llvm-project/lldb/source/Plugins/Process/Linux/ProcessMonitor.cpp

2511 lines
76 KiB
C++

//===-- ProcessMonitor.cpp ------------------------------------ -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/lldb-python.h"
// C Includes
#include <errno.h>
#include <poll.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <elf.h>
#if defined(__ANDROID_NDK__) && defined (__arm__)
#include <linux/personality.h>
#include <linux/user.h>
#else
#include <sys/personality.h>
#include <sys/user.h>
#endif
#ifndef __ANDROID__
#include <sys/procfs.h>
#endif
#include <sys/ptrace.h>
#include <sys/uio.h>
#include <sys/socket.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/wait.h>
// C++ Includes
// Other libraries and framework includes
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Host/Host.h"
#include "lldb/Host/HostThread.h"
#include "lldb/Host/ThreadLauncher.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Utility/PseudoTerminal.h"
#include "Plugins/Process/POSIX/POSIXThread.h"
#include "ProcessLinux.h"
#include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
#include "ProcessMonitor.h"
#ifdef __ANDROID__
#define __ptrace_request int
#define PT_DETACH PTRACE_DETACH
#endif
#define DEBUG_PTRACE_MAXBYTES 20
// Support ptrace extensions even when compiled without required kernel support
#ifndef PTRACE_GETREGSET
#define PTRACE_GETREGSET 0x4204
#endif
#ifndef PTRACE_SETREGSET
#define PTRACE_SETREGSET 0x4205
#endif
#ifndef PTRACE_GET_THREAD_AREA
#define PTRACE_GET_THREAD_AREA 25
#endif
#ifndef PTRACE_ARCH_PRCTL
#define PTRACE_ARCH_PRCTL 30
#endif
#ifndef ARCH_GET_FS
#define ARCH_SET_GS 0x1001
#define ARCH_SET_FS 0x1002
#define ARCH_GET_FS 0x1003
#define ARCH_GET_GS 0x1004
#endif
#define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff
#define LLDB_PTRACE_NT_ARM_TLS 0x401 // ARM TLS register
// Support hardware breakpoints in case it has not been defined
#ifndef TRAP_HWBKPT
#define TRAP_HWBKPT 4
#endif
// Try to define a macro to encapsulate the tgkill syscall
// fall back on kill() if tgkill isn't available
#define tgkill(pid, tid, sig) syscall(SYS_tgkill, pid, tid, sig)
using namespace lldb_private;
// FIXME: this code is host-dependent with respect to types and
// endianness and needs to be fixed. For example, lldb::addr_t is
// hard-coded to uint64_t, but on a 32-bit Linux host, ptrace requires
// 32-bit pointer arguments. This code uses casts to work around the
// problem.
// We disable the tracing of ptrace calls for integration builds to
// avoid the additional indirection and checks.
#ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION
static void
DisplayBytes (lldb_private::StreamString &s, void *bytes, uint32_t count)
{
uint8_t *ptr = (uint8_t *)bytes;
const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
for(uint32_t i=0; i<loop_count; i++)
{
s.Printf ("[%x]", *ptr);
ptr++;
}
}
static void PtraceDisplayBytes(int &req, void *data, size_t data_size)
{
StreamString buf;
Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
if (verbose_log)
{
switch(req)
{
case PTRACE_POKETEXT:
{
DisplayBytes(buf, &data, 8);
verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
break;
}
case PTRACE_POKEDATA:
{
DisplayBytes(buf, &data, 8);
verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
break;
}
case PTRACE_POKEUSER:
{
DisplayBytes(buf, &data, 8);
verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
break;
}
#if !defined (__arm64__) && !defined (__aarch64__)
case PTRACE_SETREGS:
{
DisplayBytes(buf, data, data_size);
verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
break;
}
case PTRACE_SETFPREGS:
{
DisplayBytes(buf, data, data_size);
verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
break;
}
#endif
case PTRACE_SETSIGINFO:
{
DisplayBytes(buf, data, sizeof(siginfo_t));
verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
break;
}
case PTRACE_SETREGSET:
{
// Extract iov_base from data, which is a pointer to the struct IOVEC
DisplayBytes(buf, *(void **)data, data_size);
verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
break;
}
default:
{
}
}
}
}
// Wrapper for ptrace to catch errors and log calls.
// Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
extern long
PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size,
const char* reqName, const char* file, int line)
{
long int result;
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
PtraceDisplayBytes(req, data, data_size);
errno = 0;
if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
result = ptrace(static_cast<__ptrace_request>(req), static_cast<pid_t>(pid), *(unsigned int *)addr, data);
else
result = ptrace(static_cast<__ptrace_request>(req), static_cast<pid_t>(pid), addr, data);
if (log)
log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d",
reqName, pid, addr, data, data_size, result, file, line);
PtraceDisplayBytes(req, data, data_size);
if (log && errno != 0)
{
const char* str;
switch (errno)
{
case ESRCH: str = "ESRCH"; break;
case EINVAL: str = "EINVAL"; break;
case EBUSY: str = "EBUSY"; break;
case EPERM: str = "EPERM"; break;
default: str = "<unknown>";
}
log->Printf("ptrace() failed; errno=%d (%s)", errno, str);
}
return result;
}
// Wrapper for ptrace when logging is not required.
// Sets errno to 0 prior to calling ptrace.
extern long
PtraceWrapper(int req, pid_t pid, void *addr, void *data, size_t data_size)
{
long result = 0;
errno = 0;
if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
result = ptrace(static_cast<__ptrace_request>(req), pid, *(unsigned int *)addr, data);
else
result = ptrace(static_cast<__ptrace_request>(req), pid, addr, data);
return result;
}
#define PTRACE(req, pid, addr, data, data_size) \
PtraceWrapper((req), (pid), (addr), (data), (data_size), #req, __FILE__, __LINE__)
#else
PtraceWrapper((req), (pid), (addr), (data), (data_size))
#endif
//------------------------------------------------------------------------------
// Static implementations of ProcessMonitor::ReadMemory and
// ProcessMonitor::WriteMemory. This enables mutual recursion between these
// functions without needed to go thru the thread funnel.
static size_t
DoReadMemory(lldb::pid_t pid,
lldb::addr_t vm_addr, void *buf, size_t size, Error &error)
{
// ptrace word size is determined by the host, not the child
static const unsigned word_size = sizeof(void*);
unsigned char *dst = static_cast<unsigned char*>(buf);
size_t bytes_read;
size_t remainder;
long data;
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
if (log)
ProcessPOSIXLog::IncNestLevel();
if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
log->Printf ("ProcessMonitor::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
pid, word_size, (void*)vm_addr, buf, size);
assert(sizeof(data) >= word_size);
for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
{
errno = 0;
data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, NULL, 0);
if (errno)
{
error.SetErrorToErrno();
if (log)
ProcessPOSIXLog::DecNestLevel();
return bytes_read;
}
remainder = size - bytes_read;
remainder = remainder > word_size ? word_size : remainder;
// Copy the data into our buffer
for (unsigned i = 0; i < remainder; ++i)
dst[i] = ((data >> i*8) & 0xFF);
if (log && ProcessPOSIXLog::AtTopNestLevel() &&
(log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
(log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
{
uintptr_t print_dst = 0;
// Format bytes from data by moving into print_dst for log output
for (unsigned i = 0; i < remainder; ++i)
print_dst |= (((data >> i*8) & 0xFF) << i*8);
log->Printf ("ProcessMonitor::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
(void*)vm_addr, print_dst, (unsigned long)data);
}
vm_addr += word_size;
dst += word_size;
}
if (log)
ProcessPOSIXLog::DecNestLevel();
return bytes_read;
}
static size_t
DoWriteMemory(lldb::pid_t pid,
lldb::addr_t vm_addr, const void *buf, size_t size, Error &error)
{
// ptrace word size is determined by the host, not the child
static const unsigned word_size = sizeof(void*);
const unsigned char *src = static_cast<const unsigned char*>(buf);
size_t bytes_written = 0;
size_t remainder;
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
if (log)
ProcessPOSIXLog::IncNestLevel();
if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
log->Printf ("ProcessMonitor::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
pid, word_size, (void*)vm_addr, buf, size);
for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
{
remainder = size - bytes_written;
remainder = remainder > word_size ? word_size : remainder;
if (remainder == word_size)
{
unsigned long data = 0;
assert(sizeof(data) >= word_size);
for (unsigned i = 0; i < word_size; ++i)
data |= (unsigned long)src[i] << i*8;
if (log && ProcessPOSIXLog::AtTopNestLevel() &&
(log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
(log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
log->Printf ("ProcessMonitor::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
(void*)vm_addr, *(unsigned long*)src, data);
if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0))
{
error.SetErrorToErrno();
if (log)
ProcessPOSIXLog::DecNestLevel();
return bytes_written;
}
}
else
{
unsigned char buff[8];
if (DoReadMemory(pid, vm_addr,
buff, word_size, error) != word_size)
{
if (log)
ProcessPOSIXLog::DecNestLevel();
return bytes_written;
}
memcpy(buff, src, remainder);
if (DoWriteMemory(pid, vm_addr,
buff, word_size, error) != word_size)
{
if (log)
ProcessPOSIXLog::DecNestLevel();
return bytes_written;
}
if (log && ProcessPOSIXLog::AtTopNestLevel() &&
(log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
(log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
log->Printf ("ProcessMonitor::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
(void*)vm_addr, *(unsigned long*)src, *(unsigned long*)buff);
}
vm_addr += word_size;
src += word_size;
}
if (log)
ProcessPOSIXLog::DecNestLevel();
return bytes_written;
}
// Simple helper function to ensure flags are enabled on the given file
// descriptor.
static bool
EnsureFDFlags(int fd, int flags, Error &error)
{
int status;
if ((status = fcntl(fd, F_GETFL)) == -1)
{
error.SetErrorToErrno();
return false;
}
if (fcntl(fd, F_SETFL, status | flags) == -1)
{
error.SetErrorToErrno();
return false;
}
return true;
}
//------------------------------------------------------------------------------
/// @class Operation
/// @brief Represents a ProcessMonitor operation.
///
/// Under Linux, it is not possible to ptrace() from any other thread but the
/// one that spawned or attached to the process from the start. Therefore, when
/// a ProcessMonitor is asked to deliver or change the state of an inferior
/// process the operation must be "funneled" to a specific thread to perform the
/// task. The Operation class provides an abstract base for all services the
/// ProcessMonitor must perform via the single virtual function Execute, thus
/// encapsulating the code that needs to run in the privileged context.
class Operation
{
public:
virtual ~Operation() {}
virtual void Execute(ProcessMonitor *monitor) = 0;
};
//------------------------------------------------------------------------------
/// @class ReadOperation
/// @brief Implements ProcessMonitor::ReadMemory.
class ReadOperation : public Operation
{
public:
ReadOperation(lldb::addr_t addr, void *buff, size_t size,
Error &error, size_t &result)
: m_addr(addr), m_buff(buff), m_size(size),
m_error(error), m_result(result)
{ }
void Execute(ProcessMonitor *monitor);
private:
lldb::addr_t m_addr;
void *m_buff;
size_t m_size;
Error &m_error;
size_t &m_result;
};
void
ReadOperation::Execute(ProcessMonitor *monitor)
{
lldb::pid_t pid = monitor->GetPID();
m_result = DoReadMemory(pid, m_addr, m_buff, m_size, m_error);
}
//------------------------------------------------------------------------------
/// @class WriteOperation
/// @brief Implements ProcessMonitor::WriteMemory.
class WriteOperation : public Operation
{
public:
WriteOperation(lldb::addr_t addr, const void *buff, size_t size,
Error &error, size_t &result)
: m_addr(addr), m_buff(buff), m_size(size),
m_error(error), m_result(result)
{ }
void Execute(ProcessMonitor *monitor);
private:
lldb::addr_t m_addr;
const void *m_buff;
size_t m_size;
Error &m_error;
size_t &m_result;
};
void
WriteOperation::Execute(ProcessMonitor *monitor)
{
lldb::pid_t pid = monitor->GetPID();
m_result = DoWriteMemory(pid, m_addr, m_buff, m_size, m_error);
}
//------------------------------------------------------------------------------
/// @class ReadRegOperation
/// @brief Implements ProcessMonitor::ReadRegisterValue.
class ReadRegOperation : public Operation
{
public:
ReadRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name,
RegisterValue &value, bool &result)
: m_tid(tid), m_offset(offset), m_reg_name(reg_name),
m_value(value), m_result(result)
{ }
void Execute(ProcessMonitor *monitor);
private:
lldb::tid_t m_tid;
uintptr_t m_offset;
const char *m_reg_name;
RegisterValue &m_value;
bool &m_result;
};
void
ReadRegOperation::Execute(ProcessMonitor *monitor)
{
#if defined (__arm64__) || defined (__aarch64__)
if (m_offset > sizeof(struct user_pt_regs))
{
uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
if (offset > sizeof(struct user_fpsimd_state))
{
m_result = false;
}
else
{
elf_fpregset_t regs;
int regset = NT_FPREGSET;
struct iovec ioVec;
ioVec.iov_base = &regs;
ioVec.iov_len = sizeof regs;
if (PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs) < 0)
m_result = false;
else
{
m_result = true;
m_value.SetBytes((void *)(((unsigned char *)(&regs)) + offset), 16, monitor->GetProcess().GetByteOrder());
}
}
}
else
{
elf_gregset_t regs;
int regset = NT_PRSTATUS;
struct iovec ioVec;
ioVec.iov_base = &regs;
ioVec.iov_len = sizeof regs;
if (PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs) < 0)
m_result = false;
else
{
m_result = true;
m_value.SetBytes((void *)(((unsigned char *)(regs)) + m_offset), 8, monitor->GetProcess().GetByteOrder());
}
}
#else
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
// Set errno to zero so that we can detect a failed peek.
errno = 0;
lldb::addr_t data = PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, NULL, 0);
if (errno)
m_result = false;
else
{
m_value = data;
m_result = true;
}
if (log)
log->Printf ("ProcessMonitor::%s() reg %s: 0x%" PRIx64, __FUNCTION__,
m_reg_name, data);
#endif
}
//------------------------------------------------------------------------------
/// @class WriteRegOperation
/// @brief Implements ProcessMonitor::WriteRegisterValue.
class WriteRegOperation : public Operation
{
public:
WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name,
const RegisterValue &value, bool &result)
: m_tid(tid), m_offset(offset), m_reg_name(reg_name),
m_value(value), m_result(result)
{ }
void Execute(ProcessMonitor *monitor);
private:
lldb::tid_t m_tid;
uintptr_t m_offset;
const char *m_reg_name;
const RegisterValue &m_value;
bool &m_result;
};
void
WriteRegOperation::Execute(ProcessMonitor *monitor)
{
#if defined (__arm64__) || defined (__aarch64__)
if (m_offset > sizeof(struct user_pt_regs))
{
uintptr_t offset = m_offset - sizeof(struct user_pt_regs);
if (offset > sizeof(struct user_fpsimd_state))
{
m_result = false;
}
else
{
elf_fpregset_t regs;
int regset = NT_FPREGSET;
struct iovec ioVec;
ioVec.iov_base = &regs;
ioVec.iov_len = sizeof regs;
if (PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs) < 0)
m_result = false;
else
{
::memcpy((void *)(((unsigned char *)(&regs)) + offset), m_value.GetBytes(), 16);
if (PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs) < 0)
m_result = false;
else
m_result = true;
}
}
}
else
{
elf_gregset_t regs;
int regset = NT_PRSTATUS;
struct iovec ioVec;
ioVec.iov_base = &regs;
ioVec.iov_len = sizeof regs;
if (PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, sizeof regs) < 0)
m_result = false;
else
{
::memcpy((void *)(((unsigned char *)(&regs)) + m_offset), m_value.GetBytes(), 8);
if (PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, sizeof regs) < 0)
m_result = false;
else
m_result = true;
}
}
#else
void* buf;
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
buf = (void*) m_value.GetAsUInt64();
if (log)
log->Printf ("ProcessMonitor::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf);
if (PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0))
m_result = false;
else
m_result = true;
#endif
}
//------------------------------------------------------------------------------
/// @class ReadGPROperation
/// @brief Implements ProcessMonitor::ReadGPR.
class ReadGPROperation : public Operation
{
public:
ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result)
: m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result)
{ }
void Execute(ProcessMonitor *monitor);
private:
lldb::tid_t m_tid;
void *m_buf;
size_t m_buf_size;
bool &m_result;
};
void
ReadGPROperation::Execute(ProcessMonitor *monitor)
{
#if defined (__arm64__) || defined (__aarch64__)
int regset = NT_PRSTATUS;
struct iovec ioVec;
ioVec.iov_base = m_buf;
ioVec.iov_len = m_buf_size;
if (PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size) < 0)
m_result = false;
else
m_result = true;
#else
if (PTRACE(PTRACE_GETREGS, m_tid, NULL, m_buf, m_buf_size) < 0)
m_result = false;
else
m_result = true;
#endif
}
//------------------------------------------------------------------------------
/// @class ReadFPROperation
/// @brief Implements ProcessMonitor::ReadFPR.
class ReadFPROperation : public Operation
{
public:
ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result)
: m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result)
{ }
void Execute(ProcessMonitor *monitor);
private:
lldb::tid_t m_tid;
void *m_buf;
size_t m_buf_size;
bool &m_result;
};
void
ReadFPROperation::Execute(ProcessMonitor *monitor)
{
#if defined (__arm64__) || defined (__aarch64__)
int regset = NT_FPREGSET;
struct iovec ioVec;
ioVec.iov_base = m_buf;
ioVec.iov_len = m_buf_size;
if (PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, m_buf_size) < 0)
m_result = false;
else
m_result = true;
#else
if (PTRACE(PTRACE_GETFPREGS, m_tid, NULL, m_buf, m_buf_size) < 0)
m_result = false;
else
m_result = true;
#endif
}
//------------------------------------------------------------------------------
/// @class ReadRegisterSetOperation
/// @brief Implements ProcessMonitor::ReadRegisterSet.
class ReadRegisterSetOperation : public Operation
{
public:
ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset, bool &result)
: m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset), m_result(result)
{ }
void Execute(ProcessMonitor *monitor);
private:
lldb::tid_t m_tid;
void *m_buf;
size_t m_buf_size;
const unsigned int m_regset;
bool &m_result;
};
void
ReadRegisterSetOperation::Execute(ProcessMonitor *monitor)
{
if (PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size) < 0)
m_result = false;
else
m_result = true;
}
//------------------------------------------------------------------------------
/// @class WriteGPROperation
/// @brief Implements ProcessMonitor::WriteGPR.
class WriteGPROperation : public Operation
{
public:
WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result)
: m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result)
{ }
void Execute(ProcessMonitor *monitor);
private:
lldb::tid_t m_tid;
void *m_buf;
size_t m_buf_size;
bool &m_result;
};
void
WriteGPROperation::Execute(ProcessMonitor *monitor)
{
#if defined (__arm64__) || defined (__aarch64__)
int regset = NT_PRSTATUS;
struct iovec ioVec;
ioVec.iov_base = m_buf;
ioVec.iov_len = m_buf_size;
if (PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size) < 0)
m_result = false;
else
m_result = true;
#else
if (PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size) < 0)
m_result = false;
else
m_result = true;
#endif
}
//------------------------------------------------------------------------------
/// @class WriteFPROperation
/// @brief Implements ProcessMonitor::WriteFPR.
class WriteFPROperation : public Operation
{
public:
WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result)
: m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result)
{ }
void Execute(ProcessMonitor *monitor);
private:
lldb::tid_t m_tid;
void *m_buf;
size_t m_buf_size;
bool &m_result;
};
void
WriteFPROperation::Execute(ProcessMonitor *monitor)
{
#if defined (__arm64__) || defined (__aarch64__)
int regset = NT_FPREGSET;
struct iovec ioVec;
ioVec.iov_base = m_buf;
ioVec.iov_len = m_buf_size;
if (PTRACE(PTRACE_SETREGSET, m_tid, &regset, &ioVec, m_buf_size) < 0)
m_result = false;
else
m_result = true;
#else
if (PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size) < 0)
m_result = false;
else
m_result = true;
#endif
}
//------------------------------------------------------------------------------
/// @class WriteRegisterSetOperation
/// @brief Implements ProcessMonitor::WriteRegisterSet.
class WriteRegisterSetOperation : public Operation
{
public:
WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset, bool &result)
: m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset), m_result(result)
{ }
void Execute(ProcessMonitor *monitor);
private:
lldb::tid_t m_tid;
void *m_buf;
size_t m_buf_size;
const unsigned int m_regset;
bool &m_result;
};
void
WriteRegisterSetOperation::Execute(ProcessMonitor *monitor)
{
if (PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size) < 0)
m_result = false;
else
m_result = true;
}
//------------------------------------------------------------------------------
/// @class ReadThreadPointerOperation
/// @brief Implements ProcessMonitor::ReadThreadPointer.
class ReadThreadPointerOperation : public Operation
{
public:
ReadThreadPointerOperation(lldb::tid_t tid, lldb::addr_t *addr, bool &result)
: m_tid(tid), m_addr(addr), m_result(result)
{ }
void Execute(ProcessMonitor *monitor);
private:
lldb::tid_t m_tid;
lldb::addr_t *m_addr;
bool &m_result;
};
void
ReadThreadPointerOperation::Execute(ProcessMonitor *monitor)
{
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
if (log)
log->Printf ("ProcessMonitor::%s()", __FUNCTION__);
// The process for getting the thread area on Linux is
// somewhat... obscure. There's several different ways depending on
// what arch you're on, and what kernel version you have.
const ArchSpec& arch = monitor->GetProcess().GetTarget().GetArchitecture();
switch(arch.GetMachine())
{
case llvm::Triple::aarch64:
{
int regset = LLDB_PTRACE_NT_ARM_TLS;
struct iovec ioVec;
ioVec.iov_base = m_addr;
ioVec.iov_len = sizeof(lldb::addr_t);
if (PTRACE(PTRACE_GETREGSET, m_tid, &regset, &ioVec, ioVec.iov_len) < 0)
m_result = false;
else
m_result = true;
break;
}
#if defined(__i386__) || defined(__x86_64__)
// Note that struct user below has a field named i387 which is x86-specific.
// Therefore, this case should be compiled only for x86-based systems.
case llvm::Triple::x86:
{
// Find the GS register location for our host architecture.
size_t gs_user_offset = offsetof(struct user, regs);
#ifdef __x86_64__
gs_user_offset += offsetof(struct user_regs_struct, gs);
#endif
#ifdef __i386__
gs_user_offset += offsetof(struct user_regs_struct, xgs);
#endif
// Read the GS register value to get the selector.
errno = 0;
long gs = PTRACE(PTRACE_PEEKUSER, m_tid, (void*)gs_user_offset, NULL, 0);
if (errno)
{
m_result = false;
break;
}
// Read the LDT base for that selector.
uint32_t tmp[4];
m_result = (PTRACE(PTRACE_GET_THREAD_AREA, m_tid, (void *)(gs >> 3), &tmp, 0) == 0);
*m_addr = tmp[1];
break;
}
#endif
case llvm::Triple::x86_64:
// Read the FS register base.
m_result = (PTRACE(PTRACE_ARCH_PRCTL, m_tid, m_addr, (void *)ARCH_GET_FS, 0) == 0);
break;
default:
m_result = false;
break;
}
}
//------------------------------------------------------------------------------
/// @class ResumeOperation
/// @brief Implements ProcessMonitor::Resume.
class ResumeOperation : public Operation
{
public:
ResumeOperation(lldb::tid_t tid, uint32_t signo, bool &result) :
m_tid(tid), m_signo(signo), m_result(result) { }
void Execute(ProcessMonitor *monitor);
private:
lldb::tid_t m_tid;
uint32_t m_signo;
bool &m_result;
};
void
ResumeOperation::Execute(ProcessMonitor *monitor)
{
intptr_t data = 0;
if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
data = m_signo;
if (PTRACE(PTRACE_CONT, m_tid, NULL, (void*)data, 0))
{
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PROCESS));
if (log)
log->Printf ("ResumeOperation (%" PRIu64 ") failed: %s", m_tid, strerror(errno));
m_result = false;
}
else
m_result = true;
}
//------------------------------------------------------------------------------
/// @class SingleStepOperation
/// @brief Implements ProcessMonitor::SingleStep.
class SingleStepOperation : public Operation
{
public:
SingleStepOperation(lldb::tid_t tid, uint32_t signo, bool &result)
: m_tid(tid), m_signo(signo), m_result(result) { }
void Execute(ProcessMonitor *monitor);
private:
lldb::tid_t m_tid;
uint32_t m_signo;
bool &m_result;
};
void
SingleStepOperation::Execute(ProcessMonitor *monitor)
{
intptr_t data = 0;
if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
data = m_signo;
if (PTRACE(PTRACE_SINGLESTEP, m_tid, NULL, (void*)data, 0))
m_result = false;
else
m_result = true;
}
//------------------------------------------------------------------------------
/// @class SiginfoOperation
/// @brief Implements ProcessMonitor::GetSignalInfo.
class SiginfoOperation : public Operation
{
public:
SiginfoOperation(lldb::tid_t tid, void *info, bool &result, int &ptrace_err)
: m_tid(tid), m_info(info), m_result(result), m_err(ptrace_err) { }
void Execute(ProcessMonitor *monitor);
private:
lldb::tid_t m_tid;
void *m_info;
bool &m_result;
int &m_err;
};
void
SiginfoOperation::Execute(ProcessMonitor *monitor)
{
if (PTRACE(PTRACE_GETSIGINFO, m_tid, NULL, m_info, 0)) {
m_result = false;
m_err = errno;
}
else
m_result = true;
}
//------------------------------------------------------------------------------
/// @class EventMessageOperation
/// @brief Implements ProcessMonitor::GetEventMessage.
class EventMessageOperation : public Operation
{
public:
EventMessageOperation(lldb::tid_t tid, unsigned long *message, bool &result)
: m_tid(tid), m_message(message), m_result(result) { }
void Execute(ProcessMonitor *monitor);
private:
lldb::tid_t m_tid;
unsigned long *m_message;
bool &m_result;
};
void
EventMessageOperation::Execute(ProcessMonitor *monitor)
{
if (PTRACE(PTRACE_GETEVENTMSG, m_tid, NULL, m_message, 0))
m_result = false;
else
m_result = true;
}
//------------------------------------------------------------------------------
/// @class DetachOperation
/// @brief Implements ProcessMonitor::Detach.
class DetachOperation : public Operation
{
public:
DetachOperation(lldb::tid_t tid, Error &result) : m_tid(tid), m_error(result) { }
void Execute(ProcessMonitor *monitor);
private:
lldb::tid_t m_tid;
Error &m_error;
};
void
DetachOperation::Execute(ProcessMonitor *monitor)
{
if (ptrace(PT_DETACH, m_tid, NULL, 0) < 0)
m_error.SetErrorToErrno();
}
ProcessMonitor::OperationArgs::OperationArgs(ProcessMonitor *monitor)
: m_monitor(monitor)
{
sem_init(&m_semaphore, 0, 0);
}
ProcessMonitor::OperationArgs::~OperationArgs()
{
sem_destroy(&m_semaphore);
}
ProcessMonitor::LaunchArgs::LaunchArgs(ProcessMonitor *monitor,
lldb_private::Module *module,
char const **argv,
char const **envp,
const char *stdin_path,
const char *stdout_path,
const char *stderr_path,
const char *working_dir,
const lldb_private::ProcessLaunchInfo &launch_info)
: OperationArgs(monitor),
m_module(module),
m_argv(argv),
m_envp(envp),
m_stdin_path(stdin_path),
m_stdout_path(stdout_path),
m_stderr_path(stderr_path),
m_working_dir(working_dir),
m_launch_info(launch_info)
{
}
ProcessMonitor::LaunchArgs::~LaunchArgs()
{ }
ProcessMonitor::AttachArgs::AttachArgs(ProcessMonitor *monitor,
lldb::pid_t pid)
: OperationArgs(monitor), m_pid(pid) { }
ProcessMonitor::AttachArgs::~AttachArgs()
{ }
//------------------------------------------------------------------------------
/// The basic design of the ProcessMonitor is built around two threads.
///
/// One thread (@see SignalThread) simply blocks on a call to waitpid() looking
/// for changes in the debugee state. When a change is detected a
/// ProcessMessage is sent to the associated ProcessLinux instance. This thread
/// "drives" state changes in the debugger.
///
/// The second thread (@see OperationThread) is responsible for two things 1)
/// launching or attaching to the inferior process, and then 2) servicing
/// operations such as register reads/writes, stepping, etc. See the comments
/// on the Operation class for more info as to why this is needed.
ProcessMonitor::ProcessMonitor(ProcessPOSIX *process,
Module *module,
const char *argv[],
const char *envp[],
const char *stdin_path,
const char *stdout_path,
const char *stderr_path,
const char *working_dir,
const lldb_private::ProcessLaunchInfo &launch_info,
lldb_private::Error &error)
: m_process(static_cast<ProcessLinux *>(process)),
m_operation_thread(LLDB_INVALID_HOST_THREAD),
m_monitor_thread(LLDB_INVALID_HOST_THREAD),
m_pid(LLDB_INVALID_PROCESS_ID),
m_terminal_fd(-1),
m_operation(0)
{
std::unique_ptr<LaunchArgs> args(new LaunchArgs(this, module, argv, envp,
stdin_path, stdout_path, stderr_path,
working_dir, launch_info));
sem_init(&m_operation_pending, 0, 0);
sem_init(&m_operation_done, 0, 0);
StartLaunchOpThread(args.get(), error);
if (!error.Success())
return;
WAIT_AGAIN:
// Wait for the operation thread to initialize.
if (sem_wait(&args->m_semaphore))
{
if (errno == EINTR)
goto WAIT_AGAIN;
else
{
error.SetErrorToErrno();
return;
}
}
// Check that the launch was a success.
if (!args->m_error.Success())
{
StopOpThread();
error = args->m_error;
return;
}
// Finally, start monitoring the child process for change in state.
m_monitor_thread = Host::StartMonitoringChildProcess(
ProcessMonitor::MonitorCallback, this, GetPID(), true);
if (!m_monitor_thread.IsJoinable())
{
error.SetErrorToGenericError();
error.SetErrorString("Process launch failed.");
return;
}
}
ProcessMonitor::ProcessMonitor(ProcessPOSIX *process,
lldb::pid_t pid,
lldb_private::Error &error)
: m_process(static_cast<ProcessLinux *>(process)),
m_operation_thread(LLDB_INVALID_HOST_THREAD),
m_monitor_thread(LLDB_INVALID_HOST_THREAD),
m_pid(LLDB_INVALID_PROCESS_ID),
m_terminal_fd(-1),
m_operation(0)
{
sem_init(&m_operation_pending, 0, 0);
sem_init(&m_operation_done, 0, 0);
std::unique_ptr<AttachArgs> args(new AttachArgs(this, pid));
StartAttachOpThread(args.get(), error);
if (!error.Success())
return;
WAIT_AGAIN:
// Wait for the operation thread to initialize.
if (sem_wait(&args->m_semaphore))
{
if (errno == EINTR)
goto WAIT_AGAIN;
else
{
error.SetErrorToErrno();
return;
}
}
// Check that the attach was a success.
if (!args->m_error.Success())
{
StopOpThread();
error = args->m_error;
return;
}
// Finally, start monitoring the child process for change in state.
m_monitor_thread = Host::StartMonitoringChildProcess(
ProcessMonitor::MonitorCallback, this, GetPID(), true);
if (!m_monitor_thread.IsJoinable())
{
error.SetErrorToGenericError();
error.SetErrorString("Process attach failed.");
return;
}
}
ProcessMonitor::~ProcessMonitor()
{
StopMonitor();
}
//------------------------------------------------------------------------------
// Thread setup and tear down.
void
ProcessMonitor::StartLaunchOpThread(LaunchArgs *args, Error &error)
{
static const char *g_thread_name = "lldb.process.linux.operation";
if (m_operation_thread.IsJoinable())
return;
m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, LaunchOpThread, args, &error);
}
void *
ProcessMonitor::LaunchOpThread(void *arg)
{
LaunchArgs *args = static_cast<LaunchArgs*>(arg);
if (!Launch(args)) {
sem_post(&args->m_semaphore);
return NULL;
}
ServeOperation(args);
return NULL;
}
bool
ProcessMonitor::Launch(LaunchArgs *args)
{
assert (args && "null args");
if (!args)
return false;
ProcessMonitor *monitor = args->m_monitor;
ProcessLinux &process = monitor->GetProcess();
const char **argv = args->m_argv;
const char **envp = args->m_envp;
const char *stdin_path = args->m_stdin_path;
const char *stdout_path = args->m_stdout_path;
const char *stderr_path = args->m_stderr_path;
const char *working_dir = args->m_working_dir;
lldb_utility::PseudoTerminal terminal;
const size_t err_len = 1024;
char err_str[err_len];
lldb::pid_t pid;
lldb::ThreadSP inferior;
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PROCESS));
// Propagate the environment if one is not supplied.
if (envp == NULL || envp[0] == NULL)
envp = const_cast<const char **>(environ);
if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t>(-1))
{
args->m_error.SetErrorToGenericError();
args->m_error.SetErrorString("Process fork failed.");
goto FINISH;
}
// Recognized child exit status codes.
enum {
ePtraceFailed = 1,
eDupStdinFailed,
eDupStdoutFailed,
eDupStderrFailed,
eChdirFailed,
eExecFailed,
eSetGidFailed
};
// Child process.
if (pid == 0)
{
// Trace this process.
if (PTRACE(PTRACE_TRACEME, 0, NULL, NULL, 0) < 0)
exit(ePtraceFailed);
// Do not inherit setgid powers.
if (setgid(getgid()) != 0)
exit(eSetGidFailed);
// Let us have our own process group.
setpgid(0, 0);
// Dup file descriptors if needed.
//
// FIXME: If two or more of the paths are the same we needlessly open
// the same file multiple times.
if (stdin_path != NULL && stdin_path[0])
if (!DupDescriptor(stdin_path, STDIN_FILENO, O_RDONLY))
exit(eDupStdinFailed);
if (stdout_path != NULL && stdout_path[0])
if (!DupDescriptor(stdout_path, STDOUT_FILENO, O_WRONLY | O_CREAT))
exit(eDupStdoutFailed);
if (stderr_path != NULL && stderr_path[0])
if (!DupDescriptor(stderr_path, STDERR_FILENO, O_WRONLY | O_CREAT))
exit(eDupStderrFailed);
// Change working directory
if (working_dir != NULL && working_dir[0])
if (0 != ::chdir(working_dir))
exit(eChdirFailed);
// Disable ASLR if requested.
if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
{
const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
if (old_personality == -1)
{
if (log)
log->Printf ("ProcessMonitor::%s retrieval of Linux personality () failed: %s. Cannot disable ASLR.", __FUNCTION__, strerror (errno));
}
else
{
const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
if (new_personality == -1)
{
if (log)
log->Printf ("ProcessMonitor::%s setting of Linux personality () to disable ASLR failed, ignoring: %s", __FUNCTION__, strerror (errno));
}
else
{
if (log)
log->Printf ("ProcessMonitor::%s disabling ASLR: SUCCESS", __FUNCTION__);
}
}
}
// Execute. We should never return.
execve(argv[0],
const_cast<char *const *>(argv),
const_cast<char *const *>(envp));
exit(eExecFailed);
}
// Wait for the child process to to trap on its call to execve.
lldb::pid_t wpid;
::pid_t raw_pid;
int status;
raw_pid = waitpid(pid, &status, 0);
wpid = static_cast <lldb::pid_t> (raw_pid);
if (raw_pid < 0)
{
args->m_error.SetErrorToErrno();
goto FINISH;
}
else if (WIFEXITED(status))
{
// open, dup or execve likely failed for some reason.
args->m_error.SetErrorToGenericError();
switch (WEXITSTATUS(status))
{
case ePtraceFailed:
args->m_error.SetErrorString("Child ptrace failed.");
break;
case eDupStdinFailed:
args->m_error.SetErrorString("Child open stdin failed.");
break;
case eDupStdoutFailed:
args->m_error.SetErrorString("Child open stdout failed.");
break;
case eDupStderrFailed:
args->m_error.SetErrorString("Child open stderr failed.");
break;
case eChdirFailed:
args->m_error.SetErrorString("Child failed to set working directory.");
break;
case eExecFailed:
args->m_error.SetErrorString("Child exec failed.");
break;
case eSetGidFailed:
args->m_error.SetErrorString("Child setgid failed.");
break;
default:
args->m_error.SetErrorString("Child returned unknown exit status.");
break;
}
goto FINISH;
}
assert(WIFSTOPPED(status) && wpid == pid &&
"Could not sync with inferior process.");
if (!SetDefaultPtraceOpts(pid))
{
args->m_error.SetErrorToErrno();
goto FINISH;
}
// Release the master terminal descriptor and pass it off to the
// ProcessMonitor instance. Similarly stash the inferior pid.
monitor->m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
monitor->m_pid = pid;
// Set the terminal fd to be in non blocking mode (it simplifies the
// implementation of ProcessLinux::GetSTDOUT to have a non-blocking
// descriptor to read from).
if (!EnsureFDFlags(monitor->m_terminal_fd, O_NONBLOCK, args->m_error))
goto FINISH;
// Update the process thread list with this new thread.
// FIXME: should we be letting UpdateThreadList handle this?
// FIXME: by using pids instead of tids, we can only support one thread.
inferior.reset(process.CreateNewPOSIXThread(process, pid));
if (log)
log->Printf ("ProcessMonitor::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
process.GetThreadList().AddThread(inferior);
process.AddThreadForInitialStopIfNeeded(pid);
// Let our process instance know the thread has stopped.
process.SendMessage(ProcessMessage::Trace(pid));
FINISH:
return args->m_error.Success();
}
void
ProcessMonitor::StartAttachOpThread(AttachArgs *args, lldb_private::Error &error)
{
static const char *g_thread_name = "lldb.process.linux.operation";
if (m_operation_thread.IsJoinable())
return;
m_operation_thread = ThreadLauncher::LaunchThread(g_thread_name, AttachOpThread, args, &error);
}
void *
ProcessMonitor::AttachOpThread(void *arg)
{
AttachArgs *args = static_cast<AttachArgs*>(arg);
if (!Attach(args)) {
sem_post(&args->m_semaphore);
return NULL;
}
ServeOperation(args);
return NULL;
}
bool
ProcessMonitor::Attach(AttachArgs *args)
{
lldb::pid_t pid = args->m_pid;
ProcessMonitor *monitor = args->m_monitor;
ProcessLinux &process = monitor->GetProcess();
lldb::ThreadSP inferior;
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PROCESS));
// Use a map to keep track of the threads which we have attached/need to attach.
Host::TidMap tids_to_attach;
if (pid <= 1)
{
args->m_error.SetErrorToGenericError();
args->m_error.SetErrorString("Attaching to process 1 is not allowed.");
goto FINISH;
}
while (Host::FindProcessThreads(pid, tids_to_attach))
{
for (Host::TidMap::iterator it = tids_to_attach.begin();
it != tids_to_attach.end(); ++it)
{
if (it->second == false)
{
lldb::tid_t tid = it->first;
// Attach to the requested process.
// An attach will cause the thread to stop with a SIGSTOP.
if (PTRACE(PTRACE_ATTACH, tid, NULL, NULL, 0) < 0)
{
// No such thread. The thread may have exited.
// More error handling may be needed.
if (errno == ESRCH)
{
tids_to_attach.erase(it);
continue;
}
else
{
args->m_error.SetErrorToErrno();
goto FINISH;
}
}
::pid_t wpid;
// Need to use __WALL otherwise we receive an error with errno=ECHLD
// At this point we should have a thread stopped if waitpid succeeds.
if ((wpid = waitpid(tid, NULL, __WALL)) < 0)
{
// No such thread. The thread may have exited.
// More error handling may be needed.
if (errno == ESRCH)
{
tids_to_attach.erase(it);
continue;
}
else
{
args->m_error.SetErrorToErrno();
goto FINISH;
}
}
if (!SetDefaultPtraceOpts(tid))
{
args->m_error.SetErrorToErrno();
goto FINISH;
}
// Update the process thread list with the attached thread.
inferior.reset(process.CreateNewPOSIXThread(process, tid));
if (log)
log->Printf ("ProcessMonitor::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
process.GetThreadList().AddThread(inferior);
it->second = true;
process.AddThreadForInitialStopIfNeeded(tid);
}
}
}
if (tids_to_attach.size() > 0)
{
monitor->m_pid = pid;
// Let our process instance know the thread has stopped.
process.SendMessage(ProcessMessage::Trace(pid));
}
else
{
args->m_error.SetErrorToGenericError();
args->m_error.SetErrorString("No such process.");
}
FINISH:
return args->m_error.Success();
}
bool
ProcessMonitor::SetDefaultPtraceOpts(lldb::pid_t pid)
{
long ptrace_opts = 0;
// Have the child raise an event on exit. This is used to keep the child in
// limbo until it is destroyed.
ptrace_opts |= PTRACE_O_TRACEEXIT;
// Have the tracer trace threads which spawn in the inferior process.
// TODO: if we want to support tracing the inferiors' child, add the
// appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
ptrace_opts |= PTRACE_O_TRACECLONE;
// Have the tracer notify us before execve returns
// (needed to disable legacy SIGTRAP generation)
ptrace_opts |= PTRACE_O_TRACEEXEC;
return PTRACE(PTRACE_SETOPTIONS, pid, NULL, (void*)ptrace_opts, 0) >= 0;
}
bool
ProcessMonitor::MonitorCallback(void *callback_baton,
lldb::pid_t pid,
bool exited,
int signal,
int status)
{
ProcessMessage message;
ProcessMonitor *monitor = static_cast<ProcessMonitor*>(callback_baton);
ProcessLinux *process = monitor->m_process;
assert(process);
bool stop_monitoring;
siginfo_t info;
int ptrace_err;
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PROCESS));
if (exited)
{
if (log)
log->Printf ("ProcessMonitor::%s() got exit signal, tid = %" PRIu64, __FUNCTION__, pid);
message = ProcessMessage::Exit(pid, status);
process->SendMessage(message);
return pid == process->GetID();
}
if (!monitor->GetSignalInfo(pid, &info, ptrace_err)) {
if (ptrace_err == EINVAL) {
if (log)
log->Printf ("ProcessMonitor::%s() resuming from group-stop", __FUNCTION__);
// inferior process is in 'group-stop', so deliver SIGSTOP signal
if (!monitor->Resume(pid, SIGSTOP)) {
assert(0 && "SIGSTOP delivery failed while in 'group-stop' state");
}
stop_monitoring = false;
} else {
// ptrace(GETSIGINFO) failed (but not due to group-stop). Most likely,
// this means the child pid is gone (or not being debugged) therefore
// stop the monitor thread if this is the main pid.
if (log)
log->Printf ("ProcessMonitor::%s() GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d",
__FUNCTION__, strerror(ptrace_err), pid, signal, status);
stop_monitoring = pid == monitor->m_process->GetID();
// If we are going to stop monitoring, we need to notify our process object
if (stop_monitoring)
{
message = ProcessMessage::Exit(pid, status);
process->SendMessage(message);
}
}
}
else {
switch (info.si_signo)
{
case SIGTRAP:
message = MonitorSIGTRAP(monitor, &info, pid);
break;
default:
message = MonitorSignal(monitor, &info, pid);
break;
}
process->SendMessage(message);
stop_monitoring = false;
}
return stop_monitoring;
}
ProcessMessage
ProcessMonitor::MonitorSIGTRAP(ProcessMonitor *monitor,
const siginfo_t *info, lldb::pid_t pid)
{
ProcessMessage message;
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PROCESS));
assert(monitor);
assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
switch (info->si_code)
{
default:
assert(false && "Unexpected SIGTRAP code!");
break;
// TODO: these two cases are required if we want to support tracing
// of the inferiors' children
// case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
// case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
{
if (log)
log->Printf ("ProcessMonitor::%s() received thread creation event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
unsigned long tid = 0;
if (!monitor->GetEventMessage(pid, &tid))
tid = -1;
message = ProcessMessage::NewThread(pid, tid);
break;
}
case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
if (log)
log->Printf ("ProcessMonitor::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
message = ProcessMessage::Exec(pid);
break;
case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
{
// The inferior process or one of its threads is about to exit.
// Maintain the process or thread in a state of "limbo" until we are
// explicitly commanded to detach, destroy, resume, etc.
unsigned long data = 0;
if (!monitor->GetEventMessage(pid, &data))
data = -1;
if (log)
log->Printf ("ProcessMonitor::%s() received limbo event, data = %lx, pid = %" PRIu64, __FUNCTION__, data, pid);
message = ProcessMessage::Limbo(pid, (data >> 8));
break;
}
case 0:
case TRAP_TRACE:
if (log)
log->Printf ("ProcessMonitor::%s() received trace event, pid = %" PRIu64, __FUNCTION__, pid);
message = ProcessMessage::Trace(pid);
break;
case SI_KERNEL:
case TRAP_BRKPT:
if (log)
log->Printf ("ProcessMonitor::%s() received breakpoint event, pid = %" PRIu64, __FUNCTION__, pid);
message = ProcessMessage::Break(pid);
break;
case TRAP_HWBKPT:
if (log)
log->Printf ("ProcessMonitor::%s() received watchpoint event, pid = %" PRIu64, __FUNCTION__, pid);
message = ProcessMessage::Watch(pid, (lldb::addr_t)info->si_addr);
break;
case SIGTRAP:
case (SIGTRAP | 0x80):
if (log)
log->Printf ("ProcessMonitor::%s() received system call stop event, pid = %" PRIu64, __FUNCTION__, pid);
// Ignore these signals until we know more about them
monitor->Resume(pid, eResumeSignalNone);
}
return message;
}
ProcessMessage
ProcessMonitor::MonitorSignal(ProcessMonitor *monitor,
const siginfo_t *info, lldb::pid_t pid)
{
ProcessMessage message;
int signo = info->si_signo;
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PROCESS));
// POSIX says that process behaviour is undefined after it ignores a SIGFPE,
// SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
// kill(2) or raise(3). Similarly for tgkill(2) on Linux.
//
// IOW, user generated signals never generate what we consider to be a
// "crash".
//
// Similarly, ACK signals generated by this monitor.
if (info->si_code == SI_TKILL || info->si_code == SI_USER)
{
if (log)
log->Printf ("ProcessMonitor::%s() received signal %s with code %s, pid = %d",
__FUNCTION__,
monitor->m_process->GetUnixSignals().GetSignalAsCString (signo),
(info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
info->si_pid);
if (info->si_pid == getpid())
return ProcessMessage::SignalDelivered(pid, signo);
else
return ProcessMessage::Signal(pid, signo);
}
if (log)
log->Printf ("ProcessMonitor::%s() received signal %s", __FUNCTION__, monitor->m_process->GetUnixSignals().GetSignalAsCString (signo));
if (signo == SIGSEGV) {
lldb::addr_t fault_addr = reinterpret_cast<lldb::addr_t>(info->si_addr);
ProcessMessage::CrashReason reason = GetCrashReasonForSIGSEGV(info);
return ProcessMessage::Crash(pid, reason, signo, fault_addr);
}
if (signo == SIGILL) {
lldb::addr_t fault_addr = reinterpret_cast<lldb::addr_t>(info->si_addr);
ProcessMessage::CrashReason reason = GetCrashReasonForSIGILL(info);
return ProcessMessage::Crash(pid, reason, signo, fault_addr);
}
if (signo == SIGFPE) {
lldb::addr_t fault_addr = reinterpret_cast<lldb::addr_t>(info->si_addr);
ProcessMessage::CrashReason reason = GetCrashReasonForSIGFPE(info);
return ProcessMessage::Crash(pid, reason, signo, fault_addr);
}
if (signo == SIGBUS) {
lldb::addr_t fault_addr = reinterpret_cast<lldb::addr_t>(info->si_addr);
ProcessMessage::CrashReason reason = GetCrashReasonForSIGBUS(info);
return ProcessMessage::Crash(pid, reason, signo, fault_addr);
}
// Everything else is "normal" and does not require any special action on
// our part.
return ProcessMessage::Signal(pid, signo);
}
// On Linux, when a new thread is created, we receive to notifications,
// (1) a SIGTRAP|PTRACE_EVENT_CLONE from the main process thread with the
// child thread id as additional information, and (2) a SIGSTOP|SI_USER from
// the new child thread indicating that it has is stopped because we attached.
// We have no guarantee of the order in which these arrive, but we need both
// before we are ready to proceed. We currently keep a list of threads which
// have sent the initial SIGSTOP|SI_USER event. Then when we receive the
// SIGTRAP|PTRACE_EVENT_CLONE notification, if the initial stop has not occurred
// we call ProcessMonitor::WaitForInitialTIDStop() to wait for it.
bool
ProcessMonitor::WaitForInitialTIDStop(lldb::tid_t tid)
{
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PROCESS));
if (log)
log->Printf ("ProcessMonitor::%s(%" PRIu64 ") waiting for thread to stop...", __FUNCTION__, tid);
// Wait for the thread to stop
while (true)
{
int status = -1;
if (log)
log->Printf ("ProcessMonitor::%s(%" PRIu64 ") waitpid...", __FUNCTION__, tid);
::pid_t wait_pid = waitpid(tid, &status, __WALL);
if (status == -1)
{
// If we got interrupted by a signal (in our process, not the
// inferior) try again.
if (errno == EINTR)
continue;
else
{
if (log)
log->Printf("ProcessMonitor::%s(%" PRIu64 ") waitpid error -- %s", __FUNCTION__, tid, strerror(errno));
return false; // This is bad, but there's nothing we can do.
}
}
if (log)
log->Printf ("ProcessMonitor::%s(%" PRIu64 ") waitpid, status = %d", __FUNCTION__, tid, status);
assert(static_cast<lldb::tid_t>(wait_pid) == tid);
siginfo_t info;
int ptrace_err;
if (!GetSignalInfo(wait_pid, &info, ptrace_err))
{
if (log)
{
log->Printf ("ProcessMonitor::%s() GetSignalInfo failed. errno=%d (%s)", __FUNCTION__, ptrace_err, strerror(ptrace_err));
}
return false;
}
// If this is a thread exit, we won't get any more information.
if (WIFEXITED(status))
{
m_process->SendMessage(ProcessMessage::Exit(wait_pid, WEXITSTATUS(status)));
if (static_cast<lldb::tid_t>(wait_pid) == tid)
return true;
continue;
}
assert(info.si_code == SI_USER);
assert(WSTOPSIG(status) == SIGSTOP);
if (log)
log->Printf ("ProcessMonitor::%s(bp) received thread stop signal", __FUNCTION__);
m_process->AddThreadForInitialStopIfNeeded(wait_pid);
return true;
}
return false;
}
bool
ProcessMonitor::StopThread(lldb::tid_t tid)
{
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PROCESS));
// FIXME: Try to use tgkill or tkill
int ret = tgkill(m_pid, tid, SIGSTOP);
if (log)
log->Printf ("ProcessMonitor::%s(bp) stopping thread, tid = %" PRIu64 ", ret = %d", __FUNCTION__, tid, ret);
// This can happen if a thread exited while we were trying to stop it. That's OK.
// We'll get the signal for that later.
if (ret < 0)
return false;
// Wait for the thread to stop
while (true)
{
int status = -1;
if (log)
log->Printf ("ProcessMonitor::%s(bp) waitpid...", __FUNCTION__);
::pid_t wait_pid = ::waitpid (-1*getpgid(m_pid), &status, __WALL);
if (log)
log->Printf ("ProcessMonitor::%s(bp) waitpid, pid = %" PRIu64 ", status = %d",
__FUNCTION__, static_cast<lldb::pid_t>(wait_pid), status);
if (wait_pid == -1)
{
// If we got interrupted by a signal (in our process, not the
// inferior) try again.
if (errno == EINTR)
continue;
else
return false; // This is bad, but there's nothing we can do.
}
// If this is a thread exit, we won't get any more information.
if (WIFEXITED(status))
{
m_process->SendMessage(ProcessMessage::Exit(wait_pid, WEXITSTATUS(status)));
if (static_cast<lldb::tid_t>(wait_pid) == tid)
return true;
continue;
}
siginfo_t info;
int ptrace_err;
if (!GetSignalInfo(wait_pid, &info, ptrace_err))
{
// another signal causing a StopAllThreads may have been received
// before wait_pid's group-stop was processed, handle it now
if (ptrace_err == EINVAL)
{
assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
if (log)
log->Printf ("ProcessMonitor::%s() resuming from group-stop", __FUNCTION__);
// inferior process is in 'group-stop', so deliver SIGSTOP signal
if (!Resume(wait_pid, SIGSTOP)) {
assert(0 && "SIGSTOP delivery failed while in 'group-stop' state");
}
continue;
}
if (log)
log->Printf ("ProcessMonitor::%s() GetSignalInfo failed.", __FUNCTION__);
return false;
}
// Handle events from other threads
if (log)
log->Printf ("ProcessMonitor::%s(bp) handling event, tid == %" PRIu64,
__FUNCTION__, static_cast<lldb::tid_t>(wait_pid));
ProcessMessage message;
if (info.si_signo == SIGTRAP)
message = MonitorSIGTRAP(this, &info, wait_pid);
else
message = MonitorSignal(this, &info, wait_pid);
POSIXThread *thread = static_cast<POSIXThread*>(m_process->GetThreadList().FindThreadByID(wait_pid).get());
// When a new thread is created, we may get a SIGSTOP for the new thread
// just before we get the SIGTRAP that we use to add the thread to our
// process thread list. We don't need to worry about that signal here.
assert(thread || message.GetKind() == ProcessMessage::eSignalMessage);
if (!thread)
{
m_process->SendMessage(message);
continue;
}
switch (message.GetKind())
{
case ProcessMessage::eExecMessage:
llvm_unreachable("unexpected message");
case ProcessMessage::eAttachMessage:
case ProcessMessage::eInvalidMessage:
break;
// These need special handling because we don't want to send a
// resume even if we already sent a SIGSTOP to this thread. In
// this case the resume will cause the thread to disappear. It is
// unlikely that we'll ever get eExitMessage here, but the same
// reasoning applies.
case ProcessMessage::eLimboMessage:
case ProcessMessage::eExitMessage:
if (log)
log->Printf ("ProcessMonitor::%s(bp) handling message", __FUNCTION__);
// SendMessage will set the thread state as needed.
m_process->SendMessage(message);
// If this is the thread we're waiting for, stop waiting. Even
// though this wasn't the signal we expected, it's the last
// signal we'll see while this thread is alive.
if (static_cast<lldb::tid_t>(wait_pid) == tid)
return true;
break;
case ProcessMessage::eSignalMessage:
if (log)
log->Printf ("ProcessMonitor::%s(bp) handling message", __FUNCTION__);
if (WSTOPSIG(status) == SIGSTOP)
{
m_process->AddThreadForInitialStopIfNeeded(tid);
thread->SetState(lldb::eStateStopped);
}
else
{
m_process->SendMessage(message);
// This isn't the stop we were expecting, but the thread is
// stopped. SendMessage will handle processing of this event,
// but we need to resume here to get the stop we are waiting
// for (otherwise the thread will stop again immediately when
// we try to resume).
if (static_cast<lldb::tid_t>(wait_pid) == tid)
Resume(wait_pid, eResumeSignalNone);
}
break;
case ProcessMessage::eSignalDeliveredMessage:
// This is the stop we're expecting.
if (static_cast<lldb::tid_t>(wait_pid) == tid &&
WIFSTOPPED(status) &&
WSTOPSIG(status) == SIGSTOP &&
info.si_code == SI_TKILL)
{
if (log)
log->Printf ("ProcessMonitor::%s(bp) received signal, done waiting", __FUNCTION__);
thread->SetState(lldb::eStateStopped);
return true;
}
// else fall-through
case ProcessMessage::eBreakpointMessage:
case ProcessMessage::eTraceMessage:
case ProcessMessage::eWatchpointMessage:
case ProcessMessage::eCrashMessage:
case ProcessMessage::eNewThreadMessage:
if (log)
log->Printf ("ProcessMonitor::%s(bp) handling message", __FUNCTION__);
// SendMessage will set the thread state as needed.
m_process->SendMessage(message);
// This isn't the stop we were expecting, but the thread is
// stopped. SendMessage will handle processing of this event,
// but we need to resume here to get the stop we are waiting
// for (otherwise the thread will stop again immediately when
// we try to resume).
if (static_cast<lldb::tid_t>(wait_pid) == tid)
Resume(wait_pid, eResumeSignalNone);
break;
}
}
return false;
}
ProcessMessage::CrashReason
ProcessMonitor::GetCrashReasonForSIGSEGV(const siginfo_t *info)
{
ProcessMessage::CrashReason reason;
assert(info->si_signo == SIGSEGV);
reason = ProcessMessage::eInvalidCrashReason;
switch (info->si_code)
{
default:
assert(false && "unexpected si_code for SIGSEGV");
break;
case SI_KERNEL:
// Linux will occasionally send spurious SI_KERNEL codes.
// (this is poorly documented in sigaction)
// One way to get this is via unaligned SIMD loads.
reason = ProcessMessage::eInvalidAddress; // for lack of anything better
break;
case SEGV_MAPERR:
reason = ProcessMessage::eInvalidAddress;
break;
case SEGV_ACCERR:
reason = ProcessMessage::ePrivilegedAddress;
break;
}
return reason;
}
ProcessMessage::CrashReason
ProcessMonitor::GetCrashReasonForSIGILL(const siginfo_t *info)
{
ProcessMessage::CrashReason reason;
assert(info->si_signo == SIGILL);
reason = ProcessMessage::eInvalidCrashReason;
switch (info->si_code)
{
default:
assert(false && "unexpected si_code for SIGILL");
break;
case ILL_ILLOPC:
reason = ProcessMessage::eIllegalOpcode;
break;
case ILL_ILLOPN:
reason = ProcessMessage::eIllegalOperand;
break;
case ILL_ILLADR:
reason = ProcessMessage::eIllegalAddressingMode;
break;
case ILL_ILLTRP:
reason = ProcessMessage::eIllegalTrap;
break;
case ILL_PRVOPC:
reason = ProcessMessage::ePrivilegedOpcode;
break;
case ILL_PRVREG:
reason = ProcessMessage::ePrivilegedRegister;
break;
case ILL_COPROC:
reason = ProcessMessage::eCoprocessorError;
break;
case ILL_BADSTK:
reason = ProcessMessage::eInternalStackError;
break;
}
return reason;
}
ProcessMessage::CrashReason
ProcessMonitor::GetCrashReasonForSIGFPE(const siginfo_t *info)
{
ProcessMessage::CrashReason reason;
assert(info->si_signo == SIGFPE);
reason = ProcessMessage::eInvalidCrashReason;
switch (info->si_code)
{
default:
assert(false && "unexpected si_code for SIGFPE");
break;
case FPE_INTDIV:
reason = ProcessMessage::eIntegerDivideByZero;
break;
case FPE_INTOVF:
reason = ProcessMessage::eIntegerOverflow;
break;
case FPE_FLTDIV:
reason = ProcessMessage::eFloatDivideByZero;
break;
case FPE_FLTOVF:
reason = ProcessMessage::eFloatOverflow;
break;
case FPE_FLTUND:
reason = ProcessMessage::eFloatUnderflow;
break;
case FPE_FLTRES:
reason = ProcessMessage::eFloatInexactResult;
break;
case FPE_FLTINV:
reason = ProcessMessage::eFloatInvalidOperation;
break;
case FPE_FLTSUB:
reason = ProcessMessage::eFloatSubscriptRange;
break;
}
return reason;
}
ProcessMessage::CrashReason
ProcessMonitor::GetCrashReasonForSIGBUS(const siginfo_t *info)
{
ProcessMessage::CrashReason reason;
assert(info->si_signo == SIGBUS);
reason = ProcessMessage::eInvalidCrashReason;
switch (info->si_code)
{
default:
assert(false && "unexpected si_code for SIGBUS");
break;
case BUS_ADRALN:
reason = ProcessMessage::eIllegalAlignment;
break;
case BUS_ADRERR:
reason = ProcessMessage::eIllegalAddress;
break;
case BUS_OBJERR:
reason = ProcessMessage::eHardwareError;
break;
}
return reason;
}
void
ProcessMonitor::ServeOperation(OperationArgs *args)
{
ProcessMonitor *monitor = args->m_monitor;
// We are finised with the arguments and are ready to go. Sync with the
// parent thread and start serving operations on the inferior.
sem_post(&args->m_semaphore);
for(;;)
{
// wait for next pending operation
if (sem_wait(&monitor->m_operation_pending))
{
if (errno == EINTR)
continue;
assert(false && "Unexpected errno from sem_wait");
}
monitor->m_operation->Execute(monitor);
// notify calling thread that operation is complete
sem_post(&monitor->m_operation_done);
}
}
void
ProcessMonitor::DoOperation(Operation *op)
{
Mutex::Locker lock(m_operation_mutex);
m_operation = op;
// notify operation thread that an operation is ready to be processed
sem_post(&m_operation_pending);
// wait for operation to complete
while (sem_wait(&m_operation_done))
{
if (errno == EINTR)
continue;
assert(false && "Unexpected errno from sem_wait");
}
}
size_t
ProcessMonitor::ReadMemory(lldb::addr_t vm_addr, void *buf, size_t size,
Error &error)
{
size_t result;
ReadOperation op(vm_addr, buf, size, error, result);
DoOperation(&op);
return result;
}
size_t
ProcessMonitor::WriteMemory(lldb::addr_t vm_addr, const void *buf, size_t size,
lldb_private::Error &error)
{
size_t result;
WriteOperation op(vm_addr, buf, size, error, result);
DoOperation(&op);
return result;
}
bool
ProcessMonitor::ReadRegisterValue(lldb::tid_t tid, unsigned offset, const char* reg_name,
unsigned size, RegisterValue &value)
{
bool result;
ReadRegOperation op(tid, offset, reg_name, value, result);
DoOperation(&op);
return result;
}
bool
ProcessMonitor::WriteRegisterValue(lldb::tid_t tid, unsigned offset,
const char* reg_name, const RegisterValue &value)
{
bool result;
WriteRegOperation op(tid, offset, reg_name, value, result);
DoOperation(&op);
return result;
}
bool
ProcessMonitor::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size)
{
bool result;
ReadGPROperation op(tid, buf, buf_size, result);
DoOperation(&op);
return result;
}
bool
ProcessMonitor::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size)
{
bool result;
ReadFPROperation op(tid, buf, buf_size, result);
DoOperation(&op);
return result;
}
bool
ProcessMonitor::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
{
bool result;
ReadRegisterSetOperation op(tid, buf, buf_size, regset, result);
DoOperation(&op);
return result;
}
bool
ProcessMonitor::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size)
{
bool result;
WriteGPROperation op(tid, buf, buf_size, result);
DoOperation(&op);
return result;
}
bool
ProcessMonitor::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size)
{
bool result;
WriteFPROperation op(tid, buf, buf_size, result);
DoOperation(&op);
return result;
}
bool
ProcessMonitor::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
{
bool result;
WriteRegisterSetOperation op(tid, buf, buf_size, regset, result);
DoOperation(&op);
return result;
}
bool
ProcessMonitor::ReadThreadPointer(lldb::tid_t tid, lldb::addr_t &value)
{
bool result;
ReadThreadPointerOperation op(tid, &value, result);
DoOperation(&op);
return result;
}
bool
ProcessMonitor::Resume(lldb::tid_t tid, uint32_t signo)
{
bool result;
Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PROCESS));
if (log)
log->Printf ("ProcessMonitor::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid,
m_process->GetUnixSignals().GetSignalAsCString (signo));
ResumeOperation op(tid, signo, result);
DoOperation(&op);
if (log)
log->Printf ("ProcessMonitor::%s() resuming result = %s", __FUNCTION__, result ? "true" : "false");
return result;
}
bool
ProcessMonitor::SingleStep(lldb::tid_t tid, uint32_t signo)
{
bool result;
SingleStepOperation op(tid, signo, result);
DoOperation(&op);
return result;
}
bool
ProcessMonitor::Kill()
{
return kill(GetPID(), SIGKILL) == 0;
}
bool
ProcessMonitor::GetSignalInfo(lldb::tid_t tid, void *siginfo, int &ptrace_err)
{
bool result;
SiginfoOperation op(tid, siginfo, result, ptrace_err);
DoOperation(&op);
return result;
}
bool
ProcessMonitor::GetEventMessage(lldb::tid_t tid, unsigned long *message)
{
bool result;
EventMessageOperation op(tid, message, result);
DoOperation(&op);
return result;
}
lldb_private::Error
ProcessMonitor::Detach(lldb::tid_t tid)
{
lldb_private::Error error;
if (tid != LLDB_INVALID_THREAD_ID)
{
DetachOperation op(tid, error);
DoOperation(&op);
}
return error;
}
bool
ProcessMonitor::DupDescriptor(const char *path, int fd, int flags)
{
int target_fd = open(path, flags, 0666);
if (target_fd == -1)
return false;
return (dup2(target_fd, fd) == -1) ? false : true;
}
void
ProcessMonitor::StopMonitoringChildProcess()
{
if (m_monitor_thread.IsJoinable())
{
m_monitor_thread.Cancel();
m_monitor_thread.Join(nullptr);
}
}
void
ProcessMonitor::StopMonitor()
{
StopMonitoringChildProcess();
StopOpThread();
sem_destroy(&m_operation_pending);
sem_destroy(&m_operation_done);
// Note: ProcessPOSIX passes the m_terminal_fd file descriptor to
// Process::SetSTDIOFileDescriptor, which in turn transfers ownership of
// the descriptor to a ConnectionFileDescriptor object. Consequently
// even though still has the file descriptor, we shouldn't close it here.
}
void
ProcessMonitor::StopOpThread()
{
if (!m_operation_thread.IsJoinable())
return;
m_operation_thread.Cancel();
m_operation_thread.Join(nullptr);
}