llvm-project/llvm/lib/Target/Target.td

321 lines
13 KiB
TableGen

//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the target-independent interfaces which should be
// implemented by each target which is using a TableGen based code generator.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
//
// Value types - These values correspond to the register types defined in the
// ValueTypes.h file. If you update anything here, you must update it there as
// well!
//
class ValueType<int size, int value> {
string Namespace = "MVT";
int Size = size;
int Value = value;
}
def OtherVT: ValueType<0 , 0>; // "Other" value
def i1 : ValueType<1 , 1>; // One bit boolean value
def i8 : ValueType<8 , 2>; // 8-bit integer value
def i16 : ValueType<16 , 3>; // 16-bit integer value
def i32 : ValueType<32 , 4>; // 32-bit integer value
def i64 : ValueType<64 , 5>; // 64-bit integer value
def i128 : ValueType<128, 5>; // 128-bit integer value
def f32 : ValueType<32 , 7>; // 32-bit floating point value
def f64 : ValueType<64 , 8>; // 64-bit floating point value
def f80 : ValueType<80 , 9>; // 80-bit floating point value
def f128 : ValueType<128, 9>; // 128-bit floating point value
def isVoid : ValueType<0 , 11>; // Produces no value
//===----------------------------------------------------------------------===//
// Register file description - These classes are used to fill in the target
// description classes in llvm/Target/MRegisterInfo.h
// Register - You should define one instance of this class for each register
// in the target machine. String n will become the "name" of the register.
class RegisterBase<string n> {
string Namespace = "";
string Name = n;
// SpillSize - If this value is set to a non-zero value, it is the size in
// bits of the spill slot required to hold this register. If this value is
// set to zero, the information is inferred from any register classes the
// register belongs to.
int SpillSize = 0;
// SpillAlignment - This value is used to specify the alignment required for
// spilling the register. Like SpillSize, this should only be explicitly
// specified if the register is not in a register class.
int SpillAlignment = 0;
}
class Register<string n> : RegisterBase<n> {
list<RegisterBase> Aliases = [];
}
// RegisterGroup - This can be used to define instances of Register which
// need to specify aliases.
// List "aliases" specifies which registers are aliased to this one. This
// allows the code generator to be careful not to put two values with
// overlapping live ranges into registers which alias.
class RegisterGroup<string n, list<Register> aliases> : Register<n> {
let Aliases = aliases;
}
// RegisterClass - Now that all of the registers are defined, and aliases
// between registers are defined, specify which registers belong to which
// register classes. This also defines the default allocation order of
// registers by register allocators.
//
class RegisterClass<ValueType regType, int alignment, list<Register> regList> {
// RegType - Specify the ValueType of the registers in this register class.
// Note that all registers in a register class must have the same ValueType.
//
ValueType RegType = regType;
// Alignment - Specify the alignment required of the registers when they are
// stored or loaded to memory.
//
int Size = RegType.Size;
int Alignment = alignment;
// MemberList - Specify which registers are in this class. If the
// allocation_order_* method are not specified, this also defines the order of
// allocation used by the register allocator.
//
list<Register> MemberList = regList;
// Methods - This member can be used to insert arbitrary code into a generated
// register class. The normal usage of this is to overload virtual methods.
code Methods = [{}];
}
//===----------------------------------------------------------------------===//
// Instruction set description - These classes correspond to the C++ classes in
// the Target/TargetInstrInfo.h file.
//
class Instruction {
string Name = ""; // The opcode string for this instruction
string Namespace = "";
dag OperandList; // An dag containing the MI operand list.
string AsmString = ""; // The .s format to print the instruction with.
// Pattern - Set to the DAG pattern for this instruction, if we know of one,
// otherwise, uninitialized.
list<dag> Pattern;
// The follow state will eventually be inferred automatically from the
// instruction pattern.
list<Register> Uses = []; // Default to using no non-operand registers
list<Register> Defs = []; // Default to modifying no non-operand registers
// These bits capture information about the high-level semantics of the
// instruction.
bit isReturn = 0; // Is this instruction a return instruction?
bit isBranch = 0; // Is this instruction a branch instruction?
bit isBarrier = 0; // Can control flow fall through this instruction?
bit isCall = 0; // Is this instruction a call instruction?
bit isLoad = 0; // Is this instruction a load instruction?
bit isStore = 0; // Is this instruction a store instruction?
bit isTwoAddress = 0; // Is this a two address instruction?
bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote?
bit isCommutable = 0; // Is this 3 operand instruction commutable?
bit isTerminator = 0; // Is this part of the terminator for a basic block?
bit hasDelaySlot = 0; // Does this instruction have an delay slot?
}
/// ops definition - This is just a simple marker used to identify the operands
/// list for an instruction. This should be used like this:
/// (ops R32:$dst, R32:$src) or something similar.
def ops;
/// Operand Types - These provide the built-in operand types that may be used
/// by a target. Targets can optionally provide their own operand types as
/// needed, though this should not be needed for RISC targets.
class Operand<ValueType ty> {
int NumMIOperands = 1;
ValueType Type = ty;
string PrintMethod = "printOperand";
}
def i1imm : Operand<i1>;
def i8imm : Operand<i8>;
def i16imm : Operand<i16>;
def i32imm : Operand<i32>;
def i64imm : Operand<i64>;
// InstrInfo - This class should only be instantiated once to provide parameters
// which are global to the the target machine.
//
class InstrInfo {
Instruction PHIInst;
// If the target wants to associate some target-specific information with each
// instruction, it should provide these two lists to indicate how to assemble
// the target specific information into the 32 bits available.
//
list<string> TSFlagsFields = [];
list<int> TSFlagsShifts = [];
// Target can specify its instructions in either big or little-endian formats.
// For instance, while both Sparc and PowerPC are big-endian platforms, the
// Sparc manual specifies its instructions in the format [31..0] (big), while
// PowerPC specifies them using the format [0..31] (little).
bit isLittleEndianEncoding = 0;
}
//===----------------------------------------------------------------------===//
// AsmWriter - This class can be implemented by targets that need to customize
// the format of the .s file writer.
//
// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
// on X86 for example).
//
class AsmWriter {
// AsmWriterClassName - This specifies the suffix to use for the asmwriter
// class. Generated AsmWriter classes are always prefixed with the target
// name.
string AsmWriterClassName = "AsmPrinter";
// InstFormatName - AsmWriters can specify the name of the format string to
// print instructions with.
string InstFormatName = "AsmString";
// Variant - AsmWriters can be of multiple different variants. Variants are
// used to support targets that need to emit assembly code in ways that are
// mostly the same for different targets, but have minor differences in
// syntax. If the asmstring contains {|} characters in them, this integer
// will specify which alternative to use. For example "{x|y|z}" with Variant
// == 1, will expand to "y".
int Variant = 0;
}
def DefaultAsmWriter : AsmWriter;
//===----------------------------------------------------------------------===//
// Target - This class contains the "global" target information
//
class Target {
// CalleeSavedRegisters - As you might guess, this is a list of the callee
// saved registers for a target.
list<Register> CalleeSavedRegisters = [];
// PointerType - Specify the value type to be used to represent pointers in
// this target. Typically this is an i32 or i64 type.
ValueType PointerType;
// InstructionSet - Instruction set description for this target.
InstrInfo InstructionSet;
// AssemblyWriters - The AsmWriter instances available for this target.
list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
}
//===----------------------------------------------------------------------===//
// DAG node definitions used by the instruction selector.
//
// NOTE: all of this is a work-in-progress and should be ignored for now.
//
/*
class Expander<dag pattern, list<dag> result> {
dag Pattern = pattern;
list<dag> Result = result;
}
class DagNodeValType;
def DNVT_any : DagNodeValType; // No constraint on tree node
def DNVT_void : DagNodeValType; // Tree node always returns void
def DNVT_val : DagNodeValType; // A non-void type
def DNVT_arg0 : DagNodeValType; // Tree node returns same type as Arg0
def DNVT_arg1 : DagNodeValType; // Tree node returns same type as Arg1
def DNVT_ptr : DagNodeValType; // The target pointer type
def DNVT_i8 : DagNodeValType; // Always have an i8 value
class DagNode<DagNodeValType ret, list<DagNodeValType> args> {
DagNodeValType RetType = ret;
list<DagNodeValType> ArgTypes = args;
string EnumName = ?;
}
// BuiltinDagNodes are built into the instruction selector and correspond to
// enum values.
class BuiltinDagNode<DagNodeValType Ret, list<DagNodeValType> Args,
string Ename> : DagNode<Ret, Args> {
let EnumName = Ename;
}
// Magic nodes...
def Void : RegisterClass<isVoid,0,[]> { let isDummyClass = 1; }
def set : DagNode<DNVT_void, [DNVT_val, DNVT_arg0]>;
def chain : BuiltinDagNode<DNVT_void, [DNVT_void, DNVT_void], "ChainNode">;
def blockchain : BuiltinDagNode<DNVT_void, [DNVT_void, DNVT_void],
"BlockChainNode">;
def ChainExpander : Expander<(chain Void, Void), []>;
def BlockChainExpander : Expander<(blockchain Void, Void), []>;
// Terminals...
def imm : BuiltinDagNode<DNVT_val, [], "Constant">;
def frameidx : BuiltinDagNode<DNVT_ptr, [], "FrameIndex">;
def basicblock : BuiltinDagNode<DNVT_ptr, [], "BasicBlock">;
// Arithmetic...
def plus : BuiltinDagNode<DNVT_arg0, [DNVT_arg1, DNVT_arg0], "Plus">;
def minus : BuiltinDagNode<DNVT_arg0, [DNVT_arg1, DNVT_arg0], "Minus">;
def times : BuiltinDagNode<DNVT_arg0, [DNVT_arg1, DNVT_arg0], "Times">;
def sdiv : BuiltinDagNode<DNVT_arg0, [DNVT_arg1, DNVT_arg0], "SDiv">;
def udiv : BuiltinDagNode<DNVT_arg0, [DNVT_arg1, DNVT_arg0], "UDiv">;
def srem : BuiltinDagNode<DNVT_arg0, [DNVT_arg1, DNVT_arg0], "SRem">;
def urem : BuiltinDagNode<DNVT_arg0, [DNVT_arg1, DNVT_arg0], "URem">;
def and : BuiltinDagNode<DNVT_arg0, [DNVT_arg1, DNVT_arg0], "And">;
def or : BuiltinDagNode<DNVT_arg0, [DNVT_arg1, DNVT_arg0], "Or">;
def xor : BuiltinDagNode<DNVT_arg0, [DNVT_arg1, DNVT_arg0], "Xor">;
// Comparisons...
def seteq : BuiltinDagNode<DNVT_i8 , [DNVT_arg1, DNVT_arg0], "SetEQ">;
def setne : BuiltinDagNode<DNVT_i8 , [DNVT_arg1, DNVT_arg0], "SetNE">;
def setlt : BuiltinDagNode<DNVT_i8 , [DNVT_arg1, DNVT_arg0], "SetLT">;
def setle : BuiltinDagNode<DNVT_i8 , [DNVT_arg1, DNVT_arg0], "SetLE">;
def setgt : BuiltinDagNode<DNVT_i8 , [DNVT_arg1, DNVT_arg0], "SetGT">;
def setge : BuiltinDagNode<DNVT_i8 , [DNVT_arg1, DNVT_arg0], "SetGE">;
def load : BuiltinDagNode<DNVT_val, [DNVT_ptr], "Load">;
//def store : BuiltinDagNode<DNVT_Void, [DNVT_ptr, DNVT_val]>;
// Other...
def ret : BuiltinDagNode<DNVT_void, [DNVT_val], "Ret">;
def retvoid : BuiltinDagNode<DNVT_void, [], "RetVoid">;
def br : BuiltinDagNode<DNVT_void, [DNVT_ptr], "Br">;
def brcond : BuiltinDagNode<DNVT_void, [DNVT_i8, DNVT_ptr, DNVT_ptr],
"BrCond">;
def unspec1 : BuiltinDagNode<DNVT_any , [DNVT_val], "Unspec1">;
def unspec2 : BuiltinDagNode<DNVT_any , [DNVT_val, DNVT_val], "Unspec2">;
//===----------------------------------------------------------------------===//
// DAG nonterminals definitions used by the instruction selector...
//
class Nonterminal<dag pattern> {
dag Pattern = pattern;
bit BuiltIn = 0;
}
*/