llvm-project/mlir/lib/Transforms/Inliner.cpp

312 lines
12 KiB
C++

//===- Inliner.cpp - Pass to inline function calls ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a basic inlining algorithm that operates bottom up over
// the Strongly Connect Components(SCCs) of the CallGraph. This enables a more
// incremental propagation of inlining decisions from the leafs to the roots of
// the callgraph.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/CallGraph.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/InliningUtils.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Parallel.h"
#define DEBUG_TYPE "inlining"
using namespace mlir;
static llvm::cl::opt<bool> disableCanonicalization(
"mlir-disable-inline-simplify",
llvm::cl::desc("Disable running simplifications during inlining"),
llvm::cl::ReallyHidden, llvm::cl::init(false));
static llvm::cl::opt<unsigned> maxInliningIterations(
"mlir-max-inline-iterations",
llvm::cl::desc("Maximum number of iterations when inlining within an SCC"),
llvm::cl::ReallyHidden, llvm::cl::init(4));
//===----------------------------------------------------------------------===//
// CallGraph traversal
//===----------------------------------------------------------------------===//
/// Run a given transformation over the SCCs of the callgraph in a bottom up
/// traversal.
static void runTransformOnCGSCCs(
const CallGraph &cg,
function_ref<void(ArrayRef<CallGraphNode *>)> sccTransformer) {
std::vector<CallGraphNode *> currentSCCVec;
auto cgi = llvm::scc_begin(&cg);
while (!cgi.isAtEnd()) {
// Copy the current SCC and increment so that the transformer can modify the
// SCC without invalidating our iterator.
currentSCCVec = *cgi;
++cgi;
sccTransformer(currentSCCVec);
}
}
namespace {
/// This struct represents a resolved call to a given callgraph node. Given that
/// the call does not actually contain a direct reference to the
/// Region(CallGraphNode) that it is dispatching to, we need to resolve them
/// explicitly.
struct ResolvedCall {
ResolvedCall(CallOpInterface call, CallGraphNode *targetNode)
: call(call), targetNode(targetNode) {}
CallOpInterface call;
CallGraphNode *targetNode;
};
} // end anonymous namespace
/// Collect all of the callable operations within the given range of blocks. If
/// `traverseNestedCGNodes` is true, this will also collect call operations
/// inside of nested callgraph nodes.
static void collectCallOps(iterator_range<Region::iterator> blocks,
CallGraph &cg, SmallVectorImpl<ResolvedCall> &calls,
bool traverseNestedCGNodes) {
SmallVector<Block *, 8> worklist;
auto addToWorklist = [&](iterator_range<Region::iterator> blocks) {
for (Block &block : blocks)
worklist.push_back(&block);
};
addToWorklist(blocks);
while (!worklist.empty()) {
for (Operation &op : *worklist.pop_back_val()) {
if (auto call = dyn_cast<CallOpInterface>(op)) {
// TODO(riverriddle) Support inlining nested call references.
CallInterfaceCallable callable = call.getCallableForCallee();
if (SymbolRefAttr symRef = callable.dyn_cast<SymbolRefAttr>()) {
if (!symRef.isa<FlatSymbolRefAttr>())
continue;
}
CallGraphNode *node = cg.resolveCallable(call);
if (!node->isExternal())
calls.emplace_back(call, node);
continue;
}
// If this is not a call, traverse the nested regions. If
// `traverseNestedCGNodes` is false, then don't traverse nested call graph
// regions.
for (auto &nestedRegion : op.getRegions())
if (traverseNestedCGNodes || !cg.lookupNode(&nestedRegion))
addToWorklist(nestedRegion);
}
}
}
//===----------------------------------------------------------------------===//
// Inliner
//===----------------------------------------------------------------------===//
namespace {
/// This class provides a specialization of the main inlining interface.
struct Inliner : public InlinerInterface {
Inliner(MLIRContext *context, CallGraph &cg)
: InlinerInterface(context), cg(cg) {}
/// Process a set of blocks that have been inlined. This callback is invoked
/// *before* inlined terminator operations have been processed.
void
processInlinedBlocks(iterator_range<Region::iterator> inlinedBlocks) final {
collectCallOps(inlinedBlocks, cg, calls, /*traverseNestedCGNodes=*/true);
}
/// The current set of call instructions to consider for inlining.
SmallVector<ResolvedCall, 8> calls;
/// The callgraph being operated on.
CallGraph &cg;
};
} // namespace
/// Returns true if the given call should be inlined.
static bool shouldInline(ResolvedCall &resolvedCall) {
// Don't allow inlining terminator calls. We currently don't support this
// case.
if (resolvedCall.call.getOperation()->isKnownTerminator())
return false;
// Don't allow inlining if the target is an ancestor of the call. This
// prevents inlining recursively.
if (resolvedCall.targetNode->getCallableRegion()->isAncestor(
resolvedCall.call.getParentRegion()))
return false;
// Otherwise, inline.
return true;
}
/// Attempt to inline calls within the given scc. This function returns
/// success if any calls were inlined, failure otherwise.
static LogicalResult inlineCallsInSCC(Inliner &inliner,
ArrayRef<CallGraphNode *> currentSCC) {
CallGraph &cg = inliner.cg;
auto &calls = inliner.calls;
// Collect all of the direct calls within the nodes of the current SCC. We
// don't traverse nested callgraph nodes, because they are handled separately
// likely within a different SCC.
for (auto *node : currentSCC) {
if (!node->isExternal())
collectCallOps(*node->getCallableRegion(), cg, calls,
/*traverseNestedCGNodes=*/false);
}
if (calls.empty())
return failure();
// Try to inline each of the call operations. Don't cache the end iterator
// here as more calls may be added during inlining.
bool inlinedAnyCalls = false;
for (unsigned i = 0; i != calls.size(); ++i) {
ResolvedCall &it = calls[i];
LLVM_DEBUG({
llvm::dbgs() << "* Considering inlining call: ";
it.call.dump();
});
if (!shouldInline(it))
continue;
CallOpInterface call = it.call;
Region *targetRegion = it.targetNode->getCallableRegion();
LogicalResult inlineResult = inlineCall(
inliner, call, cast<CallableOpInterface>(targetRegion->getParentOp()),
targetRegion);
if (failed(inlineResult))
continue;
// If the inlining was successful, then erase the call.
call.erase();
inlinedAnyCalls = true;
}
calls.clear();
return success(inlinedAnyCalls);
}
/// Canonicalize the nodes within the given SCC with the given set of
/// canonicalization patterns.
static void canonicalizeSCC(CallGraph &cg, ArrayRef<CallGraphNode *> currentSCC,
MLIRContext *context,
const OwningRewritePatternList &canonPatterns) {
// Collect the sets of nodes to canonicalize.
SmallVector<CallGraphNode *, 4> nodesToCanonicalize;
for (auto *node : currentSCC) {
// Don't canonicalize the external node, it has no valid callable region.
if (node->isExternal())
continue;
// Don't canonicalize nodes with children. Nodes with children
// require special handling as we may remove the node during
// canonicalization. In the future, we should be able to handle this
// case with proper node deletion tracking.
if (node->hasChildren())
continue;
// We also won't apply canonicalizations for nodes that are not
// isolated. This avoids potentially mutating the regions of nodes defined
// above, this is also a stipulation of the 'applyPatternsGreedily' driver.
auto *region = node->getCallableRegion();
if (!region->getParentOp()->isKnownIsolatedFromAbove())
continue;
nodesToCanonicalize.push_back(node);
}
if (nodesToCanonicalize.empty())
return;
// Canonicalize each of the nodes within the SCC in parallel.
// NOTE: This is simple now, because we don't enable canonicalizing nodes
// within children. When we remove this restriction, this logic will need to
// be reworked.
ParallelDiagnosticHandler canonicalizationHandler(context);
llvm::parallel::for_each_n(
llvm::parallel::par, /*Begin=*/size_t(0),
/*End=*/nodesToCanonicalize.size(), [&](size_t index) {
// Set the order for this thread so that diagnostics will be properly
// ordered.
canonicalizationHandler.setOrderIDForThread(index);
// Apply the canonicalization patterns to this region.
auto *node = nodesToCanonicalize[index];
applyPatternsGreedily(*node->getCallableRegion(), canonPatterns);
// Make sure to reset the order ID for the diagnostic handler, as this
// thread may be used in a different context.
canonicalizationHandler.eraseOrderIDForThread();
});
}
/// Attempt to inline calls within the given scc, and run canonicalizations with
/// the given patterns, until a fixed point is reached. This allows for the
/// inlining of newly devirtualized calls.
static void inlineSCC(Inliner &inliner, ArrayRef<CallGraphNode *> currentSCC,
MLIRContext *context,
const OwningRewritePatternList &canonPatterns) {
// If we successfully inlined any calls, run some simplifications on the
// nodes of the scc. Continue attempting to inline until we reach a fixed
// point, or a maximum iteration count. We canonicalize here as it may
// devirtualize new calls, as well as give us a better cost model.
unsigned iterationCount = 0;
while (succeeded(inlineCallsInSCC(inliner, currentSCC))) {
// If we aren't allowing simplifications or the max iteration count was
// reached, then bail out early.
if (disableCanonicalization || ++iterationCount >= maxInliningIterations)
break;
canonicalizeSCC(inliner.cg, currentSCC, context, canonPatterns);
}
}
//===----------------------------------------------------------------------===//
// InlinerPass
//===----------------------------------------------------------------------===//
// TODO(riverriddle) This pass should currently only be used for basic testing
// of inlining functionality.
namespace {
struct InlinerPass : public OperationPass<InlinerPass> {
void runOnOperation() override {
CallGraph &cg = getAnalysis<CallGraph>();
auto *context = &getContext();
// The inliner should only be run on operations that define a symbol table,
// as the callgraph will need to resolve references.
Operation *op = getOperation();
if (!op->hasTrait<OpTrait::SymbolTable>()) {
op->emitOpError() << " was scheduled to run under the inliner, but does "
"not define a symbol table";
return signalPassFailure();
}
// Collect a set of canonicalization patterns to use when simplifying
// callable regions within an SCC.
OwningRewritePatternList canonPatterns;
for (auto *op : context->getRegisteredOperations())
op->getCanonicalizationPatterns(canonPatterns, context);
// Run the inline transform in post-order over the SCCs in the callgraph.
Inliner inliner(context, cg);
runTransformOnCGSCCs(cg, [&](ArrayRef<CallGraphNode *> scc) {
inlineSCC(inliner, scc, context, canonPatterns);
});
}
};
} // end anonymous namespace
std::unique_ptr<Pass> mlir::createInlinerPass() {
return std::make_unique<InlinerPass>();
}
static PassRegistration<InlinerPass> pass("inline", "Inline function calls");