llvm-project/llvm/lib/Target/Alpha/AlphaISelPattern.cpp

2249 lines
80 KiB
C++

//===- AlphaISelPattern.cpp - A pattern matching inst selector for Alpha --===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pattern matching instruction selector for Alpha.
//
//===----------------------------------------------------------------------===//
#include "Alpha.h"
#include "AlphaRegisterInfo.h"
#include "llvm/Constants.h" // FIXME: REMOVE
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include <set>
#include <algorithm>
using namespace llvm;
namespace llvm {
cl::opt<bool> EnableAlphaIDIV("enable-alpha-intfpdiv",
cl::desc("Use the FP div instruction for integer div when possible"),
cl::Hidden);
cl::opt<bool> EnableAlphaFTOI("enable-alpha-ftoi",
cl::desc("Enable use of ftoi* and itof* instructions (ev6 and higher)"),
cl::Hidden);
cl::opt<bool> EnableAlphaCount("enable-alpha-count",
cl::desc("Print estimates on live ins and outs"),
cl::Hidden);
}
//===----------------------------------------------------------------------===//
// AlphaTargetLowering - Alpha Implementation of the TargetLowering interface
namespace {
class AlphaTargetLowering : public TargetLowering {
int VarArgsFrameIndex; // FrameIndex for start of varargs area.
unsigned GP; //GOT vreg
public:
AlphaTargetLowering(TargetMachine &TM) : TargetLowering(TM) {
// Set up the TargetLowering object.
//I am having problems with shr n ubyte 1
setShiftAmountType(MVT::i64);
setSetCCResultType(MVT::i64);
setSetCCResultContents(ZeroOrOneSetCCResult);
addRegisterClass(MVT::i64, Alpha::GPRCRegisterClass);
addRegisterClass(MVT::f64, Alpha::FPRCRegisterClass);
addRegisterClass(MVT::f32, Alpha::FPRCRegisterClass);
setOperationAction(ISD::BRCONDTWOWAY, MVT::Other, Expand);
setOperationAction(ISD::EXTLOAD , MVT::i1 , Promote);
setOperationAction(ISD::EXTLOAD , MVT::f32 , Promote);
setOperationAction(ISD::ZEXTLOAD , MVT::i1 , Expand);
setOperationAction(ISD::ZEXTLOAD , MVT::i32 , Expand);
setOperationAction(ISD::SEXTLOAD , MVT::i1 , Expand);
setOperationAction(ISD::SEXTLOAD , MVT::i8 , Expand);
setOperationAction(ISD::SEXTLOAD , MVT::i16 , Expand);
setOperationAction(ISD::SREM , MVT::f32 , Expand);
setOperationAction(ISD::SREM , MVT::f64 , Expand);
//If this didn't legalize into a div....
// setOperationAction(ISD::SREM , MVT::i64, Expand);
// setOperationAction(ISD::UREM , MVT::i64, Expand);
setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
setOperationAction(ISD::MEMSET , MVT::Other, Expand);
setOperationAction(ISD::MEMCPY , MVT::Other, Expand);
//Doesn't work yet
setOperationAction(ISD::SETCC , MVT::f32, Promote);
computeRegisterProperties();
addLegalFPImmediate(+0.0); //F31
addLegalFPImmediate(-0.0); //-F31
}
/// LowerArguments - This hook must be implemented to indicate how we should
/// lower the arguments for the specified function, into the specified DAG.
virtual std::vector<SDOperand>
LowerArguments(Function &F, SelectionDAG &DAG);
/// LowerCallTo - This hook lowers an abstract call to a function into an
/// actual call.
virtual std::pair<SDOperand, SDOperand>
LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
virtual std::pair<SDOperand, SDOperand>
LowerVAStart(SDOperand Chain, SelectionDAG &DAG);
virtual std::pair<SDOperand,SDOperand>
LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
const Type *ArgTy, SelectionDAG &DAG);
virtual std::pair<SDOperand, SDOperand>
LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
SelectionDAG &DAG);
void restoreGP(MachineBasicBlock* BB)
{
BuildMI(BB, Alpha::BIS, 2, Alpha::R29).addReg(GP).addReg(GP);
}
};
}
//http://www.cs.arizona.edu/computer.help/policy/DIGITAL_unix/AA-PY8AC-TET1_html/callCH3.html#BLOCK21
//For now, just use variable size stack frame format
//In a standard call, the first six items are passed in registers $16
//- $21 and/or registers $f16 - $f21. (See Section 4.1.2 for details
//of argument-to-register correspondence.) The remaining items are
//collected in a memory argument list that is a naturally aligned
//array of quadwords. In a standard call, this list, if present, must
//be passed at 0(SP).
//7 ... n 0(SP) ... (n-7)*8(SP)
// //#define FP $15
// //#define RA $26
// //#define PV $27
// //#define GP $29
// //#define SP $30
std::vector<SDOperand>
AlphaTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG)
{
std::vector<SDOperand> ArgValues;
std::vector<SDOperand> LS;
SDOperand Chain = DAG.getRoot();
// assert(0 && "TODO");
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo*MFI = MF.getFrameInfo();
GP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
MachineBasicBlock& BB = MF.front();
//Handle the return address
//BuildMI(&BB, Alpha::IDEF, 0, Alpha::R26);
unsigned args_int[] = {Alpha::R16, Alpha::R17, Alpha::R18,
Alpha::R19, Alpha::R20, Alpha::R21};
unsigned args_float[] = {Alpha::F16, Alpha::F17, Alpha::F18,
Alpha::F19, Alpha::F20, Alpha::F21};
int count = 0;
//Def incoming registers
{
Function::arg_iterator I = F.arg_begin();
Function::arg_iterator E = F.arg_end();
for (int i = 0; i < 6; ++i)
{
if (F.isVarArg()) {
MF.addLiveIn(args_int[i]);
MF.addLiveIn(args_float[i]);
// BuildMI(&BB, Alpha::IDEF, 0, args_int[i]);
// BuildMI(&BB, Alpha::IDEF, 0, args_float[i]);
} else if (I != E)
{
if(MVT::isInteger(getValueType(I->getType())))
MF.addLiveIn(args_int[i]);
// BuildMI(&BB, Alpha::IDEF, 0, args_int[i]);
else
MF.addLiveIn(args_float[i]);
// BuildMI(&BB, Alpha::IDEF, 0, args_float[i]);
++I;
}
}
}
MF.addLiveIn(Alpha::R29);
// BuildMI(&BB, Alpha::IDEF, 0, Alpha::R29);
BuildMI(&BB, Alpha::BIS, 2, GP).addReg(Alpha::R29).addReg(Alpha::R29);
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
{
SDOperand newroot, argt;
if (count < 6) {
unsigned Vreg;
MVT::ValueType VT = getValueType(I->getType());
switch (getValueType(I->getType())) {
default:
std::cerr << "Unknown Type " << VT << "\n";
abort();
case MVT::f64:
case MVT::f32:
Vreg = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(VT));
BuildMI(&BB, Alpha::CPYS, 2, Vreg).addReg(args_float[count]).addReg(args_float[count]);
argt = newroot = DAG.getCopyFromReg(Vreg,
getValueType(I->getType()),
Chain);
break;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
Vreg = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
BuildMI(&BB, Alpha::BIS, 2, Vreg).addReg(args_int[count]).addReg(args_int[count]);
argt = newroot = DAG.getCopyFromReg(Vreg, MVT::i64, Chain);
if (getValueType(I->getType()) != MVT::i64)
argt = DAG.getNode(ISD::TRUNCATE, getValueType(I->getType()), newroot);
break;
}
} else { //more args
// Create the frame index object for this incoming parameter...
int FI = MFI->CreateFixedObject(8, 8 * (count - 6));
// Create the SelectionDAG nodes corresponding to a load
//from this parameter
SDOperand FIN = DAG.getFrameIndex(FI, MVT::i64);
argt = newroot = DAG.getLoad(getValueType(I->getType()),
DAG.getEntryNode(), FIN);
}
++count;
LS.push_back(newroot.getValue(1));
ArgValues.push_back(argt);
}
// If the functions takes variable number of arguments, copy all regs to stack
if (F.isVarArg())
for (int i = 0; i < 6; ++i)
{
unsigned Vreg = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
BuildMI(&BB, Alpha::BIS, 2, Vreg).addReg(args_int[i]).addReg(args_int[i]);
SDOperand argt = DAG.getCopyFromReg(Vreg, MVT::i64, Chain);
int FI = MFI->CreateFixedObject(8, -8 * (6 - i));
SDOperand SDFI = DAG.getFrameIndex(FI, MVT::i64);
LS.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, argt, SDFI));
Vreg = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::f64));
BuildMI(&BB, Alpha::CPYS, 2, Vreg).addReg(args_float[i]).addReg(args_float[i]);
argt = DAG.getCopyFromReg(Vreg, MVT::f64, Chain);
FI = MFI->CreateFixedObject(8, - 8 * (12 - i));
SDFI = DAG.getFrameIndex(FI, MVT::i64);
LS.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, argt, SDFI));
}
// If the function takes variable number of arguments, make a frame index for
// the start of the first arg value... for expansion of llvm.va_start.
// if (F.isVarArg())
// VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
//Set up a token factor with all the stack traffic
DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, LS));
// Finally, inform the code generator which regs we return values in.
switch (getValueType(F.getReturnType())) {
default: assert(0 && "Unknown type!");
case MVT::isVoid: break;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
MF.addLiveOut(Alpha::R0);
break;
case MVT::f32:
case MVT::f64:
MF.addLiveOut(Alpha::F0);
break;
}
//return the arguments
return ArgValues;
}
std::pair<SDOperand, SDOperand>
AlphaTargetLowering::LowerCallTo(SDOperand Chain,
const Type *RetTy, bool isVarArg,
SDOperand Callee, ArgListTy &Args,
SelectionDAG &DAG) {
int NumBytes = 0;
if (Args.size() > 6)
NumBytes = (Args.size() - 6) * 8;
Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain,
DAG.getConstant(NumBytes, getPointerTy()));
std::vector<SDOperand> args_to_use;
for (unsigned i = 0, e = Args.size(); i != e; ++i)
{
switch (getValueType(Args[i].second)) {
default: assert(0 && "Unexpected ValueType for argument!");
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
// Promote the integer to 64 bits. If the input type is signed use a
// sign extend, otherwise use a zero extend.
if (Args[i].second->isSigned())
Args[i].first = DAG.getNode(ISD::SIGN_EXTEND, MVT::i64, Args[i].first);
else
Args[i].first = DAG.getNode(ISD::ZERO_EXTEND, MVT::i64, Args[i].first);
break;
case MVT::i64:
case MVT::f64:
case MVT::f32:
break;
}
args_to_use.push_back(Args[i].first);
}
std::vector<MVT::ValueType> RetVals;
MVT::ValueType RetTyVT = getValueType(RetTy);
if (RetTyVT != MVT::isVoid)
RetVals.push_back(RetTyVT);
RetVals.push_back(MVT::Other);
SDOperand TheCall = SDOperand(DAG.getCall(RetVals,
Chain, Callee, args_to_use), 0);
Chain = TheCall.getValue(RetTyVT != MVT::isVoid);
Chain = DAG.getNode(ISD::ADJCALLSTACKUP, MVT::Other, Chain,
DAG.getConstant(NumBytes, getPointerTy()));
return std::make_pair(TheCall, Chain);
}
std::pair<SDOperand, SDOperand>
AlphaTargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) {
//vastart just returns the address of the VarArgsFrameIndex slot.
return std::make_pair(DAG.getFrameIndex(VarArgsFrameIndex, MVT::i64), Chain);
}
std::pair<SDOperand,SDOperand> AlphaTargetLowering::
LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
const Type *ArgTy, SelectionDAG &DAG) {
abort();
}
std::pair<SDOperand, SDOperand> AlphaTargetLowering::
LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
SelectionDAG &DAG) {
abort();
}
namespace {
//===--------------------------------------------------------------------===//
/// ISel - Alpha specific code to select Alpha machine instructions for
/// SelectionDAG operations.
//===--------------------------------------------------------------------===//
class ISel : public SelectionDAGISel {
/// AlphaLowering - This object fully describes how to lower LLVM code to an
/// Alpha-specific SelectionDAG.
AlphaTargetLowering AlphaLowering;
SelectionDAG *ISelDAG; // Hack to support us having a dag->dag transform
// for sdiv and udiv until it is put into the future
// dag combiner.
/// ExprMap - As shared expressions are codegen'd, we keep track of which
/// vreg the value is produced in, so we only emit one copy of each compiled
/// tree.
static const unsigned notIn = (unsigned)(-1);
std::map<SDOperand, unsigned> ExprMap;
//CCInvMap sometimes (SetNE) we have the inverse CC code for free
std::map<SDOperand, unsigned> CCInvMap;
int count_ins;
int count_outs;
bool has_sym;
int max_depth;
public:
ISel(TargetMachine &TM) : SelectionDAGISel(AlphaLowering), AlphaLowering(TM)
{}
/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) {
DEBUG(BB->dump());
count_ins = 0;
count_outs = 0;
max_depth = 0;
has_sym = false;
// Codegen the basic block.
ISelDAG = &DAG;
max_depth = DAG.getRoot().getNodeDepth();
Select(DAG.getRoot());
if(has_sym)
++count_ins;
if(EnableAlphaCount)
std::cerr << "COUNT: " << BB->getParent()->getFunction ()->getName() << " "
<< BB->getNumber() << " "
<< max_depth << " "
<< count_ins << " "
<< count_outs << "\n";
// Clear state used for selection.
ExprMap.clear();
CCInvMap.clear();
}
unsigned SelectExpr(SDOperand N);
unsigned SelectExprFP(SDOperand N, unsigned Result);
void Select(SDOperand N);
void SelectAddr(SDOperand N, unsigned& Reg, long& offset);
void SelectBranchCC(SDOperand N);
void MoveFP2Int(unsigned src, unsigned dst, bool isDouble);
void MoveInt2FP(unsigned src, unsigned dst, bool isDouble);
//returns whether the sense of the comparison was inverted
bool SelectFPSetCC(SDOperand N, unsigned dst);
// dag -> dag expanders for integer divide by constant
SDOperand BuildSDIVSequence(SDOperand N);
SDOperand BuildUDIVSequence(SDOperand N);
};
}
//Factorize a number using the list of constants
static bool factorize(int v[], int res[], int size, uint64_t c)
{
bool cont = true;
while (c != 1 && cont)
{
cont = false;
for(int i = 0; i < size; ++i)
{
if (c % v[i] == 0)
{
c /= v[i];
++res[i];
cont=true;
}
}
}
return c == 1;
}
//Shamelessly adapted from PPC32
// Structure used to return the necessary information to codegen an SDIV as
// a multiply.
struct ms {
int64_t m; // magic number
int64_t s; // shift amount
};
struct mu {
uint64_t m; // magic number
int64_t a; // add indicator
int64_t s; // shift amount
};
/// magic - calculate the magic numbers required to codegen an integer sdiv as
/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
/// or -1.
static struct ms magic(int64_t d) {
int64_t p;
uint64_t ad, anc, delta, q1, r1, q2, r2, t;
const uint64_t two63 = 9223372036854775808ULL; // 2^63
struct ms mag;
ad = abs(d);
t = two63 + ((uint64_t)d >> 63);
anc = t - 1 - t%ad; // absolute value of nc
p = 63; // initialize p
q1 = two63/anc; // initialize q1 = 2p/abs(nc)
r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc))
q2 = two63/ad; // initialize q2 = 2p/abs(d)
r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d))
do {
p = p + 1;
q1 = 2*q1; // update q1 = 2p/abs(nc)
r1 = 2*r1; // update r1 = rem(2p/abs(nc))
if (r1 >= anc) { // must be unsigned comparison
q1 = q1 + 1;
r1 = r1 - anc;
}
q2 = 2*q2; // update q2 = 2p/abs(d)
r2 = 2*r2; // update r2 = rem(2p/abs(d))
if (r2 >= ad) { // must be unsigned comparison
q2 = q2 + 1;
r2 = r2 - ad;
}
delta = ad - r2;
} while (q1 < delta || (q1 == delta && r1 == 0));
mag.m = q2 + 1;
if (d < 0) mag.m = -mag.m; // resulting magic number
mag.s = p - 64; // resulting shift
return mag;
}
/// magicu - calculate the magic numbers required to codegen an integer udiv as
/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
static struct mu magicu(uint64_t d)
{
int64_t p;
uint64_t nc, delta, q1, r1, q2, r2;
struct mu magu;
magu.a = 0; // initialize "add" indicator
nc = - 1 - (-d)%d;
p = 63; // initialize p
q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc
r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc)
q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d
r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d)
do {
p = p + 1;
if (r1 >= nc - r1 ) {
q1 = 2*q1 + 1; // update q1
r1 = 2*r1 - nc; // update r1
}
else {
q1 = 2*q1; // update q1
r1 = 2*r1; // update r1
}
if (r2 + 1 >= d - r2) {
if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
q2 = 2*q2 + 1; // update q2
r2 = 2*r2 + 1 - d; // update r2
}
else {
if (q2 >= 0x8000000000000000ull) magu.a = 1;
q2 = 2*q2; // update q2
r2 = 2*r2 + 1; // update r2
}
delta = d - 1 - r2;
} while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
magu.m = q2 + 1; // resulting magic number
magu.s = p - 64; // resulting shift
return magu;
}
/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
/// multiplying by a magic number. See:
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
SDOperand ISel::BuildSDIVSequence(SDOperand N) {
int64_t d = (int64_t)cast<ConstantSDNode>(N.getOperand(1))->getSignExtended();
ms magics = magic(d);
// Multiply the numerator (operand 0) by the magic value
SDOperand Q = ISelDAG->getNode(ISD::MULHS, MVT::i64, N.getOperand(0),
ISelDAG->getConstant(magics.m, MVT::i64));
// If d > 0 and m < 0, add the numerator
if (d > 0 && magics.m < 0)
Q = ISelDAG->getNode(ISD::ADD, MVT::i64, Q, N.getOperand(0));
// If d < 0 and m > 0, subtract the numerator.
if (d < 0 && magics.m > 0)
Q = ISelDAG->getNode(ISD::SUB, MVT::i64, Q, N.getOperand(0));
// Shift right algebraic if shift value is nonzero
if (magics.s > 0)
Q = ISelDAG->getNode(ISD::SRA, MVT::i64, Q,
ISelDAG->getConstant(magics.s, MVT::i64));
// Extract the sign bit and add it to the quotient
SDOperand T =
ISelDAG->getNode(ISD::SRL, MVT::i64, Q, ISelDAG->getConstant(63, MVT::i64));
return ISelDAG->getNode(ISD::ADD, MVT::i64, Q, T);
}
/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
/// multiplying by a magic number. See:
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
SDOperand ISel::BuildUDIVSequence(SDOperand N) {
unsigned d =
(unsigned)cast<ConstantSDNode>(N.getOperand(1))->getSignExtended();
mu magics = magicu(d);
// Multiply the numerator (operand 0) by the magic value
SDOperand Q = ISelDAG->getNode(ISD::MULHU, MVT::i64, N.getOperand(0),
ISelDAG->getConstant(magics.m, MVT::i64));
if (magics.a == 0) {
Q = ISelDAG->getNode(ISD::SRL, MVT::i64, Q,
ISelDAG->getConstant(magics.s, MVT::i64));
} else {
SDOperand NPQ = ISelDAG->getNode(ISD::SUB, MVT::i64, N.getOperand(0), Q);
NPQ = ISelDAG->getNode(ISD::SRL, MVT::i64, NPQ,
ISelDAG->getConstant(1, MVT::i64));
NPQ = ISelDAG->getNode(ISD::ADD, MVT::i64, NPQ, Q);
Q = ISelDAG->getNode(ISD::SRL, MVT::i64, NPQ,
ISelDAG->getConstant(magics.s-1, MVT::i64));
}
return Q;
}
//From PPC32
/// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
/// returns zero when the input is not exactly a power of two.
static unsigned ExactLog2(uint64_t Val) {
if (Val == 0 || (Val & (Val-1))) return 0;
unsigned Count = 0;
while (Val != 1) {
Val >>= 1;
++Count;
}
return Count;
}
//These describe LDAx
static const int IMM_LOW = -32768;
static const int IMM_HIGH = 32767;
static const int IMM_MULT = 65536;
static long getUpper16(long l)
{
long y = l / IMM_MULT;
if (l % IMM_MULT > IMM_HIGH)
++y;
return y;
}
static long getLower16(long l)
{
long h = getUpper16(l);
return l - h * IMM_MULT;
}
static unsigned GetSymVersion(unsigned opcode)
{
switch (opcode) {
default: assert(0 && "unknown load or store"); return 0;
case Alpha::LDQ: return Alpha::LDQ_SYM;
case Alpha::LDS: return Alpha::LDS_SYM;
case Alpha::LDT: return Alpha::LDT_SYM;
case Alpha::LDL: return Alpha::LDL_SYM;
case Alpha::LDBU: return Alpha::LDBU_SYM;
case Alpha::LDWU: return Alpha::LDWU_SYM;
case Alpha::LDW: return Alpha::LDW_SYM;
case Alpha::LDB: return Alpha::LDB_SYM;
case Alpha::STQ: return Alpha::STQ_SYM;
case Alpha::STS: return Alpha::STS_SYM;
case Alpha::STT: return Alpha::STT_SYM;
case Alpha::STL: return Alpha::STL_SYM;
case Alpha::STW: return Alpha::STW_SYM;
case Alpha::STB: return Alpha::STB_SYM;
}
}
void ISel::MoveFP2Int(unsigned src, unsigned dst, bool isDouble)
{
unsigned Opc;
if (EnableAlphaFTOI) {
Opc = isDouble ? Alpha::FTOIT : Alpha::FTOIS;
BuildMI(BB, Opc, 1, dst).addReg(src);
} else {
//The hard way:
// Spill the integer to memory and reload it from there.
unsigned Size = MVT::getSizeInBits(MVT::f64)/8;
MachineFunction *F = BB->getParent();
int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, 8);
Opc = isDouble ? Alpha::STT : Alpha::STS;
BuildMI(BB, Opc, 3).addReg(src).addFrameIndex(FrameIdx).addReg(Alpha::F31);
Opc = isDouble ? Alpha::LDQ : Alpha::LDL;
BuildMI(BB, Alpha::LDQ, 2, dst).addFrameIndex(FrameIdx).addReg(Alpha::F31);
}
}
void ISel::MoveInt2FP(unsigned src, unsigned dst, bool isDouble)
{
unsigned Opc;
if (EnableAlphaFTOI) {
Opc = isDouble?Alpha::ITOFT:Alpha::ITOFS;
BuildMI(BB, Opc, 1, dst).addReg(src);
} else {
//The hard way:
// Spill the integer to memory and reload it from there.
unsigned Size = MVT::getSizeInBits(MVT::f64)/8;
MachineFunction *F = BB->getParent();
int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, 8);
Opc = isDouble ? Alpha::STQ : Alpha::STL;
BuildMI(BB, Opc, 3).addReg(src).addFrameIndex(FrameIdx).addReg(Alpha::F31);
Opc = isDouble ? Alpha::LDT : Alpha::LDS;
BuildMI(BB, Opc, 2, dst).addFrameIndex(FrameIdx).addReg(Alpha::F31);
}
}
bool ISel::SelectFPSetCC(SDOperand N, unsigned dst)
{
SDNode *Node = N.Val;
unsigned Opc, Tmp1, Tmp2, Tmp3;
SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(Node);
//assert(SetCC->getOperand(0).getValueType() != MVT::f32 && "SetCC f32 should have been promoted");
bool rev = false;
bool inv = false;
switch (SetCC->getCondition()) {
default: Node->dump(); assert(0 && "Unknown FP comparison!");
case ISD::SETEQ: Opc = Alpha::CMPTEQ; break;
case ISD::SETLT: Opc = Alpha::CMPTLT; break;
case ISD::SETLE: Opc = Alpha::CMPTLE; break;
case ISD::SETGT: Opc = Alpha::CMPTLT; rev = true; break;
case ISD::SETGE: Opc = Alpha::CMPTLE; rev = true; break;
case ISD::SETNE: Opc = Alpha::CMPTEQ; inv = true; break;
}
//FIXME: check for constant 0.0
ConstantFPSDNode *CN;
if ((CN = dyn_cast<ConstantFPSDNode>(SetCC->getOperand(0)))
&& (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0)))
Tmp1 = Alpha::F31;
else
Tmp1 = SelectExpr(N.getOperand(0));
if ((CN = dyn_cast<ConstantFPSDNode>(SetCC->getOperand(1)))
&& (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0)))
Tmp2 = Alpha::F31;
else
Tmp2 = SelectExpr(N.getOperand(1));
//Can only compare doubles, and dag won't promote for me
if (SetCC->getOperand(0).getValueType() == MVT::f32)
{
//assert(0 && "Setcc On float?\n");
std::cerr << "Setcc on float!\n";
Tmp3 = MakeReg(MVT::f64);
BuildMI(BB, Alpha::CVTST, 1, Tmp3).addReg(Tmp1);
Tmp1 = Tmp3;
}
if (SetCC->getOperand(1).getValueType() == MVT::f32)
{
//assert (0 && "Setcc On float?\n");
std::cerr << "Setcc on float!\n";
Tmp3 = MakeReg(MVT::f64);
BuildMI(BB, Alpha::CVTST, 1, Tmp3).addReg(Tmp2);
Tmp2 = Tmp3;
}
if (rev) std::swap(Tmp1, Tmp2);
//do the comparison
BuildMI(BB, Opc, 2, dst).addReg(Tmp1).addReg(Tmp2);
return inv;
}
//Check to see if the load is a constant offset from a base register
void ISel::SelectAddr(SDOperand N, unsigned& Reg, long& offset)
{
unsigned opcode = N.getOpcode();
if (opcode == ISD::ADD) {
if(N.getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(1))->getValue() <= 32767)
{ //Normal imm add
Reg = SelectExpr(N.getOperand(0));
offset = cast<ConstantSDNode>(N.getOperand(1))->getValue();
return;
}
else if(N.getOperand(0).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(0))->getValue() <= 32767)
{
Reg = SelectExpr(N.getOperand(1));
offset = cast<ConstantSDNode>(N.getOperand(0))->getValue();
return;
}
}
Reg = SelectExpr(N);
offset = 0;
return;
}
void ISel::SelectBranchCC(SDOperand N)
{
assert(N.getOpcode() == ISD::BRCOND && "Not a BranchCC???");
MachineBasicBlock *Dest =
cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock();
unsigned Opc = Alpha::WTF;
Select(N.getOperand(0)); //chain
SDOperand CC = N.getOperand(1);
if (CC.getOpcode() == ISD::SETCC)
{
SetCCSDNode* SetCC = dyn_cast<SetCCSDNode>(CC.Val);
if (MVT::isInteger(SetCC->getOperand(0).getValueType())) {
//Dropping the CC is only useful if we are comparing to 0
bool LeftZero = SetCC->getOperand(0).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(SetCC->getOperand(0))->getValue() == 0;
bool RightZero = SetCC->getOperand(0).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(SetCC->getOperand(0))->getValue() == 0;
bool isNE = false;
//Fix up CC
ISD::CondCode cCode= SetCC->getCondition();
if (LeftZero && !RightZero) //Swap Operands
cCode = ISD::getSetCCSwappedOperands(cCode);
if(cCode == ISD::SETNE)
isNE = true;
if (LeftZero || RightZero) {
switch (SetCC->getCondition()) {
default: CC.Val->dump(); assert(0 && "Unknown integer comparison!");
case ISD::SETEQ: Opc = Alpha::BEQ; break;
case ISD::SETLT: Opc = Alpha::BLT; break;
case ISD::SETLE: Opc = Alpha::BLE; break;
case ISD::SETGT: Opc = Alpha::BGT; break;
case ISD::SETGE: Opc = Alpha::BGE; break;
case ISD::SETULT: assert(0 && "x (unsigned) < 0 is never true"); break;
case ISD::SETUGT: Opc = Alpha::BNE; break;
case ISD::SETULE: Opc = Alpha::BEQ; break; //Technically you could have this CC
case ISD::SETUGE: assert(0 && "x (unsgined >= 0 is always true"); break;
case ISD::SETNE: Opc = Alpha::BNE; break;
}
unsigned Tmp1;
if(LeftZero && !RightZero) //swap Operands
Tmp1 = SelectExpr(SetCC->getOperand(1)); //Cond
else
Tmp1 = SelectExpr(SetCC->getOperand(0)); //Cond
BuildMI(BB, Opc, 2).addReg(Tmp1).addMBB(Dest);
return;
} else {
unsigned Tmp1 = SelectExpr(CC);
if (isNE)
BuildMI(BB, Alpha::BEQ, 2).addReg(CCInvMap[CC]).addMBB(Dest);
else
BuildMI(BB, Alpha::BNE, 2).addReg(Tmp1).addMBB(Dest);
return;
}
} else { //FP
//Any comparison between 2 values should be codegened as an folded branch, as moving
//CC to the integer register is very expensive
//for a cmp b: c = a - b;
//a = b: c = 0
//a < b: c < 0
//a > b: c > 0
bool invTest = false;
unsigned Tmp3;
ConstantFPSDNode *CN;
if ((CN = dyn_cast<ConstantFPSDNode>(SetCC->getOperand(1)))
&& (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0)))
Tmp3 = SelectExpr(SetCC->getOperand(0));
else if ((CN = dyn_cast<ConstantFPSDNode>(SetCC->getOperand(0)))
&& (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0)))
{
Tmp3 = SelectExpr(SetCC->getOperand(1));
invTest = true;
}
else
{
unsigned Tmp1 = SelectExpr(SetCC->getOperand(0));
unsigned Tmp2 = SelectExpr(SetCC->getOperand(1));
bool isD = SetCC->getOperand(0).getValueType() == MVT::f64;
Tmp3 = MakeReg(isD ? MVT::f64 : MVT::f32);
BuildMI(BB, isD ? Alpha::SUBT : Alpha::SUBS, 2, Tmp3)
.addReg(Tmp1).addReg(Tmp2);
}
switch (SetCC->getCondition()) {
default: CC.Val->dump(); assert(0 && "Unknown FP comparison!");
case ISD::SETEQ: Opc = invTest ? Alpha::FBNE : Alpha::FBEQ; break;
case ISD::SETLT: Opc = invTest ? Alpha::FBGT : Alpha::FBLT; break;
case ISD::SETLE: Opc = invTest ? Alpha::FBGE : Alpha::FBLE; break;
case ISD::SETGT: Opc = invTest ? Alpha::FBLT : Alpha::FBGT; break;
case ISD::SETGE: Opc = invTest ? Alpha::FBLE : Alpha::FBGE; break;
case ISD::SETNE: Opc = invTest ? Alpha::FBEQ : Alpha::FBNE; break;
}
BuildMI(BB, Opc, 2).addReg(Tmp3).addMBB(Dest);
return;
}
abort(); //Should never be reached
} else {
//Giveup and do the stupid thing
unsigned Tmp1 = SelectExpr(CC);
BuildMI(BB, Alpha::BNE, 2).addReg(Tmp1).addMBB(Dest);
return;
}
abort(); //Should never be reached
}
unsigned ISel::SelectExprFP(SDOperand N, unsigned Result)
{
unsigned Tmp1, Tmp2, Tmp3;
unsigned Opc = 0;
SDNode *Node = N.Val;
MVT::ValueType DestType = N.getValueType();
unsigned opcode = N.getOpcode();
switch (opcode) {
default:
Node->dump();
assert(0 && "Node not handled!\n");
case ISD::UNDEF: {
BuildMI(BB, Alpha::IDEF, 0, Result);
return Result;
}
case ISD::FNEG:
if(ISD::FABS == N.getOperand(0).getOpcode())
{
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
BuildMI(BB, Alpha::CPYSN, 2, Result).addReg(Alpha::F31).addReg(Tmp1);
} else {
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Alpha::CPYSN, 2, Result).addReg(Tmp1).addReg(Tmp1);
}
return Result;
case ISD::FABS:
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Alpha::CPYS, 2, Result).addReg(Alpha::F31).addReg(Tmp1);
return Result;
case ISD::SELECT:
{
//Tmp1 = SelectExpr(N.getOperand(0)); //Cond
unsigned TV = SelectExpr(N.getOperand(1)); //Use if TRUE
unsigned FV = SelectExpr(N.getOperand(2)); //Use if FALSE
SDOperand CC = N.getOperand(0);
SetCCSDNode* SetCC = dyn_cast<SetCCSDNode>(CC.Val);
if (CC.getOpcode() == ISD::SETCC &&
!MVT::isInteger(SetCC->getOperand(0).getValueType()))
{ //FP Setcc -> Select yay!
//for a cmp b: c = a - b;
//a = b: c = 0
//a < b: c < 0
//a > b: c > 0
bool invTest = false;
unsigned Tmp3;
ConstantFPSDNode *CN;
if ((CN = dyn_cast<ConstantFPSDNode>(SetCC->getOperand(1)))
&& (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0)))
Tmp3 = SelectExpr(SetCC->getOperand(0));
else if ((CN = dyn_cast<ConstantFPSDNode>(SetCC->getOperand(0)))
&& (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0)))
{
Tmp3 = SelectExpr(SetCC->getOperand(1));
invTest = true;
}
else
{
unsigned Tmp1 = SelectExpr(SetCC->getOperand(0));
unsigned Tmp2 = SelectExpr(SetCC->getOperand(1));
bool isD = SetCC->getOperand(0).getValueType() == MVT::f64;
Tmp3 = MakeReg(isD ? MVT::f64 : MVT::f32);
BuildMI(BB, isD ? Alpha::SUBT : Alpha::SUBS, 2, Tmp3)
.addReg(Tmp1).addReg(Tmp2);
}
switch (SetCC->getCondition()) {
default: CC.Val->dump(); assert(0 && "Unknown FP comparison!");
case ISD::SETEQ: Opc = invTest ? Alpha::FCMOVNE : Alpha::FCMOVEQ; break;
case ISD::SETLT: Opc = invTest ? Alpha::FCMOVGT : Alpha::FCMOVLT; break;
case ISD::SETLE: Opc = invTest ? Alpha::FCMOVGE : Alpha::FCMOVLE; break;
case ISD::SETGT: Opc = invTest ? Alpha::FCMOVLT : Alpha::FCMOVGT; break;
case ISD::SETGE: Opc = invTest ? Alpha::FCMOVLE : Alpha::FCMOVGE; break;
case ISD::SETNE: Opc = invTest ? Alpha::FCMOVEQ : Alpha::FCMOVNE; break;
}
BuildMI(BB, Opc, 3, Result).addReg(FV).addReg(TV).addReg(Tmp3);
return Result;
}
else
{
Tmp1 = SelectExpr(N.getOperand(0)); //Cond
BuildMI(BB, Alpha::FCMOVEQ_INT, 3, Result).addReg(TV).addReg(FV).addReg(Tmp1);
// // Spill the cond to memory and reload it from there.
// unsigned Tmp4 = MakeReg(MVT::f64);
// MoveIntFP(Tmp1, Tmp4, true);
// //now ideally, we don't have to do anything to the flag...
// // Get the condition into the zero flag.
// BuildMI(BB, Alpha::FCMOVEQ, 3, Result).addReg(TV).addReg(FV).addReg(Tmp4);
return Result;
}
}
case ISD::FP_ROUND:
assert (DestType == MVT::f32 &&
N.getOperand(0).getValueType() == MVT::f64 &&
"only f64 to f32 conversion supported here");
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Alpha::CVTTS, 1, Result).addReg(Tmp1);
return Result;
case ISD::FP_EXTEND:
assert (DestType == MVT::f64 &&
N.getOperand(0).getValueType() == MVT::f32 &&
"only f32 to f64 conversion supported here");
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Alpha::CVTST, 1, Result).addReg(Tmp1);
return Result;
case ISD::CopyFromReg:
{
// Make sure we generate both values.
if (Result != notIn)
ExprMap[N.getValue(1)] = notIn; // Generate the token
else
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
SDOperand Chain = N.getOperand(0);
Select(Chain);
unsigned r = dyn_cast<RegSDNode>(Node)->getReg();
//std::cerr << "CopyFromReg " << Result << " = " << r << "\n";
BuildMI(BB, Alpha::CPYS, 2, Result).addReg(r).addReg(r);
return Result;
}
case ISD::LOAD:
{
// Make sure we generate both values.
if (Result != notIn)
ExprMap[N.getValue(1)] = notIn; // Generate the token
else
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
DestType = N.getValue(0).getValueType();
SDOperand Chain = N.getOperand(0);
SDOperand Address = N.getOperand(1);
Select(Chain);
Opc = DestType == MVT::f64 ? Alpha::LDT : Alpha::LDS;
if (Address.getOpcode() == ISD::GlobalAddress) {
AlphaLowering.restoreGP(BB);
Opc = GetSymVersion(Opc);
has_sym = true;
BuildMI(BB, Opc, 1, Result).addGlobalAddress(cast<GlobalAddressSDNode>(Address)->getGlobal());
}
else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Address)) {
AlphaLowering.restoreGP(BB);
Opc = GetSymVersion(Opc);
has_sym = true;
BuildMI(BB, Opc, 1, Result).addConstantPoolIndex(CP->getIndex());
}
else if(Address.getOpcode() == ISD::FrameIndex) {
BuildMI(BB, Opc, 2, Result)
.addFrameIndex(cast<FrameIndexSDNode>(Address)->getIndex())
.addReg(Alpha::F31);
} else {
long offset;
SelectAddr(Address, Tmp1, offset);
BuildMI(BB, Opc, 2, Result).addImm(offset).addReg(Tmp1);
}
return Result;
}
case ISD::ConstantFP:
if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) {
if (CN->isExactlyValue(+0.0)) {
BuildMI(BB, Alpha::CPYS, 2, Result).addReg(Alpha::F31).addReg(Alpha::F31);
} else if ( CN->isExactlyValue(-0.0)) {
BuildMI(BB, Alpha::CPYSN, 2, Result).addReg(Alpha::F31).addReg(Alpha::F31);
} else {
abort();
}
}
return Result;
case ISD::SDIV:
case ISD::MUL:
case ISD::ADD:
case ISD::SUB:
switch( opcode ) {
case ISD::MUL: Opc = DestType == MVT::f64 ? Alpha::MULT : Alpha::MULS; break;
case ISD::ADD: Opc = DestType == MVT::f64 ? Alpha::ADDT : Alpha::ADDS; break;
case ISD::SUB: Opc = DestType == MVT::f64 ? Alpha::SUBT : Alpha::SUBS; break;
case ISD::SDIV: Opc = DestType == MVT::f64 ? Alpha::DIVT : Alpha::DIVS; break;
};
ConstantFPSDNode *CN;
if (opcode == ISD::SUB
&& (CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
&& (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0)))
{
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, Alpha::CPYSN, 2, Result).addReg(Tmp2).addReg(Tmp2);
} else {
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
return Result;
case ISD::EXTLOAD:
{
//include a conversion sequence for float loads to double
if (Result != notIn)
ExprMap[N.getValue(1)] = notIn; // Generate the token
else
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
Tmp1 = MakeReg(MVT::f32);
assert(cast<MVTSDNode>(Node)->getExtraValueType() == MVT::f32 &&
"EXTLOAD not from f32");
assert(Node->getValueType(0) == MVT::f64 && "EXTLOAD not to f64");
SDOperand Chain = N.getOperand(0);
SDOperand Address = N.getOperand(1);
Select(Chain);
if (Address.getOpcode() == ISD::GlobalAddress) {
AlphaLowering.restoreGP(BB);
has_sym = true;
BuildMI(BB, Alpha::LDS_SYM, 1, Tmp1).addGlobalAddress(cast<GlobalAddressSDNode>(Address)->getGlobal());
}
else if (ConstantPoolSDNode *CP =
dyn_cast<ConstantPoolSDNode>(N.getOperand(1)))
{
AlphaLowering.restoreGP(BB);
has_sym = true;
BuildMI(BB, Alpha::LDS_SYM, 1, Tmp1).addConstantPoolIndex(CP->getIndex());
}
else if(Address.getOpcode() == ISD::FrameIndex) {
Tmp2 = cast<FrameIndexSDNode>(Address)->getIndex();
BuildMI(BB, Alpha::LDS, 2, Tmp1)
.addFrameIndex(cast<FrameIndexSDNode>(Address)->getIndex())
.addReg(Alpha::F31);
} else {
long offset;
SelectAddr(Address, Tmp2, offset);
BuildMI(BB, Alpha::LDS, 1, Tmp1).addImm(offset).addReg(Tmp2);
}
BuildMI(BB, Alpha::CVTST, 1, Result).addReg(Tmp1);
return Result;
}
case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP:
{
assert (N.getOperand(0).getValueType() == MVT::i64
&& "only quads can be loaded from");
Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register
Tmp2 = MakeReg(MVT::f64);
MoveInt2FP(Tmp1, Tmp2, true);
Opc = DestType == MVT::f64 ? Alpha::CVTQT : Alpha::CVTQS;
BuildMI(BB, Opc, 1, Result).addReg(Tmp2);
return Result;
}
}
assert(0 && "should not get here");
return 0;
}
unsigned ISel::SelectExpr(SDOperand N) {
unsigned Result;
unsigned Tmp1, Tmp2 = 0, Tmp3;
unsigned Opc = 0;
unsigned opcode = N.getOpcode();
SDNode *Node = N.Val;
MVT::ValueType DestType = N.getValueType();
unsigned &Reg = ExprMap[N];
if (Reg) return Reg;
if (N.getOpcode() != ISD::CALL)
Reg = Result = (N.getValueType() != MVT::Other) ?
MakeReg(N.getValueType()) : notIn;
else {
// If this is a call instruction, make sure to prepare ALL of the result
// values as well as the chain.
if (Node->getNumValues() == 1)
Reg = Result = notIn; // Void call, just a chain.
else {
Result = MakeReg(Node->getValueType(0));
ExprMap[N.getValue(0)] = Result;
for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i)
ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
ExprMap[SDOperand(Node, Node->getNumValues()-1)] = notIn;
}
}
if (DestType == MVT::f64 || DestType == MVT::f32 ||
(
(opcode == ISD::LOAD || opcode == ISD::CopyFromReg ||
opcode == ISD::EXTLOAD) &&
(N.getValue(0).getValueType() == MVT::f32 ||
N.getValue(0).getValueType() == MVT::f64)
)
)
return SelectExprFP(N, Result);
switch (opcode) {
default:
Node->dump();
assert(0 && "Node not handled!\n");
case ISD::MULHU:
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, Alpha::UMULH, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
case ISD::MULHS:
{
//MULHU - Ra<63>*Rb - Rb<63>*Ra
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
Tmp3 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::UMULH, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
unsigned V1 = MakeReg(MVT::i64);
unsigned V2 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::CMOVGE, 3, V1).addReg(Tmp2).addReg(Alpha::R31).addReg(Tmp1);
BuildMI(BB, Alpha::CMOVGE, 3, V2).addReg(Tmp1).addReg(Alpha::R31).addReg(Tmp2);
unsigned IRes = MakeReg(MVT::i64);
BuildMI(BB, Alpha::SUBQ, 2, IRes).addReg(Tmp3).addReg(V1);
BuildMI(BB, Alpha::SUBQ, 2, Result).addReg(IRes).addReg(V2);
return Result;
}
case ISD::UNDEF: {
BuildMI(BB, Alpha::IDEF, 0, Result);
return Result;
}
case ISD::DYNAMIC_STACKALLOC:
// Generate both result values.
if (Result != notIn)
ExprMap[N.getValue(1)] = notIn; // Generate the token
else
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
// FIXME: We are currently ignoring the requested alignment for handling
// greater than the stack alignment. This will need to be revisited at some
// point. Align = N.getOperand(2);
if (!isa<ConstantSDNode>(N.getOperand(2)) ||
cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) {
std::cerr << "Cannot allocate stack object with greater alignment than"
<< " the stack alignment yet!";
abort();
}
Select(N.getOperand(0));
if (ConstantSDNode* CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
{
if (CN->getValue() < 32000)
{
BuildMI(BB, Alpha::LDA, 2, Alpha::R30)
.addImm(-CN->getValue()).addReg(Alpha::R30);
} else {
Tmp1 = SelectExpr(N.getOperand(1));
// Subtract size from stack pointer, thereby allocating some space.
BuildMI(BB, Alpha::SUBQ, 2, Alpha::R30).addReg(Alpha::R30).addReg(Tmp1);
}
} else {
Tmp1 = SelectExpr(N.getOperand(1));
// Subtract size from stack pointer, thereby allocating some space.
BuildMI(BB, Alpha::SUBQ, 2, Alpha::R30).addReg(Alpha::R30).addReg(Tmp1);
}
// Put a pointer to the space into the result register, by copying the stack
// pointer.
BuildMI(BB, Alpha::BIS, 2, Result).addReg(Alpha::R30).addReg(Alpha::R30);
return Result;
// case ISD::ConstantPool:
// Tmp1 = cast<ConstantPoolSDNode>(N)->getIndex();
// AlphaLowering.restoreGP(BB);
// BuildMI(BB, Alpha::LDQ_SYM, 1, Result).addConstantPoolIndex(Tmp1);
// return Result;
case ISD::FrameIndex:
BuildMI(BB, Alpha::LDA, 2, Result)
.addFrameIndex(cast<FrameIndexSDNode>(N)->getIndex())
.addReg(Alpha::F31);
return Result;
case ISD::EXTLOAD:
case ISD::ZEXTLOAD:
case ISD::SEXTLOAD:
case ISD::LOAD:
{
// Make sure we generate both values.
if (Result != notIn)
ExprMap[N.getValue(1)] = notIn; // Generate the token
else
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
SDOperand Chain = N.getOperand(0);
SDOperand Address = N.getOperand(1);
Select(Chain);
assert(Node->getValueType(0) == MVT::i64 &&
"Unknown type to sign extend to.");
if (opcode == ISD::LOAD)
Opc = Alpha::LDQ;
else
switch (cast<MVTSDNode>(Node)->getExtraValueType()) {
default: Node->dump(); assert(0 && "Bad sign extend!");
case MVT::i32: Opc = Alpha::LDL;
assert(opcode != ISD::ZEXTLOAD && "Not sext"); break;
case MVT::i16: Opc = Alpha::LDWU;
assert(opcode != ISD::SEXTLOAD && "Not zext"); break;
case MVT::i1: //FIXME: Treat i1 as i8 since there are problems otherwise
case MVT::i8: Opc = Alpha::LDBU;
assert(opcode != ISD::SEXTLOAD && "Not zext"); break;
}
if (Address.getOpcode() == ISD::GlobalAddress) {
AlphaLowering.restoreGP(BB);
Opc = GetSymVersion(Opc);
has_sym = true;
BuildMI(BB, Opc, 1, Result).addGlobalAddress(cast<GlobalAddressSDNode>(Address)->getGlobal());
}
else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Address)) {
AlphaLowering.restoreGP(BB);
Opc = GetSymVersion(Opc);
has_sym = true;
BuildMI(BB, Opc, 1, Result).addConstantPoolIndex(CP->getIndex());
}
else if(Address.getOpcode() == ISD::FrameIndex) {
BuildMI(BB, Opc, 2, Result)
.addFrameIndex(cast<FrameIndexSDNode>(Address)->getIndex())
.addReg(Alpha::F31);
} else {
long offset;
SelectAddr(Address, Tmp1, offset);
BuildMI(BB, Opc, 2, Result).addImm(offset).addReg(Tmp1);
}
return Result;
}
case ISD::GlobalAddress:
AlphaLowering.restoreGP(BB);
has_sym = true;
BuildMI(BB, Alpha::LOAD_ADDR, 1, Result)
.addGlobalAddress(cast<GlobalAddressSDNode>(N)->getGlobal());
return Result;
case ISD::CALL:
{
Select(N.getOperand(0));
// The chain for this call is now lowered.
ExprMap.insert(std::make_pair(N.getValue(Node->getNumValues()-1), notIn));
//grab the arguments
std::vector<unsigned> argvregs;
//assert(Node->getNumOperands() < 8 && "Only 6 args supported");
for(int i = 2, e = Node->getNumOperands(); i < e; ++i)
argvregs.push_back(SelectExpr(N.getOperand(i)));
//in reg args
for(int i = 0, e = std::min(6, (int)argvregs.size()); i < e; ++i)
{
unsigned args_int[] = {Alpha::R16, Alpha::R17, Alpha::R18,
Alpha::R19, Alpha::R20, Alpha::R21};
unsigned args_float[] = {Alpha::F16, Alpha::F17, Alpha::F18,
Alpha::F19, Alpha::F20, Alpha::F21};
switch(N.getOperand(i+2).getValueType()) {
default:
Node->dump();
N.getOperand(i).Val->dump();
std::cerr << "Type for " << i << " is: " <<
N.getOperand(i+2).getValueType() << "\n";
assert(0 && "Unknown value type for call");
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
BuildMI(BB, Alpha::BIS, 2, args_int[i]).addReg(argvregs[i]).addReg(argvregs[i]);
break;
case MVT::f32:
case MVT::f64:
BuildMI(BB, Alpha::CPYS, 2, args_float[i]).addReg(argvregs[i]).addReg(argvregs[i]);
break;
}
}
//in mem args
for (int i = 6, e = argvregs.size(); i < e; ++i)
{
switch(N.getOperand(i+2).getValueType()) {
default:
Node->dump();
N.getOperand(i).Val->dump();
std::cerr << "Type for " << i << " is: " <<
N.getOperand(i+2).getValueType() << "\n";
assert(0 && "Unknown value type for call");
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
BuildMI(BB, Alpha::STQ, 3).addReg(argvregs[i]).addImm((i - 6) * 8).addReg(Alpha::R30);
break;
case MVT::f32:
BuildMI(BB, Alpha::STS, 3).addReg(argvregs[i]).addImm((i - 6) * 8).addReg(Alpha::R30);
break;
case MVT::f64:
BuildMI(BB, Alpha::STT, 3).addReg(argvregs[i]).addImm((i - 6) * 8).addReg(Alpha::R30);
break;
}
}
//build the right kind of call
if (GlobalAddressSDNode *GASD =
dyn_cast<GlobalAddressSDNode>(N.getOperand(1)))
{
if (GASD->getGlobal()->isExternal()) {
//use safe calling convention
AlphaLowering.restoreGP(BB);
has_sym = true;
BuildMI(BB, Alpha::CALL, 1).addGlobalAddress(GASD->getGlobal());
} else {
//use PC relative branch call
AlphaLowering.restoreGP(BB);
BuildMI(BB, Alpha::BSR, 1, Alpha::R26).addGlobalAddress(GASD->getGlobal(),true);
}
}
else if (ExternalSymbolSDNode *ESSDN =
dyn_cast<ExternalSymbolSDNode>(N.getOperand(1)))
{
AlphaLowering.restoreGP(BB);
has_sym = true;
BuildMI(BB, Alpha::CALL, 1).addExternalSymbol(ESSDN->getSymbol(), true);
} else {
//no need to restore GP as we are doing an indirect call
Tmp1 = SelectExpr(N.getOperand(1));
BuildMI(BB, Alpha::BIS, 2, Alpha::R27).addReg(Tmp1).addReg(Tmp1);
BuildMI(BB, Alpha::JSR, 2, Alpha::R26).addReg(Alpha::R27).addImm(0);
}
//push the result into a virtual register
switch (Node->getValueType(0)) {
default: Node->dump(); assert(0 && "Unknown value type for call result!");
case MVT::Other: return notIn;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
BuildMI(BB, Alpha::BIS, 2, Result).addReg(Alpha::R0).addReg(Alpha::R0);
break;
case MVT::f32:
case MVT::f64:
BuildMI(BB, Alpha::CPYS, 2, Result).addReg(Alpha::F0).addReg(Alpha::F0);
break;
}
return Result+N.ResNo;
}
case ISD::SIGN_EXTEND_INREG:
{
//do SDIV opt for all levels of ints if not dividing by a constant
if (EnableAlphaIDIV && N.getOperand(0).getOpcode() == ISD::SDIV
&& N.getOperand(0).getOperand(1).getOpcode() != ISD::Constant)
{
unsigned Tmp4 = MakeReg(MVT::f64);
unsigned Tmp5 = MakeReg(MVT::f64);
unsigned Tmp6 = MakeReg(MVT::f64);
unsigned Tmp7 = MakeReg(MVT::f64);
unsigned Tmp8 = MakeReg(MVT::f64);
unsigned Tmp9 = MakeReg(MVT::f64);
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
MoveInt2FP(Tmp1, Tmp4, true);
MoveInt2FP(Tmp2, Tmp5, true);
BuildMI(BB, Alpha::CVTQT, 1, Tmp6).addReg(Tmp4);
BuildMI(BB, Alpha::CVTQT, 1, Tmp7).addReg(Tmp5);
BuildMI(BB, Alpha::DIVT, 2, Tmp8).addReg(Tmp6).addReg(Tmp7);
BuildMI(BB, Alpha::CVTTQ, 1, Tmp9).addReg(Tmp8);
MoveFP2Int(Tmp9, Result, true);
return Result;
}
//Alpha has instructions for a bunch of signed 32 bit stuff
if( dyn_cast<MVTSDNode>(Node)->getExtraValueType() == MVT::i32)
{
switch (N.getOperand(0).getOpcode()) {
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
{
bool isAdd = N.getOperand(0).getOpcode() == ISD::ADD;
bool isMul = N.getOperand(0).getOpcode() == ISD::MUL;
//FIXME: first check for Scaled Adds and Subs!
ConstantSDNode* CSD = NULL;
if(!isMul && N.getOperand(0).getOperand(0).getOpcode() == ISD::SHL &&
(CSD = dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(0).getOperand(1))) &&
(CSD->getValue() == 2 || CSD->getValue() == 3))
{
bool use4 = CSD->getValue() == 2;
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
BuildMI(BB, isAdd?(use4?Alpha::S4ADDL:Alpha::S8ADDL):(use4?Alpha::S4SUBL:Alpha::S8SUBL),
2,Result).addReg(Tmp1).addReg(Tmp2);
}
else if(isAdd && N.getOperand(0).getOperand(1).getOpcode() == ISD::SHL &&
(CSD = dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1).getOperand(1))) &&
(CSD->getValue() == 2 || CSD->getValue() == 3))
{
bool use4 = CSD->getValue() == 2;
Tmp1 = SelectExpr(N.getOperand(0).getOperand(1).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(0));
BuildMI(BB, use4?Alpha::S4ADDL:Alpha::S8ADDL, 2,Result).addReg(Tmp1).addReg(Tmp2);
}
else if(N.getOperand(0).getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(0).getOperand(1))->getValue() <= 255)
{ //Normal imm add/sub
Opc = isAdd ? Alpha::ADDLi : (isMul ? Alpha::MULLi : Alpha::SUBLi);
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
Tmp2 = cast<ConstantSDNode>(N.getOperand(0).getOperand(1))->getValue();
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(Tmp2);
}
else
{ //Normal add/sub
Opc = isAdd ? Alpha::ADDL : (isMul ? Alpha::MULL : Alpha::SUBL);
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
return Result;
}
default: break; //Fall Though;
}
} //Every thing else fall though too, including unhandled opcodes above
Tmp1 = SelectExpr(N.getOperand(0));
MVTSDNode* MVN = dyn_cast<MVTSDNode>(Node);
//std::cerr << "SrcT: " << MVN->getExtraValueType() << "\n";
switch(MVN->getExtraValueType())
{
default:
Node->dump();
assert(0 && "Sign Extend InReg not there yet");
break;
case MVT::i32:
{
BuildMI(BB, Alpha::ADDLi, 2, Result).addReg(Tmp1).addImm(0);
break;
}
case MVT::i16:
BuildMI(BB, Alpha::SEXTW, 1, Result).addReg(Tmp1);
break;
case MVT::i8:
BuildMI(BB, Alpha::SEXTB, 1, Result).addReg(Tmp1);
break;
case MVT::i1:
Tmp2 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::ANDi, 2, Tmp2).addReg(Tmp1).addImm(1);
BuildMI(BB, Alpha::SUBQ, 2, Result).addReg(Alpha::R31).addReg(Tmp2);
break;
}
return Result;
}
case ISD::SETCC:
{
if (SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(Node)) {
if (MVT::isInteger(SetCC->getOperand(0).getValueType())) {
bool isConst1 = false;
bool isConst2 = false;
int dir;
//Tmp1 = SelectExpr(N.getOperand(0));
if(N.getOperand(0).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(0))->getValue() <= 255)
isConst1 = true;
if(N.getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(1))->getValue() <= 255)
isConst2 = true;
switch (SetCC->getCondition()) {
default: Node->dump(); assert(0 && "Unknown integer comparison!");
case ISD::SETEQ: Opc = Alpha::CMPEQ; dir=0; break;
case ISD::SETLT:
Opc = isConst2 ? Alpha::CMPLTi : Alpha::CMPLT; dir = 1; break;
case ISD::SETLE:
Opc = isConst2 ? Alpha::CMPLEi : Alpha::CMPLE; dir = 1; break;
case ISD::SETGT:
Opc = isConst1 ? Alpha::CMPLTi : Alpha::CMPLT; dir = 2; break;
case ISD::SETGE:
Opc = isConst1 ? Alpha::CMPLEi : Alpha::CMPLE; dir = 2; break;
case ISD::SETULT:
Opc = isConst2 ? Alpha::CMPULTi : Alpha::CMPULT; dir = 1; break;
case ISD::SETUGT:
Opc = isConst1 ? Alpha::CMPULTi : Alpha::CMPULT; dir = 2; break;
case ISD::SETULE:
Opc = isConst2 ? Alpha::CMPULEi : Alpha::CMPULE; dir = 1; break;
case ISD::SETUGE:
Opc = isConst1 ? Alpha::CMPULEi : Alpha::CMPULE; dir = 2; break;
case ISD::SETNE: {//Handle this one special
//std::cerr << "Alpha does not have a setne.\n";
//abort();
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
Tmp3 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::CMPEQ, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
//Remeber we have the Inv for this CC
CCInvMap[N] = Tmp3;
//and invert
BuildMI(BB, Alpha::CMPEQ, 2, Result).addReg(Alpha::R31).addReg(Tmp3);
return Result;
}
}
if (dir == 1) {
Tmp1 = SelectExpr(N.getOperand(0));
if (isConst2) {
Tmp2 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(Tmp2);
} else {
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
} else if (dir == 2) {
Tmp1 = SelectExpr(N.getOperand(1));
if (isConst1) {
Tmp2 = cast<ConstantSDNode>(N.getOperand(0))->getValue();
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(Tmp2);
} else {
Tmp2 = SelectExpr(N.getOperand(0));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
} else { //dir == 0
if (isConst1) {
Tmp1 = cast<ConstantSDNode>(N.getOperand(0))->getValue();
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, Alpha::CMPEQi, 2, Result).addReg(Tmp2).addImm(Tmp1);
} else if (isConst2) {
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
BuildMI(BB, Alpha::CMPEQi, 2, Result).addReg(Tmp1).addImm(Tmp2);
} else {
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, Alpha::CMPEQ, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
}
} else {
//do the comparison
Tmp1 = MakeReg(MVT::f64);
bool inv = SelectFPSetCC(N, Tmp1);
//now arrange for Result (int) to have a 1 or 0
Tmp2 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::ADDQi, 2, Tmp2).addReg(Alpha::R31).addImm(1);
Opc = inv?Alpha::CMOVNEi_FP:Alpha::CMOVEQi_FP;
BuildMI(BB, Opc, 3, Result).addReg(Tmp2).addImm(0).addReg(Tmp1);
}
}
return Result;
}
case ISD::CopyFromReg:
{
++count_ins;
// Make sure we generate both values.
if (Result != notIn)
ExprMap[N.getValue(1)] = notIn; // Generate the token
else
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
SDOperand Chain = N.getOperand(0);
Select(Chain);
unsigned r = dyn_cast<RegSDNode>(Node)->getReg();
//std::cerr << "CopyFromReg " << Result << " = " << r << "\n";
BuildMI(BB, Alpha::BIS, 2, Result).addReg(r).addReg(r);
return Result;
}
//Most of the plain arithmetic and logic share the same form, and the same
//constant immediate test
case ISD::XOR:
//Match Not
if (N.getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(1))->getSignExtended() == -1)
{
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Alpha::ORNOT, 2, Result).addReg(Alpha::R31).addReg(Tmp1);
return Result;
}
//Fall through
case ISD::AND:
//handle zap
if (opcode == ISD::AND && N.getOperand(1).getOpcode() == ISD::Constant)
{
uint64_t k = cast<ConstantSDNode>(N.getOperand(1))->getValue();
unsigned int build = 0;
for(int i = 0; i < 8; ++i)
{
if ((k & 0x00FF) == 0x00FF)
build |= 1 << i;
else if ((k & 0x00FF) != 0)
{ build = 0; break; }
k >>= 8;
}
if (build)
{
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Alpha::ZAPNOTi, 2, Result).addReg(Tmp1).addImm(build);
return Result;
}
}
case ISD::OR:
//Check operand(0) == Not
if (N.getOperand(0).getOpcode() == ISD::XOR &&
N.getOperand(0).getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(0).getOperand(1))->getSignExtended() == -1)
{
switch(opcode) {
case ISD::AND: Opc = Alpha::BIC; break;
case ISD::OR: Opc = Alpha::ORNOT; break;
case ISD::XOR: Opc = Alpha::EQV; break;
}
Tmp1 = SelectExpr(N.getOperand(1));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(0));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
}
//Check operand(1) == Not
if (N.getOperand(1).getOpcode() == ISD::XOR &&
N.getOperand(1).getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getSignExtended() == -1)
{
switch(opcode) {
case ISD::AND: Opc = Alpha::BIC; break;
case ISD::OR: Opc = Alpha::ORNOT; break;
case ISD::XOR: Opc = Alpha::EQV; break;
}
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1).getOperand(0));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
}
//Fall through
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
case ISD::MUL:
assert (DestType == MVT::i64 && "Only do arithmetic on i64s!");
if(N.getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(1))->getValue() <= 255)
{
switch(opcode) {
case ISD::AND: Opc = Alpha::ANDi; break;
case ISD::OR: Opc = Alpha::BISi; break;
case ISD::XOR: Opc = Alpha::XORi; break;
case ISD::SHL: Opc = Alpha::SLi; break;
case ISD::SRL: Opc = Alpha::SRLi; break;
case ISD::SRA: Opc = Alpha::SRAi; break;
case ISD::MUL: Opc = Alpha::MULQi; break;
};
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(Tmp2);
} else {
switch(opcode) {
case ISD::AND: Opc = Alpha::AND; break;
case ISD::OR: Opc = Alpha::BIS; break;
case ISD::XOR: Opc = Alpha::XOR; break;
case ISD::SHL: Opc = Alpha::SL; break;
case ISD::SRL: Opc = Alpha::SRL; break;
case ISD::SRA: Opc = Alpha::SRA; break;
case ISD::MUL: Opc = Alpha::MULQ; break;
};
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
return Result;
case ISD::ADD:
case ISD::SUB:
{
bool isAdd = opcode == ISD::ADD;
//first check for Scaled Adds and Subs!
//Valid for add and sub
ConstantSDNode* CSD = NULL;
if(N.getOperand(0).getOpcode() == ISD::SHL &&
(CSD = dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) &&
(CSD->getValue() == 2 || CSD->getValue() == 3))
{
bool use4 = CSD->getValue() == 2;
Tmp2 = SelectExpr(N.getOperand(0).getOperand(0));
if ((CSD = dyn_cast<ConstantSDNode>(N.getOperand(1))) && CSD->getValue() <= 255)
BuildMI(BB, isAdd?(use4?Alpha::S4ADDQi:Alpha::S8ADDQi):(use4?Alpha::S4SUBQi:Alpha::S8SUBQi),
2, Result).addReg(Tmp2).addImm(CSD->getValue());
else {
Tmp1 = SelectExpr(N.getOperand(1));
BuildMI(BB, isAdd?(use4?Alpha::S4ADDQi:Alpha::S8ADDQi):(use4?Alpha::S4SUBQi:Alpha::S8SUBQi),
2, Result).addReg(Tmp2).addReg(Tmp1);
}
}
//Position prevents subs
else if(N.getOperand(1).getOpcode() == ISD::SHL && isAdd &&
(CSD = dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) &&
(CSD->getValue() == 2 || CSD->getValue() == 3))
{
bool use4 = CSD->getValue() == 2;
Tmp2 = SelectExpr(N.getOperand(1).getOperand(0));
if ((CSD = dyn_cast<ConstantSDNode>(N.getOperand(0))) && CSD->getValue() <= 255)
BuildMI(BB, use4?Alpha::S4ADDQi:Alpha::S8ADDQi, 2, Result).addReg(Tmp2)
.addImm(CSD->getValue());
else {
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, use4?Alpha::S4ADDQ:Alpha::S8ADDQ, 2, Result).addReg(Tmp2).addReg(Tmp1);
}
}
//small addi
else if((CSD = dyn_cast<ConstantSDNode>(N.getOperand(1))) &&
CSD->getValue() <= 255)
{ //Normal imm add/sub
Opc = isAdd ? Alpha::ADDQi : Alpha::SUBQi;
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CSD->getValue());
}
//larger addi
else if((CSD = dyn_cast<ConstantSDNode>(N.getOperand(1))) &&
CSD->getSignExtended() <= 32767 &&
CSD->getSignExtended() >= -32767)
{ //LDA
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = (long)CSD->getSignExtended();
if (!isAdd)
Tmp2 = -Tmp2;
BuildMI(BB, Alpha::LDA, 2, Result).addImm(Tmp2).addReg(Tmp1);
}
//give up and do the operation
else {
//Normal add/sub
Opc = isAdd ? Alpha::ADDQ : Alpha::SUBQ;
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
return Result;
}
case ISD::SDIV:
{
ConstantSDNode* CSD;
//check if we can convert into a shift!
if ((CSD = dyn_cast<ConstantSDNode>(N.getOperand(1).Val)) &&
(int64_t)CSD->getSignExtended() != 0 &&
ExactLog2(abs((int64_t)CSD->getSignExtended())) != 0)
{
unsigned k = ExactLog2(abs(CSD->getSignExtended()));
Tmp1 = SelectExpr(N.getOperand(0));
if (k == 1)
Tmp2 = Tmp1;
else
{
Tmp2 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::SRAi, 2, Tmp2).addReg(Tmp1).addImm(k - 1);
}
Tmp3 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::SRLi, 2, Tmp3).addReg(Tmp2).addImm(64-k);
unsigned Tmp4 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::ADDQ, 2, Tmp4).addReg(Tmp3).addReg(Tmp1);
if ((int64_t)CSD->getSignExtended() > 0)
BuildMI(BB, Alpha::SRAi, 2, Result).addReg(Tmp4).addImm(k);
else
{
unsigned Tmp5 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::SRAi, 2, Tmp5).addReg(Tmp4).addImm(k);
BuildMI(BB, Alpha::SUBQ, 2, Result).addReg(Alpha::R31).addReg(Tmp5);
}
return Result;
}
}
//Else fall through
case ISD::UDIV:
{
ConstantSDNode* CSD;
if ((CSD = dyn_cast<ConstantSDNode>(N.getOperand(1).Val)) &&
((int64_t)CSD->getSignExtended() >= 2 ||
(int64_t)CSD->getSignExtended() <= -2))
{
// If this is a divide by constant, we can emit code using some magic
// constants to implement it as a multiply instead.
ExprMap.erase(N);
if (opcode == ISD::SDIV)
return SelectExpr(BuildSDIVSequence(N));
else
return SelectExpr(BuildUDIVSequence(N));
}
}
//else fall though
case ISD::UREM:
case ISD::SREM:
//FIXME: alpha really doesn't support any of these operations,
// the ops are expanded into special library calls with
// special calling conventions
//Restore GP because it is a call after all...
switch(opcode) {
case ISD::UREM: Opc = Alpha::REMQU; break;
case ISD::SREM: Opc = Alpha::REMQ; break;
case ISD::UDIV: Opc = Alpha::DIVQU; break;
case ISD::SDIV: Opc = Alpha::DIVQ; break;
}
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
//set up regs explicitly (helps Reg alloc)
BuildMI(BB, Alpha::BIS, 2, Alpha::R24).addReg(Tmp1).addReg(Tmp1);
BuildMI(BB, Alpha::BIS, 2, Alpha::R25).addReg(Tmp2).addReg(Tmp2);
AlphaLowering.restoreGP(BB);
BuildMI(BB, Opc, 2).addReg(Alpha::R24).addReg(Alpha::R25);
BuildMI(BB, Alpha::BIS, 2, Result).addReg(Alpha::R27).addReg(Alpha::R27);
return Result;
case ISD::FP_TO_UINT:
case ISD::FP_TO_SINT:
{
assert (DestType == MVT::i64 && "only quads can be loaded to");
MVT::ValueType SrcType = N.getOperand(0).getValueType();
assert (SrcType == MVT::f32 || SrcType == MVT::f64);
Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register
if (SrcType == MVT::f32)
{
Tmp2 = MakeReg(MVT::f64);
BuildMI(BB, Alpha::CVTST, 1, Tmp2).addReg(Tmp1);
Tmp1 = Tmp2;
}
Tmp2 = MakeReg(MVT::f64);
BuildMI(BB, Alpha::CVTTQ, 1, Tmp2).addReg(Tmp1);
MoveFP2Int(Tmp2, Result, true);
return Result;
}
case ISD::SELECT:
{
//FIXME: look at parent to decide if intCC can be folded, or if setCC(FP) and can save stack use
//Tmp1 = SelectExpr(N.getOperand(0)); //Cond
//Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE
//Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE
// Get the condition into the zero flag.
//BuildMI(BB, Alpha::CMOVEQ, 2, Result).addReg(Tmp2).addReg(Tmp3).addReg(Tmp1);
SDOperand CC = N.getOperand(0);
SetCCSDNode* SetCC = dyn_cast<SetCCSDNode>(CC.Val);
if (CC.getOpcode() == ISD::SETCC &&
!MVT::isInteger(SetCC->getOperand(0).getValueType()))
{ //FP Setcc -> Int Select
Tmp1 = MakeReg(MVT::f64);
Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE
Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE
bool inv = SelectFPSetCC(CC, Tmp1);
BuildMI(BB, inv?Alpha::CMOVNE_FP:Alpha::CMOVEQ_FP, 2, Result)
.addReg(Tmp2).addReg(Tmp3).addReg(Tmp1);
return Result;
}
if (CC.getOpcode() == ISD::SETCC) {
//Int SetCC -> Select
//Dropping the CC is only useful if we are comparing to 0
if((SetCC->getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(SetCC->getOperand(1))->getValue() == 0) ||
(SetCC->getOperand(0).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(SetCC->getOperand(0))->getValue() == 0))
{
//figure out a few things
bool LeftZero = SetCC->getOperand(0).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(SetCC->getOperand(0))->getValue() == 0;
bool RightZero = SetCC->getOperand(0).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(SetCC->getOperand(0))->getValue() == 0;
bool LeftConst = N.getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(1))->getValue() <= 255;
bool RightConst = N.getOperand(2).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(2))->getValue() <= 255;
bool useImm = LeftConst || RightConst;
//Fix up CC
ISD::CondCode cCode= SetCC->getCondition();
if (RightConst && !LeftConst) //Invert sense to get Imm field right
cCode = ISD::getSetCCInverse(cCode, true);
if (LeftZero && !RightZero) //Swap Operands
cCode = ISD::getSetCCSwappedOperands(cCode);
//Choose the CMOV
switch (cCode) {
default: CC.Val->dump(); assert(0 && "Unknown integer comparison!");
case ISD::SETEQ: Opc = useImm?Alpha::CMOVEQi:Alpha::CMOVEQ; break;
case ISD::SETLT: Opc = useImm?Alpha::CMOVLTi:Alpha::CMOVLT; break;
case ISD::SETLE: Opc = useImm?Alpha::CMOVLEi:Alpha::CMOVLE; break;
case ISD::SETGT: Opc = useImm?Alpha::CMOVGTi:Alpha::CMOVGT; break;
case ISD::SETGE: Opc = useImm?Alpha::CMOVGEi:Alpha::CMOVGE; break;
case ISD::SETULT: assert(0 && "x (unsigned) < 0 is never true"); break;
case ISD::SETUGT: Opc = useImm?Alpha::CMOVNEi:Alpha::CMOVNE; break;
case ISD::SETULE: Opc = useImm?Alpha::CMOVEQi:Alpha::CMOVEQ; break; //Technically you could have this CC
case ISD::SETUGE: assert(0 && "x (unsgined >= 0 is always true"); break;
case ISD::SETNE: Opc = useImm?Alpha::CMOVNEi:Alpha::CMOVNE; break;
}
if(LeftZero && !RightZero) //swap Operands
Tmp1 = SelectExpr(SetCC->getOperand(1)); //Cond
else
Tmp1 = SelectExpr(SetCC->getOperand(0)); //Cond
if (LeftConst) {
Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE
BuildMI(BB, Opc, 2, Result).addReg(Tmp3)
.addImm(cast<ConstantSDNode>(N.getOperand(1))->getValue())
.addReg(Tmp1);
} else if (RightConst) {
Tmp3 = SelectExpr(N.getOperand(1)); //Use if FALSE
BuildMI(BB, Opc, 2, Result).addReg(Tmp3)
.addImm(cast<ConstantSDNode>(N.getOperand(2))->getValue())
.addReg(Tmp1);
} else {
Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE
Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE
BuildMI(BB, Opc, 2, Result).addReg(Tmp3).addReg(Tmp2).addReg(Tmp1);
}
return Result;
}
//Otherwise, fall though
}
Tmp1 = SelectExpr(N.getOperand(0)); //Cond
Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE
Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE
BuildMI(BB, Alpha::CMOVEQ, 2, Result).addReg(Tmp2).addReg(Tmp3).addReg(Tmp1);
return Result;
}
case ISD::Constant:
{
int64_t val = (int64_t)cast<ConstantSDNode>(N)->getValue();
if (val <= IMM_HIGH && val >= IMM_LOW) {
BuildMI(BB, Alpha::LDA, 2, Result).addImm(val).addReg(Alpha::R31);
}
else if (val <= (int64_t)IMM_HIGH +(int64_t)IMM_HIGH* (int64_t)IMM_MULT &&
val >= (int64_t)IMM_LOW + (int64_t)IMM_LOW * (int64_t)IMM_MULT) {
Tmp1 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::LDAH, 2, Tmp1).addImm(getUpper16(val)).addReg(Alpha::R31);
BuildMI(BB, Alpha::LDA, 2, Result).addImm(getLower16(val)).addReg(Tmp1);
}
else {
MachineConstantPool *CP = BB->getParent()->getConstantPool();
ConstantUInt *C = ConstantUInt::get(Type::getPrimitiveType(Type::ULongTyID) , val);
unsigned CPI = CP->getConstantPoolIndex(C);
AlphaLowering.restoreGP(BB);
BuildMI(BB, Alpha::LDQ_SYM, 1, Result).addConstantPoolIndex(CPI);
}
return Result;
}
}
return 0;
}
void ISel::Select(SDOperand N) {
unsigned Tmp1, Tmp2, Opc;
unsigned opcode = N.getOpcode();
if (!ExprMap.insert(std::make_pair(N, notIn)).second)
return; // Already selected.
SDNode *Node = N.Val;
switch (opcode) {
default:
Node->dump(); std::cerr << "\n";
assert(0 && "Node not handled yet!");
case ISD::BRCOND: {
SelectBranchCC(N);
return;
}
case ISD::BR: {
MachineBasicBlock *Dest =
cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock();
Select(N.getOperand(0));
BuildMI(BB, Alpha::BR, 1, Alpha::R31).addMBB(Dest);
return;
}
case ISD::ImplicitDef:
++count_ins;
Select(N.getOperand(0));
BuildMI(BB, Alpha::IDEF, 0, cast<RegSDNode>(N)->getReg());
return;
case ISD::EntryToken: return; // Noop
case ISD::TokenFactor:
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
Select(Node->getOperand(i));
//N.Val->dump(); std::cerr << "\n";
//assert(0 && "Node not handled yet!");
return;
case ISD::CopyToReg:
++count_outs;
Select(N.getOperand(0));
Tmp1 = SelectExpr(N.getOperand(1));
Tmp2 = cast<RegSDNode>(N)->getReg();
if (Tmp1 != Tmp2) {
if (N.getOperand(1).getValueType() == MVT::f64 ||
N.getOperand(1).getValueType() == MVT::f32)
BuildMI(BB, Alpha::CPYS, 2, Tmp2).addReg(Tmp1).addReg(Tmp1);
else
BuildMI(BB, Alpha::BIS, 2, Tmp2).addReg(Tmp1).addReg(Tmp1);
}
return;
case ISD::RET:
++count_outs;
switch (N.getNumOperands()) {
default:
std::cerr << N.getNumOperands() << "\n";
for (unsigned i = 0; i < N.getNumOperands(); ++i)
std::cerr << N.getOperand(i).getValueType() << "\n";
Node->dump();
assert(0 && "Unknown return instruction!");
case 2:
Select(N.getOperand(0));
Tmp1 = SelectExpr(N.getOperand(1));
switch (N.getOperand(1).getValueType()) {
default: Node->dump();
assert(0 && "All other types should have been promoted!!");
case MVT::f64:
case MVT::f32:
BuildMI(BB, Alpha::CPYS, 2, Alpha::F0).addReg(Tmp1).addReg(Tmp1);
break;
case MVT::i32:
case MVT::i64:
BuildMI(BB, Alpha::BIS, 2, Alpha::R0).addReg(Tmp1).addReg(Tmp1);
break;
}
break;
case 1:
Select(N.getOperand(0));
break;
}
//Tmp2 = AlphaLowering.getRetAddr();
//BuildMI(BB, Alpha::BIS, 2, Alpha::R26).addReg(Tmp2).addReg(Tmp2);
BuildMI(BB, Alpha::RETURN, 0); // Just emit a 'ret' instruction
return;
case ISD::TRUNCSTORE:
case ISD::STORE:
{
SDOperand Chain = N.getOperand(0);
SDOperand Value = N.getOperand(1);
SDOperand Address = N.getOperand(2);
Select(Chain);
Tmp1 = SelectExpr(Value); //value
if (opcode == ISD::STORE) {
switch(Value.getValueType()) {
default: assert(0 && "unknown Type in store");
case MVT::i64: Opc = Alpha::STQ; break;
case MVT::f64: Opc = Alpha::STT; break;
case MVT::f32: Opc = Alpha::STS; break;
}
} else { //ISD::TRUNCSTORE
switch(cast<MVTSDNode>(Node)->getExtraValueType()) {
default: assert(0 && "unknown Type in store");
case MVT::i1: //FIXME: DAG does not promote this load
case MVT::i8: Opc = Alpha::STB; break;
case MVT::i16: Opc = Alpha::STW; break;
case MVT::i32: Opc = Alpha::STL; break;
}
}
if (Address.getOpcode() == ISD::GlobalAddress)
{
AlphaLowering.restoreGP(BB);
Opc = GetSymVersion(Opc);
has_sym = true;
BuildMI(BB, Opc, 2).addReg(Tmp1).addGlobalAddress(cast<GlobalAddressSDNode>(Address)->getGlobal());
}
else if(Address.getOpcode() == ISD::FrameIndex)
{
BuildMI(BB, Opc, 3).addReg(Tmp1)
.addFrameIndex(cast<FrameIndexSDNode>(Address)->getIndex())
.addReg(Alpha::F31);
}
else
{
long offset;
SelectAddr(Address, Tmp2, offset);
BuildMI(BB, Opc, 3).addReg(Tmp1).addImm(offset).addReg(Tmp2);
}
return;
}
case ISD::EXTLOAD:
case ISD::SEXTLOAD:
case ISD::ZEXTLOAD:
case ISD::LOAD:
case ISD::CopyFromReg:
case ISD::CALL:
case ISD::DYNAMIC_STACKALLOC:
ExprMap.erase(N);
SelectExpr(N);
return;
case ISD::ADJCALLSTACKDOWN:
case ISD::ADJCALLSTACKUP:
Select(N.getOperand(0));
Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
Opc = N.getOpcode() == ISD::ADJCALLSTACKDOWN ? Alpha::ADJUSTSTACKDOWN :
Alpha::ADJUSTSTACKUP;
BuildMI(BB, Opc, 1).addImm(Tmp1);
return;
case ISD::PCMARKER:
Select(N.getOperand(0)); //Chain
BuildMI(BB, Alpha::PCLABEL, 2).addImm( cast<ConstantSDNode>(N.getOperand(1))->getValue());
return;
}
assert(0 && "Should not be reached!");
}
/// createAlphaPatternInstructionSelector - This pass converts an LLVM function
/// into a machine code representation using pattern matching and a machine
/// description file.
///
FunctionPass *llvm::createAlphaPatternInstructionSelector(TargetMachine &TM) {
return new ISel(TM);
}