ASTContext *ast = &decl->getASTContext();
if (ast)
return CompilerType (ast, ast->getObjCInterfaceType(decl));
return CompilerType();
}
#pragma mark Structure, Unions, Classes
CompilerType
ClangASTContext::CreateRecordType (DeclContext *decl_ctx,
AccessType access_type,
const char *name,
int kind,
LanguageType language,
ClangASTMetadata *metadata)
{
ASTContext *ast = getASTContext();
assert (ast != nullptr);
if (decl_ctx == nullptr)
decl_ctx = ast->getTranslationUnitDecl();
if (language == eLanguageTypeObjC || language == eLanguageTypeObjC_plus_plus)
{
bool isForwardDecl = true;
bool isInternal = false;
return CreateObjCClass (name, decl_ctx, isForwardDecl, isInternal, metadata);
}
// NOTE: Eventually CXXRecordDecl will be merged back into RecordDecl and
// we will need to update this code. I was told to currently always use
// the CXXRecordDecl class since we often don't know from debug information
// if something is struct or a class, so we default to always use the more
// complete definition just in case.
bool is_anonymous = (!name) || (!name[0]);
CXXRecordDecl *decl = CXXRecordDecl::Create (*ast,
(TagDecl::TagKind)kind,
decl_ctx,
SourceLocation(),
SourceLocation(),
is_anonymous ? nullptr : &ast->Idents.get(name));
if (is_anonymous)
decl->setAnonymousStructOrUnion(true);
if (decl)
{
if (metadata)
SetMetadata(ast, decl, *metadata);
if (access_type != eAccessNone)
decl->setAccess (ConvertAccessTypeToAccessSpecifier (access_type));
if (decl_ctx)
decl_ctx->addDecl (decl);
return CompilerType(ast, ast->getTagDeclType(decl));
}
return CompilerType();
}
static TemplateParameterList *
CreateTemplateParameterList (ASTContext *ast,
const ClangASTContext::TemplateParameterInfos &template_param_infos,
llvm::SmallVector<NamedDecl *, 8> &template_param_decls)
{
const bool parameter_pack = false;
const bool is_typename = false;
const unsigned depth = 0;
const size_t num_template_params = template_param_infos.GetSize();
for (size_t i=0; i<num_template_params; ++i)
{
const char *name = template_param_infos.names[i];
IdentifierInfo *identifier_info = nullptr;
if (name && name[0])
identifier_info = &ast->Idents.get(name);
if (template_param_infos.args[i].getKind() == TemplateArgument::Integral)
{
template_param_decls.push_back (NonTypeTemplateParmDecl::Create (*ast,
ast->getTranslationUnitDecl(), // Is this the right decl context?, SourceLocation StartLoc,
SourceLocation(),
SourceLocation(),
depth,
i,
identifier_info,
template_param_infos.args[i].getIntegralType(),
parameter_pack,
nullptr));
}
else
{
template_param_decls.push_back (TemplateTypeParmDecl::Create (*ast,
ast->getTranslationUnitDecl(), // Is this the right decl context?
SourceLocation(),
SourceLocation(),
depth,
i,
identifier_info,
is_typename,
parameter_pack));
}
}
TemplateParameterList *template_param_list = TemplateParameterList::Create (*ast,
SourceLocation(),
SourceLocation(),
&template_param_decls.front(),
template_param_decls.size(),
SourceLocation());
return template_param_list;
}
clang::FunctionTemplateDecl *
ClangASTContext::CreateFunctionTemplateDecl (clang::DeclContext *decl_ctx,
clang::FunctionDecl *func_decl,
const char *name,
const TemplateParameterInfos &template_param_infos)
{
// /// \brief Create a function template node.
ASTContext *ast = getASTContext();
llvm::SmallVector<NamedDecl *, 8> template_param_decls;
TemplateParameterList *template_param_list = CreateTemplateParameterList (ast,
template_param_infos,
template_param_decls);
FunctionTemplateDecl *func_tmpl_decl = FunctionTemplateDecl::Create (*ast,
decl_ctx,
func_decl->getLocation(),
func_decl->getDeclName(),
template_param_list,
func_decl);
for (size_t i=0, template_param_decl_count = template_param_decls.size();
i < template_param_decl_count;
++i)
{
// TODO: verify which decl context we should put template_param_decls into..
template_param_decls[i]->setDeclContext (func_decl);
}
return func_tmpl_decl;
}
void
ClangASTContext::CreateFunctionTemplateSpecializationInfo (FunctionDecl *func_decl,
clang::FunctionTemplateDecl *func_tmpl_decl,
const TemplateParameterInfos &infos)
{
TemplateArgumentList template_args (TemplateArgumentList::OnStack,
infos.args.data(),
infos.args.size());
func_decl->setFunctionTemplateSpecialization (func_tmpl_decl,
&template_args,
nullptr);
}
ClassTemplateDecl *
ClangASTContext::CreateClassTemplateDecl (DeclContext *decl_ctx,
lldb::AccessType access_type,
const char *class_name,
int kind,
const TemplateParameterInfos &template_param_infos)
{
ASTContext *ast = getASTContext();
ClassTemplateDecl *class_template_decl = nullptr;
if (decl_ctx == nullptr)
decl_ctx = ast->getTranslationUnitDecl();
IdentifierInfo &identifier_info = ast->Idents.get(class_name);
DeclarationName decl_name (&identifier_info);
clang::DeclContext::lookup_result result = decl_ctx->lookup(decl_name);
for (NamedDecl *decl : result)
{
class_template_decl = dyn_cast<clang::ClassTemplateDecl>(decl);
if (class_template_decl)
return class_template_decl;
}
llvm::SmallVector<NamedDecl *, 8> template_param_decls;
TemplateParameterList *template_param_list = CreateTemplateParameterList (ast,
template_param_infos,
template_param_decls);
CXXRecordDecl *template_cxx_decl = CXXRecordDecl::Create (*ast,
(TagDecl::TagKind)kind,
decl_ctx, // What decl context do we use here? TU? The actual decl context?
SourceLocation(),
SourceLocation(),
&identifier_info);
for (size_t i=0, template_param_decl_count = template_param_decls.size();
i < template_param_decl_count;
++i)
{
template_param_decls[i]->setDeclContext (template_cxx_decl);
}
// With templated classes, we say that a class is templated with
// specializations, but that the bare class has no functions.
//template_cxx_decl->startDefinition();
//template_cxx_decl->completeDefinition();
class_template_decl = ClassTemplateDecl::Create (*ast,
decl_ctx, // What decl context do we use here? TU? The actual decl context?
SourceLocation(),
decl_name,
template_param_list,
template_cxx_decl,
nullptr);
if (class_template_decl)
{
if (access_type != eAccessNone)
class_template_decl->setAccess (ConvertAccessTypeToAccessSpecifier (access_type));
//if (TagDecl *ctx_tag_decl = dyn_cast<TagDecl>(decl_ctx))
// CompleteTagDeclarationDefinition(GetTypeForDecl(ctx_tag_decl));
decl_ctx->addDecl (class_template_decl);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(class_template_decl);
#endif
}
return class_template_decl;
}
ClassTemplateSpecializationDecl *
ClangASTContext::CreateClassTemplateSpecializationDecl (DeclContext *decl_ctx,
ClassTemplateDecl *class_template_decl,
int kind,
const TemplateParameterInfos &template_param_infos)
{
ASTContext *ast = getASTContext();
ClassTemplateSpecializationDecl *class_template_specialization_decl = ClassTemplateSpecializationDecl::Create (*ast,
(TagDecl::TagKind)kind,
decl_ctx,
SourceLocation(),
SourceLocation(),
class_template_decl,
&template_param_infos.args.front(),
template_param_infos.args.size(),
nullptr);
class_template_specialization_decl->setSpecializationKind(TSK_ExplicitSpecialization);
return class_template_specialization_decl;
}
CompilerType
ClangASTContext::CreateClassTemplateSpecializationType (ClassTemplateSpecializationDecl *class_template_specialization_decl)
{
if (class_template_specialization_decl)
{
ASTContext *ast = getASTContext();
if (ast)
return CompilerType(ast, ast->getTagDeclType(class_template_specialization_decl));
}
return CompilerType();
}
static inline bool
check_op_param (uint32_t op_kind, bool unary, bool binary, uint32_t num_params)
{
// Special-case call since it can take any number of operands
if(op_kind == OO_Call)
return true;
// The parameter count doesn't include "this"
if (num_params == 0)
return unary;
if (num_params == 1)
return binary;
else
return false;
}
bool
ClangASTContext::CheckOverloadedOperatorKindParameterCount (uint32_t op_kind, uint32_t num_params)
{
switch (op_kind)
{
default:
break;
// C++ standard allows any number of arguments to new/delete
case OO_New:
case OO_Array_New:
case OO_Delete:
case OO_Array_Delete:
return true;
}
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) case OO_##Name: return check_op_param (op_kind, Unary, Binary, num_params);
switch (op_kind)
{
#include "clang/Basic/OperatorKinds.def"
default: break;
}
return false;
}
clang::AccessSpecifier
ClangASTContext::UnifyAccessSpecifiers (clang::AccessSpecifier lhs, clang::AccessSpecifier rhs)
{
clang::AccessSpecifier ret = lhs;
// Make the access equal to the stricter of the field and the nested field's access
switch (ret)
{
case clang::AS_none:
break;
case clang::AS_private:
break;
case clang::AS_protected:
if (rhs == AS_private)
ret = AS_private;
break;
case clang::AS_public:
ret = rhs;
break;
}
return ret;
}
bool
ClangASTContext::FieldIsBitfield (FieldDecl* field, uint32_t& bitfield_bit_size)
{
return FieldIsBitfield(getASTContext(), field, bitfield_bit_size);
}
bool
ClangASTContext::FieldIsBitfield
(
ASTContext *ast,
FieldDecl* field,
uint32_t& bitfield_bit_size
)
{
if (ast == nullptr || field == nullptr)
return false;
if (field->isBitField())
{
Expr* bit_width_expr = field->getBitWidth();
if (bit_width_expr)
{
llvm::APSInt bit_width_apsint;
if (bit_width_expr->isIntegerConstantExpr(bit_width_apsint, *ast))
{
bitfield_bit_size = bit_width_apsint.getLimitedValue(UINT32_MAX);
return true;
}
}
}
return false;
}
bool
ClangASTContext::RecordHasFields (const RecordDecl *record_decl)
{
if (record_decl == nullptr)
return false;
if (!record_decl->field_empty())
return true;
// No fields, lets check this is a CXX record and check the base classes
const CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
const CXXRecordDecl *base_class_decl = cast<CXXRecordDecl>(base_class->getType()->getAs<RecordType>()->getDecl());
if (RecordHasFields(base_class_decl))
return true;
}
}
return false;
}
#pragma mark Objective C Classes
CompilerType
ClangASTContext::CreateObjCClass
(
const char *name,
DeclContext *decl_ctx,
bool isForwardDecl,
bool isInternal,
ClangASTMetadata *metadata
)
{
ASTContext *ast = getASTContext();
assert (ast != nullptr);
assert (name && name[0]);
if (decl_ctx == nullptr)
decl_ctx = ast->getTranslationUnitDecl();
ObjCInterfaceDecl *decl = ObjCInterfaceDecl::Create (*ast,
decl_ctx,
SourceLocation(),
&ast->Idents.get(name),
nullptr,
nullptr,
SourceLocation(),
/*isForwardDecl,*/
isInternal);
if (decl && metadata)
SetMetadata(ast, decl, *metadata);
return CompilerType (ast, ast->getObjCInterfaceType(decl));
}
static inline bool
BaseSpecifierIsEmpty (const CXXBaseSpecifier *b)
{
return ClangASTContext::RecordHasFields(b->getType()->getAsCXXRecordDecl()) == false;
}
uint32_t
ClangASTContext::GetNumBaseClasses (const CXXRecordDecl *cxx_record_decl, bool omit_empty_base_classes)
{
uint32_t num_bases = 0;
if (cxx_record_decl)
{
if (omit_empty_base_classes)
{
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
// Skip empty base classes
if (omit_empty_base_classes)
{
if (BaseSpecifierIsEmpty (base_class))
continue;
}
++num_bases;
}
}
else
num_bases = cxx_record_decl->getNumBases();
}
return num_bases;
}
#pragma mark Namespace Declarations
NamespaceDecl *
ClangASTContext::GetUniqueNamespaceDeclaration (const char *name, DeclContext *decl_ctx)
{
NamespaceDecl *namespace_decl = nullptr;
ASTContext *ast = getASTContext();
TranslationUnitDecl *translation_unit_decl = ast->getTranslationUnitDecl ();
if (decl_ctx == nullptr)
decl_ctx = translation_unit_decl;
if (name)
{
IdentifierInfo &identifier_info = ast->Idents.get(name);
DeclarationName decl_name (&identifier_info);
clang::DeclContext::lookup_result result = decl_ctx->lookup(decl_name);
for (NamedDecl *decl : result)
{
namespace_decl = dyn_cast<clang::NamespaceDecl>(decl);
if (namespace_decl)
return namespace_decl;
}
namespace_decl = NamespaceDecl::Create(*ast,
decl_ctx,
false,
SourceLocation(),
SourceLocation(),
&identifier_info,
nullptr);
decl_ctx->addDecl (namespace_decl);
}
else
{
if (decl_ctx == translation_unit_decl)
{
namespace_decl = translation_unit_decl->getAnonymousNamespace();
if (namespace_decl)
return namespace_decl;
namespace_decl = NamespaceDecl::Create(*ast,
decl_ctx,
false,
SourceLocation(),
SourceLocation(),
nullptr,
nullptr);
translation_unit_decl->setAnonymousNamespace (namespace_decl);
translation_unit_decl->addDecl (namespace_decl);
assert (namespace_decl == translation_unit_decl->getAnonymousNamespace());
}
else
{
NamespaceDecl *parent_namespace_decl = cast<NamespaceDecl>(decl_ctx);
if (parent_namespace_decl)
{
namespace_decl = parent_namespace_decl->getAnonymousNamespace();
if (namespace_decl)
return namespace_decl;
namespace_decl = NamespaceDecl::Create(*ast,
decl_ctx,
false,
SourceLocation(),
SourceLocation(),
nullptr,
nullptr);
parent_namespace_decl->setAnonymousNamespace (namespace_decl);
parent_namespace_decl->addDecl (namespace_decl);
assert (namespace_decl == parent_namespace_decl->getAnonymousNamespace());
}
else
{
// BAD!!!
}
}
}
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(namespace_decl);
#endif
return namespace_decl;
}
clang::BlockDecl *
ClangASTContext::CreateBlockDeclaration (clang::DeclContext *ctx)
{
if (ctx != nullptr)
{
clang::BlockDecl *decl = clang::BlockDecl::Create(*getASTContext(), ctx, clang::SourceLocation());
ctx->addDecl(decl);
return decl;
}
return nullptr;
}
clang::DeclContext *
FindLCABetweenDecls(clang::DeclContext *left, clang::DeclContext *right, clang::DeclContext *root)
{
if (root == nullptr)
return nullptr;
std::set<clang::DeclContext *> path_left;
for (clang::DeclContext *d = left; d != nullptr; d = d->getParent())
path_left.insert(d);
for (clang::DeclContext *d = right; d != nullptr; d = d->getParent())
if (path_left.find(d) != path_left.end())
return d;
return nullptr;
}
clang::UsingDirectiveDecl *
ClangASTContext::CreateUsingDirectiveDeclaration (clang::DeclContext *decl_ctx, clang::NamespaceDecl *ns_decl)
{
if (decl_ctx != nullptr && ns_decl != nullptr)
{
clang::TranslationUnitDecl *translation_unit = (clang::TranslationUnitDecl *)GetTranslationUnitDecl(getASTContext());
clang::UsingDirectiveDecl *using_decl = clang::UsingDirectiveDecl::Create(*getASTContext(),
decl_ctx,
clang::SourceLocation(),
clang::SourceLocation(),
clang::NestedNameSpecifierLoc(),
clang::SourceLocation(),
ns_decl,
FindLCABetweenDecls(decl_ctx, ns_decl, translation_unit));
decl_ctx->addDecl(using_decl);
return using_decl;
}
return nullptr;
}
clang::UsingDecl *
ClangASTContext::CreateUsingDeclaration (clang::DeclContext *current_decl_ctx, clang::NamedDecl *target)
{
if (current_decl_ctx != nullptr && target != nullptr)
{
clang::UsingDecl *using_decl = clang::UsingDecl::Create(*getASTContext(),
current_decl_ctx,
clang::SourceLocation(),
clang::NestedNameSpecifierLoc(),
clang::DeclarationNameInfo(),
false);
clang::UsingShadowDecl *shadow_decl = clang::UsingShadowDecl::Create(*getASTContext(),
current_decl_ctx,
clang::SourceLocation(),
using_decl,
target);
using_decl->addShadowDecl(shadow_decl);
current_decl_ctx->addDecl(using_decl);
return using_decl;
}
return nullptr;
}
clang::VarDecl *
ClangASTContext::CreateVariableDeclaration (clang::DeclContext *decl_context, const char *name, clang::QualType type)
{
if (decl_context != nullptr)
{
clang::VarDecl *var_decl = clang::VarDecl::Create(*getASTContext(),
decl_context,
clang::SourceLocation(),
clang::SourceLocation(),
name && name[0] ? &getASTContext()->Idents.getOwn(name) : nullptr,
type,
nullptr,
clang::SC_None);
var_decl->setAccess(clang::AS_public);
decl_context->addDecl(var_decl);
return var_decl;
}
return nullptr;
}
#pragma mark Function Types
FunctionDecl *
ClangASTContext::CreateFunctionDeclaration (DeclContext *decl_ctx,
const char *name,
const CompilerType &function_clang_type,
int storage,
bool is_inline)
{
FunctionDecl *func_decl = nullptr;
ASTContext *ast = getASTContext();
if (decl_ctx == nullptr)
decl_ctx = ast->getTranslationUnitDecl();
const bool hasWrittenPrototype = true;
const bool isConstexprSpecified = false;
if (name && name[0])
{
func_decl = FunctionDecl::Create (*ast,
decl_ctx,
SourceLocation(),
SourceLocation(),
DeclarationName (&ast->Idents.get(name)),
GetQualType(function_clang_type),
nullptr,
(clang::StorageClass)storage,
is_inline,
hasWrittenPrototype,
isConstexprSpecified);
}
else
{
func_decl = FunctionDecl::Create (*ast,
decl_ctx,
SourceLocation(),
SourceLocation(),
DeclarationName (),
GetQualType(function_clang_type),
nullptr,
(clang::StorageClass)storage,
is_inline,
hasWrittenPrototype,
isConstexprSpecified);
}
if (func_decl)
decl_ctx->addDecl (func_decl);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(func_decl);
#endif
return func_decl;
}
CompilerType
ClangASTContext::CreateFunctionType (ASTContext *ast,
const CompilerType& result_type,
const CompilerType *args,
unsigned num_args,
bool is_variadic,
unsigned type_quals)
{
assert (ast != nullptr);
std::vector<QualType> qual_type_args;
for (unsigned i=0; i<num_args; ++i)
qual_type_args.push_back (GetQualType(args[i]));
// TODO: Detect calling convention in DWARF?
FunctionProtoType::ExtProtoInfo proto_info;
proto_info.Variadic = is_variadic;
proto_info.ExceptionSpec = EST_None;
proto_info.TypeQuals = type_quals;
proto_info.RefQualifier = RQ_None;
return CompilerType (ast, ast->getFunctionType (GetQualType(result_type),
qual_type_args,
proto_info));
}
ParmVarDecl *
ClangASTContext::CreateParameterDeclaration (const char *name, const CompilerType &param_type, int storage)
{
ASTContext *ast = getASTContext();
assert (ast != nullptr);
return ParmVarDecl::Create(*ast,
ast->getTranslationUnitDecl(),
SourceLocation(),
SourceLocation(),
name && name[0] ? &ast->Idents.get(name) : nullptr,
GetQualType(param_type),
nullptr,
(clang::StorageClass)storage,
nullptr);
}
void
ClangASTContext::SetFunctionParameters (FunctionDecl *function_decl, ParmVarDecl **params, unsigned num_params)
{
if (function_decl)
function_decl->setParams (ArrayRef<ParmVarDecl*>(params, num_params));
}
#pragma mark Array Types
CompilerType
ClangASTContext::CreateArrayType (const CompilerType &element_type,
size_t element_count,
bool is_vector)
{
if (element_type.IsValid())
{
ASTContext *ast = getASTContext();
assert (ast != nullptr);
if (is_vector)
{
return CompilerType (ast, ast->getExtVectorType(GetQualType(element_type), element_count));
}
else
{
llvm::APInt ap_element_count (64, element_count);
if (element_count == 0)
{
return CompilerType (ast, ast->getIncompleteArrayType (GetQualType(element_type),
ArrayType::Normal,
0));
}
else
{
return CompilerType (ast, ast->getConstantArrayType (GetQualType(element_type),
ap_element_count,
ArrayType::Normal,
0));
}
}
}
return CompilerType();
}
CompilerType
ClangASTContext::GetOrCreateStructForIdentifier (const ConstString &type_name,
const std::initializer_list< std::pair < const char *, CompilerType > >& type_fields,
bool packed)
{
CompilerType type;
if ((type = GetTypeForIdentifier<clang::CXXRecordDecl>(type_name)).IsValid())
return type;
type = CreateRecordType(nullptr, lldb::eAccessPublic, type_name.GetCString(), clang::TTK_Struct, lldb::eLanguageTypeC);
StartTagDeclarationDefinition(type);
for (const auto& field : type_fields)
AddFieldToRecordType(type, field.first, field.second, lldb::eAccessPublic, 0);
if (packed)
SetIsPacked(type);
CompleteTagDeclarationDefinition(type);
return type;
}
#pragma mark Enumeration Types
CompilerType
ClangASTContext::CreateEnumerationType
(
const char *name,
DeclContext *decl_ctx,
const Declaration &decl,
const CompilerType &integer_clang_type
)
{
// TODO: Do something intelligent with the Declaration object passed in
// like maybe filling in the SourceLocation with it...
ASTContext *ast = getASTContext();
// TODO: ask about these...
// const bool IsScoped = false;
// const bool IsFixed = false;
EnumDecl *enum_decl = EnumDecl::Create (*ast,
decl_ctx,
SourceLocation(),
SourceLocation(),
name && name[0] ? &ast->Idents.get(name) : nullptr,
nullptr,
false, // IsScoped
false, // IsScopedUsingClassTag
false); // IsFixed
if (enum_decl)
{
// TODO: check if we should be setting the promotion type too?
enum_decl->setIntegerType(GetQualType(integer_clang_type));
enum_decl->setAccess(AS_public); // TODO respect what's in the debug info
return CompilerType (ast, ast->getTagDeclType(enum_decl));
}
return CompilerType();
}
// Disable this for now since I can't seem to get a nicely formatted float
// out of the APFloat class without just getting the float, double or quad
// and then using a formatted print on it which defeats the purpose. We ideally
// would like to get perfect string values for any kind of float semantics
// so we can support remote targets. The code below also requires a patch to
// llvm::APInt.
//bool
//ClangASTContext::ConvertFloatValueToString (ASTContext *ast, lldb::opaque_compiler_type_t clang_type, const uint8_t* bytes, size_t byte_size, int apint_byte_order, std::string &float_str)
//{
// uint32_t count = 0;
// bool is_complex = false;
// if (ClangASTContext::IsFloatingPointType (clang_type, count, is_complex))
// {
// unsigned num_bytes_per_float = byte_size / count;
// unsigned num_bits_per_float = num_bytes_per_float * 8;
//
// float_str.clear();
// uint32_t i;
// for (i=0; i<count; i++)
// {
// APInt ap_int(num_bits_per_float, bytes + i * num_bytes_per_float, (APInt::ByteOrder)apint_byte_order);
// bool is_ieee = false;
// APFloat ap_float(ap_int, is_ieee);
// char s[1024];
// unsigned int hex_digits = 0;
// bool upper_case = false;
//
// if (ap_float.convertToHexString(s, hex_digits, upper_case, APFloat::rmNearestTiesToEven) > 0)
// {
// if (i > 0)
// float_str.append(", ");
// float_str.append(s);
// if (i == 1 && is_complex)
// float_str.append(1, 'i');
// }
// }
// return !float_str.empty();
// }
// return false;
//}
CompilerType
ClangASTContext::GetIntTypeFromBitSize (clang::ASTContext *ast,
size_t bit_size, bool is_signed)
{
if (ast)
{
if (is_signed)
{
if (bit_size == ast->getTypeSize(ast->SignedCharTy))
return CompilerType(ast, ast->SignedCharTy);
if (bit_size == ast->getTypeSize(ast->ShortTy))
return CompilerType(ast, ast->ShortTy);
if (bit_size == ast->getTypeSize(ast->IntTy))
return CompilerType(ast, ast->IntTy);
if (bit_size == ast->getTypeSize(ast->LongTy))
return CompilerType(ast, ast->LongTy);
if (bit_size == ast->getTypeSize(ast->LongLongTy))
return CompilerType(ast, ast->LongLongTy);
if (bit_size == ast->getTypeSize(ast->Int128Ty))
return CompilerType(ast, ast->Int128Ty);
}
else
{
if (bit_size == ast->getTypeSize(ast->UnsignedCharTy))
return CompilerType(ast, ast->UnsignedCharTy);
if (bit_size == ast->getTypeSize(ast->UnsignedShortTy))
return CompilerType(ast, ast->UnsignedShortTy);
if (bit_size == ast->getTypeSize(ast->UnsignedIntTy))
return CompilerType(ast, ast->UnsignedIntTy);
if (bit_size == ast->getTypeSize(ast->UnsignedLongTy))
return CompilerType(ast, ast->UnsignedLongTy);
if (bit_size == ast->getTypeSize(ast->UnsignedLongLongTy))
return CompilerType(ast, ast->UnsignedLongLongTy);
if (bit_size == ast->getTypeSize(ast->UnsignedInt128Ty))
return CompilerType(ast, ast->UnsignedInt128Ty);
}
}
return CompilerType();
}
CompilerType
ClangASTContext::GetPointerSizedIntType (clang::ASTContext *ast, bool is_signed)
{
if (ast)
return GetIntTypeFromBitSize(ast, ast->getTypeSize(ast->VoidPtrTy), is_signed);
return CompilerType();
}
bool
ClangASTContext::GetCompleteDecl (clang::ASTContext *ast,
clang::Decl *decl)
{
if (!decl)
return false;
ExternalASTSource *ast_source = ast->getExternalSource();
if (!ast_source)
return false;
if (clang::TagDecl *tag_decl = llvm::dyn_cast<clang::TagDecl>(decl))
{
if (tag_decl->isCompleteDefinition())
return true;
if (!tag_decl->hasExternalLexicalStorage())
return false;
ast_source->CompleteType(tag_decl);
return !tag_decl->getTypeForDecl()->isIncompleteType();
}
else if (clang::ObjCInterfaceDecl *objc_interface_decl = llvm::dyn_cast<clang::ObjCInterfaceDecl>(decl))
{
if (objc_interface_decl->getDefinition())
return true;
if (!objc_interface_decl->hasExternalLexicalStorage())
return false;
ast_source->CompleteType(objc_interface_decl);
return !objc_interface_decl->getTypeForDecl()->isIncompleteType();
}
else
{
return false;
}
}
void
ClangASTContext::SetMetadataAsUserID (const void *object,
user_id_t user_id)
{
ClangASTMetadata meta_data;
meta_data.SetUserID (user_id);
SetMetadata (object, meta_data);
}
void
ClangASTContext::SetMetadata (clang::ASTContext *ast,
const void *object,
ClangASTMetadata &metadata)
{
ClangExternalASTSourceCommon *external_source =
ClangExternalASTSourceCommon::Lookup(ast->getExternalSource());
if (external_source)
external_source->SetMetadata(object, metadata);
}
ClangASTMetadata *
ClangASTContext::GetMetadata (clang::ASTContext *ast,
const void *object)
{
ClangExternalASTSourceCommon *external_source =
ClangExternalASTSourceCommon::Lookup(ast->getExternalSource());
if (external_source && external_source->HasMetadata(object))
return external_source->GetMetadata(object);
else
return nullptr;
}
clang::DeclContext *
ClangASTContext::GetAsDeclContext (clang::CXXMethodDecl *cxx_method_decl)
{
return llvm::dyn_cast<clang::DeclContext>(cxx_method_decl);
}
clang::DeclContext *
ClangASTContext::GetAsDeclContext (clang::ObjCMethodDecl *objc_method_decl)
{
return llvm::dyn_cast<clang::DeclContext>(objc_method_decl);
}
bool
ClangASTContext::SetTagTypeKind (clang::QualType tag_qual_type, int kind) const
{
const clang::Type *clang_type = tag_qual_type.getTypePtr();
if (clang_type)
{
const clang::TagType *tag_type = llvm::dyn_cast<clang::TagType>(clang_type);
if (tag_type)
{
clang::TagDecl *tag_decl = llvm::dyn_cast<clang::TagDecl>(tag_type->getDecl());
if (tag_decl)
{
tag_decl->setTagKind ((clang::TagDecl::TagKind)kind);
return true;
}
}
}
return false;
}
bool
ClangASTContext::SetDefaultAccessForRecordFields (clang::RecordDecl* record_decl,
int default_accessibility,
int *assigned_accessibilities,
size_t num_assigned_accessibilities)
{
if (record_decl)
{
uint32_t field_idx;
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(), field_idx = 0;
field != field_end;
++field, ++field_idx)
{
// If no accessibility was assigned, assign the correct one
if (field_idx < num_assigned_accessibilities && assigned_accessibilities[field_idx] == clang::AS_none)
field->setAccess ((clang::AccessSpecifier)default_accessibility);
}
return true;
}
return false;
}
clang::DeclContext *
ClangASTContext::GetDeclContextForType (const CompilerType& type)
{
return GetDeclContextForType(GetQualType(type));
}
clang::DeclContext *
ClangASTContext::GetDeclContextForType (clang::QualType type)
{
if (type.isNull())
return nullptr;
clang::QualType qual_type = type.getCanonicalType();
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::ObjCInterface: return llvm::cast<clang::ObjCObjectType>(qual_type.getTypePtr())->getInterface();
case clang::Type::ObjCObjectPointer: return GetDeclContextForType (llvm::cast<clang::ObjCObjectPointerType>(qual_type.getTypePtr())->getPointeeType());
case clang::Type::Record: return llvm::cast<clang::RecordType>(qual_type)->getDecl();
case clang::Type::Enum: return llvm::cast<clang::EnumType>(qual_type)->getDecl();
case clang::Type::Typedef: return GetDeclContextForType (llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType());
case clang::Type::Elaborated: return GetDeclContextForType (llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType());
case clang::Type::Paren: return GetDeclContextForType (llvm::cast<clang::ParenType>(qual_type)->desugar());
default:
break;
}
// No DeclContext in this type...
return nullptr;
}
static bool
GetCompleteQualType (clang::ASTContext *ast, clang::QualType qual_type, bool allow_completion = true)
{
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::ConstantArray:
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
{
const clang::ArrayType *array_type = llvm::dyn_cast<clang::ArrayType>(qual_type.getTypePtr());
if (array_type)
return GetCompleteQualType (ast, array_type->getElementType(), allow_completion);
}
break;
case clang::Type::Record:
case clang::Type::Enum:
{
const clang::TagType *tag_type = llvm::dyn_cast<clang::TagType>(qual_type.getTypePtr());
if (tag_type)
{
clang::TagDecl *tag_decl = tag_type->getDecl();
if (tag_decl)
{
if (tag_decl->isCompleteDefinition())
return true;
if (!allow_completion)
return false;
if (tag_decl->hasExternalLexicalStorage())
{
if (ast)
{
clang::ExternalASTSource *external_ast_source = ast->getExternalSource();
if (external_ast_source)
{
external_ast_source->CompleteType(tag_decl);
return !tag_type->isIncompleteType();
}
}
}
return false;
}
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type);
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
// We currently can't complete objective C types through the newly added ASTContext
// because it only supports TagDecl objects right now...
if (class_interface_decl)
{
if (class_interface_decl->getDefinition())
return true;
if (!allow_completion)
return false;
if (class_interface_decl->hasExternalLexicalStorage())
{
if (ast)
{
clang::ExternalASTSource *external_ast_source = ast->getExternalSource();
if (external_ast_source)
{
external_ast_source->CompleteType (class_interface_decl);
return !objc_class_type->isIncompleteType();
}
}
}
return false;
}
}
}
break;
case clang::Type::Typedef:
return GetCompleteQualType (ast, llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType(), allow_completion);
case clang::Type::Elaborated:
return GetCompleteQualType (ast, llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType(), allow_completion);
case clang::Type::Paren:
return GetCompleteQualType (ast, llvm::cast<clang::ParenType>(qual_type)->desugar(), allow_completion);
default:
break;
}
return true;
}
static clang::ObjCIvarDecl::AccessControl
ConvertAccessTypeToObjCIvarAccessControl (AccessType access)
{
switch (access)
{
case eAccessNone: return clang::ObjCIvarDecl::None;
case eAccessPublic: return clang::ObjCIvarDecl::Public;
case eAccessPrivate: return clang::ObjCIvarDecl::Private;
case eAccessProtected: return clang::ObjCIvarDecl::Protected;
case eAccessPackage: return clang::ObjCIvarDecl::Package;
}
return clang::ObjCIvarDecl::None;
}
//----------------------------------------------------------------------
// Tests
//----------------------------------------------------------------------
bool
ClangASTContext::IsAggregateType (lldb::opaque_compiler_type_t type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
case clang::Type::ConstantArray:
case clang::Type::ExtVector:
case clang::Type::Vector:
case clang::Type::Record:
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
return true;
case clang::Type::Elaborated:
return IsAggregateType(llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr());
case clang::Type::Typedef:
return IsAggregateType(llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr());
case clang::Type::Paren:
return IsAggregateType(llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr());
default:
break;
}
// The clang type does have a value
return false;
}
bool
ClangASTContext::IsArrayType (lldb::opaque_compiler_type_t type,
CompilerType *element_type_ptr,
uint64_t *size,
bool *is_incomplete)
{
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
default:
break;
case clang::Type::ConstantArray:
if (element_type_ptr)
element_type_ptr->SetCompilerType (getASTContext(), llvm::cast<clang::ConstantArrayType>(qual_type)->getElementType());
if (size)
*size = llvm::cast<clang::ConstantArrayType>(qual_type)->getSize().getLimitedValue(ULLONG_MAX);
if (is_incomplete)
*is_incomplete = false;
return true;
case clang::Type::IncompleteArray:
if (element_type_ptr)
element_type_ptr->SetCompilerType (getASTContext(), llvm::cast<clang::IncompleteArrayType>(qual_type)->getElementType());
if (size)
*size = 0;
if (is_incomplete)
*is_incomplete = true;
return true;
case clang::Type::VariableArray:
if (element_type_ptr)
element_type_ptr->SetCompilerType (getASTContext(), llvm::cast<clang::VariableArrayType>(qual_type)->getElementType());
if (size)
*size = 0;
if (is_incomplete)
*is_incomplete = false;
return true;
case clang::Type::DependentSizedArray:
if (element_type_ptr)
element_type_ptr->SetCompilerType (getASTContext(), llvm::cast<clang::DependentSizedArrayType>(qual_type)->getElementType());
if (size)
*size = 0;
if (is_incomplete)
*is_incomplete = false;
return true;
case clang::Type::Typedef:
return IsArrayType(llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(),
element_type_ptr,
size,
is_incomplete);
case clang::Type::Elaborated:
return IsArrayType(llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(),
element_type_ptr,
size,
is_incomplete);
case clang::Type::Paren:
return IsArrayType(llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr(),
element_type_ptr,
size,
is_incomplete);
}
if (element_type_ptr)
element_type_ptr->Clear();
if (size)
*size = 0;
if (is_incomplete)
*is_incomplete = false;
return false;
}
bool
ClangASTContext::IsVectorType (lldb::opaque_compiler_type_t type,
CompilerType *element_type,
uint64_t *size)
{
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Vector:
{
const clang::VectorType *vector_type = qual_type->getAs<clang::VectorType>();
if (vector_type)
{
if (size)
*size = vector_type->getNumElements();
if (element_type)
*element_type = CompilerType(getASTContext(), vector_type->getElementType());
}
return true;
}
break;
case clang::Type::ExtVector:
{
const clang::ExtVectorType *ext_vector_type = qual_type->getAs<clang::ExtVectorType>();
if (ext_vector_type)
{
if (size)
*size = ext_vector_type->getNumElements();
if (element_type)
*element_type = CompilerType(getASTContext(), ext_vector_type->getElementType());
}
return true;
}
default:
break;
}
return false;
}
bool
ClangASTContext::IsRuntimeGeneratedType (lldb::opaque_compiler_type_t type)
{
clang::DeclContext* decl_ctx = ClangASTContext::GetASTContext(getASTContext())->GetDeclContextForType(GetQualType(type));
if (!decl_ctx)
return false;
if (!llvm::isa<clang::ObjCInterfaceDecl>(decl_ctx))
return false;
clang::ObjCInterfaceDecl *result_iface_decl = llvm::dyn_cast<clang::ObjCInterfaceDecl>(decl_ctx);
ClangASTMetadata* ast_metadata = ClangASTContext::GetMetadata(getASTContext(), result_iface_decl);
if (!ast_metadata)
return false;
return (ast_metadata->GetISAPtr() != 0);
}
bool
ClangASTContext::IsCharType (lldb::opaque_compiler_type_t type)
{
return GetQualType(type).getUnqualifiedType()->isCharType();
}
bool
ClangASTContext::IsCompleteType (lldb::opaque_compiler_type_t type)
{
const bool allow_completion = false;
return GetCompleteQualType (getASTContext(), GetQualType(type), allow_completion);
}
bool
ClangASTContext::IsConst(lldb::opaque_compiler_type_t type)
{
return GetQualType(type).isConstQualified();
}
bool
ClangASTContext::IsCStringType (lldb::opaque_compiler_type_t type, uint32_t &length)
{
CompilerType pointee_or_element_clang_type;
length = 0;
Flags type_flags (GetTypeInfo (type, &pointee_or_element_clang_type));
if (!pointee_or_element_clang_type.IsValid())
return false;
if (type_flags.AnySet (eTypeIsArray | eTypeIsPointer))
{
if (pointee_or_element_clang_type.IsCharType())
{
if (type_flags.Test (eTypeIsArray))
{
// We know the size of the array and it could be a C string
// since it is an array of characters
length = llvm::cast<clang::ConstantArrayType>(GetCanonicalQualType(type).getTypePtr())->getSize().getLimitedValue();
}
return true;
}
}
return false;
}
bool
ClangASTContext::IsFunctionType (lldb::opaque_compiler_type_t type, bool *is_variadic_ptr)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
if (qual_type->isFunctionType())
{
if (is_variadic_ptr)
{
const clang::FunctionProtoType *function_proto_type = llvm::dyn_cast<clang::FunctionProtoType>(qual_type.getTypePtr());
if (function_proto_type)
*is_variadic_ptr = function_proto_type->isVariadic();
else
*is_variadic_ptr = false;
}
return true;
}
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
default:
break;
case clang::Type::Typedef:
return IsFunctionType(llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), nullptr);
case clang::Type::Elaborated:
return IsFunctionType(llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(), nullptr);
case clang::Type::Paren:
return IsFunctionType(llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr(), nullptr);
case clang::Type::LValueReference:
case clang::Type::RValueReference:
{
const clang::ReferenceType *reference_type = llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
if (reference_type)
return IsFunctionType(reference_type->getPointeeType().getAsOpaquePtr(), nullptr);
}
break;
}
}
return false;
}
// Used to detect "Homogeneous Floating-point Aggregates"
uint32_t
ClangASTContext::IsHomogeneousAggregate (lldb::opaque_compiler_type_t type, CompilerType* base_type_ptr)
{
if (!type)
return 0;
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType (type))
{
const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
if (cxx_record_decl->getNumBases() ||
cxx_record_decl->isDynamicClass())
return 0;
}
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
if (record_type)
{
const clang::RecordDecl *record_decl = record_type->getDecl();
if (record_decl)
{
// We are looking for a structure that contains only floating point types
clang::RecordDecl::field_iterator field_pos, field_end = record_decl->field_end();
uint32_t num_fields = 0;
bool is_hva = false;
bool is_hfa = false;
clang::QualType base_qual_type;
for (field_pos = record_decl->field_begin(); field_pos != field_end; ++field_pos)
{
clang::QualType field_qual_type = field_pos->getType();
if (field_qual_type->isFloatingType())
{
if (field_qual_type->isComplexType())
return 0;
else
{
if (num_fields == 0)
base_qual_type = field_qual_type;
else
{
if (is_hva)
return 0;
is_hfa = true;
if (field_qual_type.getTypePtr() != base_qual_type.getTypePtr())
return 0;
}
}
}
else if (field_qual_type->isVectorType() || field_qual_type->isExtVectorType())
{
const clang::VectorType *array = field_qual_type.getTypePtr()->getAs<clang::VectorType>();
if (array && array->getNumElements() <= 4)
{
if (num_fields == 0)
base_qual_type = array->getElementType();
else
{
if (is_hfa)
return 0;
is_hva = true;
if (field_qual_type.getTypePtr() != base_qual_type.getTypePtr())
return 0;
}
}
else
return 0;
}
else
return 0;
++num_fields;
}
if (base_type_ptr)
*base_type_ptr = CompilerType (getASTContext(), base_qual_type);
return num_fields;
}
}
}
break;
case clang::Type::Typedef:
return IsHomogeneousAggregate(llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), base_type_ptr);
case clang::Type::Elaborated:
return IsHomogeneousAggregate(llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(), base_type_ptr);
default:
break;
}
return 0;
}
size_t
ClangASTContext::GetNumberOfFunctionArguments (lldb::opaque_compiler_type_t type)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::FunctionProtoType* func = llvm::dyn_cast<clang::FunctionProtoType>(qual_type.getTypePtr());
if (func)
return func->getNumParams();
}
return 0;
}
CompilerType
ClangASTContext::GetFunctionArgumentAtIndex (lldb::opaque_compiler_type_t type, const size_t index)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::FunctionProtoType* func = llvm::dyn_cast<clang::FunctionProtoType>(qual_type.getTypePtr());
if (func)
{
if (index < func->getNumParams())
return CompilerType(getASTContext(), func->getParamType(index));
}
}
return CompilerType();
}
bool
ClangASTContext::IsFunctionPointerType (lldb::opaque_compiler_type_t type)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
if (qual_type->isFunctionPointerType())
return true;
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
default:
break;
case clang::Type::Typedef:
return IsFunctionPointerType (llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr());
case clang::Type::Elaborated:
return IsFunctionPointerType (llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr());
case clang::Type::Paren:
return IsFunctionPointerType (llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr());
case clang::Type::LValueReference:
case clang::Type::RValueReference:
{
const clang::ReferenceType *reference_type = llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
if (reference_type)
return IsFunctionPointerType(reference_type->getPointeeType().getAsOpaquePtr());
}
break;
}
}
return false;
}
bool
ClangASTContext::IsIntegerType (lldb::opaque_compiler_type_t type, bool &is_signed)
{
if (!type)
return false;
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::BuiltinType *builtin_type = llvm::dyn_cast<clang::BuiltinType>(qual_type->getCanonicalTypeInternal());
if (builtin_type)
{
if (builtin_type->isInteger())
{
is_signed = builtin_type->isSignedInteger();
return true;
}
}
return false;
}
bool
ClangASTContext::IsPointerType (lldb::opaque_compiler_type_t type, CompilerType *pointee_type)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind())
{
default:
break;
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
return true;
}
return false;
case clang::Type::ObjCObjectPointer:
if (pointee_type)
pointee_type->SetCompilerType (getASTContext(), llvm::cast<clang::ObjCObjectPointerType>(qual_type)->getPointeeType());
return true;
case clang::Type::BlockPointer:
if (pointee_type)
pointee_type->SetCompilerType (getASTContext(), llvm::cast<clang::BlockPointerType>(qual_type)->getPointeeType());
return true;
case clang::Type::Pointer:
if (pointee_type)
pointee_type->SetCompilerType (getASTContext(), llvm::cast<clang::PointerType>(qual_type)->getPointeeType());
return true;
case clang::Type::MemberPointer:
if (pointee_type)
pointee_type->SetCompilerType (getASTContext(), llvm::cast<clang::MemberPointerType>(qual_type)->getPointeeType());
return true;
case clang::Type::Typedef:
return IsPointerType (llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), pointee_type);
case clang::Type::Elaborated:
return IsPointerType (llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(), pointee_type);
case clang::Type::Paren:
return IsPointerType (llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr(), pointee_type);
default:
break;
}
}
if (pointee_type)
pointee_type->Clear();
return false;
}
bool
ClangASTContext::IsPointerOrReferenceType (lldb::opaque_compiler_type_t type, CompilerType *pointee_type)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind())
{
default:
break;
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
return true;
}
return false;
case clang::Type::ObjCObjectPointer:
if (pointee_type)
pointee_type->SetCompilerType(getASTContext(), llvm::cast<clang::ObjCObjectPointerType>(qual_type)->getPointeeType());
return true;
case clang::Type::BlockPointer:
if (pointee_type)
pointee_type->SetCompilerType(getASTContext(), llvm::cast<clang::BlockPointerType>(qual_type)->getPointeeType());
return true;
case clang::Type::Pointer:
if (pointee_type)
pointee_type->SetCompilerType(getASTContext(), llvm::cast<clang::PointerType>(qual_type)->getPointeeType());
return true;
case clang::Type::MemberPointer:
if (pointee_type)
pointee_type->SetCompilerType(getASTContext(), llvm::cast<clang::MemberPointerType>(qual_type)->getPointeeType());
return true;
case clang::Type::LValueReference:
if (pointee_type)
pointee_type->SetCompilerType(getASTContext(), llvm::cast<clang::LValueReferenceType>(qual_type)->desugar());
return true;
case clang::Type::RValueReference:
if (pointee_type)
pointee_type->SetCompilerType(getASTContext(), llvm::cast<clang::RValueReferenceType>(qual_type)->desugar());
return true;
case clang::Type::Typedef:
return IsPointerOrReferenceType(llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), pointee_type);
case clang::Type::Elaborated:
return IsPointerOrReferenceType(llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(), pointee_type);
case clang::Type::Paren:
return IsPointerOrReferenceType(llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr(), pointee_type);
default:
break;
}
}
if (pointee_type)
pointee_type->Clear();
return false;
}
bool
ClangASTContext::IsReferenceType (lldb::opaque_compiler_type_t type, CompilerType *pointee_type, bool* is_rvalue)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::LValueReference:
if (pointee_type)
pointee_type->SetCompilerType(getASTContext(), llvm::cast<clang::LValueReferenceType>(qual_type)->desugar());
if (is_rvalue)
*is_rvalue = false;
return true;
case clang::Type::RValueReference:
if (pointee_type)
pointee_type->SetCompilerType(getASTContext(), llvm::cast<clang::RValueReferenceType>(qual_type)->desugar());
if (is_rvalue)
*is_rvalue = true;
return true;
case clang::Type::Typedef:
return IsReferenceType (llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), pointee_type, is_rvalue);
case clang::Type::Elaborated:
return IsReferenceType (llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(), pointee_type, is_rvalue);
case clang::Type::Paren:
return IsReferenceType (llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr(), pointee_type, is_rvalue);
default:
break;
}
}
if (pointee_type)
pointee_type->Clear();
return false;
}
bool
ClangASTContext::IsFloatingPointType (lldb::opaque_compiler_type_t type, uint32_t &count, bool &is_complex)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
if (const clang::BuiltinType *BT = llvm::dyn_cast<clang::BuiltinType>(qual_type->getCanonicalTypeInternal()))
{
clang::BuiltinType::Kind kind = BT->getKind();
if (kind >= clang::BuiltinType::Float && kind <= clang::BuiltinType::LongDouble)
{
count = 1;
is_complex = false;
return true;
}
}
else if (const clang::ComplexType *CT = llvm::dyn_cast<clang::ComplexType>(qual_type->getCanonicalTypeInternal()))
{
if (IsFloatingPointType (CT->getElementType().getAsOpaquePtr(), count, is_complex))
{
count = 2;
is_complex = true;
return true;
}
}
else if (const clang::VectorType *VT = llvm::dyn_cast<clang::VectorType>(qual_type->getCanonicalTypeInternal()))
{
if (IsFloatingPointType (VT->getElementType().getAsOpaquePtr(), count, is_complex))
{
count = VT->getNumElements();
is_complex = false;
return true;
}
}
}
count = 0;
is_complex = false;
return false;
}
bool
ClangASTContext::IsDefined(lldb::opaque_compiler_type_t type)
{
if (!type)
return false;
clang::QualType qual_type(GetQualType(type));
const clang::TagType *tag_type = llvm::dyn_cast<clang::TagType>(qual_type.getTypePtr());
if (tag_type)
{
clang::TagDecl *tag_decl = tag_type->getDecl();
if (tag_decl)
return tag_decl->isCompleteDefinition();
return false;
}
else
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type);
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
return class_interface_decl->getDefinition() != nullptr;
return false;
}
}
return true;
}
bool
ClangASTContext::IsObjCClassType (const CompilerType& type)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::ObjCObjectPointerType *obj_pointer_type = llvm::dyn_cast<clang::ObjCObjectPointerType>(qual_type);
if (obj_pointer_type)
return obj_pointer_type->isObjCClassType();
}
return false;
}
bool
ClangASTContext::IsObjCObjectOrInterfaceType (const CompilerType& type)
{
if (IsClangType(type))
return GetCanonicalQualType(type)->isObjCObjectOrInterfaceType();
return false;
}
bool
ClangASTContext::IsPolymorphicClass (lldb::opaque_compiler_type_t type)
{
if (type)
{
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
if (record_decl)
{
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
return cxx_record_decl->isPolymorphic();
}
}
break;
default:
break;
}
}
return false;
}
bool
ClangASTContext::IsPossibleDynamicType (lldb::opaque_compiler_type_t type, CompilerType *dynamic_pointee_type,
bool check_cplusplus,
bool check_objc)
{
clang::QualType pointee_qual_type;
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
bool success = false;
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Builtin:
if (check_objc && llvm::cast<clang::BuiltinType>(qual_type)->getKind() == clang::BuiltinType::ObjCId)
{
if (dynamic_pointee_type)
dynamic_pointee_type->SetCompilerType(this, type);
return true;
}
break;
case clang::Type::ObjCObjectPointer:
if (check_objc)
{
if (dynamic_pointee_type)
dynamic_pointee_type->SetCompilerType(getASTContext(), llvm::cast<clang::ObjCObjectPointerType>(qual_type)->getPointeeType());
return true;
}
break;
case clang::Type::Pointer:
pointee_qual_type = llvm::cast<clang::PointerType>(qual_type)->getPointeeType();
success = true;
break;
case clang::Type::LValueReference:
case clang::Type::RValueReference:
pointee_qual_type = llvm::cast<clang::ReferenceType>(qual_type)->getPointeeType();
success = true;
break;
case clang::Type::Typedef:
return IsPossibleDynamicType (llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(),
dynamic_pointee_type,
check_cplusplus,
check_objc);
case clang::Type::Elaborated:
return IsPossibleDynamicType (llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(),
dynamic_pointee_type,
check_cplusplus,
check_objc);
case clang::Type::Paren:
return IsPossibleDynamicType (llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr(),
dynamic_pointee_type,
check_cplusplus,
check_objc);
default:
break;
}
if (success)
{
// Check to make sure what we are pointing too is a possible dynamic C++ type
// We currently accept any "void *" (in case we have a class that has been
// watered down to an opaque pointer) and virtual C++ classes.
const clang::Type::TypeClass pointee_type_class = pointee_qual_type.getCanonicalType()->getTypeClass();
switch (pointee_type_class)
{
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(pointee_qual_type)->getKind())
{
case clang::BuiltinType::UnknownAny:
case clang::BuiltinType::Void:
if (dynamic_pointee_type)
dynamic_pointee_type->SetCompilerType(getASTContext(), pointee_qual_type);
return true;
default:
break;
}
break;
case clang::Type::Record:
if (check_cplusplus)
{
clang::CXXRecordDecl *cxx_record_decl = pointee_qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
bool is_complete = cxx_record_decl->isCompleteDefinition();
if (is_complete)
success = cxx_record_decl->isDynamicClass();
else
{
ClangASTMetadata *metadata = ClangASTContext::GetMetadata (getASTContext(), cxx_record_decl);
if (metadata)
success = metadata->GetIsDynamicCXXType();
else
{
is_complete = CompilerType(getASTContext(), pointee_qual_type).GetCompleteType();
if (is_complete)
success = cxx_record_decl->isDynamicClass();
else
success = false;
}
}
if (success)
{
if (dynamic_pointee_type)
dynamic_pointee_type->SetCompilerType(getASTContext(), pointee_qual_type);
return true;
}
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (check_objc)
{
if (dynamic_pointee_type)
dynamic_pointee_type->SetCompilerType(getASTContext(), pointee_qual_type);
return true;
}
break;
default:
break;
}
}
}
if (dynamic_pointee_type)
dynamic_pointee_type->Clear();
return false;
}
bool
ClangASTContext::IsScalarType (lldb::opaque_compiler_type_t type)
{
if (!type)
return false;
return (GetTypeInfo (type, nullptr) & eTypeIsScalar) != 0;
}
bool
ClangASTContext::IsTypedefType (lldb::opaque_compiler_type_t type)
{
if (!type)
return false;
return GetQualType(type)->getTypeClass() == clang::Type::Typedef;
}
bool
ClangASTContext::IsVoidType (lldb::opaque_compiler_type_t type)
{
if (!type)
return false;
return GetCanonicalQualType(type)->isVoidType();
}
bool
ClangASTContext::SupportsLanguage (lldb::LanguageType language)
{
return ClangASTContextSupportsLanguage(language);
}
bool
ClangASTContext::GetCXXClassName (const CompilerType& type, std::string &class_name)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
if (!qual_type.isNull())
{
clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
class_name.assign(cxx_record_decl->getIdentifier()->getNameStart());
return true;
}
}
}
class_name.clear();
return false;
}
bool
ClangASTContext::IsCXXClassType (const CompilerType& type)
{
if (!type)
return false;
clang::QualType qual_type (GetCanonicalQualType(type));
if (!qual_type.isNull() && qual_type->getAsCXXRecordDecl() != nullptr)
return true;
return false;
}
bool
ClangASTContext::IsBeingDefined (lldb::opaque_compiler_type_t type)
{
if (!type)
return false;
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::TagType *tag_type = llvm::dyn_cast<clang::TagType>(qual_type);
if (tag_type)
return tag_type->isBeingDefined();
return false;
}
bool
ClangASTContext::IsObjCObjectPointerType (const CompilerType& type, CompilerType *class_type_ptr)
{
if (!type)
return false;
clang::QualType qual_type (GetCanonicalQualType(type));
if (!qual_type.isNull() && qual_type->isObjCObjectPointerType())
{
if (class_type_ptr)
{
if (!qual_type->isObjCClassType() &&
!qual_type->isObjCIdType())
{
const clang::ObjCObjectPointerType *obj_pointer_type = llvm::dyn_cast<clang::ObjCObjectPointerType>(qual_type);
if (obj_pointer_type == nullptr)
class_type_ptr->Clear();
else
class_type_ptr->SetCompilerType (type.GetTypeSystem(), clang::QualType(obj_pointer_type->getInterfaceType(), 0).getAsOpaquePtr());
}
}
return true;
}
if (class_type_ptr)
class_type_ptr->Clear();
return false;
}
bool
ClangASTContext::GetObjCClassName (const CompilerType& type, std::string &class_name)
{
if (!type)
return false;
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::ObjCObjectType *object_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type);
if (object_type)
{
const clang::ObjCInterfaceDecl *interface = object_type->getInterface();
if (interface)
{
class_name = interface->getNameAsString();
return true;
}
}
return false;
}
//----------------------------------------------------------------------
// Type Completion
//----------------------------------------------------------------------
bool
ClangASTContext::GetCompleteType (lldb::opaque_compiler_type_t type)
{
if (!type)
return false;
const bool allow_completion = true;
return GetCompleteQualType (getASTContext(), GetQualType(type), allow_completion);
}
ConstString
ClangASTContext::GetTypeName (lldb::opaque_compiler_type_t type)
{
std::string type_name;
if (type)
{
clang::PrintingPolicy printing_policy (getASTContext()->getPrintingPolicy());
clang::QualType qual_type(GetQualType(type));
printing_policy.SuppressTagKeyword = true;
printing_policy.LangOpts.WChar = true;
const clang::TypedefType *typedef_type = qual_type->getAs<clang::TypedefType>();
if (typedef_type)
{
const clang::TypedefNameDecl *typedef_decl = typedef_type->getDecl();
type_name = typedef_decl->getQualifiedNameAsString();
}
else
{
type_name = qual_type.getAsString(printing_policy);
}
}
return ConstString(type_name);
}
uint32_t
ClangASTContext::GetTypeInfo (lldb::opaque_compiler_type_t type, CompilerType *pointee_or_element_clang_type)
{
if (!type)
return 0;
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->Clear();
clang::QualType qual_type (GetQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Builtin:
{
const clang::BuiltinType *builtin_type = llvm::dyn_cast<clang::BuiltinType>(qual_type->getCanonicalTypeInternal());
uint32_t builtin_type_flags = eTypeIsBuiltIn | eTypeHasValue;
switch (builtin_type->getKind())
{
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetCompilerType(getASTContext(), getASTContext()->ObjCBuiltinClassTy);
builtin_type_flags |= eTypeIsPointer | eTypeIsObjC;
break;
case clang::BuiltinType::ObjCSel:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetCompilerType(getASTContext(), getASTContext()->CharTy);
builtin_type_flags |= eTypeIsPointer | eTypeIsObjC;
break;
case clang::BuiltinType::Bool:
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U:
case clang::BuiltinType::Char16:
case clang::BuiltinType::Char32:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128:
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128:
case clang::BuiltinType::Float:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble:
builtin_type_flags |= eTypeIsScalar;
if (builtin_type->isInteger())
{
builtin_type_flags |= eTypeIsInteger;
if (builtin_type->isSignedInteger())
builtin_type_flags |= eTypeIsSigned;
}
else if (builtin_type->isFloatingPoint())
builtin_type_flags |= eTypeIsFloat;
break;
default:
break;
}
return builtin_type_flags;
}
case clang::Type::BlockPointer:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetCompilerType(getASTContext(), qual_type->getPointeeType());
return eTypeIsPointer | eTypeHasChildren | eTypeIsBlock;
case clang::Type::Complex:
{
uint32_t complex_type_flags = eTypeIsBuiltIn | eTypeHasValue | eTypeIsComplex;
const clang::ComplexType *complex_type = llvm::dyn_cast<clang::ComplexType>(qual_type->getCanonicalTypeInternal());
if (complex_type)
{
clang::QualType complex_element_type (complex_type->getElementType());
if (complex_element_type->isIntegerType())
complex_type_flags |= eTypeIsFloat;
else if (complex_element_type->isFloatingType())
complex_type_flags |= eTypeIsInteger;
}
return complex_type_flags;
}
break;
case clang::Type::ConstantArray:
case clang::Type::DependentSizedArray:
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetCompilerType(getASTContext(), llvm::cast<clang::ArrayType>(qual_type.getTypePtr())->getElementType());
return eTypeHasChildren | eTypeIsArray;
case clang::Type::DependentName: return 0;
case clang::Type::DependentSizedExtVector: return eTypeHasChildren | eTypeIsVector;
case clang::Type::DependentTemplateSpecialization: return eTypeIsTemplate;
case clang::Type::Decltype: return 0;
case clang::Type::Enum:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetCompilerType(getASTContext(), llvm::cast<clang::EnumType>(qual_type)->getDecl()->getIntegerType());
return eTypeIsEnumeration | eTypeHasValue;
case clang::Type::Elaborated:
return CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).GetTypeInfo (pointee_or_element_clang_type);
case clang::Type::Paren:
return CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).GetTypeInfo (pointee_or_element_clang_type);
case clang::Type::FunctionProto: return eTypeIsFuncPrototype | eTypeHasValue;
case clang::Type::FunctionNoProto: return eTypeIsFuncPrototype | eTypeHasValue;
case clang::Type::InjectedClassName: return 0;
case clang::Type::LValueReference:
case clang::Type::RValueReference:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetCompilerType(getASTContext(), llvm::cast<clang::ReferenceType>(qual_type.getTypePtr())->getPointeeType());
return eTypeHasChildren | eTypeIsReference | eTypeHasValue;
case clang::Type::MemberPointer: return eTypeIsPointer | eTypeIsMember | eTypeHasValue;
case clang::Type::ObjCObjectPointer:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetCompilerType(getASTContext(), qual_type->getPointeeType());
return eTypeHasChildren | eTypeIsObjC | eTypeIsClass | eTypeIsPointer | eTypeHasValue;
case clang::Type::ObjCObject: return eTypeHasChildren | eTypeIsObjC | eTypeIsClass;
case clang::Type::ObjCInterface: return eTypeHasChildren | eTypeIsObjC | eTypeIsClass;
case clang::Type::Pointer:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetCompilerType(getASTContext(), qual_type->getPointeeType());
return eTypeHasChildren | eTypeIsPointer | eTypeHasValue;
case clang::Type::Record:
if (qual_type->getAsCXXRecordDecl())
return eTypeHasChildren | eTypeIsClass | eTypeIsCPlusPlus;
else
return eTypeHasChildren | eTypeIsStructUnion;
break;
case clang::Type::SubstTemplateTypeParm: return eTypeIsTemplate;
case clang::Type::TemplateTypeParm: return eTypeIsTemplate;
case clang::Type::TemplateSpecialization: return eTypeIsTemplate;
case clang::Type::Typedef:
return eTypeIsTypedef | CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).GetTypeInfo (pointee_or_element_clang_type);
case clang::Type::TypeOfExpr: return 0;
case clang::Type::TypeOf: return 0;
case clang::Type::UnresolvedUsing: return 0;
case clang::Type::ExtVector:
case clang::Type::Vector:
{
uint32_t vector_type_flags = eTypeHasChildren | eTypeIsVector;
const clang::VectorType *vector_type = llvm::dyn_cast<clang::VectorType>(qual_type->getCanonicalTypeInternal());
if (vector_type)
{
if (vector_type->isIntegerType())
vector_type_flags |= eTypeIsFloat;
else if (vector_type->isFloatingType())
vector_type_flags |= eTypeIsInteger;
}
return vector_type_flags;
}
default: return 0;
}
return 0;
}
lldb::LanguageType
ClangASTContext::GetMinimumLanguage (lldb::opaque_compiler_type_t type)
{
if (!type)
return lldb::eLanguageTypeC;
// If the type is a reference, then resolve it to what it refers to first:
clang::QualType qual_type (GetCanonicalQualType(type).getNonReferenceType());
if (qual_type->isAnyPointerType())
{
if (qual_type->isObjCObjectPointerType())
return lldb::eLanguageTypeObjC;
clang::QualType pointee_type (qual_type->getPointeeType());
if (pointee_type->getPointeeCXXRecordDecl() != nullptr)
return lldb::eLanguageTypeC_plus_plus;
if (pointee_type->isObjCObjectOrInterfaceType())
return lldb::eLanguageTypeObjC;
if (pointee_type->isObjCClassType())
return lldb::eLanguageTypeObjC;
if (pointee_type.getTypePtr() == getASTContext()->ObjCBuiltinIdTy.getTypePtr())
return lldb::eLanguageTypeObjC;
}
else
{
if (qual_type->isObjCObjectOrInterfaceType())
return lldb::eLanguageTypeObjC;
if (qual_type->getAsCXXRecordDecl())
return lldb::eLanguageTypeC_plus_plus;
switch (qual_type->getTypeClass())
{
default:
break;
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind())
{
default:
case clang::BuiltinType::Void:
case clang::BuiltinType::Bool:
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U:
case clang::BuiltinType::Char16:
case clang::BuiltinType::Char32:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128:
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128:
case clang::BuiltinType::Float:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble:
break;
case clang::BuiltinType::NullPtr:
return eLanguageTypeC_plus_plus;
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
case clang::BuiltinType::ObjCSel:
return eLanguageTypeObjC;
case clang::BuiltinType::Dependent:
case clang::BuiltinType::Overload:
case clang::BuiltinType::BoundMember:
case clang::BuiltinType::UnknownAny:
break;
}
break;
case clang::Type::Typedef:
return CompilerType(getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).GetMinimumLanguage();
}
}
return lldb::eLanguageTypeC;
}
lldb::TypeClass
ClangASTContext::GetTypeClass (lldb::opaque_compiler_type_t type)
{
if (!type)
return lldb::eTypeClassInvalid;
clang::QualType qual_type(GetQualType(type));
switch (qual_type->getTypeClass())
{
case clang::Type::UnaryTransform: break;
case clang::Type::FunctionNoProto: return lldb::eTypeClassFunction;
case clang::Type::FunctionProto: return lldb::eTypeClassFunction;
case clang::Type::IncompleteArray: return lldb::eTypeClassArray;
case clang::Type::VariableArray: return lldb::eTypeClassArray;
case clang::Type::ConstantArray: return lldb::eTypeClassArray;
case clang::Type::DependentSizedArray: return lldb::eTypeClassArray;
case clang::Type::DependentSizedExtVector: return lldb::eTypeClassVector;
case clang::Type::ExtVector: return lldb::eTypeClassVector;
case clang::Type::Vector: return lldb::eTypeClassVector;
case clang::Type::Builtin: return lldb::eTypeClassBuiltin;
case clang::Type::ObjCObjectPointer: return lldb::eTypeClassObjCObjectPointer;
case clang::Type::BlockPointer: return lldb::eTypeClassBlockPointer;
case clang::Type::Pointer: return lldb::eTypeClassPointer;
case clang::Type::LValueReference: return lldb::eTypeClassReference;
case clang::Type::RValueReference: return lldb::eTypeClassReference;
case clang::Type::MemberPointer: return lldb::eTypeClassMemberPointer;
case clang::Type::Complex:
if (qual_type->isComplexType())
return lldb::eTypeClassComplexFloat;
else
return lldb::eTypeClassComplexInteger;
case clang::Type::ObjCObject: return lldb::eTypeClassObjCObject;
case clang::Type::ObjCInterface: return lldb::eTypeClassObjCInterface;
case clang::Type::Record:
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
if (record_decl->isUnion())
return lldb::eTypeClassUnion;
else if (record_decl->isStruct())
return lldb::eTypeClassStruct;
else
return lldb::eTypeClassClass;
}
break;
case clang::Type::Enum: return lldb::eTypeClassEnumeration;
case clang::Type::Typedef: return lldb::eTypeClassTypedef;
case clang::Type::UnresolvedUsing: break;
case clang::Type::Paren:
return CompilerType(getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).GetTypeClass();
case clang::Type::Elaborated:
return CompilerType(getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).GetTypeClass();
case clang::Type::Attributed: break;
case clang::Type::TemplateTypeParm: break;
case clang::Type::SubstTemplateTypeParm: break;
case clang::Type::SubstTemplateTypeParmPack:break;
case clang::Type::Auto: break;
case clang::Type::InjectedClassName: break;
case clang::Type::DependentName: break;
case clang::Type::DependentTemplateSpecialization: break;
case clang::Type::PackExpansion: break;
case clang::Type::TypeOfExpr: break;
case clang::Type::TypeOf: break;
case clang::Type::Decltype: break;
case clang::Type::TemplateSpecialization: break;
case clang::Type::Atomic: break;
// pointer type decayed from an array or function type.
case clang::Type::Decayed: break;
case clang::Type::Adjusted: break;
}
// We don't know hot to display this type...
return lldb::eTypeClassOther;
}
unsigned
ClangASTContext::GetTypeQualifiers(lldb::opaque_compiler_type_t type)
{
if (type)
return GetQualType(type).getQualifiers().getCVRQualifiers();
return 0;
}
//----------------------------------------------------------------------
// Creating related types
//----------------------------------------------------------------------
CompilerType
ClangASTContext::GetArrayElementType (lldb::opaque_compiler_type_t type, uint64_t *stride)
{
if (type)
{
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type *array_eletype = qual_type.getTypePtr()->getArrayElementTypeNoTypeQual();
if (!array_eletype)
return CompilerType();
CompilerType element_type (getASTContext(), array_eletype->getCanonicalTypeUnqualified());
// TODO: the real stride will be >= this value.. find the real one!
if (stride)
*stride = element_type.GetByteSize(nullptr);
return element_type;
}
return CompilerType();
}
CompilerType
ClangASTContext::GetCanonicalType (lldb::opaque_compiler_type_t type)
{
if (type)
return CompilerType (getASTContext(), GetCanonicalQualType(type));
return CompilerType();
}
static clang::QualType
GetFullyUnqualifiedType_Impl (clang::ASTContext *ast, clang::QualType qual_type)
{
if (qual_type->isPointerType())
qual_type = ast->getPointerType(GetFullyUnqualifiedType_Impl(ast, qual_type->getPointeeType()));
else
qual_type = qual_type.getUnqualifiedType();
qual_type.removeLocalConst();
qual_type.removeLocalRestrict();
qual_type.removeLocalVolatile();
return qual_type;
}
CompilerType
ClangASTContext::GetFullyUnqualifiedType (lldb::opaque_compiler_type_t type)
{
if (type)
return CompilerType(getASTContext(), GetFullyUnqualifiedType_Impl(getASTContext(), GetQualType(type)));
return CompilerType();
}
int
ClangASTContext::GetFunctionArgumentCount (lldb::opaque_compiler_type_t type)
{
if (type)
{
const clang::FunctionProtoType* func = llvm::dyn_cast<clang::FunctionProtoType>(GetCanonicalQualType(type));
if (func)
return func->getNumParams();
}
return -1;
}
CompilerType
ClangASTContext::GetFunctionArgumentTypeAtIndex (lldb::opaque_compiler_type_t type, size_t idx)
{
if (type)
{
const clang::FunctionProtoType* func = llvm::dyn_cast<clang::FunctionProtoType>(GetCanonicalQualType(type));
if (func)
{
const uint32_t num_args = func->getNumParams();
if (idx < num_args)
return CompilerType(getASTContext(), func->getParamType(idx));
}
}
return CompilerType();
}
CompilerType
ClangASTContext::GetFunctionReturnType (lldb::opaque_compiler_type_t type)
{
if (type)
{
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::FunctionProtoType* func = llvm::dyn_cast<clang::FunctionProtoType>(qual_type.getTypePtr());
if (func)
return CompilerType(getASTContext(), func->getReturnType());
}
return CompilerType();
}
size_t
ClangASTContext::GetNumMemberFunctions (lldb::opaque_compiler_type_t type)
{
size_t num_functions = 0;
if (type)
{
clang::QualType qual_type(GetCanonicalQualType(type));
switch (qual_type->getTypeClass()) {
case clang::Type::Record:
if (GetCompleteQualType (getASTContext(), qual_type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
num_functions = std::distance(cxx_record_decl->method_begin(), cxx_record_decl->method_end());
}
break;
case clang::Type::ObjCObjectPointer:
if (GetCompleteType(type))
{
const clang::ObjCObjectPointerType *objc_class_type = qual_type->getAsObjCInterfacePointerType();
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterfaceDecl();
if (class_interface_decl)
num_functions = std::distance(class_interface_decl->meth_begin(), class_interface_decl->meth_end());
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteType(type))
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
num_functions = std::distance(class_interface_decl->meth_begin(), class_interface_decl->meth_end());
}
}
break;
case clang::Type::Typedef:
return CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).GetNumMemberFunctions();
case clang::Type::Elaborated:
return CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).GetNumMemberFunctions();
case clang::Type::Paren:
return CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).GetNumMemberFunctions();
default:
break;
}
}
return num_functions;
}
TypeMemberFunctionImpl
ClangASTContext::GetMemberFunctionAtIndex (lldb::opaque_compiler_type_t type, size_t idx)
{
std::string name("");
MemberFunctionKind kind(MemberFunctionKind::eMemberFunctionKindUnknown);
CompilerType clang_type{};
clang::ObjCMethodDecl *method_decl(nullptr);
if (type)
{
clang::QualType qual_type(GetCanonicalQualType(type));
switch (qual_type->getTypeClass()) {
case clang::Type::Record:
if (GetCompleteQualType (getASTContext(), qual_type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
auto method_iter = cxx_record_decl->method_begin();
auto method_end = cxx_record_decl->method_end();
if (idx < static_cast<size_t>(std::distance(method_iter, method_end)))
{
std::advance(method_iter, idx);
auto method_decl = method_iter->getCanonicalDecl();
if (method_decl)
{
if (!method_decl->getName().empty())
name.assign(method_decl->getName().data());
else
name.clear();
if (method_decl->isStatic())
kind = lldb::eMemberFunctionKindStaticMethod;
else if (llvm::isa<clang::CXXConstructorDecl>(method_decl))
kind = lldb::eMemberFunctionKindConstructor;
else if (llvm::isa<clang::CXXDestructorDecl>(method_decl))
kind = lldb::eMemberFunctionKindDestructor;
else
kind = lldb::eMemberFunctionKindInstanceMethod;
clang_type = CompilerType(getASTContext(),method_decl->getType());
}
}
}
}
break;
case clang::Type::ObjCObjectPointer:
if (GetCompleteType(type))
{
const clang::ObjCObjectPointerType *objc_class_type = qual_type->getAsObjCInterfacePointerType();
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterfaceDecl();
if (class_interface_decl)
{
auto method_iter = class_interface_decl->meth_begin();
auto method_end = class_interface_decl->meth_end();
if (idx < static_cast<size_t>(std::distance(method_iter, method_end)))
{
std::advance(method_iter, idx);
method_decl = method_iter->getCanonicalDecl();
if (method_decl)
{
name = method_decl->getSelector().getAsString();
if (method_decl->isClassMethod())
kind = lldb::eMemberFunctionKindStaticMethod;
else
kind = lldb::eMemberFunctionKindInstanceMethod;
}
}
}
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteType(type))
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
auto method_iter = class_interface_decl->meth_begin();
auto method_end = class_interface_decl->meth_end();
if (idx < static_cast<size_t>(std::distance(method_iter, method_end)))
{
std::advance(method_iter, idx);
method_decl = method_iter->getCanonicalDecl();
if (method_decl)
{
name = method_decl->getSelector().getAsString();
if (method_decl->isClassMethod())
kind = lldb::eMemberFunctionKindStaticMethod;
else
kind = lldb::eMemberFunctionKindInstanceMethod;
}
}
}
}
}
break;
case clang::Type::Typedef:
return GetMemberFunctionAtIndex(llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), idx);
case clang::Type::Elaborated:
return GetMemberFunctionAtIndex(llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(), idx);
case clang::Type::Paren:
return GetMemberFunctionAtIndex(llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr(), idx);
default:
break;
}
}
if (kind == eMemberFunctionKindUnknown)
return TypeMemberFunctionImpl();
if (method_decl)
return TypeMemberFunctionImpl(method_decl, name, kind);
if (type)
return TypeMemberFunctionImpl(clang_type, name, kind);
return TypeMemberFunctionImpl();
}
CompilerType
ClangASTContext::GetNonReferenceType (lldb::opaque_compiler_type_t type)
{
if (type)
return CompilerType(getASTContext(), GetQualType(type).getNonReferenceType());
return CompilerType();
}
CompilerType
ClangASTContext::CreateTypedefType (const CompilerType& type,
const char *typedef_name,
const CompilerDeclContext &compiler_decl_ctx)
{
if (type && typedef_name && typedef_name[0])
{
ClangASTContext *ast = llvm::dyn_cast<ClangASTContext>(type.GetTypeSystem());
if (!ast)
return CompilerType();
clang::ASTContext* clang_ast = ast->getASTContext();
clang::QualType qual_type (GetQualType(type));
clang::DeclContext *decl_ctx = ClangASTContext::DeclContextGetAsDeclContext(compiler_decl_ctx);
if (decl_ctx == nullptr)
decl_ctx = ast->getASTContext()->getTranslationUnitDecl();
clang::TypedefDecl *decl = clang::TypedefDecl::Create (*clang_ast,
decl_ctx,
clang::SourceLocation(),
clang::SourceLocation(),
&clang_ast->Idents.get(typedef_name),
clang_ast->getTrivialTypeSourceInfo(qual_type));
decl->setAccess(clang::AS_public); // TODO respect proper access specifier
// Get a uniqued clang::QualType for the typedef decl type
return CompilerType (clang_ast, clang_ast->getTypedefType (decl));
}
return CompilerType();
}
CompilerType
ClangASTContext::GetPointeeType (lldb::opaque_compiler_type_t type)
{
if (type)
{
clang::QualType qual_type(GetQualType(type));
return CompilerType (getASTContext(), qual_type.getTypePtr()->getPointeeType());
}
return CompilerType();
}
CompilerType
ClangASTContext::GetPointerType (lldb::opaque_compiler_type_t type)
{
if (type)
{
clang::QualType qual_type (GetQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
return CompilerType(getASTContext(), getASTContext()->getObjCObjectPointerType(qual_type));
default:
return CompilerType(getASTContext(), getASTContext()->getPointerType(qual_type));
}
}
return CompilerType();
}
CompilerType
ClangASTContext::GetLValueReferenceType (lldb::opaque_compiler_type_t type)
{
if (type)
return CompilerType(this, getASTContext()->getLValueReferenceType(GetQualType(type)).getAsOpaquePtr());
else
return CompilerType();
}
CompilerType
ClangASTContext::GetRValueReferenceType (lldb::opaque_compiler_type_t type)
{
if (type)
return CompilerType(this, getASTContext()->getRValueReferenceType(GetQualType(type)).getAsOpaquePtr());
else
return CompilerType();
}
CompilerType
ClangASTContext::AddConstModifier (lldb::opaque_compiler_type_t type)
{
if (type)
{
clang::QualType result(GetQualType(type));
result.addConst();
return CompilerType (this, result.getAsOpaquePtr());
}
return CompilerType();
}
CompilerType
ClangASTContext::AddVolatileModifier (lldb::opaque_compiler_type_t type)
{
if (type)
{
clang::QualType result(GetQualType(type));
result.addVolatile();
return CompilerType (this, result.getAsOpaquePtr());
}
return CompilerType();
}
CompilerType
ClangASTContext::AddRestrictModifier (lldb::opaque_compiler_type_t type)
{
if (type)
{
clang::QualType result(GetQualType(type));
result.addRestrict();
return CompilerType (this, result.getAsOpaquePtr());
}
return CompilerType();
}
CompilerType
ClangASTContext::CreateTypedef (lldb::opaque_compiler_type_t type, const char *typedef_name, const CompilerDeclContext &compiler_decl_ctx)
{
if (type)
{
clang::ASTContext* clang_ast = getASTContext();
clang::QualType qual_type (GetQualType(type));
clang::DeclContext *decl_ctx = ClangASTContext::DeclContextGetAsDeclContext(compiler_decl_ctx);
if (decl_ctx == nullptr)
decl_ctx = getASTContext()->getTranslationUnitDecl();
clang::TypedefDecl *decl = clang::TypedefDecl::Create (*clang_ast,
decl_ctx,
clang::SourceLocation(),
clang::SourceLocation(),
&clang_ast->Idents.get(typedef_name),
clang_ast->getTrivialTypeSourceInfo(qual_type));
decl->setAccess(clang::AS_public); // TODO respect proper access specifier
// Get a uniqued clang::QualType for the typedef decl type
return CompilerType (this, clang_ast->getTypedefType (decl).getAsOpaquePtr());
}
return CompilerType();
}
CompilerType
ClangASTContext::GetTypedefedType (lldb::opaque_compiler_type_t type)
{
if (type)
{
const clang::TypedefType *typedef_type = llvm::dyn_cast<clang::TypedefType>(GetQualType(type));
if (typedef_type)
return CompilerType (getASTContext(), typedef_type->getDecl()->getUnderlyingType());
}
return CompilerType();
}
CompilerType
ClangASTContext::RemoveFastQualifiers (const CompilerType& type)
{
if (IsClangType(type))
{
clang::QualType qual_type(GetQualType(type));
qual_type.getQualifiers().removeFastQualifiers();
return CompilerType (type.GetTypeSystem(), qual_type.getAsOpaquePtr());
}
return type;
}
//----------------------------------------------------------------------
// Create related types using the current type's AST
//----------------------------------------------------------------------
CompilerType
ClangASTContext::GetBasicTypeFromAST (lldb::BasicType basic_type)
{
return ClangASTContext::GetBasicType(getASTContext(), basic_type);
}
//----------------------------------------------------------------------
// Exploring the type
//----------------------------------------------------------------------
uint64_t
ClangASTContext::GetBitSize (lldb::opaque_compiler_type_t type, ExecutionContextScope *exe_scope)
{
if (GetCompleteType (type))
{
clang::QualType qual_type(GetCanonicalQualType(type));
switch (qual_type->getTypeClass())
{
case clang::Type::ObjCInterface:
case clang::Type::ObjCObject:
{
ExecutionContext exe_ctx (exe_scope);
Process *process = exe_ctx.GetProcessPtr();
if (process)
{
ObjCLanguageRuntime *objc_runtime = process->GetObjCLanguageRuntime();
if (objc_runtime)
{
uint64_t bit_size = 0;
if (objc_runtime->GetTypeBitSize(CompilerType(getASTContext(), qual_type), bit_size))
return bit_size;
}
}
else
{
static bool g_printed = false;
if (!g_printed)
{
StreamString s;
DumpTypeDescription(type, &s);
llvm::outs() << "warning: trying to determine the size of type ";
llvm::outs() << s.GetString() << "\n";
llvm::outs() << "without a valid ExecutionContext. this is not reliable. please file a bug against LLDB.\n";
llvm::outs() << "backtrace:\n";
llvm::sys::PrintStackTrace(llvm::outs());
llvm::outs() << "\n";
g_printed = true;
}
}
}
// fallthrough
default:
const uint32_t bit_size = getASTContext()->getTypeSize (qual_type);
if (bit_size == 0)
{
if (qual_type->isIncompleteArrayType())
return getASTContext()->getTypeSize (qual_type->getArrayElementTypeNoTypeQual()->getCanonicalTypeUnqualified());
}
if (qual_type->isObjCObjectOrInterfaceType())
return bit_size + getASTContext()->getTypeSize(getASTContext()->ObjCBuiltinClassTy);
return bit_size;
}
}
return 0;
}
size_t
ClangASTContext::GetTypeBitAlign (lldb::opaque_compiler_type_t type)
{
if (GetCompleteType(type))
return getASTContext()->getTypeAlign(GetQualType(type));
return 0;
}
lldb::Encoding
ClangASTContext::GetEncoding (lldb::opaque_compiler_type_t type, uint64_t &count)
{
if (!type)
return lldb::eEncodingInvalid;
count = 1;
clang::QualType qual_type(GetCanonicalQualType(type));
switch (qual_type->getTypeClass())
{
case clang::Type::UnaryTransform:
break;
case clang::Type::FunctionNoProto:
case clang::Type::FunctionProto:
break;
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
break;
case clang::Type::ConstantArray:
break;
case clang::Type::ExtVector:
case clang::Type::Vector:
// TODO: Set this to more than one???
break;
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind())
{
case clang::BuiltinType::Void:
break;
case clang::BuiltinType::Bool:
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Char16:
case clang::BuiltinType::Char32:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128: return lldb::eEncodingSint;
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128: return lldb::eEncodingUint;
case clang::BuiltinType::Float:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble: return lldb::eEncodingIEEE754;
case clang::BuiltinType::ObjCClass:
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCSel: return lldb::eEncodingUint;
case clang::BuiltinType::NullPtr: return lldb::eEncodingUint;
case clang::BuiltinType::Kind::ARCUnbridgedCast:
case clang::BuiltinType::Kind::BoundMember:
case clang::BuiltinType::Kind::BuiltinFn:
case clang::BuiltinType::Kind::Dependent:
case clang::BuiltinType::Kind::Half:
case clang::BuiltinType::Kind::OCLClkEvent:
case clang::BuiltinType::Kind::OCLEvent:
case clang::BuiltinType::Kind::OCLImage1d:
case clang::BuiltinType::Kind::OCLImage1dArray:
case clang::BuiltinType::Kind::OCLImage1dBuffer:
case clang::BuiltinType::Kind::OCLImage2d:
case clang::BuiltinType::Kind::OCLImage2dArray:
case clang::BuiltinType::Kind::OCLImage2dArrayDepth:
case clang::BuiltinType::Kind::OCLImage2dArrayMSAA:
case clang::BuiltinType::Kind::OCLImage2dArrayMSAADepth:
case clang::BuiltinType::Kind::OCLImage2dDepth:
case clang::BuiltinType::Kind::OCLImage2dMSAA:
case clang::BuiltinType::Kind::OCLImage2dMSAADepth:
case clang::BuiltinType::Kind::OCLImage3d:
case clang::BuiltinType::Kind::OCLQueue:
case clang::BuiltinType::Kind::OCLNDRange:
case clang::BuiltinType::Kind::OCLReserveID:
case clang::BuiltinType::Kind::OCLSampler:
case clang::BuiltinType::Kind::OMPArraySection:
case clang::BuiltinType::Kind::Overload:
case clang::BuiltinType::Kind::PseudoObject:
case clang::BuiltinType::Kind::UnknownAny:
break;
}
break;
// All pointer types are represented as unsigned integer encodings.
// We may nee to add a eEncodingPointer if we ever need to know the
// difference
case clang::Type::ObjCObjectPointer:
case clang::Type::BlockPointer:
case clang::Type::Pointer:
case clang::Type::LValueReference:
case clang::Type::RValueReference:
case clang::Type::MemberPointer: return lldb::eEncodingUint;
case clang::Type::Complex:
{
lldb::Encoding encoding = lldb::eEncodingIEEE754;
if (qual_type->isComplexType())
encoding = lldb::eEncodingIEEE754;
else
{
const clang::ComplexType *complex_type = qual_type->getAsComplexIntegerType();
if (complex_type)
encoding = CompilerType(getASTContext(), complex_type->getElementType()).GetEncoding(count);
else
encoding = lldb::eEncodingSint;
}
count = 2;
return encoding;
}
case clang::Type::ObjCInterface: break;
case clang::Type::Record: break;
case clang::Type::Enum: return lldb::eEncodingSint;
case clang::Type::Typedef:
return CompilerType(getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).GetEncoding(count);
case clang::Type::Elaborated:
return CompilerType(getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).GetEncoding(count);
case clang::Type::Paren:
return CompilerType(getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).GetEncoding(count);
case clang::Type::DependentSizedArray:
case clang::Type::DependentSizedExtVector:
case clang::Type::UnresolvedUsing:
case clang::Type::Attributed:
case clang::Type::TemplateTypeParm:
case clang::Type::SubstTemplateTypeParm:
case clang::Type::SubstTemplateTypeParmPack:
case clang::Type::Auto:
case clang::Type::InjectedClassName:
case clang::Type::DependentName:
case clang::Type::DependentTemplateSpecialization:
case clang::Type::PackExpansion:
case clang::Type::ObjCObject:
case clang::Type::TypeOfExpr:
case clang::Type::TypeOf:
case clang::Type::Decltype:
case clang::Type::TemplateSpecialization:
case clang::Type::Atomic:
case clang::Type::Adjusted:
break;
// pointer type decayed from an array or function type.
case clang::Type::Decayed:
break;
}
count = 0;
return lldb::eEncodingInvalid;
}
lldb::Format
ClangASTContext::GetFormat (lldb::opaque_compiler_type_t type)
{
if (!type)
return lldb::eFormatDefault;
clang::QualType qual_type(GetCanonicalQualType(type));
switch (qual_type->getTypeClass())
{
case clang::Type::UnaryTransform:
break;
case clang::Type::FunctionNoProto:
case clang::Type::FunctionProto:
break;
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
break;
case clang::Type::ConstantArray:
return lldb::eFormatVoid; // no value
case clang::Type::ExtVector:
case clang::Type::Vector:
break;
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind())
{
//default: assert(0 && "Unknown builtin type!");
case clang::BuiltinType::UnknownAny:
case clang::BuiltinType::Void:
case clang::BuiltinType::BoundMember:
break;
case clang::BuiltinType::Bool: return lldb::eFormatBoolean;
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U: return lldb::eFormatChar;
case clang::BuiltinType::Char16: return lldb::eFormatUnicode16;
case clang::BuiltinType::Char32: return lldb::eFormatUnicode32;
case clang::BuiltinType::UShort: return lldb::eFormatUnsigned;
case clang::BuiltinType::Short: return lldb::eFormatDecimal;
case clang::BuiltinType::UInt: return lldb::eFormatUnsigned;
case clang::BuiltinType::Int: return lldb::eFormatDecimal;
case clang::BuiltinType::ULong: return lldb::eFormatUnsigned;
case clang::BuiltinType::Long: return lldb::eFormatDecimal;
case clang::BuiltinType::ULongLong: return lldb::eFormatUnsigned;
case clang::BuiltinType::LongLong: return lldb::eFormatDecimal;
case clang::BuiltinType::UInt128: return lldb::eFormatUnsigned;
case clang::BuiltinType::Int128: return lldb::eFormatDecimal;
case clang::BuiltinType::Float: return lldb::eFormatFloat;
case clang::BuiltinType::Double: return lldb::eFormatFloat;
case clang::BuiltinType::LongDouble: return lldb::eFormatFloat;
default:
return lldb::eFormatHex;
}
break;
case clang::Type::ObjCObjectPointer: return lldb::eFormatHex;
case clang::Type::BlockPointer: return lldb::eFormatHex;
case clang::Type::Pointer: return lldb::eFormatHex;
case clang::Type::LValueReference:
case clang::Type::RValueReference: return lldb::eFormatHex;
case clang::Type::MemberPointer: break;
case clang::Type::Complex:
{
if (qual_type->isComplexType())
return lldb::eFormatComplex;
else
return lldb::eFormatComplexInteger;
}
case clang::Type::ObjCInterface: break;
case clang::Type::Record: break;
case clang::Type::Enum: return lldb::eFormatEnum;
case clang::Type::Typedef:
return CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).GetFormat();
case clang::Type::Auto:
return CompilerType (getASTContext(), llvm::cast<clang::AutoType>(qual_type)->desugar()).GetFormat();
case clang::Type::Paren:
return CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).GetFormat();
case clang::Type::Elaborated:
return CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).GetFormat();
case clang::Type::DependentSizedArray:
case clang::Type::DependentSizedExtVector:
case clang::Type::UnresolvedUsing:
case clang::Type::Attributed:
case clang::Type::TemplateTypeParm:
case clang::Type::SubstTemplateTypeParm:
case clang::Type::SubstTemplateTypeParmPack:
case clang::Type::InjectedClassName:
case clang::Type::DependentName:
case clang::Type::DependentTemplateSpecialization:
case clang::Type::PackExpansion:
case clang::Type::ObjCObject:
case clang::Type::TypeOfExpr:
case clang::Type::TypeOf:
case clang::Type::Decltype:
case clang::Type::TemplateSpecialization:
case clang::Type::Atomic:
case clang::Type::Adjusted:
break;
// pointer type decayed from an array or function type.
case clang::Type::Decayed:
break;
}
// We don't know hot to display this type...
return lldb::eFormatBytes;
}
static bool
ObjCDeclHasIVars (clang::ObjCInterfaceDecl *class_interface_decl, bool check_superclass)
{
while (class_interface_decl)
{
if (class_interface_decl->ivar_size() > 0)
return true;
if (check_superclass)
class_interface_decl = class_interface_decl->getSuperClass();
else
break;
}
return false;
}
uint32_t
ClangASTContext::GetNumChildren (lldb::opaque_compiler_type_t type, bool omit_empty_base_classes)
{
if (!type)
return 0;
uint32_t num_children = 0;
clang::QualType qual_type(GetQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind())
{
case clang::BuiltinType::ObjCId: // child is Class
case clang::BuiltinType::ObjCClass: // child is Class
num_children = 1;
break;
default:
break;
}
break;
case clang::Type::Complex: return 0;
case clang::Type::Record:
if (GetCompleteQualType (getASTContext(), qual_type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
if (omit_empty_base_classes)
{
// Check each base classes to see if it or any of its
// base classes contain any fields. This can help
// limit the noise in variable views by not having to
// show base classes that contain no members.
clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
const clang::CXXRecordDecl *base_class_decl = llvm::cast<clang::CXXRecordDecl>(base_class->getType()->getAs<clang::RecordType>()->getDecl());
// Skip empty base classes
if (ClangASTContext::RecordHasFields(base_class_decl) == false)
continue;
num_children++;
}
}
else
{
// Include all base classes
num_children += cxx_record_decl->getNumBases();
}
}
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field)
++num_children;
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteQualType (getASTContext(), qual_type))
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass();
if (superclass_interface_decl)
{
if (omit_empty_base_classes)
{
if (ObjCDeclHasIVars (superclass_interface_decl, true))
++num_children;
}
else
++num_children;
}
num_children += class_interface_decl->ivar_size();
}
}
}
break;
case clang::Type::ObjCObjectPointer:
{
const clang::ObjCObjectPointerType *pointer_type = llvm::cast<clang::ObjCObjectPointerType>(qual_type.getTypePtr());
clang::QualType pointee_type = pointer_type->getPointeeType();
uint32_t num_pointee_children = CompilerType (getASTContext(),pointee_type).GetNumChildren (omit_empty_base_classes);
// If this type points to a simple type, then it has 1 child
if (num_pointee_children == 0)
num_children = 1;
else
num_children = num_pointee_children;
}
break;
case clang::Type::Vector:
case clang::Type::ExtVector:
num_children = llvm::cast<clang::VectorType>(qual_type.getTypePtr())->getNumElements();
break;
case clang::Type::ConstantArray:
num_children = llvm::cast<clang::ConstantArrayType>(qual_type.getTypePtr())->getSize().getLimitedValue();
break;
case clang::Type::Pointer:
{
const clang::PointerType *pointer_type = llvm::cast<clang::PointerType>(qual_type.getTypePtr());
clang::QualType pointee_type (pointer_type->getPointeeType());
uint32_t num_pointee_children = CompilerType (getASTContext(),pointee_type).GetNumChildren (omit_empty_base_classes);
if (num_pointee_children == 0)
{
// We have a pointer to a pointee type that claims it has no children.
// We will want to look at
num_children = GetNumPointeeChildren (pointee_type);
}
else
num_children = num_pointee_children;
}
break;
case clang::Type::LValueReference:
case clang::Type::RValueReference:
{
const clang::ReferenceType *reference_type = llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
clang::QualType pointee_type = reference_type->getPointeeType();
uint32_t num_pointee_children = CompilerType (getASTContext(), pointee_type).GetNumChildren (omit_empty_base_classes);
// If this type points to a simple type, then it has 1 child
if (num_pointee_children == 0)
num_children = 1;
else
num_children = num_pointee_children;
}
break;
case clang::Type::Typedef:
num_children = CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).GetNumChildren (omit_empty_base_classes);
break;
case clang::Type::Elaborated:
num_children = CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).GetNumChildren (omit_empty_base_classes);
break;
case clang::Type::Paren:
num_children = CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).GetNumChildren (omit_empty_base_classes);
break;
default:
break;
}
return num_children;
}
CompilerType
ClangASTContext::GetBuiltinTypeByName (const ConstString &name)
{
return GetBasicType (GetBasicTypeEnumeration (name));
}
lldb::BasicType
ClangASTContext::GetBasicTypeEnumeration (lldb::opaque_compiler_type_t type)
{
if (type)
{
clang::QualType qual_type(GetQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
if (type_class == clang::Type::Builtin)
{
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind())
{
case clang::BuiltinType::Void: return eBasicTypeVoid;
case clang::BuiltinType::Bool: return eBasicTypeBool;
case clang::BuiltinType::Char_S: return eBasicTypeSignedChar;
case clang::BuiltinType::Char_U: return eBasicTypeUnsignedChar;
case clang::BuiltinType::Char16: return eBasicTypeChar16;
case clang::BuiltinType::Char32: return eBasicTypeChar32;
case clang::BuiltinType::UChar: return eBasicTypeUnsignedChar;
case clang::BuiltinType::SChar: return eBasicTypeSignedChar;
case clang::BuiltinType::WChar_S: return eBasicTypeSignedWChar;
case clang::BuiltinType::WChar_U: return eBasicTypeUnsignedWChar;
case clang::BuiltinType::Short: return eBasicTypeShort;
case clang::BuiltinType::UShort: return eBasicTypeUnsignedShort;
case clang::BuiltinType::Int: return eBasicTypeInt;
case clang::BuiltinType::UInt: return eBasicTypeUnsignedInt;
case clang::BuiltinType::Long: return eBasicTypeLong;
case clang::BuiltinType::ULong: return eBasicTypeUnsignedLong;
case clang::BuiltinType::LongLong: return eBasicTypeLongLong;
case clang::BuiltinType::ULongLong: return eBasicTypeUnsignedLongLong;
case clang::BuiltinType::Int128: return eBasicTypeInt128;
case clang::BuiltinType::UInt128: return eBasicTypeUnsignedInt128;
case clang::BuiltinType::Half: return eBasicTypeHalf;
case clang::BuiltinType::Float: return eBasicTypeFloat;
case clang::BuiltinType::Double: return eBasicTypeDouble;
case clang::BuiltinType::LongDouble:return eBasicTypeLongDouble;
case clang::BuiltinType::NullPtr: return eBasicTypeNullPtr;
case clang::BuiltinType::ObjCId: return eBasicTypeObjCID;
case clang::BuiltinType::ObjCClass: return eBasicTypeObjCClass;
case clang::BuiltinType::ObjCSel: return eBasicTypeObjCSel;
default:
return eBasicTypeOther;
}
}
}
return eBasicTypeInvalid;
}
void
ClangASTContext::ForEachEnumerator (lldb::opaque_compiler_type_t type, std::function <bool (const CompilerType &integer_type, const ConstString &name, const llvm::APSInt &value)> const &callback)
{
const clang::EnumType *enum_type = llvm::dyn_cast<clang::EnumType>(GetCanonicalQualType(type));
if (enum_type)
{
const clang::EnumDecl *enum_decl = enum_type->getDecl();
if (enum_decl)
{
CompilerType integer_type(this, enum_decl->getIntegerType().getAsOpaquePtr());
clang::EnumDecl::enumerator_iterator enum_pos, enum_end_pos;
for (enum_pos = enum_decl->enumerator_begin(), enum_end_pos = enum_decl->enumerator_end(); enum_pos != enum_end_pos; ++enum_pos)
{
ConstString name(enum_pos->getNameAsString().c_str());
if (!callback (integer_type, name, enum_pos->getInitVal()))
break;
}
}
}
}
#pragma mark Aggregate Types
uint32_t
ClangASTContext::GetNumFields (lldb::opaque_compiler_type_t type)
{
if (!type)
return 0;
uint32_t count = 0;
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::RecordType *record_type = llvm::dyn_cast<clang::RecordType>(qual_type.getTypePtr());
if (record_type)
{
clang::RecordDecl *record_decl = record_type->getDecl();
if (record_decl)
{
uint32_t field_idx = 0;
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field)
++field_idx;
count = field_idx;
}
}
}
break;
case clang::Type::Typedef:
count = CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).GetNumFields();
break;
case clang::Type::Elaborated:
count = CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).GetNumFields();
break;
case clang::Type::Paren:
count = CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).GetNumFields();
break;
case clang::Type::ObjCObjectPointer:
if (GetCompleteType(type))
{
const clang::ObjCObjectPointerType *objc_class_type = qual_type->getAsObjCInterfacePointerType();
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterfaceDecl();
if (class_interface_decl)
count = class_interface_decl->ivar_size();
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteType(type))
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
count = class_interface_decl->ivar_size();
}
}
break;
default:
break;
}
return count;
}
static lldb::opaque_compiler_type_t
GetObjCFieldAtIndex (clang::ASTContext *ast,
clang::ObjCInterfaceDecl *class_interface_decl,
size_t idx,
std::string& name,
uint64_t *bit_offset_ptr,
uint32_t *bitfield_bit_size_ptr,
bool *is_bitfield_ptr)
{
if (class_interface_decl)
{
if (idx < (class_interface_decl->ivar_size()))
{
clang::ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end();
uint32_t ivar_idx = 0;
for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos, ++ivar_idx)
{
if (ivar_idx == idx)
{
const clang::ObjCIvarDecl* ivar_decl = *ivar_pos;
clang::QualType ivar_qual_type(ivar_decl->getType());
name.assign(ivar_decl->getNameAsString());
if (bit_offset_ptr)
{
const clang::ASTRecordLayout &interface_layout = ast->getASTObjCInterfaceLayout(class_interface_decl);
*bit_offset_ptr = interface_layout.getFieldOffset (ivar_idx);
}
const bool is_bitfield = ivar_pos->isBitField();
if (bitfield_bit_size_ptr)
{
*bitfield_bit_size_ptr = 0;
if (is_bitfield && ast)
{
clang::Expr *bitfield_bit_size_expr = ivar_pos->getBitWidth();
llvm::APSInt bitfield_apsint;
if (bitfield_bit_size_expr && bitfield_bit_size_expr->EvaluateAsInt(bitfield_apsint, *ast))
{
*bitfield_bit_size_ptr = bitfield_apsint.getLimitedValue();
}
}
}
if (is_bitfield_ptr)
*is_bitfield_ptr = is_bitfield;
return ivar_qual_type.getAsOpaquePtr();
}
}
}
}
return nullptr;
}
CompilerType
ClangASTContext::GetFieldAtIndex (lldb::opaque_compiler_type_t type, size_t idx,
std::string& name,
uint64_t *bit_offset_ptr,
uint32_t *bitfield_bit_size_ptr,
bool *is_bitfield_ptr)
{
if (!type)
return CompilerType();
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
uint32_t field_idx = 0;
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++field_idx)
{
if (idx == field_idx)
{
// Print the member type if requested
// Print the member name and equal sign
name.assign(field->getNameAsString());
// Figure out the type byte size (field_type_info.first) and
// alignment (field_type_info.second) from the AST context.
if (bit_offset_ptr)
{
const clang::ASTRecordLayout &record_layout = getASTContext()->getASTRecordLayout(record_decl);
*bit_offset_ptr = record_layout.getFieldOffset (field_idx);
}
const bool is_bitfield = field->isBitField();
if (bitfield_bit_size_ptr)
{
*bitfield_bit_size_ptr = 0;
if (is_bitfield)
{
clang::Expr *bitfield_bit_size_expr = field->getBitWidth();
llvm::APSInt bitfield_apsint;
if (bitfield_bit_size_expr && bitfield_bit_size_expr->EvaluateAsInt(bitfield_apsint, *getASTContext()))
{
*bitfield_bit_size_ptr = bitfield_apsint.getLimitedValue();
}
}
}
if (is_bitfield_ptr)
*is_bitfield_ptr = is_bitfield;
return CompilerType (getASTContext(), field->getType());
}
}
}
break;
case clang::Type::ObjCObjectPointer:
if (GetCompleteType(type))
{
const clang::ObjCObjectPointerType *objc_class_type = qual_type->getAsObjCInterfacePointerType();
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterfaceDecl();
return CompilerType (this, GetObjCFieldAtIndex(getASTContext(), class_interface_decl, idx, name, bit_offset_ptr, bitfield_bit_size_ptr, is_bitfield_ptr));
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteType(type))
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
return CompilerType (this, GetObjCFieldAtIndex(getASTContext(), class_interface_decl, idx, name, bit_offset_ptr, bitfield_bit_size_ptr, is_bitfield_ptr));
}
}
break;
case clang::Type::Typedef:
return CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).
GetFieldAtIndex (idx,
name,
bit_offset_ptr,
bitfield_bit_size_ptr,
is_bitfield_ptr);
case clang::Type::Elaborated:
return CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).
GetFieldAtIndex (idx,
name,
bit_offset_ptr,
bitfield_bit_size_ptr,
is_bitfield_ptr);
case clang::Type::Paren:
return CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).
GetFieldAtIndex (idx,
name,
bit_offset_ptr,
bitfield_bit_size_ptr,
is_bitfield_ptr);
default:
break;
}
return CompilerType();
}
uint32_t
ClangASTContext::GetNumDirectBaseClasses (lldb::opaque_compiler_type_t type)
{
uint32_t count = 0;
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
count = cxx_record_decl->getNumBases();
}
break;
case clang::Type::ObjCObjectPointer:
count = GetPointeeType(type).GetNumDirectBaseClasses();
break;
case clang::Type::ObjCObject:
if (GetCompleteType(type))
{
const clang::ObjCObjectType *objc_class_type = qual_type->getAsObjCQualifiedInterfaceType();
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl && class_interface_decl->getSuperClass())
count = 1;
}
}
break;
case clang::Type::ObjCInterface:
if (GetCompleteType(type))
{
const clang::ObjCInterfaceType *objc_interface_type = qual_type->getAs<clang::ObjCInterfaceType>();
if (objc_interface_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_interface_type->getInterface();
if (class_interface_decl && class_interface_decl->getSuperClass())
count = 1;
}
}
break;
case clang::Type::Typedef:
count = GetNumDirectBaseClasses(llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr());
break;
case clang::Type::Elaborated:
count = GetNumDirectBaseClasses(llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr());
break;
case clang::Type::Paren:
return GetNumDirectBaseClasses(llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr());
default:
break;
}
return count;
}
uint32_t
ClangASTContext::GetNumVirtualBaseClasses (lldb::opaque_compiler_type_t type)
{
uint32_t count = 0;
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
count = cxx_record_decl->getNumVBases();
}
break;
case clang::Type::Typedef:
count = GetNumVirtualBaseClasses(llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr());
break;
case clang::Type::Elaborated:
count = GetNumVirtualBaseClasses(llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr());
break;
case clang::Type::Paren:
count = GetNumVirtualBaseClasses(llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr());
break;
default:
break;
}
return count;
}
CompilerType
ClangASTContext::GetDirectBaseClassAtIndex (lldb::opaque_compiler_type_t type, size_t idx, uint32_t *bit_offset_ptr)
{
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
uint32_t curr_idx = 0;
clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class, ++curr_idx)
{
if (curr_idx == idx)
{
if (bit_offset_ptr)
{
const clang::ASTRecordLayout &record_layout = getASTContext()->getASTRecordLayout(cxx_record_decl);
const clang::CXXRecordDecl *base_class_decl = llvm::cast<clang::CXXRecordDecl>(base_class->getType()->getAs<clang::RecordType>()->getDecl());
if (base_class->isVirtual())
*bit_offset_ptr = record_layout.getVBaseClassOffset(base_class_decl).getQuantity() * 8;
else
*bit_offset_ptr = record_layout.getBaseClassOffset(base_class_decl).getQuantity() * 8;
}
return CompilerType (this, base_class->getType().getAsOpaquePtr());
}
}
}
}
break;
case clang::Type::ObjCObjectPointer:
return GetPointeeType(type).GetDirectBaseClassAtIndex(idx, bit_offset_ptr);
case clang::Type::ObjCObject:
if (idx == 0 && GetCompleteType(type))
{
const clang::ObjCObjectType *objc_class_type = qual_type->getAsObjCQualifiedInterfaceType();
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass();
if (superclass_interface_decl)
{
if (bit_offset_ptr)
*bit_offset_ptr = 0;
return CompilerType (getASTContext(), getASTContext()->getObjCInterfaceType(superclass_interface_decl));
}
}
}
}
break;
case clang::Type::ObjCInterface:
if (idx == 0 && GetCompleteType(type))
{
const clang::ObjCObjectType *objc_interface_type = qual_type->getAs<clang::ObjCInterfaceType>();
if (objc_interface_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_interface_type->getInterface();
if (class_interface_decl)
{
clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass();
if (superclass_interface_decl)
{
if (bit_offset_ptr)
*bit_offset_ptr = 0;
return CompilerType (getASTContext(), getASTContext()->getObjCInterfaceType(superclass_interface_decl));
}
}
}
}
break;
case clang::Type::Typedef:
return GetDirectBaseClassAtIndex (llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), idx, bit_offset_ptr);
case clang::Type::Elaborated:
return GetDirectBaseClassAtIndex (llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(), idx, bit_offset_ptr);
case clang::Type::Paren:
return GetDirectBaseClassAtIndex (llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr(), idx, bit_offset_ptr);
default:
break;
}
return CompilerType();
}
CompilerType
ClangASTContext::GetVirtualBaseClassAtIndex (lldb::opaque_compiler_type_t type,
size_t idx,
uint32_t *bit_offset_ptr)
{
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
uint32_t curr_idx = 0;
clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->vbases_begin(), base_class_end = cxx_record_decl->vbases_end();
base_class != base_class_end;
++base_class, ++curr_idx)
{
if (curr_idx == idx)
{
if (bit_offset_ptr)
{
const clang::ASTRecordLayout &record_layout = getASTContext()->getASTRecordLayout(cxx_record_decl);
const clang::CXXRecordDecl *base_class_decl = llvm::cast<clang::CXXRecordDecl>(base_class->getType()->getAs<clang::RecordType>()->getDecl());
*bit_offset_ptr = record_layout.getVBaseClassOffset(base_class_decl).getQuantity() * 8;
}
return CompilerType (this, base_class->getType().getAsOpaquePtr());
}
}
}
}
break;
case clang::Type::Typedef:
return GetVirtualBaseClassAtIndex (llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), idx, bit_offset_ptr);
case clang::Type::Elaborated:
return GetVirtualBaseClassAtIndex (llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(), idx, bit_offset_ptr);
case clang::Type::Paren:
return GetVirtualBaseClassAtIndex (llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr(), idx, bit_offset_ptr);
default:
break;
}
return CompilerType();
}
// If a pointer to a pointee type (the clang_type arg) says that it has no
// children, then we either need to trust it, or override it and return a
// different result. For example, an "int *" has one child that is an integer,
// but a function pointer doesn't have any children. Likewise if a Record type
// claims it has no children, then there really is nothing to show.
uint32_t
ClangASTContext::GetNumPointeeChildren (clang::QualType type)
{
if (type.isNull())
return 0;
clang::QualType qual_type(type.getCanonicalType());
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind())
{
case clang::BuiltinType::UnknownAny:
case clang::BuiltinType::Void:
case clang::BuiltinType::NullPtr:
case clang::BuiltinType::OCLEvent:
case clang::BuiltinType::OCLImage1d:
case clang::BuiltinType::OCLImage1dArray:
case clang::BuiltinType::OCLImage1dBuffer:
case clang::BuiltinType::OCLImage2d:
case clang::BuiltinType::OCLImage2dArray:
case clang::BuiltinType::OCLImage3d:
case clang::BuiltinType::OCLSampler:
return 0;
case clang::BuiltinType::Bool:
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U:
case clang::BuiltinType::Char16:
case clang::BuiltinType::Char32:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128:
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128:
case clang::BuiltinType::Float:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble:
case clang::BuiltinType::Dependent:
case clang::BuiltinType::Overload:
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
case clang::BuiltinType::ObjCSel:
case clang::BuiltinType::BoundMember:
case clang::BuiltinType::Half:
case clang::BuiltinType::ARCUnbridgedCast:
case clang::BuiltinType::PseudoObject:
case clang::BuiltinType::BuiltinFn:
case clang::BuiltinType::OMPArraySection:
return 1;
default:
return 0;
}
break;
case clang::Type::Complex: return 1;
case clang::Type::Pointer: return 1;
case clang::Type::BlockPointer: return 0; // If block pointers don't have debug info, then no children for them
case clang::Type::LValueReference: return 1;
case clang::Type::RValueReference: return 1;
case clang::Type::MemberPointer: return 0;
case clang::Type::ConstantArray: return 0;
case clang::Type::IncompleteArray: return 0;
case clang::Type::VariableArray: return 0;
case clang::Type::DependentSizedArray: return 0;
case clang::Type::DependentSizedExtVector: return 0;
case clang::Type::Vector: return 0;
case clang::Type::ExtVector: return 0;
case clang::Type::FunctionProto: return 0; // When we function pointers, they have no children...
case clang::Type::FunctionNoProto: return 0; // When we function pointers, they have no children...
case clang::Type::UnresolvedUsing: return 0;
case clang::Type::Paren: return GetNumPointeeChildren (llvm::cast<clang::ParenType>(qual_type)->desugar());
case clang::Type::Typedef: return GetNumPointeeChildren (llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType());
case clang::Type::Elaborated: return GetNumPointeeChildren (llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType());
case clang::Type::TypeOfExpr: return 0;
case clang::Type::TypeOf: return 0;
case clang::Type::Decltype: return 0;
case clang::Type::Record: return 0;
case clang::Type::Enum: return 1;
case clang::Type::TemplateTypeParm: return 1;
case clang::Type::SubstTemplateTypeParm: return 1;
case clang::Type::TemplateSpecialization: return 1;
case clang::Type::InjectedClassName: return 0;
case clang::Type::DependentName: return 1;
case clang::Type::DependentTemplateSpecialization: return 1;
case clang::Type::ObjCObject: return 0;
case clang::Type::ObjCInterface: return 0;
case clang::Type::ObjCObjectPointer: return 1;
default:
break;
}
return 0;
}
CompilerType
ClangASTContext::GetChildCompilerTypeAtIndex (lldb::opaque_compiler_type_t type,
ExecutionContext *exe_ctx,
size_t idx,
bool transparent_pointers,
bool omit_empty_base_classes,
bool ignore_array_bounds,
std::string& child_name,
uint32_t &child_byte_size,
int32_t &child_byte_offset,
uint32_t &child_bitfield_bit_size,
uint32_t &child_bitfield_bit_offset,
bool &child_is_base_class,
bool &child_is_deref_of_parent,
ValueObject *valobj)
{
if (!type)
return CompilerType();
clang::QualType parent_qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass parent_type_class = parent_qual_type->getTypeClass();
child_bitfield_bit_size = 0;
child_bitfield_bit_offset = 0;
child_is_base_class = false;
const bool idx_is_valid = idx < GetNumChildren (type, omit_empty_base_classes);
uint32_t bit_offset;
switch (parent_type_class)
{
case clang::Type::Builtin:
if (idx_is_valid)
{
switch (llvm::cast<clang::BuiltinType>(parent_qual_type)->getKind())
{
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
child_name = "isa";
child_byte_size = getASTContext()->getTypeSize(getASTContext()->ObjCBuiltinClassTy) / CHAR_BIT;
return CompilerType (getASTContext(), getASTContext()->ObjCBuiltinClassTy);
default:
break;
}
}
break;
case clang::Type::Record:
if (idx_is_valid && GetCompleteType(type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(parent_qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
const clang::ASTRecordLayout &record_layout = getASTContext()->getASTRecordLayout(record_decl);
uint32_t child_idx = 0;
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
// We might have base classes to print out first
clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
const clang::CXXRecordDecl *base_class_decl = nullptr;
// Skip empty base classes
if (omit_empty_base_classes)
{
base_class_decl = llvm::cast<clang::CXXRecordDecl>(base_class->getType()->getAs<clang::RecordType>()->getDecl());
if (ClangASTContext::RecordHasFields(base_class_decl) == false)
continue;
}
if (idx == child_idx)
{
if (base_class_decl == nullptr)
base_class_decl = llvm::cast<clang::CXXRecordDecl>(base_class->getType()->getAs<clang::RecordType>()->getDecl());
if (base_class->isVirtual())
{
bool handled = false;
if (valobj)
{
Error err;
AddressType addr_type = eAddressTypeInvalid;
lldb::addr_t vtable_ptr_addr = valobj->GetCPPVTableAddress(addr_type);
if (vtable_ptr_addr != LLDB_INVALID_ADDRESS && addr_type == eAddressTypeLoad)
{
ExecutionContext exe_ctx (valobj->GetExecutionContextRef());
Process *process = exe_ctx.GetProcessPtr();
if (process)
{
clang::VTableContextBase *vtable_ctx = getASTContext()->getVTableContext();
if (vtable_ctx)
{
if (vtable_ctx->isMicrosoft())
{
clang::MicrosoftVTableContext *msoft_vtable_ctx = static_cast<clang::MicrosoftVTableContext *>(vtable_ctx);
if (vtable_ptr_addr)
{
const lldb::addr_t vbtable_ptr_addr = vtable_ptr_addr + record_layout.getVBPtrOffset().getQuantity();
const lldb::addr_t vbtable_ptr = process->ReadPointerFromMemory(vbtable_ptr_addr, err);
if (vbtable_ptr != LLDB_INVALID_ADDRESS)
{
// Get the index into the virtual base table. The index is the index in uint32_t from vbtable_ptr
const unsigned vbtable_index = msoft_vtable_ctx->getVBTableIndex(cxx_record_decl, base_class_decl);
const lldb::addr_t base_offset_addr = vbtable_ptr + vbtable_index * 4;
const uint32_t base_offset = process->ReadUnsignedIntegerFromMemory(base_offset_addr, 4, UINT32_MAX, err);
if (base_offset != UINT32_MAX)
{
handled = true;
bit_offset = base_offset * 8;
}
}
}
}
else
{
clang::ItaniumVTableContext *itanium_vtable_ctx = static_cast<clang::ItaniumVTableContext *>(vtable_ctx);
if (vtable_ptr_addr)
{
const lldb::addr_t vtable_ptr = process->ReadPointerFromMemory(vtable_ptr_addr, err);
if (vtable_ptr != LLDB_INVALID_ADDRESS)
{
clang::CharUnits base_offset_offset = itanium_vtable_ctx->getVirtualBaseOffsetOffset(cxx_record_decl, base_class_decl);
const lldb::addr_t base_offset_addr = vtable_ptr + base_offset_offset.getQuantity();
const uint32_t base_offset = process->ReadUnsignedIntegerFromMemory(base_offset_addr, 4, UINT32_MAX, err);
if (base_offset != UINT32_MAX)
{
handled = true;
bit_offset = base_offset * 8;
}
}
}
}
}
}
}
}
if (!handled)
bit_offset = record_layout.getVBaseClassOffset(base_class_decl).getQuantity() * 8;
}
else
bit_offset = record_layout.getBaseClassOffset(base_class_decl).getQuantity() * 8;
// Base classes should be a multiple of 8 bits in size
child_byte_offset = bit_offset/8;
CompilerType base_class_clang_type(getASTContext(), base_class->getType());
child_name = base_class_clang_type.GetTypeName().AsCString("");
uint64_t base_class_clang_type_bit_size = base_class_clang_type.GetBitSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL);
// Base classes bit sizes should be a multiple of 8 bits in size
assert (base_class_clang_type_bit_size % 8 == 0);
child_byte_size = base_class_clang_type_bit_size / 8;
child_is_base_class = true;
return base_class_clang_type;
}
// We don't increment the child index in the for loop since we might
// be skipping empty base classes
++child_idx;
}
}
// Make sure index is in range...
uint32_t field_idx = 0;
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++field_idx, ++child_idx)
{
if (idx == child_idx)
{
// Print the member type if requested
// Print the member name and equal sign
child_name.assign(field->getNameAsString().c_str());
// Figure out the type byte size (field_type_info.first) and
// alignment (field_type_info.second) from the AST context.
CompilerType field_clang_type (getASTContext(), field->getType());
assert(field_idx < record_layout.getFieldCount());
child_byte_size = field_clang_type.GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL);
// Figure out the field offset within the current struct/union/class type
bit_offset = record_layout.getFieldOffset (field_idx);
child_byte_offset = bit_offset / 8;
if (ClangASTContext::FieldIsBitfield (getASTContext(), *field, child_bitfield_bit_size))
child_bitfield_bit_offset = bit_offset % 8;
return field_clang_type;
}
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (idx_is_valid && GetCompleteType(type))
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(parent_qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
uint32_t child_idx = 0;
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
const clang::ASTRecordLayout &interface_layout = getASTContext()->getASTObjCInterfaceLayout(class_interface_decl);
clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass();
if (superclass_interface_decl)
{
if (omit_empty_base_classes)
{
CompilerType base_class_clang_type (getASTContext(), getASTContext()->getObjCInterfaceType(superclass_interface_decl));
if (base_class_clang_type.GetNumChildren(omit_empty_base_classes) > 0)
{
if (idx == 0)
{
clang::QualType ivar_qual_type(getASTContext()->getObjCInterfaceType(superclass_interface_decl));
child_name.assign(superclass_interface_decl->getNameAsString().c_str());
clang::TypeInfo ivar_type_info = getASTContext()->getTypeInfo(ivar_qual_type.getTypePtr());
child_byte_size = ivar_type_info.Width / 8;
child_byte_offset = 0;
child_is_base_class = true;
return CompilerType (getASTContext(), ivar_qual_type);
}
++child_idx;
}
}
else
++child_idx;
}
const uint32_t superclass_idx = child_idx;
if (idx < (child_idx + class_interface_decl->ivar_size()))
{
clang::ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end();
for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos)
{
if (child_idx == idx)
{
clang::ObjCIvarDecl* ivar_decl = *ivar_pos;
clang::QualType ivar_qual_type(ivar_decl->getType());
child_name.assign(ivar_decl->getNameAsString().c_str());
clang::TypeInfo ivar_type_info = getASTContext()->getTypeInfo(ivar_qual_type.getTypePtr());
child_byte_size = ivar_type_info.Width / 8;
// Figure out the field offset within the current struct/union/class type
// For ObjC objects, we can't trust the bit offset we get from the Clang AST, since
// that doesn't account for the space taken up by unbacked properties, or from
// the changing size of base classes that are newer than this class.
// So if we have a process around that we can ask about this object, do so.
child_byte_offset = LLDB_INVALID_IVAR_OFFSET;
Process *process = nullptr;
if (exe_ctx)
process = exe_ctx->GetProcessPtr();
if (process)
{
ObjCLanguageRuntime *objc_runtime = process->GetObjCLanguageRuntime();
if (objc_runtime != nullptr)
{
CompilerType parent_ast_type (getASTContext(), parent_qual_type);
child_byte_offset = objc_runtime->GetByteOffsetForIvar (parent_ast_type, ivar_decl->getNameAsString().c_str());
}
}
// Setting this to UINT32_MAX to make sure we don't compute it twice...
bit_offset = UINT32_MAX;
if (child_byte_offset == static_cast<int32_t>(LLDB_INVALID_IVAR_OFFSET))
{
bit_offset = interface_layout.getFieldOffset (child_idx - superclass_idx);
child_byte_offset = bit_offset / 8;
}
// Note, the ObjC Ivar Byte offset is just that, it doesn't account for the bit offset
// of a bitfield within its containing object. So regardless of where we get the byte
// offset from, we still need to get the bit offset for bitfields from the layout.
if (ClangASTContext::FieldIsBitfield (getASTContext(), ivar_decl, child_bitfield_bit_size))
{
if (bit_offset == UINT32_MAX)
bit_offset = interface_layout.getFieldOffset (child_idx - superclass_idx);
child_bitfield_bit_offset = bit_offset % 8;
}
return CompilerType (getASTContext(), ivar_qual_type);
}
++child_idx;
}
}
}
}
}
break;
case clang::Type::ObjCObjectPointer:
if (idx_is_valid)
{
CompilerType pointee_clang_type (GetPointeeType(type));
if (transparent_pointers && pointee_clang_type.IsAggregateType())
{
child_is_deref_of_parent = false;
bool tmp_child_is_deref_of_parent = false;
return pointee_clang_type.GetChildCompilerTypeAtIndex (exe_ctx,
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
tmp_child_is_deref_of_parent,
valobj);
}
else
{
child_is_deref_of_parent = true;
const char *parent_name = valobj ? valobj->GetName().GetCString() : NULL;
if (parent_name)
{
child_name.assign(1, '*');
child_name += parent_name;
}
// We have a pointer to an simple type
if (idx == 0 && pointee_clang_type.GetCompleteType())
{
child_byte_size = pointee_clang_type.GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL);
child_byte_offset = 0;
return pointee_clang_type;
}
}
}
break;
case clang::Type::Vector:
case clang::Type::ExtVector:
if (idx_is_valid)
{
const clang::VectorType *array = llvm::cast<clang::VectorType>(parent_qual_type.getTypePtr());
if (array)
{
CompilerType element_type (getASTContext(), array->getElementType());
if (element_type.GetCompleteType())
{
char element_name[64];
::snprintf (element_name, sizeof (element_name), "[%" PRIu64 "]", static_cast<uint64_t>(idx));
child_name.assign(element_name);
child_byte_size = element_type.GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL);
child_byte_offset = (int32_t)idx * (int32_t)child_byte_size;
return element_type;
}
}
}
break;
case clang::Type::ConstantArray:
case clang::Type::IncompleteArray:
if (ignore_array_bounds || idx_is_valid)
{
const clang::ArrayType *array = GetQualType(type)->getAsArrayTypeUnsafe();
if (array)
{
CompilerType element_type (getASTContext(), array->getElementType());
if (element_type.GetCompleteType())
{
char element_name[64];
::snprintf (element_name, sizeof (element_name), "[%" PRIu64 "]", static_cast<uint64_t>(idx));
child_name.assign(element_name);
child_byte_size = element_type.GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL);
child_byte_offset = (int32_t)idx * (int32_t)child_byte_size;
return element_type;
}
}
}
break;
case clang::Type::Pointer:
if (idx_is_valid)
{
CompilerType pointee_clang_type (GetPointeeType(type));
// Don't dereference "void *" pointers
if (pointee_clang_type.IsVoidType())
return CompilerType();
if (transparent_pointers && pointee_clang_type.IsAggregateType ())
{
child_is_deref_of_parent = false;
bool tmp_child_is_deref_of_parent = false;
return pointee_clang_type.GetChildCompilerTypeAtIndex (exe_ctx,
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
tmp_child_is_deref_of_parent,
valobj);
}
else
{
child_is_deref_of_parent = true;
const char *parent_name = valobj ? valobj->GetName().GetCString() : NULL;
if (parent_name)
{
child_name.assign(1, '*');
child_name += parent_name;
}
// We have a pointer to an simple type
if (idx == 0)
{
child_byte_size = pointee_clang_type.GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL);
child_byte_offset = 0;
return pointee_clang_type;
}
}
}
break;
case clang::Type::LValueReference:
case clang::Type::RValueReference:
if (idx_is_valid)
{
const clang::ReferenceType *reference_type = llvm::cast<clang::ReferenceType>(parent_qual_type.getTypePtr());
CompilerType pointee_clang_type (getASTContext(), reference_type->getPointeeType());
if (transparent_pointers && pointee_clang_type.IsAggregateType ())
{
child_is_deref_of_parent = false;
bool tmp_child_is_deref_of_parent = false;
return pointee_clang_type.GetChildCompilerTypeAtIndex (exe_ctx,
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
tmp_child_is_deref_of_parent,
valobj);
}
else
{
const char *parent_name = valobj ? valobj->GetName().GetCString() : NULL;
if (parent_name)
{
child_name.assign(1, '&');
child_name += parent_name;
}
// We have a pointer to an simple type
if (idx == 0)
{
child_byte_size = pointee_clang_type.GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL);
child_byte_offset = 0;
return pointee_clang_type;
}
}
}
break;
case clang::Type::Typedef:
{
CompilerType typedefed_clang_type (getASTContext(), llvm::cast<clang::TypedefType>(parent_qual_type)->getDecl()->getUnderlyingType());
return typedefed_clang_type.GetChildCompilerTypeAtIndex (exe_ctx,
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
child_is_deref_of_parent,
valobj);
}
break;
case clang::Type::Elaborated:
{
CompilerType elaborated_clang_type (getASTContext(), llvm::cast<clang::ElaboratedType>(parent_qual_type)->getNamedType());
return elaborated_clang_type.GetChildCompilerTypeAtIndex (exe_ctx,
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
child_is_deref_of_parent,
valobj);
}
case clang::Type::Paren:
{
CompilerType paren_clang_type (getASTContext(), llvm::cast<clang::ParenType>(parent_qual_type)->desugar());
return paren_clang_type.GetChildCompilerTypeAtIndex (exe_ctx,
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
child_is_deref_of_parent,
valobj);
}
default:
break;
}
return CompilerType();
}
static uint32_t
GetIndexForRecordBase
(
const clang::RecordDecl *record_decl,
const clang::CXXBaseSpecifier *base_spec,
bool omit_empty_base_classes
)
{
uint32_t child_idx = 0;
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
// const char *super_name = record_decl->getNameAsCString();
// const char *base_name = base_spec->getType()->getAs<clang::RecordType>()->getDecl()->getNameAsCString();
// printf ("GetIndexForRecordChild (%s, %s)\n", super_name, base_name);
//
if (cxx_record_decl)
{
clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
if (omit_empty_base_classes)
{
if (BaseSpecifierIsEmpty (base_class))
continue;
}
// printf ("GetIndexForRecordChild (%s, %s) base[%u] = %s\n", super_name, base_name,
// child_idx,
// base_class->getType()->getAs<clang::RecordType>()->getDecl()->getNameAsCString());
//
//
if (base_class == base_spec)
return child_idx;
++child_idx;
}
}
return UINT32_MAX;
}
static uint32_t
GetIndexForRecordChild (const clang::RecordDecl *record_decl,
clang::NamedDecl *canonical_decl,
bool omit_empty_base_classes)
{
uint32_t child_idx = ClangASTContext::GetNumBaseClasses (llvm::dyn_cast<clang::CXXRecordDecl>(record_decl),
omit_empty_base_classes);
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end();
field != field_end;
++field, ++child_idx)
{
if (field->getCanonicalDecl() == canonical_decl)
return child_idx;
}
return UINT32_MAX;
}
// Look for a child member (doesn't include base classes, but it does include
// their members) in the type hierarchy. Returns an index path into "clang_type"
// on how to reach the appropriate member.
//
// class A
// {
// public:
// int m_a;
// int m_b;
// };
//
// class B
// {
// };
//
// class C :
// public B,
// public A
// {
// };
//
// If we have a clang type that describes "class C", and we wanted to looked
// "m_b" in it:
//
// With omit_empty_base_classes == false we would get an integer array back with:
// { 1, 1 }
// The first index 1 is the child index for "class A" within class C
// The second index 1 is the child index for "m_b" within class A
//
// With omit_empty_base_classes == true we would get an integer array back with:
// { 0, 1 }
// The first index 0 is the child index for "class A" within class C (since class B doesn't have any members it doesn't count)
// The second index 1 is the child index for "m_b" within class A
size_t
ClangASTContext::GetIndexOfChildMemberWithName (lldb::opaque_compiler_type_t type, const char *name,
bool omit_empty_base_classes,
std::vector<uint32_t>& child_indexes)
{
if (type && name && name[0])
{
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
uint32_t child_idx = 0;
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
// Try and find a field that matches NAME
clang::RecordDecl::field_iterator field, field_end;
llvm::StringRef name_sref(name);
for (field = record_decl->field_begin(), field_end = record_decl->field_end();
field != field_end;
++field, ++child_idx)
{
llvm::StringRef field_name = field->getName();
if (field_name.empty())
{
CompilerType field_type(getASTContext(),field->getType());
child_indexes.push_back(child_idx);
if (field_type.GetIndexOfChildMemberWithName(name, omit_empty_base_classes, child_indexes))
return child_indexes.size();
child_indexes.pop_back();
}
else if (field_name.equals (name_sref))
{
// We have to add on the number of base classes to this index!
child_indexes.push_back (child_idx + ClangASTContext::GetNumBaseClasses (cxx_record_decl, omit_empty_base_classes));
return child_indexes.size();
}
}
if (cxx_record_decl)
{
const clang::RecordDecl *parent_record_decl = cxx_record_decl;
//printf ("parent = %s\n", parent_record_decl->getNameAsCString());
//const Decl *root_cdecl = cxx_record_decl->getCanonicalDecl();
// Didn't find things easily, lets let clang do its thang...
clang::IdentifierInfo & ident_ref = getASTContext()->Idents.get(name_sref);
clang::DeclarationName decl_name(&ident_ref);
clang::CXXBasePaths paths;
if (cxx_record_decl->lookupInBases([decl_name](const clang::CXXBaseSpecifier *specifier, clang::CXXBasePath &path) {
return clang::CXXRecordDecl::FindOrdinaryMember(specifier, path, decl_name);
},
paths))
{
clang::CXXBasePaths::const_paths_iterator path, path_end = paths.end();
for (path = paths.begin(); path != path_end; ++path)
{
const size_t num_path_elements = path->size();
for (size_t e=0; e<num_path_elements; ++e)
{
clang::CXXBasePathElement elem = (*path)[e];
child_idx = GetIndexForRecordBase (parent_record_decl, elem.Base, omit_empty_base_classes);
if (child_idx == UINT32_MAX)
{
child_indexes.clear();
return 0;
}
else
{
child_indexes.push_back (child_idx);
parent_record_decl = llvm::cast<clang::RecordDecl>(elem.Base->getType()->getAs<clang::RecordType>()->getDecl());
}
}
for (clang::NamedDecl *path_decl : path->Decls)
{
child_idx = GetIndexForRecordChild (parent_record_decl, path_decl, omit_empty_base_classes);
if (child_idx == UINT32_MAX)
{
child_indexes.clear();
return 0;
}
else
{
child_indexes.push_back (child_idx);
}
}
}
return child_indexes.size();
}
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteType(type))
{
llvm::StringRef name_sref(name);
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
uint32_t child_idx = 0;
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
clang::ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end();
clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass();
for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos, ++child_idx)
{
const clang::ObjCIvarDecl* ivar_decl = *ivar_pos;
if (ivar_decl->getName().equals (name_sref))
{
if ((!omit_empty_base_classes && superclass_interface_decl) ||
( omit_empty_base_classes && ObjCDeclHasIVars (superclass_interface_decl, true)))
++child_idx;
child_indexes.push_back (child_idx);
return child_indexes.size();
}
}
if (superclass_interface_decl)
{
// The super class index is always zero for ObjC classes,
// so we push it onto the child indexes in case we find
// an ivar in our superclass...
child_indexes.push_back (0);
CompilerType superclass_clang_type (getASTContext(), getASTContext()->getObjCInterfaceType(superclass_interface_decl));
if (superclass_clang_type.GetIndexOfChildMemberWithName (name,
omit_empty_base_classes,
child_indexes))
{
// We did find an ivar in a superclass so just
// return the results!
return child_indexes.size();
}
// We didn't find an ivar matching "name" in our
// superclass, pop the superclass zero index that
// we pushed on above.
child_indexes.pop_back();
}
}
}
}
break;
case clang::Type::ObjCObjectPointer:
{
CompilerType objc_object_clang_type (getASTContext(), llvm::cast<clang::ObjCObjectPointerType>(qual_type.getTypePtr())->getPointeeType());
return objc_object_clang_type.GetIndexOfChildMemberWithName (name,
omit_empty_base_classes,
child_indexes);
}
break;
case clang::Type::ConstantArray:
{
// const clang::ConstantArrayType *array = llvm::cast<clang::ConstantArrayType>(parent_qual_type.getTypePtr());
// const uint64_t element_count = array->getSize().getLimitedValue();
//
// if (idx < element_count)
// {
// std::pair<uint64_t, unsigned> field_type_info = ast->getTypeInfo(array->getElementType());
//
// char element_name[32];
// ::snprintf (element_name, sizeof (element_name), "%s[%u]", parent_name ? parent_name : "", idx);
//
// child_name.assign(element_name);
// assert(field_type_info.first % 8 == 0);
// child_byte_size = field_type_info.first / 8;
// child_byte_offset = idx * child_byte_size;
// return array->getElementType().getAsOpaquePtr();
// }
}
break;
// case clang::Type::MemberPointerType:
// {
// MemberPointerType *mem_ptr_type = llvm::cast<MemberPointerType>(qual_type.getTypePtr());
// clang::QualType pointee_type = mem_ptr_type->getPointeeType();
//
// if (ClangASTContext::IsAggregateType (pointee_type.getAsOpaquePtr()))
// {
// return GetIndexOfChildWithName (ast,
// mem_ptr_type->getPointeeType().getAsOpaquePtr(),
// name);
// }
// }
// break;
//
case clang::Type::LValueReference:
case clang::Type::RValueReference:
{
const clang::ReferenceType *reference_type = llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
clang::QualType pointee_type(reference_type->getPointeeType());
CompilerType pointee_clang_type (getASTContext(), pointee_type);
if (pointee_clang_type.IsAggregateType ())
{
return pointee_clang_type.GetIndexOfChildMemberWithName (name,
omit_empty_base_classes,
child_indexes);
}
}
break;
case clang::Type::Pointer:
{
CompilerType pointee_clang_type (GetPointeeType(type));
if (pointee_clang_type.IsAggregateType ())
{
return pointee_clang_type.GetIndexOfChildMemberWithName (name,
omit_empty_base_classes,
child_indexes);
}
}
break;
case clang::Type::Typedef:
return CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).GetIndexOfChildMemberWithName (name,
omit_empty_base_classes,
child_indexes);
case clang::Type::Elaborated:
return CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).GetIndexOfChildMemberWithName (name,
omit_empty_base_classes,
child_indexes);
case clang::Type::Paren:
return CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).GetIndexOfChildMemberWithName (name,
omit_empty_base_classes,
child_indexes);
default:
break;
}
}
return 0;
}
// Get the index of the child of "clang_type" whose name matches. This function
// doesn't descend into the children, but only looks one level deep and name
// matches can include base class names.
uint32_t
ClangASTContext::GetIndexOfChildWithName (lldb::opaque_compiler_type_t type, const char *name, bool omit_empty_base_classes)
{
if (type && name && name[0])
{
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
uint32_t child_idx = 0;
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
// Skip empty base classes
clang::CXXRecordDecl *base_class_decl = llvm::cast<clang::CXXRecordDecl>(base_class->getType()->getAs<clang::RecordType>()->getDecl());
if (omit_empty_base_classes && ClangASTContext::RecordHasFields(base_class_decl) == false)
continue;
CompilerType base_class_clang_type (getASTContext(), base_class->getType());
std::string base_class_type_name (base_class_clang_type.GetTypeName().AsCString(""));
if (base_class_type_name.compare (name) == 0)
return child_idx;
++child_idx;
}
}
// Try and find a field that matches NAME
clang::RecordDecl::field_iterator field, field_end;
llvm::StringRef name_sref(name);
for (field = record_decl->field_begin(), field_end = record_decl->field_end();
field != field_end;
++field, ++child_idx)
{
if (field->getName().equals (name_sref))
return child_idx;
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteType(type))
{
llvm::StringRef name_sref(name);
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
uint32_t child_idx = 0;
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
clang::ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end();
clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass();
for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos, ++child_idx)
{
const clang::ObjCIvarDecl* ivar_decl = *ivar_pos;
if (ivar_decl->getName().equals (name_sref))
{
if ((!omit_empty_base_classes && superclass_interface_decl) ||
( omit_empty_base_classes && ObjCDeclHasIVars (superclass_interface_decl, true)))
++child_idx;
return child_idx;
}
}
if (superclass_interface_decl)
{
if (superclass_interface_decl->getName().equals (name_sref))
return 0;
}
}
}
}
break;
case clang::Type::ObjCObjectPointer:
{
CompilerType pointee_clang_type (getASTContext(), llvm::cast<clang::ObjCObjectPointerType>(qual_type.getTypePtr())->getPointeeType());
return pointee_clang_type.GetIndexOfChildWithName (name, omit_empty_base_classes);
}
break;
case clang::Type::ConstantArray:
{
// const clang::ConstantArrayType *array = llvm::cast<clang::ConstantArrayType>(parent_qual_type.getTypePtr());
// const uint64_t element_count = array->getSize().getLimitedValue();
//
// if (idx < element_count)
// {
// std::pair<uint64_t, unsigned> field_type_info = ast->getTypeInfo(array->getElementType());
//
// char element_name[32];
// ::snprintf (element_name, sizeof (element_name), "%s[%u]", parent_name ? parent_name : "", idx);
//
// child_name.assign(element_name);
// assert(field_type_info.first % 8 == 0);
// child_byte_size = field_type_info.first / 8;
// child_byte_offset = idx * child_byte_size;
// return array->getElementType().getAsOpaquePtr();
// }
}
break;
// case clang::Type::MemberPointerType:
// {
// MemberPointerType *mem_ptr_type = llvm::cast<MemberPointerType>(qual_type.getTypePtr());
// clang::QualType pointee_type = mem_ptr_type->getPointeeType();
//
// if (ClangASTContext::IsAggregateType (pointee_type.getAsOpaquePtr()))
// {
// return GetIndexOfChildWithName (ast,
// mem_ptr_type->getPointeeType().getAsOpaquePtr(),
// name);
// }
// }
// break;
//
case clang::Type::LValueReference:
case clang::Type::RValueReference:
{
const clang::ReferenceType *reference_type = llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
CompilerType pointee_type (getASTContext(), reference_type->getPointeeType());
if (pointee_type.IsAggregateType ())
{
return pointee_type.GetIndexOfChildWithName (name, omit_empty_base_classes);
}
}
break;
case clang::Type::Pointer:
{
const clang::PointerType *pointer_type = llvm::cast<clang::PointerType>(qual_type.getTypePtr());
CompilerType pointee_type (getASTContext(), pointer_type->getPointeeType());
if (pointee_type.IsAggregateType ())
{
return pointee_type.GetIndexOfChildWithName (name, omit_empty_base_classes);
}
else
{
// if (parent_name)
// {
// child_name.assign(1, '*');
// child_name += parent_name;
// }
//
// // We have a pointer to an simple type
// if (idx == 0)
// {
// std::pair<uint64_t, unsigned> clang_type_info = ast->getTypeInfo(pointee_type);
// assert(clang_type_info.first % 8 == 0);
// child_byte_size = clang_type_info.first / 8;
// child_byte_offset = 0;
// return pointee_type.getAsOpaquePtr();
// }
}
}
break;
case clang::Type::Elaborated:
return CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).GetIndexOfChildWithName (name, omit_empty_base_classes);
case clang::Type::Paren:
return CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).GetIndexOfChildWithName (name, omit_empty_base_classes);
case clang::Type::Typedef:
return CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).GetIndexOfChildWithName (name, omit_empty_base_classes);
default:
break;
}
}
return UINT32_MAX;
}
size_t
ClangASTContext::GetNumTemplateArguments (lldb::opaque_compiler_type_t type)
{
if (!type)
return 0;
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
const clang::ClassTemplateSpecializationDecl *template_decl = llvm::dyn_cast<clang::ClassTemplateSpecializationDecl>(cxx_record_decl);
if (template_decl)
return template_decl->getTemplateArgs().size();
}
}
break;
case clang::Type::Typedef:
return (CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType())).GetNumTemplateArguments();
case clang::Type::Elaborated:
return (CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType())).GetNumTemplateArguments();
case clang::Type::Paren:
return (CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar())).GetNumTemplateArguments();
default:
break;
}
return 0;
}
CompilerType
ClangASTContext::GetTemplateArgument (lldb::opaque_compiler_type_t type, size_t arg_idx, lldb::TemplateArgumentKind &kind)
{
if (!type)
return CompilerType();
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
const clang::ClassTemplateSpecializationDecl *template_decl = llvm::dyn_cast<clang::ClassTemplateSpecializationDecl>(cxx_record_decl);
if (template_decl && arg_idx < template_decl->getTemplateArgs().size())
{
const clang::TemplateArgument &template_arg = template_decl->getTemplateArgs()[arg_idx];
switch (template_arg.getKind())
{
case clang::TemplateArgument::Null:
kind = eTemplateArgumentKindNull;
return CompilerType();
case clang::TemplateArgument::Type:
kind = eTemplateArgumentKindType;
return CompilerType(getASTContext(), template_arg.getAsType());
case clang::TemplateArgument::Declaration:
kind = eTemplateArgumentKindDeclaration;
return CompilerType();
case clang::TemplateArgument::Integral:
kind = eTemplateArgumentKindIntegral;
return CompilerType(getASTContext(), template_arg.getIntegralType());
case clang::TemplateArgument::Template:
kind = eTemplateArgumentKindTemplate;
return CompilerType();
case clang::TemplateArgument::TemplateExpansion:
kind = eTemplateArgumentKindTemplateExpansion;
return CompilerType();
case clang::TemplateArgument::Expression:
kind = eTemplateArgumentKindExpression;
return CompilerType();
case clang::TemplateArgument::Pack:
kind = eTemplateArgumentKindPack;
return CompilerType();
default:
assert (!"Unhandled clang::TemplateArgument::ArgKind");
break;
}
}
}
}
break;
case clang::Type::Typedef:
return (CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType())).GetTemplateArgument(arg_idx, kind);
case clang::Type::Elaborated:
return (CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType())).GetTemplateArgument(arg_idx, kind);
case clang::Type::Paren:
return (CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar())).GetTemplateArgument(arg_idx, kind);
default:
break;
}
kind = eTemplateArgumentKindNull;
return CompilerType ();
}
CompilerType
ClangASTContext::GetTypeForFormatters (void* type)
{
if (type)
return RemoveFastQualifiers(CompilerType(this, type));
return CompilerType();
}
static bool
IsOperator (const char *name, clang::OverloadedOperatorKind &op_kind)
{
if (name == nullptr || name[0] == '\0')
return false;
#define OPERATOR_PREFIX "operator"
#define OPERATOR_PREFIX_LENGTH (sizeof (OPERATOR_PREFIX) - 1)
const char *post_op_name = nullptr;
bool no_space = true;
if (::strncmp(name, OPERATOR_PREFIX, OPERATOR_PREFIX_LENGTH))
return false;
post_op_name = name + OPERATOR_PREFIX_LENGTH;
if (post_op_name[0] == ' ')
{
post_op_name++;
no_space = false;
}
#undef OPERATOR_PREFIX
#undef OPERATOR_PREFIX_LENGTH
// This is an operator, set the overloaded operator kind to invalid
// in case this is a conversion operator...
op_kind = clang::NUM_OVERLOADED_OPERATORS;
switch (post_op_name[0])
{
default:
if (no_space)
return false;
break;
case 'n':
if (no_space)
return false;
if (strcmp (post_op_name, "new") == 0)
op_kind = clang::OO_New;
else if (strcmp (post_op_name, "new[]") == 0)
op_kind = clang::OO_Array_New;
break;
case 'd':
if (no_space)
return false;
if (strcmp (post_op_name, "delete") == 0)
op_kind = clang::OO_Delete;
else if (strcmp (post_op_name, "delete[]") == 0)
op_kind = clang::OO_Array_Delete;
break;
case '+':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Plus;
else if (post_op_name[2] == '\0')
{
if (post_op_name[1] == '=')
op_kind = clang::OO_PlusEqual;
else if (post_op_name[1] == '+')
op_kind = clang::OO_PlusPlus;
}
break;
case '-':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Minus;
else if (post_op_name[2] == '\0')
{
switch (post_op_name[1])
{
case '=': op_kind = clang::OO_MinusEqual; break;
case '-': op_kind = clang::OO_MinusMinus; break;
case '>': op_kind = clang::OO_Arrow; break;
}
}
else if (post_op_name[3] == '\0')
{
if (post_op_name[2] == '*')
op_kind = clang::OO_ArrowStar; break;
}
break;
case '*':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Star;
else if (post_op_name[1] == '=' && post_op_name[2] == '\0')
op_kind = clang::OO_StarEqual;
break;
case '/':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Slash;
else if (post_op_name[1] == '=' && post_op_name[2] == '\0')
op_kind = clang::OO_SlashEqual;
break;
case '%':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Percent;
else if (post_op_name[1] == '=' && post_op_name[2] == '\0')
op_kind = clang::OO_PercentEqual;
break;
case '^':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Caret;
else if (post_op_name[1] == '=' && post_op_name[2] == '\0')
op_kind = clang::OO_CaretEqual;
break;
case '&':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Amp;
else if (post_op_name[2] == '\0')
{
switch (post_op_name[1])
{
case '=': op_kind = clang::OO_AmpEqual; break;
case '&': op_kind = clang::OO_AmpAmp; break;
}
}
break;
case '|':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Pipe;
else if (post_op_name[2] == '\0')
{
switch (post_op_name[1])
{
case '=': op_kind = clang::OO_PipeEqual; break;
case '|': op_kind = clang::OO_PipePipe; break;
}
}
break;
case '~':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Tilde;
break;
case '!':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Exclaim;
else if (post_op_name[1] == '=' && post_op_name[2] == '\0')
op_kind = clang::OO_ExclaimEqual;
break;
case '=':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Equal;
else if (post_op_name[1] == '=' && post_op_name[2] == '\0')
op_kind = clang::OO_EqualEqual;
break;
case '<':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Less;
else if (post_op_name[2] == '\0')
{
switch (post_op_name[1])
{
case '<': op_kind = clang::OO_LessLess; break;
case '=': op_kind = clang::OO_LessEqual; break;
}
}
else if (post_op_name[3] == '\0')
{
if (post_op_name[2] == '=')
op_kind = clang::OO_LessLessEqual;
}
break;
case '>':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Greater;
else if (post_op_name[2] == '\0')
{
switch (post_op_name[1])
{
case '>': op_kind = clang::OO_GreaterGreater; break;
case '=': op_kind = clang::OO_GreaterEqual; break;
}
}
else if (post_op_name[1] == '>' &&
post_op_name[2] == '=' &&
post_op_name[3] == '\0')
{
op_kind = clang::OO_GreaterGreaterEqual;
}
break;
case ',':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Comma;
break;
case '(':
if (post_op_name[1] == ')' && post_op_name[2] == '\0')
op_kind = clang::OO_Call;
break;
case '[':
if (post_op_name[1] == ']' && post_op_name[2] == '\0')
op_kind = clang::OO_Subscript;
break;
}
return true;
}
clang::EnumDecl *
ClangASTContext::GetAsEnumDecl (const CompilerType& type)
{
const clang::EnumType *enutype = llvm::dyn_cast<clang::EnumType>(GetCanonicalQualType(type));
if (enutype)
return enutype->getDecl();
return NULL;
}
clang::RecordDecl *
ClangASTContext::GetAsRecordDecl (const CompilerType& type)
{
const clang::RecordType *record_type = llvm::dyn_cast<clang::RecordType>(GetCanonicalQualType(type));
if (record_type)
return record_type->getDecl();
return nullptr;
}
clang::CXXRecordDecl *
ClangASTContext::GetAsCXXRecordDecl (lldb::opaque_compiler_type_t type)
{
return GetCanonicalQualType(type)->getAsCXXRecordDecl();
}
clang::ObjCInterfaceDecl *
ClangASTContext::GetAsObjCInterfaceDecl (const CompilerType& type)
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(GetCanonicalQualType(type));
if (objc_class_type)
return objc_class_type->getInterface();
return nullptr;
}
clang::FieldDecl *
ClangASTContext::AddFieldToRecordType (const CompilerType& type, const char *name,
const CompilerType &field_clang_type,
AccessType access,
uint32_t bitfield_bit_size)
{
if (!type.IsValid() || !field_clang_type.IsValid())
return nullptr;
ClangASTContext *ast = llvm::dyn_cast_or_null<ClangASTContext>(type.GetTypeSystem());
if (!ast)
return nullptr;
clang::ASTContext* clang_ast = ast->getASTContext();
clang::FieldDecl *field = nullptr;
clang::Expr *bit_width = nullptr;
if (bitfield_bit_size != 0)
{
llvm::APInt bitfield_bit_size_apint(clang_ast->getTypeSize(clang_ast->IntTy), bitfield_bit_size);
bit_width = new (*clang_ast)clang::IntegerLiteral (*clang_ast, bitfield_bit_size_apint, clang_ast->IntTy, clang::SourceLocation());
}
clang::RecordDecl *record_decl = ast->GetAsRecordDecl (type);
if (record_decl)
{
field = clang::FieldDecl::Create (*clang_ast,
record_decl,
clang::SourceLocation(),
clang::SourceLocation(),
name ? &clang_ast->Idents.get(name) : nullptr, // Identifier
GetQualType(field_clang_type), // Field type
nullptr, // TInfo *
bit_width, // BitWidth
false, // Mutable
clang::ICIS_NoInit); // HasInit
if (!name)
{
// Determine whether this field corresponds to an anonymous
// struct or union.
if (const clang::TagType *TagT = field->getType()->getAs<clang::TagType>()) {
if (clang::RecordDecl *Rec = llvm::dyn_cast<clang::RecordDecl>(TagT->getDecl()))
if (!Rec->getDeclName()) {
Rec->setAnonymousStructOrUnion(true);
field->setImplicit();
}
}
}
if (field)
{
field->setAccess (ClangASTContext::ConvertAccessTypeToAccessSpecifier (access));
record_decl->addDecl(field);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(field);
#endif
}
}
else
{
clang::ObjCInterfaceDecl *class_interface_decl = ast->GetAsObjCInterfaceDecl (type);
if (class_interface_decl)
{
const bool is_synthesized = false;
field_clang_type.GetCompleteType();
field = clang::ObjCIvarDecl::Create (*clang_ast,
class_interface_decl,
clang::SourceLocation(),
clang::SourceLocation(),
name ? &clang_ast->Idents.get(name) : nullptr, // Identifier
GetQualType(field_clang_type), // Field type
nullptr, // TypeSourceInfo *
ConvertAccessTypeToObjCIvarAccessControl (access),
bit_width,
is_synthesized);
if (field)
{
class_interface_decl->addDecl(field);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(field);
#endif
}
}
}
return field;
}
void
ClangASTContext::BuildIndirectFields (const CompilerType& type)
{
if (!type)
return;
ClangASTContext *ast = llvm::dyn_cast<ClangASTContext>(type.GetTypeSystem());
if (!ast)
return;
clang::RecordDecl *record_decl = ast->GetAsRecordDecl(type);
if (!record_decl)
return;
typedef llvm::SmallVector <clang::IndirectFieldDecl *, 1> IndirectFieldVector;
IndirectFieldVector indirect_fields;
clang::RecordDecl::field_iterator field_pos;
clang::RecordDecl::field_iterator field_end_pos = record_decl->field_end();
clang::RecordDecl::field_iterator last_field_pos = field_end_pos;
for (field_pos = record_decl->field_begin(); field_pos != field_end_pos; last_field_pos = field_pos++)
{
if (field_pos->isAnonymousStructOrUnion())
{
clang::QualType field_qual_type = field_pos->getType();
const clang::RecordType *field_record_type = field_qual_type->getAs<clang::RecordType>();
if (!field_record_type)
continue;
clang::RecordDecl *field_record_decl = field_record_type->getDecl();
if (!field_record_decl)
continue;
for (clang::RecordDecl::decl_iterator di = field_record_decl->decls_begin(), de = field_record_decl->decls_end();
di != de;
++di)
{
if (clang::FieldDecl *nested_field_decl = llvm::dyn_cast<clang::FieldDecl>(*di))
{
clang::NamedDecl **chain = new (*ast->getASTContext()) clang::NamedDecl*[2];
chain[0] = *field_pos;
chain[1] = nested_field_decl;
clang::IndirectFieldDecl *indirect_field = clang::IndirectFieldDecl::Create(*ast->getASTContext(),
record_decl,
clang::SourceLocation(),
nested_field_decl->getIdentifier(),
nested_field_decl->getType(),
chain,
2);
indirect_field->setImplicit();
indirect_field->setAccess(ClangASTContext::UnifyAccessSpecifiers(field_pos->getAccess(),
nested_field_decl->getAccess()));
indirect_fields.push_back(indirect_field);
}
else if (clang::IndirectFieldDecl *nested_indirect_field_decl = llvm::dyn_cast<clang::IndirectFieldDecl>(*di))
{
int nested_chain_size = nested_indirect_field_decl->getChainingSize();
clang::NamedDecl **chain = new (*ast->getASTContext()) clang::NamedDecl*[nested_chain_size + 1];
chain[0] = *field_pos;
int chain_index = 1;
for (clang::IndirectFieldDecl::chain_iterator nci = nested_indirect_field_decl->chain_begin(),
nce = nested_indirect_field_decl->chain_end();
nci < nce;
++nci)
{
chain[chain_index] = *nci;
chain_index++;
}
clang::IndirectFieldDecl *indirect_field = clang::IndirectFieldDecl::Create(*ast->getASTContext(),
record_decl,
clang::SourceLocation(),
nested_indirect_field_decl->getIdentifier(),
nested_indirect_field_decl->getType(),
chain,
nested_chain_size + 1);
indirect_field->setImplicit();
indirect_field->setAccess(ClangASTContext::UnifyAccessSpecifiers(field_pos->getAccess(),
nested_indirect_field_decl->getAccess()));
indirect_fields.push_back(indirect_field);
}
}
}
}
// Check the last field to see if it has an incomplete array type as its
// last member and if it does, the tell the record decl about it
if (last_field_pos != field_end_pos)
{
if (last_field_pos->getType()->isIncompleteArrayType())
record_decl->hasFlexibleArrayMember();
}
for (IndirectFieldVector::iterator ifi = indirect_fields.begin(), ife = indirect_fields.end();
ifi < ife;
++ifi)
{
record_decl->addDecl(*ifi);
}
}
void
ClangASTContext::SetIsPacked (const CompilerType& type)
{
if (type)
{
ClangASTContext *ast = llvm::dyn_cast<ClangASTContext>(type.GetTypeSystem());
if (ast)
{
clang::RecordDecl *record_decl = GetAsRecordDecl(type);
if (!record_decl)
return;
record_decl->addAttr(clang::PackedAttr::CreateImplicit(*ast->getASTContext()));
}
}
}
clang::VarDecl *
ClangASTContext::AddVariableToRecordType (const CompilerType& type, const char *name,
const CompilerType &var_type,
AccessType access)
{
clang::VarDecl *var_decl = nullptr;
if (!type.IsValid() || !var_type.IsValid())
return nullptr;
ClangASTContext *ast = llvm::dyn_cast<ClangASTContext>(type.GetTypeSystem());
if (!ast)
return nullptr;
clang::RecordDecl *record_decl = ast->GetAsRecordDecl (type);
if (record_decl)
{
var_decl = clang::VarDecl::Create (*ast->getASTContext(), // ASTContext &
record_decl, // DeclContext *
clang::SourceLocation(), // clang::SourceLocation StartLoc
clang::SourceLocation(), // clang::SourceLocation IdLoc
name ? &ast->getASTContext()->Idents.get(name) : nullptr, // clang::IdentifierInfo *
GetQualType(var_type), // Variable clang::QualType
nullptr, // TypeSourceInfo *
clang::SC_Static); // StorageClass
if (var_decl)
{
var_decl->setAccess(ClangASTContext::ConvertAccessTypeToAccessSpecifier (access));
record_decl->addDecl(var_decl);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(var_decl);
#endif
}
}
return var_decl;
}
clang::CXXMethodDecl *
ClangASTContext::AddMethodToCXXRecordType (lldb::opaque_compiler_type_t type, const char *name,
const CompilerType &method_clang_type,
lldb::AccessType access,
bool is_virtual,
bool is_static,
bool is_inline,
bool is_explicit,
bool is_attr_used,
bool is_artificial)
{
if (!type || !method_clang_type.IsValid() || name == nullptr || name[0] == '\0')
return nullptr;
clang::QualType record_qual_type(GetCanonicalQualType(type));
clang::CXXRecordDecl *cxx_record_decl = record_qual_type->getAsCXXRecordDecl();
if (cxx_record_decl == nullptr)
return nullptr;
clang::QualType method_qual_type (GetQualType(method_clang_type));
clang::CXXMethodDecl *cxx_method_decl = nullptr;
clang::DeclarationName decl_name (&getASTContext()->Idents.get(name));
const clang::FunctionType *function_type = llvm::dyn_cast<clang::FunctionType>(method_qual_type.getTypePtr());
if (function_type == nullptr)
return nullptr;
const clang::FunctionProtoType *method_function_prototype (llvm::dyn_cast<clang::FunctionProtoType>(function_type));
if (!method_function_prototype)
return nullptr;
unsigned int num_params = method_function_prototype->getNumParams();
clang::CXXDestructorDecl *cxx_dtor_decl(nullptr);
clang::CXXConstructorDecl *cxx_ctor_decl(nullptr);
if (is_artificial)
return nullptr; // skip everything artificial
if (name[0] == '~')
{
cxx_dtor_decl = clang::CXXDestructorDecl::Create (*getASTContext(),
cxx_record_decl,
clang::SourceLocation(),
clang::DeclarationNameInfo (getASTContext()->DeclarationNames.getCXXDestructorName (getASTContext()->getCanonicalType (record_qual_type)), clang::SourceLocation()),
method_qual_type,
nullptr,
is_inline,
is_artificial);
cxx_method_decl = cxx_dtor_decl;
}
else if (decl_name == cxx_record_decl->getDeclName())
{
cxx_ctor_decl = clang::CXXConstructorDecl::Create (*getASTContext(),
cxx_record_decl,
clang::SourceLocation(),
clang::DeclarationNameInfo (getASTContext()->DeclarationNames.getCXXConstructorName (getASTContext()->getCanonicalType (record_qual_type)), clang::SourceLocation()),
method_qual_type,
nullptr, // TypeSourceInfo *
is_explicit,
is_inline,
is_artificial,
false /*is_constexpr*/);
cxx_method_decl = cxx_ctor_decl;
}
else
{
clang::StorageClass SC = is_static ? clang::SC_Static : clang::SC_None;
clang::OverloadedOperatorKind op_kind = clang::NUM_OVERLOADED_OPERATORS;
if (IsOperator (name, op_kind))
{
if (op_kind != clang::NUM_OVERLOADED_OPERATORS)
{
// Check the number of operator parameters. Sometimes we have
// seen bad DWARF that doesn't correctly describe operators and
// if we try to create a method and add it to the class, clang
// will assert and crash, so we need to make sure things are
// acceptable.
if (!ClangASTContext::CheckOverloadedOperatorKindParameterCount (op_kind, num_params))
return nullptr;
cxx_method_decl = clang::CXXMethodDecl::Create (*getASTContext(),
cxx_record_decl,
clang::SourceLocation(),
clang::DeclarationNameInfo (getASTContext()->DeclarationNames.getCXXOperatorName (op_kind), clang::SourceLocation()),
method_qual_type,
nullptr, // TypeSourceInfo *
SC,
is_inline,
false /*is_constexpr*/,
clang::SourceLocation());
}
else if (num_params == 0)
{
// Conversion operators don't take params...
cxx_method_decl = clang::CXXConversionDecl::Create (*getASTContext(),
cxx_record_decl,
clang::SourceLocation(),
clang::DeclarationNameInfo (getASTContext()->DeclarationNames.getCXXConversionFunctionName (getASTContext()->getCanonicalType (function_type->getReturnType())), clang::SourceLocation()),
method_qual_type,
nullptr, // TypeSourceInfo *
is_inline,
is_explicit,
false /*is_constexpr*/,
clang::SourceLocation());
}
}
if (cxx_method_decl == nullptr)
{
cxx_method_decl = clang::CXXMethodDecl::Create (*getASTContext(),
cxx_record_decl,
clang::SourceLocation(),
clang::DeclarationNameInfo (decl_name, clang::SourceLocation()),
method_qual_type,
nullptr, // TypeSourceInfo *
SC,
is_inline,
false /*is_constexpr*/,
clang::SourceLocation());
}
}
clang::AccessSpecifier access_specifier = ClangASTContext::ConvertAccessTypeToAccessSpecifier (access);
cxx_method_decl->setAccess (access_specifier);
cxx_method_decl->setVirtualAsWritten (is_virtual);
if (is_attr_used)
cxx_method_decl->addAttr(clang::UsedAttr::CreateImplicit(*getASTContext()));
// Populate the method decl with parameter decls
llvm::SmallVector<clang::ParmVarDecl *, 12> params;
for (unsigned param_index = 0;
param_index < num_params;
++param_index)
{
params.push_back (clang::ParmVarDecl::Create (*getASTContext(),
cxx_method_decl,
clang::SourceLocation(),
clang::SourceLocation(),
nullptr, // anonymous
method_function_prototype->getParamType(param_index),
nullptr,
clang::SC_None,
nullptr));
}
cxx_method_decl->setParams (llvm::ArrayRef<clang::ParmVarDecl*>(params));
cxx_record_decl->addDecl (cxx_method_decl);
// Sometimes the debug info will mention a constructor (default/copy/move),
// destructor, or assignment operator (copy/move) but there won't be any
// version of this in the code. So we check if the function was artificially
// generated and if it is trivial and this lets the compiler/backend know
// that it can inline the IR for these when it needs to and we can avoid a
// "missing function" error when running expressions.
if (is_artificial)
{
if (cxx_ctor_decl &&
((cxx_ctor_decl->isDefaultConstructor() && cxx_record_decl->hasTrivialDefaultConstructor ()) ||
(cxx_ctor_decl->isCopyConstructor() && cxx_record_decl->hasTrivialCopyConstructor ()) ||
(cxx_ctor_decl->isMoveConstructor() && cxx_record_decl->hasTrivialMoveConstructor ()) ))
{
cxx_ctor_decl->setDefaulted();
cxx_ctor_decl->setTrivial(true);
}
else if (cxx_dtor_decl)
{
if (cxx_record_decl->hasTrivialDestructor())
{
cxx_dtor_decl->setDefaulted();
cxx_dtor_decl->setTrivial(true);
}
}
else if ((cxx_method_decl->isCopyAssignmentOperator() && cxx_record_decl->hasTrivialCopyAssignment()) ||
(cxx_method_decl->isMoveAssignmentOperator() && cxx_record_decl->hasTrivialMoveAssignment()))
{
cxx_method_decl->setDefaulted();
cxx_method_decl->setTrivial(true);
}
}
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(cxx_method_decl);
#endif
// printf ("decl->isPolymorphic() = %i\n", cxx_record_decl->isPolymorphic());
// printf ("decl->isAggregate() = %i\n", cxx_record_decl->isAggregate());
// printf ("decl->isPOD() = %i\n", cxx_record_decl->isPOD());
// printf ("decl->isEmpty() = %i\n", cxx_record_decl->isEmpty());
// printf ("decl->isAbstract() = %i\n", cxx_record_decl->isAbstract());
// printf ("decl->hasTrivialConstructor() = %i\n", cxx_record_decl->hasTrivialConstructor());
// printf ("decl->hasTrivialCopyConstructor() = %i\n", cxx_record_decl->hasTrivialCopyConstructor());
// printf ("decl->hasTrivialCopyAssignment() = %i\n", cxx_record_decl->hasTrivialCopyAssignment());
// printf ("decl->hasTrivialDestructor() = %i\n", cxx_record_decl->hasTrivialDestructor());
return cxx_method_decl;
}
#pragma mark C++ Base Classes
clang::CXXBaseSpecifier *
ClangASTContext::CreateBaseClassSpecifier (lldb::opaque_compiler_type_t type, AccessType access, bool is_virtual, bool base_of_class)
{
if (type)
return new clang::CXXBaseSpecifier (clang::SourceRange(),
is_virtual,
base_of_class,
ClangASTContext::ConvertAccessTypeToAccessSpecifier (access),
getASTContext()->getTrivialTypeSourceInfo (GetQualType(type)),
clang::SourceLocation());
return nullptr;
}
void
ClangASTContext::DeleteBaseClassSpecifiers (clang::CXXBaseSpecifier **base_classes, unsigned num_base_classes)
{
for (unsigned i=0; i<num_base_classes; ++i)
{
delete base_classes[i];
base_classes[i] = nullptr;
}
}
bool
ClangASTContext::SetBaseClassesForClassType (lldb::opaque_compiler_type_t type, clang::CXXBaseSpecifier const * const *base_classes,
unsigned num_base_classes)
{
if (type)
{
clang::CXXRecordDecl *cxx_record_decl = GetAsCXXRecordDecl(type);
if (cxx_record_decl)
{
cxx_record_decl->setBases(base_classes, num_base_classes);
return true;
}
}
return false;
}
bool
ClangASTContext::SetObjCSuperClass (const CompilerType& type, const CompilerType &superclass_clang_type)
{
ClangASTContext *ast = llvm::dyn_cast_or_null<ClangASTContext>(type.GetTypeSystem());
if (!ast)
return false;
clang::ASTContext* clang_ast = ast->getASTContext();
if (type && superclass_clang_type.IsValid() && superclass_clang_type.GetTypeSystem() == type.GetTypeSystem())
{
clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl (type);
clang::ObjCInterfaceDecl *super_interface_decl = GetAsObjCInterfaceDecl (superclass_clang_type);
if (class_interface_decl && super_interface_decl)
{
class_interface_decl->setSuperClass(clang_ast->getTrivialTypeSourceInfo(clang_ast->getObjCInterfaceType(super_interface_decl)));
return true;
}
}
return false;
}
bool
ClangASTContext::AddObjCClassProperty (const CompilerType& type,
const char *property_name,
const CompilerType &property_clang_type,
clang::ObjCIvarDecl *ivar_decl,
const char *property_setter_name,
const char *property_getter_name,
uint32_t property_attributes,
ClangASTMetadata *metadata)
{
if (!type || !property_clang_type.IsValid() || property_name == nullptr || property_name[0] == '\0')
return false;
ClangASTContext *ast = llvm::dyn_cast<ClangASTContext>(type.GetTypeSystem());
if (!ast)
return false;
clang::ASTContext* clang_ast = ast->getASTContext();
clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl (type);
if (class_interface_decl)
{
CompilerType property_clang_type_to_access;
if (property_clang_type.IsValid())
property_clang_type_to_access = property_clang_type;
else if (ivar_decl)
property_clang_type_to_access = CompilerType (clang_ast, ivar_decl->getType());
if (class_interface_decl && property_clang_type_to_access.IsValid())
{
clang::TypeSourceInfo *prop_type_source;
if (ivar_decl)
prop_type_source = clang_ast->getTrivialTypeSourceInfo (ivar_decl->getType());
else
prop_type_source = clang_ast->getTrivialTypeSourceInfo (GetQualType(property_clang_type));
clang::ObjCPropertyDecl *property_decl = clang::ObjCPropertyDecl::Create (*clang_ast,
class_interface_decl,
clang::SourceLocation(), // Source Location
&clang_ast->Idents.get(property_name),
clang::SourceLocation(), //Source Location for AT
clang::SourceLocation(), //Source location for (
ivar_decl ? ivar_decl->getType() : ClangASTContext::GetQualType(property_clang_type),
prop_type_source);
if (property_decl)
{
if (metadata)
ClangASTContext::SetMetadata(clang_ast, property_decl, *metadata);
class_interface_decl->addDecl (property_decl);
clang::Selector setter_sel, getter_sel;
if (property_setter_name != nullptr)
{
std::string property_setter_no_colon(property_setter_name, strlen(property_setter_name) - 1);
clang::IdentifierInfo *setter_ident = &clang_ast->Idents.get(property_setter_no_colon.c_str());
setter_sel = clang_ast->Selectors.getSelector(1, &setter_ident);
}
else if (!(property_attributes & DW_APPLE_PROPERTY_readonly))
{
std::string setter_sel_string("set");
setter_sel_string.push_back(::toupper(property_name[0]));
setter_sel_string.append(&property_name[1]);
clang::IdentifierInfo *setter_ident = &clang_ast->Idents.get(setter_sel_string.c_str());
setter_sel = clang_ast->Selectors.getSelector(1, &setter_ident);
}
property_decl->setSetterName(setter_sel);
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_setter);
if (property_getter_name != nullptr)
{
clang::IdentifierInfo *getter_ident = &clang_ast->Idents.get(property_getter_name);
getter_sel = clang_ast->Selectors.getSelector(0, &getter_ident);
}
else
{
clang::IdentifierInfo *getter_ident = &clang_ast->Idents.get(property_name);
getter_sel = clang_ast->Selectors.getSelector(0, &getter_ident);
}
property_decl->setGetterName(getter_sel);
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_getter);
if (ivar_decl)
property_decl->setPropertyIvarDecl (ivar_decl);
if (property_attributes & DW_APPLE_PROPERTY_readonly)
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_readonly);
if (property_attributes & DW_APPLE_PROPERTY_readwrite)
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_readwrite);
if (property_attributes & DW_APPLE_PROPERTY_assign)
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_assign);
if (property_attributes & DW_APPLE_PROPERTY_retain)
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_retain);
if (property_attributes & DW_APPLE_PROPERTY_copy)
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_copy);
if (property_attributes & DW_APPLE_PROPERTY_nonatomic)
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_nonatomic);
if (!getter_sel.isNull() && !class_interface_decl->lookupInstanceMethod(getter_sel))
{
const bool isInstance = true;
const bool isVariadic = false;
const bool isSynthesized = false;
const bool isImplicitlyDeclared = true;
const bool isDefined = false;
const clang::ObjCMethodDecl::ImplementationControl impControl = clang::ObjCMethodDecl::None;
const bool HasRelatedResultType = false;
clang::ObjCMethodDecl *getter = clang::ObjCMethodDecl::Create (*clang_ast,
clang::SourceLocation(),
clang::SourceLocation(),
getter_sel,
GetQualType(property_clang_type_to_access),
nullptr,
class_interface_decl,
isInstance,
isVariadic,
isSynthesized,
isImplicitlyDeclared,
isDefined,
impControl,
HasRelatedResultType);
if (getter && metadata)
ClangASTContext::SetMetadata(clang_ast, getter, *metadata);
if (getter)
{
getter->setMethodParams(*clang_ast, llvm::ArrayRef<clang::ParmVarDecl*>(), llvm::ArrayRef<clang::SourceLocation>());
class_interface_decl->addDecl(getter);
}
}
if (!setter_sel.isNull() && !class_interface_decl->lookupInstanceMethod(setter_sel))
{
clang::QualType result_type = clang_ast->VoidTy;
const bool isInstance = true;
const bool isVariadic = false;
const bool isSynthesized = false;
const bool isImplicitlyDeclared = true;
const bool isDefined = false;
const clang::ObjCMethodDecl::ImplementationControl impControl = clang::ObjCMethodDecl::None;
const bool HasRelatedResultType = false;
clang::ObjCMethodDecl *setter = clang::ObjCMethodDecl::Create (*clang_ast,
clang::SourceLocation(),
clang::SourceLocation(),
setter_sel,
result_type,
nullptr,
class_interface_decl,
isInstance,
isVariadic,
isSynthesized,
isImplicitlyDeclared,
isDefined,
impControl,
HasRelatedResultType);
if (setter && metadata)
ClangASTContext::SetMetadata(clang_ast, setter, *metadata);
llvm::SmallVector<clang::ParmVarDecl *, 1> params;
params.push_back (clang::ParmVarDecl::Create (*clang_ast,
setter,
clang::SourceLocation(),
clang::SourceLocation(),
nullptr, // anonymous
GetQualType(property_clang_type_to_access),
nullptr,
clang::SC_Auto,
nullptr));
if (setter)
{
setter->setMethodParams(*clang_ast, llvm::ArrayRef<clang::ParmVarDecl*>(params), llvm::ArrayRef<clang::SourceLocation>());
class_interface_decl->addDecl(setter);
}
}
return true;
}
}
}
return false;
}
bool
ClangASTContext::IsObjCClassTypeAndHasIVars (const CompilerType& type, bool check_superclass)
{
clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl (type);
if (class_interface_decl)
return ObjCDeclHasIVars (class_interface_decl, check_superclass);
return false;
}
clang::ObjCMethodDecl *
ClangASTContext::AddMethodToObjCObjectType (const CompilerType& type,
const char *name, // the full symbol name as seen in the symbol table (lldb::opaque_compiler_type_t type, "-[NString stringWithCString:]")
const CompilerType &method_clang_type,
lldb::AccessType access,
bool is_artificial)
{
if (!type || !method_clang_type.IsValid())
return nullptr;
clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl(type);
if (class_interface_decl == nullptr)
return nullptr;
ClangASTContext *lldb_ast = llvm::dyn_cast<ClangASTContext>(type.GetTypeSystem());
if (lldb_ast == nullptr)
return nullptr;
clang::ASTContext *ast = lldb_ast->getASTContext();
const char *selector_start = ::strchr (name, ' ');
if (selector_start == nullptr)
return nullptr;
selector_start++;
llvm::SmallVector<clang::IdentifierInfo *, 12> selector_idents;
size_t len = 0;
const char *start;
//printf ("name = '%s'\n", name);
unsigned num_selectors_with_args = 0;
for (start = selector_start;
start && *start != '\0' && *start != ']';
start += len)
{
len = ::strcspn(start, ":]");
bool has_arg = (start[len] == ':');
if (has_arg)
++num_selectors_with_args;
selector_idents.push_back (&ast->Idents.get (llvm::StringRef (start, len)));
if (has_arg)
len += 1;
}
if (selector_idents.size() == 0)
return nullptr;
clang::Selector method_selector = ast->Selectors.getSelector (num_selectors_with_args ? selector_idents.size() : 0,
selector_idents.data());
clang::QualType method_qual_type (GetQualType(method_clang_type));
// Populate the method decl with parameter decls
const clang::Type *method_type(method_qual_type.getTypePtr());
if (method_type == nullptr)
return nullptr;
const clang::FunctionProtoType *method_function_prototype (llvm::dyn_cast<clang::FunctionProtoType>(method_type));
if (!method_function_prototype)
return nullptr;
bool is_variadic = false;
bool is_synthesized = false;
bool is_defined = false;
clang::ObjCMethodDecl::ImplementationControl imp_control = clang::ObjCMethodDecl::None;
const unsigned num_args = method_function_prototype->getNumParams();
if (num_args != num_selectors_with_args)
return nullptr; // some debug information is corrupt. We are not going to deal with it.
clang::ObjCMethodDecl *objc_method_decl = clang::ObjCMethodDecl::Create (*ast,
clang::SourceLocation(), // beginLoc,
clang::SourceLocation(), // endLoc,
method_selector,
method_function_prototype->getReturnType(),
nullptr, // TypeSourceInfo *ResultTInfo,
ClangASTContext::GetASTContext(ast)->GetDeclContextForType(GetQualType(type)),
name[0] == '-',
is_variadic,
is_synthesized,
true, // is_implicitly_declared; we force this to true because we don't have source locations
is_defined,
imp_control,
false /*has_related_result_type*/);
if (objc_method_decl == nullptr)
return nullptr;
if (num_args > 0)
{
llvm::SmallVector<clang::ParmVarDecl *, 12> params;
for (unsigned param_index = 0; param_index < num_args; ++param_index)
{
params.push_back (clang::ParmVarDecl::Create (*ast,
objc_method_decl,
clang::SourceLocation(),
clang::SourceLocation(),
nullptr, // anonymous
method_function_prototype->getParamType(param_index),
nullptr,
clang::SC_Auto,
nullptr));
}
objc_method_decl->setMethodParams(*ast, llvm::ArrayRef<clang::ParmVarDecl*>(params), llvm::ArrayRef<clang::SourceLocation>());
}
class_interface_decl->addDecl (objc_method_decl);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(objc_method_decl);
#endif
return objc_method_decl;
}
bool
ClangASTContext::SetHasExternalStorage (lldb::opaque_compiler_type_t type, bool has_extern)
{
if (!type)
return false;
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
{
clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
cxx_record_decl->setHasExternalLexicalStorage (has_extern);
cxx_record_decl->setHasExternalVisibleStorage (has_extern);
return true;
}
}
break;
case clang::Type::Enum:
{
clang::EnumDecl *enum_decl = llvm::cast<clang::EnumType>(qual_type)->getDecl();
if (enum_decl)
{
enum_decl->setHasExternalLexicalStorage (has_extern);
enum_decl->setHasExternalVisibleStorage (has_extern);
return true;
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
class_interface_decl->setHasExternalLexicalStorage (has_extern);
class_interface_decl->setHasExternalVisibleStorage (has_extern);
return true;
}
}
}
break;
case clang::Type::Typedef:
return SetHasExternalStorage(llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), has_extern);
case clang::Type::Elaborated:
return SetHasExternalStorage (llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(), has_extern);
case clang::Type::Paren:
return SetHasExternalStorage (llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr(), has_extern);
default:
break;
}
return false;
}
#pragma mark TagDecl
bool
ClangASTContext::StartTagDeclarationDefinition (const CompilerType &type)
{
if (type)
{
clang::QualType qual_type (GetQualType(type));
const clang::Type *t = qual_type.getTypePtr();
if (t)
{
const clang::TagType *tag_type = llvm::dyn_cast<clang::TagType>(t);
if (tag_type)
{
clang::TagDecl *tag_decl = tag_type->getDecl();
if (tag_decl)
{
tag_decl->startDefinition();
return true;
}
}
const clang::ObjCObjectType *object_type = llvm::dyn_cast<clang::ObjCObjectType>(t);
if (object_type)
{
clang::ObjCInterfaceDecl *interface_decl = object_type->getInterface();
if (interface_decl)
{
interface_decl->startDefinition();
return true;
}
}
}
}
return false;
}
bool
ClangASTContext::CompleteTagDeclarationDefinition (const CompilerType& type)
{
if (type)
{
clang::QualType qual_type (GetQualType(type));
if (qual_type.isNull())
return false;
ClangASTContext *lldb_ast = llvm::dyn_cast<ClangASTContext>(type.GetTypeSystem());
if (lldb_ast == nullptr)
return false;
clang::ASTContext *ast = lldb_ast->getASTContext();
clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
cxx_record_decl->completeDefinition();
return true;
}
const clang::EnumType *enutype = llvm::dyn_cast<clang::EnumType>(qual_type.getTypePtr());
if (enutype)
{
clang::EnumDecl *enum_decl = enutype->getDecl();
if (enum_decl)
{
/// TODO This really needs to be fixed.
unsigned NumPositiveBits = 1;
unsigned NumNegativeBits = 0;
clang::QualType promotion_qual_type;
// If the enum integer type is less than an integer in bit width,
// then we must promote it to an integer size.
if (ast->getTypeSize(enum_decl->getIntegerType()) < ast->getTypeSize(ast->IntTy))
{
if (enum_decl->getIntegerType()->isSignedIntegerType())
promotion_qual_type = ast->IntTy;
else
promotion_qual_type = ast->UnsignedIntTy;
}
else
promotion_qual_type = enum_decl->getIntegerType();
enum_decl->completeDefinition(enum_decl->getIntegerType(), promotion_qual_type, NumPositiveBits, NumNegativeBits);
return true;
}
}
}
return false;
}
bool
ClangASTContext::AddEnumerationValueToEnumerationType (lldb::opaque_compiler_type_t type,
const CompilerType &enumerator_clang_type,
const Declaration &decl,
const char *name,
int64_t enum_value,
uint32_t enum_value_bit_size)
{
if (type && enumerator_clang_type.IsValid() && name && name[0])
{
clang::QualType enum_qual_type (GetCanonicalQualType(type));
bool is_signed = false;
enumerator_clang_type.IsIntegerType (is_signed);
const clang::Type *clang_type = enum_qual_type.getTypePtr();
if (clang_type)
{
const clang::EnumType *enutype = llvm::dyn_cast<clang::EnumType>(clang_type);
if (enutype)
{
llvm::APSInt enum_llvm_apsint(enum_value_bit_size, is_signed);
enum_llvm_apsint = enum_value;
clang::EnumConstantDecl *enumerator_decl =
clang::EnumConstantDecl::Create (*getASTContext(),
enutype->getDecl(),
clang::SourceLocation(),
name ? &getASTContext()->Idents.get(name) : nullptr, // Identifier
GetQualType(enumerator_clang_type),
nullptr,
enum_llvm_apsint);
if (enumerator_decl)
{
enutype->getDecl()->addDecl(enumerator_decl);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(enumerator_decl);
#endif
return true;
}
}
}
}
return false;
}
CompilerType
ClangASTContext::GetEnumerationIntegerType (lldb::opaque_compiler_type_t type)
{
clang::QualType enum_qual_type (GetCanonicalQualType(type));
const clang::Type *clang_type = enum_qual_type.getTypePtr();
if (clang_type)
{
const clang::EnumType *enutype = llvm::dyn_cast<clang::EnumType>(clang_type);
if (enutype)
{
clang::EnumDecl *enum_decl = enutype->getDecl();
if (enum_decl)
return CompilerType (getASTContext(), enum_decl->getIntegerType());
}
}
return CompilerType();
}
CompilerType
ClangASTContext::CreateMemberPointerType (const CompilerType& type, const CompilerType &pointee_type)
{
if (type && pointee_type.IsValid() && type.GetTypeSystem() == pointee_type.GetTypeSystem())
{
ClangASTContext *ast = llvm::dyn_cast<ClangASTContext>(type.GetTypeSystem());
if (!ast)
return CompilerType();
return CompilerType (ast->getASTContext(),
ast->getASTContext()->getMemberPointerType (GetQualType(pointee_type),
GetQualType(type).getTypePtr()));
}
return CompilerType();
}
size_t
ClangASTContext::ConvertStringToFloatValue (lldb::opaque_compiler_type_t type, const char *s, uint8_t *dst, size_t dst_size)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
uint32_t count = 0;
bool is_complex = false;
if (IsFloatingPointType (type, count, is_complex))
{
// TODO: handle complex and vector types
if (count != 1)
return false;
llvm::StringRef s_sref(s);
llvm::APFloat ap_float(getASTContext()->getFloatTypeSemantics(qual_type), s_sref);
const uint64_t bit_size = getASTContext()->getTypeSize (qual_type);
const uint64_t byte_size = bit_size / 8;
if (dst_size >= byte_size)
{
if (bit_size == sizeof(float)*8)
{
float float32 = ap_float.convertToFloat();
::memcpy (dst, &float32, byte_size);
return byte_size;
}
else if (bit_size >= 64)
{
llvm::APInt ap_int(ap_float.bitcastToAPInt());
::memcpy (dst, ap_int.getRawData(), byte_size);
return byte_size;
}
}
}
}
return 0;
}
//----------------------------------------------------------------------
// Dumping types
//----------------------------------------------------------------------
#define DEPTH_INCREMENT 2
void
ClangASTContext::DumpValue (lldb::opaque_compiler_type_t type, ExecutionContext *exe_ctx,
Stream *s,
lldb::Format format,
const lldb_private::DataExtractor &data,
lldb::offset_t data_byte_offset,
size_t data_byte_size,
uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset,
bool show_types,
bool show_summary,
bool verbose,
uint32_t depth)
{
if (!type)
return;
clang::QualType qual_type(GetQualType(type));
switch (qual_type->getTypeClass())
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
uint32_t field_bit_offset = 0;
uint32_t field_byte_offset = 0;
const clang::ASTRecordLayout &record_layout = getASTContext()->getASTRecordLayout(record_decl);
uint32_t child_idx = 0;
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
// We might have base classes to print out first
clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
const clang::CXXRecordDecl *base_class_decl = llvm::cast<clang::CXXRecordDecl>(base_class->getType()->getAs<clang::RecordType>()->getDecl());
// Skip empty base classes
if (verbose == false && ClangASTContext::RecordHasFields(base_class_decl) == false)
continue;
if (base_class->isVirtual())
field_bit_offset = record_layout.getVBaseClassOffset(base_class_decl).getQuantity() * 8;
else
field_bit_offset = record_layout.getBaseClassOffset(base_class_decl).getQuantity() * 8;
field_byte_offset = field_bit_offset / 8;
assert (field_bit_offset % 8 == 0);
if (child_idx == 0)
s->PutChar('{');
else
s->PutChar(',');
clang::QualType base_class_qual_type = base_class->getType();
std::string base_class_type_name(base_class_qual_type.getAsString());
// Indent and print the base class type name
s->Printf("\n%*s%s ", depth + DEPTH_INCREMENT, "", base_class_type_name.c_str());
clang::TypeInfo base_class_type_info = getASTContext()->getTypeInfo(base_class_qual_type);
// Dump the value of the member
CompilerType base_clang_type(getASTContext(), base_class_qual_type);
base_clang_type.DumpValue (exe_ctx,
s, // Stream to dump to
base_clang_type.GetFormat(), // The format with which to display the member
data, // Data buffer containing all bytes for this type
data_byte_offset + field_byte_offset,// Offset into "data" where to grab value from
base_class_type_info.Width / 8, // Size of this type in bytes
0, // Bitfield bit size
0, // Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth + DEPTH_INCREMENT); // Scope depth for any types that have children
++child_idx;
}
}
uint32_t field_idx = 0;
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++field_idx, ++child_idx)
{
// Print the starting squiggly bracket (if this is the
// first member) or comma (for member 2 and beyond) for
// the struct/union/class member.
if (child_idx == 0)
s->PutChar('{');
else
s->PutChar(',');
// Indent
s->Printf("\n%*s", depth + DEPTH_INCREMENT, "");
clang::QualType field_type = field->getType();
// Print the member type if requested
// Figure out the type byte size (field_type_info.first) and
// alignment (field_type_info.second) from the AST context.
clang::TypeInfo field_type_info = getASTContext()->getTypeInfo(field_type);
assert(field_idx < record_layout.getFieldCount());
// Figure out the field offset within the current struct/union/class type
field_bit_offset = record_layout.getFieldOffset (field_idx);
field_byte_offset = field_bit_offset / 8;
uint32_t field_bitfield_bit_size = 0;
uint32_t field_bitfield_bit_offset = 0;
if (ClangASTContext::FieldIsBitfield (getASTContext(), *field, field_bitfield_bit_size))
field_bitfield_bit_offset = field_bit_offset % 8;
if (show_types)
{
std::string field_type_name(field_type.getAsString());
if (field_bitfield_bit_size > 0)
s->Printf("(%s:%u) ", field_type_name.c_str(), field_bitfield_bit_size);
else
s->Printf("(%s) ", field_type_name.c_str());
}
// Print the member name and equal sign
s->Printf("%s = ", field->getNameAsString().c_str());
// Dump the value of the member
CompilerType field_clang_type (getASTContext(), field_type);
field_clang_type.DumpValue (exe_ctx,
s, // Stream to dump to
field_clang_type.GetFormat(), // The format with which to display the member
data, // Data buffer containing all bytes for this type
data_byte_offset + field_byte_offset,// Offset into "data" where to grab value from
field_type_info.Width / 8, // Size of this type in bytes
field_bitfield_bit_size, // Bitfield bit size
field_bitfield_bit_offset, // Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth + DEPTH_INCREMENT); // Scope depth for any types that have children
}
// Indent the trailing squiggly bracket
if (child_idx > 0)
s->Printf("\n%*s}", depth, "");
}
return;
case clang::Type::Enum:
if (GetCompleteType(type))
{
const clang::EnumType *enutype = llvm::cast<clang::EnumType>(qual_type.getTypePtr());
const clang::EnumDecl *enum_decl = enutype->getDecl();
assert(enum_decl);
clang::EnumDecl::enumerator_iterator enum_pos, enum_end_pos;
lldb::offset_t offset = data_byte_offset;
const int64_t enum_value = data.GetMaxU64Bitfield(&offset, data_byte_size, bitfield_bit_size, bitfield_bit_offset);
for (enum_pos = enum_decl->enumerator_begin(), enum_end_pos = enum_decl->enumerator_end(); enum_pos != enum_end_pos; ++enum_pos)
{
if (enum_pos->getInitVal() == enum_value)
{
s->Printf("%s", enum_pos->getNameAsString().c_str());
return;
}
}
// If we have gotten here we didn't get find the enumerator in the
// enum decl, so just print the integer.
s->Printf("%" PRIi64, enum_value);
}
return;
case clang::Type::ConstantArray:
{
const clang::ConstantArrayType *array = llvm::cast<clang::ConstantArrayType>(qual_type.getTypePtr());
bool is_array_of_characters = false;
clang::QualType element_qual_type = array->getElementType();
const clang::Type *canonical_type = element_qual_type->getCanonicalTypeInternal().getTypePtr();
if (canonical_type)
is_array_of_characters = canonical_type->isCharType();
const uint64_t element_count = array->getSize().getLimitedValue();
clang::TypeInfo field_type_info = getASTContext()->getTypeInfo(element_qual_type);
uint32_t element_idx = 0;
uint32_t element_offset = 0;
uint64_t element_byte_size = field_type_info.Width / 8;
uint32_t element_stride = element_byte_size;
if (is_array_of_characters)
{
s->PutChar('"');
data.Dump(s, data_byte_offset, lldb::eFormatChar, element_byte_size, element_count, UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('"');
return;
}
else
{
CompilerType element_clang_type(getASTContext(), element_qual_type);
lldb::Format element_format = element_clang_type.GetFormat();
for (element_idx = 0; element_idx < element_count; ++element_idx)
{
// Print the starting squiggly bracket (if this is the
// first member) or comman (for member 2 and beyong) for
// the struct/union/class member.
if (element_idx == 0)
s->PutChar('{');
else
s->PutChar(',');
// Indent and print the index
s->Printf("\n%*s[%u] ", depth + DEPTH_INCREMENT, "", element_idx);
// Figure out the field offset within the current struct/union/class type
element_offset = element_idx * element_stride;
// Dump the value of the member
element_clang_type.DumpValue (exe_ctx,
s, // Stream to dump to
element_format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
data_byte_offset + element_offset,// Offset into "data" where to grab value from
element_byte_size, // Size of this type in bytes
0, // Bitfield bit size
0, // Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth + DEPTH_INCREMENT); // Scope depth for any types that have children
}
// Indent the trailing squiggly bracket
if (element_idx > 0)
s->Printf("\n%*s}", depth, "");
}
}
return;
case clang::Type::Typedef:
{
clang::QualType typedef_qual_type = llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType();
CompilerType typedef_clang_type (getASTContext(), typedef_qual_type);
lldb::Format typedef_format = typedef_clang_type.GetFormat();
clang::TypeInfo typedef_type_info = getASTContext()->getTypeInfo(typedef_qual_type);
uint64_t typedef_byte_size = typedef_type_info.Width / 8;
return typedef_clang_type.DumpValue (exe_ctx,
s, // Stream to dump to
typedef_format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
data_byte_offset, // Offset into "data" where to grab value from
typedef_byte_size, // Size of this type in bytes
bitfield_bit_size, // Bitfield bit size
bitfield_bit_offset,// Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth); // Scope depth for any types that have children
}
break;
case clang::Type::Elaborated:
{
clang::QualType elaborated_qual_type = llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType();
CompilerType elaborated_clang_type (getASTContext(), elaborated_qual_type);
lldb::Format elaborated_format = elaborated_clang_type.GetFormat();
clang::TypeInfo elaborated_type_info = getASTContext()->getTypeInfo(elaborated_qual_type);
uint64_t elaborated_byte_size = elaborated_type_info.Width / 8;
return elaborated_clang_type.DumpValue (exe_ctx,
s, // Stream to dump to
elaborated_format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
data_byte_offset, // Offset into "data" where to grab value from
elaborated_byte_size, // Size of this type in bytes
bitfield_bit_size, // Bitfield bit size
bitfield_bit_offset,// Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth); // Scope depth for any types that have children
}
break;
case clang::Type::Paren:
{
clang::QualType desugar_qual_type = llvm::cast<clang::ParenType>(qual_type)->desugar();
CompilerType desugar_clang_type (getASTContext(), desugar_qual_type);
lldb::Format desugar_format = desugar_clang_type.GetFormat();
clang::TypeInfo desugar_type_info = getASTContext()->getTypeInfo(desugar_qual_type);
uint64_t desugar_byte_size = desugar_type_info.Width / 8;
return desugar_clang_type.DumpValue (exe_ctx,
s, // Stream to dump to
desugar_format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
data_byte_offset, // Offset into "data" where to grab value from
desugar_byte_size, // Size of this type in bytes
bitfield_bit_size, // Bitfield bit size
bitfield_bit_offset,// Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth); // Scope depth for any types that have children
}
break;
default:
// We are down to a scalar type that we just need to display.
data.Dump(s,
data_byte_offset,
format,
data_byte_size,
1,
UINT32_MAX,
LLDB_INVALID_ADDRESS,
bitfield_bit_size,
bitfield_bit_offset);
if (show_summary)
DumpSummary (type, exe_ctx, s, data, data_byte_offset, data_byte_size);
break;
}
}
bool
ClangASTContext::DumpTypeValue (lldb::opaque_compiler_type_t type, Stream *s,
lldb::Format format,
const lldb_private::DataExtractor &data,
lldb::offset_t byte_offset,
size_t byte_size,
uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset,
ExecutionContextScope *exe_scope)
{
if (!type)
return false;
if (IsAggregateType(type))
{
return false;
}
else
{
clang::QualType qual_type(GetQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Typedef:
{
clang::QualType typedef_qual_type = llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType();
CompilerType typedef_clang_type (getASTContext(), typedef_qual_type);
if (format == eFormatDefault)
format = typedef_clang_type.GetFormat();
clang::TypeInfo typedef_type_info = getASTContext()->getTypeInfo(typedef_qual_type);
uint64_t typedef_byte_size = typedef_type_info.Width / 8;
return typedef_clang_type.DumpTypeValue (s,
format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
byte_offset, // Offset into "data" where to grab value from
typedef_byte_size, // Size of this type in bytes
bitfield_bit_size, // Size in bits of a bitfield value, if zero don't treat as a bitfield
bitfield_bit_offset, // Offset in bits of a bitfield value if bitfield_bit_size != 0
exe_scope);
}
break;
case clang::Type::Enum:
// If our format is enum or default, show the enumeration value as
// its enumeration string value, else just display it as requested.
if ((format == eFormatEnum || format == eFormatDefault) && GetCompleteType(type))
{
const clang::EnumType *enutype = llvm::cast<clang::EnumType>(qual_type.getTypePtr());
const clang::EnumDecl *enum_decl = enutype->getDecl();
assert(enum_decl);
clang::EnumDecl::enumerator_iterator enum_pos, enum_end_pos;
const bool is_signed = qual_type->isSignedIntegerOrEnumerationType();
lldb::offset_t offset = byte_offset;
if (is_signed)
{
const int64_t enum_svalue = data.GetMaxS64Bitfield (&offset, byte_size, bitfield_bit_size, bitfield_bit_offset);
for (enum_pos = enum_decl->enumerator_begin(), enum_end_pos = enum_decl->enumerator_end(); enum_pos != enum_end_pos; ++enum_pos)
{
if (enum_pos->getInitVal().getSExtValue() == enum_svalue)
{
s->PutCString (enum_pos->getNameAsString().c_str());
return true;
}
}
// If we have gotten here we didn't get find the enumerator in the
// enum decl, so just print the integer.
s->Printf("%" PRIi64, enum_svalue);
}
else
{
const uint64_t enum_uvalue = data.GetMaxU64Bitfield (&offset, byte_size, bitfield_bit_size, bitfield_bit_offset);
for (enum_pos = enum_decl->enumerator_begin(), enum_end_pos = enum_decl->enumerator_end(); enum_pos != enum_end_pos; ++enum_pos)
{
if (enum_pos->getInitVal().getZExtValue() == enum_uvalue)
{
s->PutCString (enum_pos->getNameAsString().c_str());
return true;
}
}
// If we have gotten here we didn't get find the enumerator in the
// enum decl, so just print the integer.
s->Printf("%" PRIu64, enum_uvalue);
}
return true;
}
// format was not enum, just fall through and dump the value as requested....
default:
// We are down to a scalar type that we just need to display.
{
uint32_t item_count = 1;
// A few formats, we might need to modify our size and count for depending
// on how we are trying to display the value...
switch (format)
{
default:
case eFormatBoolean:
case eFormatBinary:
case eFormatComplex:
case eFormatCString: // NULL terminated C strings
case eFormatDecimal:
case eFormatEnum:
case eFormatHex:
case eFormatHexUppercase:
case eFormatFloat:
case eFormatOctal:
case eFormatOSType:
case eFormatUnsigned:
case eFormatPointer:
case eFormatVectorOfChar:
case eFormatVectorOfSInt8:
case eFormatVectorOfUInt8:
case eFormatVectorOfSInt16:
case eFormatVectorOfUInt16:
case eFormatVectorOfSInt32:
case eFormatVectorOfUInt32:
case eFormatVectorOfSInt64:
case eFormatVectorOfUInt64:
case eFormatVectorOfFloat32:
case eFormatVectorOfFloat64:
case eFormatVectorOfUInt128:
break;
case eFormatChar:
case eFormatCharPrintable:
case eFormatCharArray:
case eFormatBytes:
case eFormatBytesWithASCII:
item_count = byte_size;
byte_size = 1;
break;
case eFormatUnicode16:
item_count = byte_size / 2;
byte_size = 2;
break;
case eFormatUnicode32:
item_count = byte_size / 4;
byte_size = 4;
break;
}
return data.Dump (s,
byte_offset,
format,
byte_size,
item_count,
UINT32_MAX,
LLDB_INVALID_ADDRESS,
bitfield_bit_size,
bitfield_bit_offset,
exe_scope);
}
break;
}
}
return 0;
}
void
ClangASTContext::DumpSummary (lldb::opaque_compiler_type_t type, ExecutionContext *exe_ctx,
Stream *s,
const lldb_private::DataExtractor &data,
lldb::offset_t data_byte_offset,
size_t data_byte_size)
{
uint32_t length = 0;
if (IsCStringType (type, length))
{
if (exe_ctx)
{
Process *process = exe_ctx->GetProcessPtr();
if (process)
{
lldb::offset_t offset = data_byte_offset;
lldb::addr_t pointer_address = data.GetMaxU64(&offset, data_byte_size);
std::vector<uint8_t> buf;
if (length > 0)
buf.resize (length);
else
buf.resize (256);
lldb_private::DataExtractor cstr_data(&buf.front(), buf.size(), process->GetByteOrder(), 4);
buf.back() = '\0';
size_t bytes_read;
size_t total_cstr_len = 0;
Error error;
while ((bytes_read = process->ReadMemory (pointer_address, &buf.front(), buf.size(), error)) > 0)
{
const size_t len = strlen((const char *)&buf.front());
if (len == 0)
break;
if (total_cstr_len == 0)
s->PutCString (" \"");
cstr_data.Dump(s, 0, lldb::eFormatChar, 1, len, UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0);
total_cstr_len += len;
if (len < buf.size())
break;
pointer_address += total_cstr_len;
}
if (total_cstr_len > 0)
s->PutChar ('"');
}
}
}
}
void
ClangASTContext::DumpTypeDescription (lldb::opaque_compiler_type_t type)
{
StreamFile s (stdout, false);
DumpTypeDescription (type, &s);
ClangASTMetadata *metadata = ClangASTContext::GetMetadata (getASTContext(), type);
if (metadata)
{
metadata->Dump (&s);
}
}
void
ClangASTContext::DumpTypeDescription (lldb::opaque_compiler_type_t type, Stream *s)
{
if (type)
{
clang::QualType qual_type(GetQualType(type));
llvm::SmallVector<char, 1024> buf;
llvm::raw_svector_ostream llvm_ostrm (buf);
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
{
GetCompleteType(type);
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
clang::PrintingPolicy policy = getASTContext()->getPrintingPolicy();
class_interface_decl->print(llvm_ostrm, policy, s->GetIndentLevel());
}
}
}
break;
case clang::Type::Typedef:
{
const clang::TypedefType *typedef_type = qual_type->getAs<clang::TypedefType>();
if (typedef_type)
{
const clang::TypedefNameDecl *typedef_decl = typedef_type->getDecl();
std::string clang_typedef_name (typedef_decl->getQualifiedNameAsString());
if (!clang_typedef_name.empty())
{
s->PutCString ("typedef ");
s->PutCString (clang_typedef_name.c_str());
}
}
}
break;
case clang::Type::Elaborated:
CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).DumpTypeDescription(s);
return;
case clang::Type::Paren:
CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).DumpTypeDescription(s);
return;
case clang::Type::Record:
{
GetCompleteType(type);
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
cxx_record_decl->print(llvm_ostrm, getASTContext()->getPrintingPolicy(), s->GetIndentLevel());
else
record_decl->print(llvm_ostrm, getASTContext()->getPrintingPolicy(), s->GetIndentLevel());
}
break;
default:
{
const clang::TagType *tag_type = llvm::dyn_cast<clang::TagType>(qual_type.getTypePtr());
if (tag_type)
{
clang::TagDecl *tag_decl = tag_type->getDecl();
if (tag_decl)
tag_decl->print(llvm_ostrm, 0);
}
else
{
std::string clang_type_name(qual_type.getAsString());
if (!clang_type_name.empty())
s->PutCString (clang_type_name.c_str());
}
}
}
if (buf.size() > 0)
{
s->Write (buf.data(), buf.size());
}
}
}
clang::ClassTemplateDecl *
ClangASTContext::ParseClassTemplateDecl (clang::DeclContext *decl_ctx,
lldb::AccessType access_type,
const char *parent_name,
int tag_decl_kind,
const ClangASTContext::TemplateParameterInfos &template_param_infos)
{
if (template_param_infos.IsValid())
{
std::string template_basename(parent_name);
template_basename.erase (template_basename.find('<'));
return CreateClassTemplateDecl (decl_ctx,
access_type,
template_basename.c_str(),
tag_decl_kind,
template_param_infos);
}
return NULL;
}
void
ClangASTContext::CompleteTagDecl (void *baton, clang::TagDecl *decl)
{
ClangASTContext *ast = (ClangASTContext *)baton;
SymbolFile *sym_file = ast->GetSymbolFile();
if (sym_file)
{
CompilerType clang_type = GetTypeForDecl (decl);
if (clang_type)
sym_file->CompleteType (clang_type);
}
}
void
ClangASTContext::CompleteObjCInterfaceDecl (void *baton, clang::ObjCInterfaceDecl *decl)
{
ClangASTContext *ast = (ClangASTContext *)baton;
SymbolFile *sym_file = ast->GetSymbolFile();
if (sym_file)
{
CompilerType clang_type = GetTypeForDecl (decl);
if (clang_type)
sym_file->CompleteType (clang_type);
}
}
DWARFASTParser *
ClangASTContext::GetDWARFParser ()
{
if (!m_dwarf_ast_parser_ap)
m_dwarf_ast_parser_ap.reset(new DWARFASTParserClang(*this));
return m_dwarf_ast_parser_ap.get();
}
bool
ClangASTContext::LayoutRecordType(void *baton,
const clang::RecordDecl *record_decl,
uint64_t &bit_size,
uint64_t &alignment,
llvm::DenseMap<const clang::FieldDecl *, uint64_t> &field_offsets,
llvm::DenseMap<const clang::CXXRecordDecl *, clang::CharUnits> &base_offsets,
llvm::DenseMap<const clang::CXXRecordDecl *, clang::CharUnits> &vbase_offsets)
{
ClangASTContext *ast = (ClangASTContext *)baton;
DWARFASTParserClang *dwarf_ast_parser = (DWARFASTParserClang *)ast->GetDWARFParser();
return dwarf_ast_parser->LayoutRecordType(record_decl, bit_size, alignment, field_offsets, base_offsets, vbase_offsets);
}
//----------------------------------------------------------------------
// CompilerDecl override functions
//----------------------------------------------------------------------
lldb::VariableSP
ClangASTContext::DeclGetVariable (void *opaque_decl)
{
if (llvm::dyn_cast<clang::VarDecl>((clang::Decl *)opaque_decl))
{
auto decl_search_it = m_decl_objects.find(opaque_decl);
if (decl_search_it != m_decl_objects.end())
return std::static_pointer_cast<Variable>(decl_search_it->second);
}
return VariableSP();
}
void
ClangASTContext::DeclLinkToObject (void *opaque_decl, std::shared_ptr<void> object)
{
if (m_decl_objects.find(opaque_decl) == m_decl_objects.end())
m_decl_objects.insert(std::make_pair(opaque_decl, object));
}
ConstString
ClangASTContext::DeclGetName (void *opaque_decl)
{
if (opaque_decl)
{
clang::NamedDecl *nd = llvm::dyn_cast<NamedDecl>((clang::Decl*)opaque_decl);
if (nd != nullptr)
return ConstString(nd->getName());
}
return ConstString();
}
//----------------------------------------------------------------------
// CompilerDeclContext functions
//----------------------------------------------------------------------
std::vector<void *>
ClangASTContext::DeclContextFindDeclByName(void *opaque_decl_ctx, ConstString name)
{
std::vector<void *> found_decls;
if (opaque_decl_ctx)
{
DeclContext *root_decl_ctx = (DeclContext *)opaque_decl_ctx;
std::set<DeclContext *> searched;
std::multimap<DeclContext *, DeclContext *> search_queue;
SymbolFile *symbol_file = GetSymbolFile();
for (clang::DeclContext *decl_context = root_decl_ctx; decl_context != nullptr && found_decls.empty(); decl_context = decl_context->getParent())
{
search_queue.insert(std::make_pair(decl_context, decl_context));
for (auto it = search_queue.find(decl_context); it != search_queue.end(); it++)
{
searched.insert(it->second);
symbol_file->ParseDeclsForContext(CompilerDeclContext(this, it->second));
for (clang::Decl *child : it->second->decls())
{
if (clang::UsingDirectiveDecl *ud = llvm::dyn_cast<clang::UsingDirectiveDecl>(child))
{
clang::DeclContext *from = ud->getCommonAncestor();
if (searched.find(ud->getNominatedNamespace()) == searched.end())
search_queue.insert(std::make_pair(from, ud->getNominatedNamespace()));
}
else if (clang::UsingDecl *ud = llvm::dyn_cast<clang::UsingDecl>(child))
{
for (clang::UsingShadowDecl *usd : ud->shadows())
{
clang::Decl *target = usd->getTargetDecl();
if (clang::NamedDecl *nd = llvm::dyn_cast<clang::NamedDecl>(target))
{
IdentifierInfo *ii = nd->getIdentifier();
if (ii != nullptr && ii->getName().equals(name.AsCString(nullptr)))
found_decls.push_back(nd);
}
}
}
else if (clang::NamedDecl *nd = llvm::dyn_cast<clang::NamedDecl>(child))
{
IdentifierInfo *ii = nd->getIdentifier();
if (ii != nullptr && ii->getName().equals(name.AsCString(nullptr)))
found_decls.push_back(nd);
}
}
}
}
}
return found_decls;
}
bool
ClangASTContext::DeclContextIsStructUnionOrClass (void *opaque_decl_ctx)
{
if (opaque_decl_ctx)
return ((clang::DeclContext *)opaque_decl_ctx)->isRecord();
else
return false;
}
ConstString
ClangASTContext::DeclContextGetName (void *opaque_decl_ctx)
{
if (opaque_decl_ctx)
{
clang::NamedDecl *named_decl = llvm::dyn_cast<clang::NamedDecl>((clang::DeclContext *)opaque_decl_ctx);
if (named_decl)
return ConstString(named_decl->getName());
}
return ConstString();
}
bool
ClangASTContext::DeclContextIsClassMethod (void *opaque_decl_ctx,
lldb::LanguageType *language_ptr,
bool *is_instance_method_ptr,
ConstString *language_object_name_ptr)
{
if (opaque_decl_ctx)
{
clang::DeclContext *decl_ctx = (clang::DeclContext *)opaque_decl_ctx;
if (ObjCMethodDecl *objc_method = llvm::dyn_cast<clang::ObjCMethodDecl>(decl_ctx))
{
if (is_instance_method_ptr)
*is_instance_method_ptr = objc_method->isInstanceMethod();
if (language_ptr)
*language_ptr = eLanguageTypeObjC;
if (language_object_name_ptr)
language_object_name_ptr->SetCString("self");
return true;
}
else if (CXXMethodDecl *cxx_method = llvm::dyn_cast<clang::CXXMethodDecl>(decl_ctx))
{
if (is_instance_method_ptr)
*is_instance_method_ptr = cxx_method->isInstance();
if (language_ptr)
*language_ptr = eLanguageTypeC_plus_plus;
if (language_object_name_ptr)
language_object_name_ptr->SetCString("this");
return true;
}
else if (clang::FunctionDecl *function_decl = llvm::dyn_cast<clang::FunctionDecl>(decl_ctx))
{
ClangASTMetadata *metadata = GetMetadata (&decl_ctx->getParentASTContext(), function_decl);
if (metadata && metadata->HasObjectPtr())
{
if (is_instance_method_ptr)
*is_instance_method_ptr = true;
if (language_ptr)
*language_ptr = eLanguageTypeObjC;
if (language_object_name_ptr)
language_object_name_ptr->SetCString (metadata->GetObjectPtrName());
return true;
}
}
}
return false;
}
clang::DeclContext *
ClangASTContext::DeclContextGetAsDeclContext (const CompilerDeclContext &dc)
{
if (dc.IsClang())
return (clang::DeclContext *)dc.GetOpaqueDeclContext();
return nullptr;
}
ObjCMethodDecl *
ClangASTContext::DeclContextGetAsObjCMethodDecl (const CompilerDeclContext &dc)
{
if (dc.IsClang())
return llvm::dyn_cast<clang::ObjCMethodDecl>((clang::DeclContext *)dc.GetOpaqueDeclContext());
return nullptr;
}
CXXMethodDecl *
ClangASTContext::DeclContextGetAsCXXMethodDecl (const CompilerDeclContext &dc)
{
if (dc.IsClang())
return llvm::dyn_cast<clang::CXXMethodDecl>((clang::DeclContext *)dc.GetOpaqueDeclContext());
return nullptr;
}
clang::FunctionDecl *
ClangASTContext::DeclContextGetAsFunctionDecl (const CompilerDeclContext &dc)
{
if (dc.IsClang())
return llvm::dyn_cast<clang::FunctionDecl>((clang::DeclContext *)dc.GetOpaqueDeclContext());
return nullptr;
}
clang::NamespaceDecl *
ClangASTContext::DeclContextGetAsNamespaceDecl (const CompilerDeclContext &dc)
{
if (dc.IsClang())
return llvm::dyn_cast<clang::NamespaceDecl>((clang::DeclContext *)dc.GetOpaqueDeclContext());
return nullptr;
}
ClangASTMetadata *
ClangASTContext::DeclContextGetMetaData (const CompilerDeclContext &dc, const void *object)
{
clang::ASTContext *ast = DeclContextGetClangASTContext (dc);
if (ast)
return ClangASTContext::GetMetadata (ast, object);
return nullptr;
}
clang::ASTContext *
ClangASTContext::DeclContextGetClangASTContext (const CompilerDeclContext &dc)
{
ClangASTContext *ast = llvm::dyn_cast_or_null<ClangASTContext>(dc.GetTypeSystem());
if (ast)
return ast->getASTContext();
return nullptr;
}
ClangASTContextForExpressions::ClangASTContextForExpressions (Target &target) :
ClangASTContext (target.GetArchitecture().GetTriple().getTriple().c_str()),
m_target_wp(target.shared_from_this()),
m_persistent_variables (new ClangPersistentVariables)
{
}
UserExpression *
ClangASTContextForExpressions::GetUserExpression (const char *expr,
const char *expr_prefix,
lldb::LanguageType language,
Expression::ResultType desired_type)
{
TargetSP target_sp = m_target_wp.lock();
if (!target_sp)
return nullptr;
return new ClangUserExpression(*target_sp.get(), expr, expr_prefix, language, desired_type);
}
FunctionCaller *
ClangASTContextForExpressions::GetFunctionCaller (const CompilerType &return_type,
const Address& function_address,
const ValueList &arg_value_list,
const char *name)
{
TargetSP target_sp = m_target_wp.lock();
if (!target_sp)
return nullptr;
Process *process = target_sp->GetProcessSP().get();
if (!process)
return nullptr;
return new ClangFunctionCaller (*process, return_type, function_address, arg_value_list, name);
}
UtilityFunction *
ClangASTContextForExpressions::GetUtilityFunction (const char *text,
const char *name)
{
TargetSP target_sp = m_target_wp.lock();
if (!target_sp)
return nullptr;
return new ClangUtilityFunction(*target_sp.get(), text, name);
}
PersistentExpressionState *
ClangASTContextForExpressions::GetPersistentExpressionState ()
{
return m_persistent_variables.get();
}