forked from OSchip/llvm-project
253 lines
8.5 KiB
C++
253 lines
8.5 KiB
C++
//== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines SimpleConstraintManager, a class that holds code shared
|
|
// between BasicConstraintManager and RangeConstraintManager.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SimpleConstraintManager.h"
|
|
#include "clang/Analysis/PathSensitive/GRExprEngine.h"
|
|
#include "clang/Analysis/PathSensitive/GRState.h"
|
|
|
|
namespace clang {
|
|
|
|
SimpleConstraintManager::~SimpleConstraintManager() {}
|
|
|
|
bool SimpleConstraintManager::canReasonAbout(SVal X) const {
|
|
if (nonloc::SymExprVal *SymVal = dyn_cast<nonloc::SymExprVal>(&X)) {
|
|
const SymExpr *SE = SymVal->getSymbolicExpression();
|
|
|
|
if (isa<SymbolData>(SE))
|
|
return true;
|
|
|
|
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
|
|
switch (SIE->getOpcode()) {
|
|
// We don't reason yet about bitwise-constraints on symbolic values.
|
|
case BinaryOperator::And:
|
|
case BinaryOperator::Or:
|
|
case BinaryOperator::Xor:
|
|
return false;
|
|
// We don't reason yet about arithmetic constraints on symbolic values.
|
|
case BinaryOperator::Mul:
|
|
case BinaryOperator::Div:
|
|
case BinaryOperator::Rem:
|
|
case BinaryOperator::Add:
|
|
case BinaryOperator::Sub:
|
|
case BinaryOperator::Shl:
|
|
case BinaryOperator::Shr:
|
|
return false;
|
|
// All other cases.
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
const GRState *SimpleConstraintManager::Assume(const GRState *state,
|
|
SVal Cond, bool Assumption) {
|
|
if (Cond.isUnknown()) {
|
|
return state;
|
|
}
|
|
|
|
if (isa<NonLoc>(Cond))
|
|
return Assume(state, cast<NonLoc>(Cond), Assumption);
|
|
else
|
|
return Assume(state, cast<Loc>(Cond), Assumption);
|
|
}
|
|
|
|
const GRState *SimpleConstraintManager::Assume(const GRState *state, Loc Cond,
|
|
bool Assumption) {
|
|
|
|
state = AssumeAux(state, Cond, Assumption);
|
|
|
|
// EvalAssume is used to call into the GRTransferFunction object to perform
|
|
// any checker-specific update of the state based on this assumption being
|
|
// true or false.
|
|
return state ? state->getTransferFuncs().EvalAssume(state, Cond, Assumption)
|
|
: NULL;
|
|
}
|
|
|
|
const GRState *SimpleConstraintManager::AssumeAux(const GRState *state,
|
|
Loc Cond, bool Assumption) {
|
|
|
|
BasicValueFactory &BasicVals = state->getBasicVals();
|
|
|
|
switch (Cond.getSubKind()) {
|
|
default:
|
|
assert (false && "'Assume' not implemented for this Loc.");
|
|
return state;
|
|
|
|
case loc::MemRegionKind: {
|
|
// FIXME: Should this go into the storemanager?
|
|
|
|
const MemRegion *R = cast<loc::MemRegionVal>(Cond).getRegion();
|
|
const SubRegion *SubR = dyn_cast<SubRegion>(R);
|
|
|
|
while (SubR) {
|
|
// FIXME: now we only find the first symbolic region.
|
|
if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SubR)) {
|
|
if (Assumption)
|
|
return AssumeSymNE(state, SymR->getSymbol(),
|
|
BasicVals.getZeroWithPtrWidth());
|
|
else
|
|
return AssumeSymEQ(state, SymR->getSymbol(),
|
|
BasicVals.getZeroWithPtrWidth());
|
|
}
|
|
SubR = dyn_cast<SubRegion>(SubR->getSuperRegion());
|
|
}
|
|
|
|
// FALL-THROUGH.
|
|
}
|
|
|
|
case loc::GotoLabelKind:
|
|
return Assumption ? state : NULL;
|
|
|
|
case loc::ConcreteIntKind: {
|
|
bool b = cast<loc::ConcreteInt>(Cond).getValue() != 0;
|
|
bool isFeasible = b ? Assumption : !Assumption;
|
|
return isFeasible ? state : NULL;
|
|
}
|
|
} // end switch
|
|
}
|
|
|
|
const GRState *SimpleConstraintManager::Assume(const GRState *state,
|
|
NonLoc Cond,
|
|
bool Assumption) {
|
|
|
|
state = AssumeAux(state, Cond, Assumption);
|
|
|
|
// EvalAssume is used to call into the GRTransferFunction object to perform
|
|
// any checker-specific update of the state based on this assumption being
|
|
// true or false.
|
|
return state ? state->getTransferFuncs().EvalAssume(state, Cond, Assumption)
|
|
: NULL;
|
|
}
|
|
|
|
const GRState *SimpleConstraintManager::AssumeAux(const GRState *state,
|
|
NonLoc Cond,
|
|
bool Assumption) {
|
|
|
|
// We cannot reason about SymIntExpr and SymSymExpr.
|
|
if (!canReasonAbout(Cond)) {
|
|
// Just return the current state indicating that the path is feasible.
|
|
// This may be an over-approximation of what is possible.
|
|
return state;
|
|
}
|
|
|
|
BasicValueFactory &BasicVals = state->getBasicVals();
|
|
SymbolManager &SymMgr = state->getSymbolManager();
|
|
|
|
switch (Cond.getSubKind()) {
|
|
default:
|
|
assert(false && "'Assume' not implemented for this NonLoc");
|
|
|
|
case nonloc::SymbolValKind: {
|
|
nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
|
|
SymbolRef sym = SV.getSymbol();
|
|
QualType T = SymMgr.getType(sym);
|
|
const llvm::APSInt &zero = BasicVals.getValue(0, T);
|
|
|
|
return Assumption ? AssumeSymNE(state, sym, zero)
|
|
: AssumeSymEQ(state, sym, zero);
|
|
}
|
|
|
|
case nonloc::SymExprValKind: {
|
|
nonloc::SymExprVal V = cast<nonloc::SymExprVal>(Cond);
|
|
if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(V.getSymbolicExpression()))
|
|
return AssumeSymInt(state, Assumption, SE);
|
|
|
|
// For all other symbolic expressions, over-approximate and consider
|
|
// the constraint feasible.
|
|
return state;
|
|
}
|
|
|
|
case nonloc::ConcreteIntKind: {
|
|
bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0;
|
|
bool isFeasible = b ? Assumption : !Assumption;
|
|
return isFeasible ? state : NULL;
|
|
}
|
|
|
|
case nonloc::LocAsIntegerKind:
|
|
return AssumeAux(state, cast<nonloc::LocAsInteger>(Cond).getLoc(),
|
|
Assumption);
|
|
} // end switch
|
|
}
|
|
|
|
const GRState *SimpleConstraintManager::AssumeSymInt(const GRState *state,
|
|
bool Assumption,
|
|
const SymIntExpr *SE) {
|
|
|
|
|
|
// Here we assume that LHS is a symbol. This is consistent with the
|
|
// rest of the constraint manager logic.
|
|
SymbolRef Sym = cast<SymbolData>(SE->getLHS());
|
|
const llvm::APSInt &Int = SE->getRHS();
|
|
|
|
switch (SE->getOpcode()) {
|
|
default:
|
|
// No logic yet for other operators. Assume the constraint is feasible.
|
|
return state;
|
|
|
|
case BinaryOperator::EQ:
|
|
return Assumption ? AssumeSymEQ(state, Sym, Int)
|
|
: AssumeSymNE(state, Sym, Int);
|
|
|
|
case BinaryOperator::NE:
|
|
return Assumption ? AssumeSymNE(state, Sym, Int)
|
|
: AssumeSymEQ(state, Sym, Int);
|
|
case BinaryOperator::GT:
|
|
return Assumption ? AssumeSymGT(state, Sym, Int)
|
|
: AssumeSymLE(state, Sym, Int);
|
|
|
|
case BinaryOperator::GE:
|
|
return Assumption ? AssumeSymGE(state, Sym, Int)
|
|
: AssumeSymLT(state, Sym, Int);
|
|
|
|
case BinaryOperator::LT:
|
|
return Assumption ? AssumeSymLT(state, Sym, Int)
|
|
: AssumeSymGE(state, Sym, Int);
|
|
|
|
case BinaryOperator::LE:
|
|
return Assumption ? AssumeSymLE(state, Sym, Int)
|
|
: AssumeSymGT(state, Sym, Int);
|
|
} // end switch
|
|
}
|
|
|
|
const GRState *SimpleConstraintManager::AssumeInBound(const GRState *state,
|
|
SVal Idx,
|
|
SVal UpperBound,
|
|
bool Assumption) {
|
|
|
|
// Only support ConcreteInt for now.
|
|
if (!(isa<nonloc::ConcreteInt>(Idx) && isa<nonloc::ConcreteInt>(UpperBound)))
|
|
return state;
|
|
|
|
const llvm::APSInt& Zero = state->getBasicVals().getZeroWithPtrWidth(false);
|
|
llvm::APSInt IdxV = cast<nonloc::ConcreteInt>(Idx).getValue();
|
|
// IdxV might be too narrow.
|
|
if (IdxV.getBitWidth() < Zero.getBitWidth())
|
|
IdxV.extend(Zero.getBitWidth());
|
|
// UBV might be too narrow, too.
|
|
llvm::APSInt UBV = cast<nonloc::ConcreteInt>(UpperBound).getValue();
|
|
if (UBV.getBitWidth() < Zero.getBitWidth())
|
|
UBV.extend(Zero.getBitWidth());
|
|
|
|
bool InBound = (Zero <= IdxV) && (IdxV < UBV);
|
|
bool isFeasible = Assumption ? InBound : !InBound;
|
|
return isFeasible ? state : NULL;
|
|
}
|
|
|
|
} // end of namespace clang
|