llvm-project/mlir/lib/Transforms/DialectConversion.cpp

1948 lines
74 KiB
C++

//===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Module.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/ScopedPrinter.h"
using namespace mlir;
using namespace mlir::detail;
#define DEBUG_TYPE "dialect-conversion"
/// Recursively collect all of the operations to convert from within 'region'.
/// If 'target' is nonnull, operations that are recursively legal have their
/// regions pre-filtered to avoid considering them for legalization.
static LogicalResult
computeConversionSet(iterator_range<Region::iterator> region,
Location regionLoc, std::vector<Operation *> &toConvert,
ConversionTarget *target = nullptr) {
if (llvm::empty(region))
return success();
// Traverse starting from the entry block.
SmallVector<Block *, 16> worklist(1, &*region.begin());
DenseSet<Block *> visitedBlocks;
visitedBlocks.insert(worklist.front());
while (!worklist.empty()) {
Block *block = worklist.pop_back_val();
// Compute the conversion set of each of the nested operations.
for (Operation &op : *block) {
toConvert.emplace_back(&op);
// Don't check this operation's children for conversion if the operation
// is recursively legal.
auto legalityInfo = target ? target->isLegal(&op)
: Optional<ConversionTarget::LegalOpDetails>();
if (legalityInfo && legalityInfo->isRecursivelyLegal)
continue;
for (auto &region : op.getRegions())
computeConversionSet(region.getBlocks(), region.getLoc(), toConvert,
target);
}
// Recurse to children that haven't been visited.
for (Block *succ : block->getSuccessors())
if (visitedBlocks.insert(succ).second)
worklist.push_back(succ);
}
// Check that all blocks in the region were visited.
if (llvm::any_of(llvm::drop_begin(region, 1),
[&](Block &block) { return !visitedBlocks.count(&block); }))
return emitError(regionLoc, "unreachable blocks were not converted");
return success();
}
/// A utility function to log a successful result for the given reason.
template <typename... Args>
static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt,
Args &&... args) {
LLVM_DEBUG({
os.unindent();
os.startLine() << "} -> SUCCESS";
if (!fmt.empty())
os.getOStream() << " : "
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...);
os.getOStream() << "\n";
});
}
/// A utility function to log a failure result for the given reason.
template <typename... Args>
static void logFailure(llvm::ScopedPrinter &os, StringRef fmt,
Args &&... args) {
LLVM_DEBUG({
os.unindent();
os.startLine() << "} -> FAILURE : "
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...)
<< "\n";
});
}
//===----------------------------------------------------------------------===//
// Multi-Level Value Mapper
//===----------------------------------------------------------------------===//
namespace {
/// This class wraps a BlockAndValueMapping to provide recursive lookup
/// functionality, i.e. we will traverse if the mapped value also has a mapping.
struct ConversionValueMapping {
/// Lookup a mapped value within the map. If a mapping for the provided value
/// does not exist then return the provided value.
Value lookupOrDefault(Value from) const;
/// Map a value to the one provided.
void map(Value oldVal, Value newVal) { mapping.map(oldVal, newVal); }
/// Drop the last mapping for the given value.
void erase(Value value) { mapping.erase(value); }
private:
/// Current value mappings.
BlockAndValueMapping mapping;
};
} // end anonymous namespace
/// Lookup a mapped value within the map. If a mapping for the provided value
/// does not exist then return the provided value.
Value ConversionValueMapping::lookupOrDefault(Value from) const {
// If this value had a valid mapping, unmap that value as well in the case
// that it was also replaced.
while (auto mappedValue = mapping.lookupOrNull(from))
from = mappedValue;
return from;
}
//===----------------------------------------------------------------------===//
// ArgConverter
//===----------------------------------------------------------------------===//
namespace {
/// This class provides a simple interface for converting the types of block
/// arguments. This is done by creating a new block that contains the new legal
/// types and extracting the block that contains the old illegal types to allow
/// for undoing pending rewrites in the case of failure.
struct ArgConverter {
ArgConverter(TypeConverter *typeConverter, PatternRewriter &rewriter)
: loc(rewriter.getUnknownLoc()), typeConverter(typeConverter),
rewriter(rewriter) {}
/// This structure contains the information pertaining to an argument that has
/// been converted.
struct ConvertedArgInfo {
ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize,
Value castValue = nullptr)
: newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {}
/// The start index of in the new argument list that contains arguments that
/// replace the original.
unsigned newArgIdx;
/// The number of arguments that replaced the original argument.
unsigned newArgSize;
/// The cast value that was created to cast from the new arguments to the
/// old. This only used if 'newArgSize' > 1.
Value castValue;
};
/// This structure contains information pertaining to a block that has had its
/// signature converted.
struct ConvertedBlockInfo {
ConvertedBlockInfo(Block *origBlock) : origBlock(origBlock) {}
/// The original block that was requested to have its signature converted.
Block *origBlock;
/// The conversion information for each of the arguments. The information is
/// None if the argument was dropped during conversion.
SmallVector<Optional<ConvertedArgInfo>, 1> argInfo;
};
/// Return if the signature of the given block has already been converted.
bool hasBeenConverted(Block *block) const {
return conversionInfo.count(block);
}
//===--------------------------------------------------------------------===//
// Rewrite Application
//===--------------------------------------------------------------------===//
/// Erase any rewrites registered for the blocks within the given operation
/// which is about to be removed. This merely drops the rewrites without
/// undoing them.
void notifyOpRemoved(Operation *op);
/// Cleanup and undo any generated conversions for the arguments of block.
/// This method replaces the new block with the original, reverting the IR to
/// its original state.
void discardRewrites(Block *block);
/// Fully replace uses of the old arguments with the new, materializing cast
/// operations as necessary.
// FIXME(riverriddle) The 'mapping' parameter is only necessary because the
// implementation of replaceUsesOfBlockArgument is buggy.
void applyRewrites(ConversionValueMapping &mapping);
//===--------------------------------------------------------------------===//
// Conversion
//===--------------------------------------------------------------------===//
/// Attempt to convert the signature of the given block, if successful a new
/// block is returned containing the new arguments. On failure, nullptr is
/// returned.
Block *convertSignature(Block *block, ConversionValueMapping &mapping);
/// Apply the given signature conversion on the given block. The new block
/// containing the updated signature is returned.
Block *applySignatureConversion(
Block *block, TypeConverter::SignatureConversion &signatureConversion,
ConversionValueMapping &mapping);
/// Insert a new conversion into the cache.
void insertConversion(Block *newBlock, ConvertedBlockInfo &&info);
/// A collection of blocks that have had their arguments converted.
llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo;
/// A mapping from valid regions, to those containing the original blocks of a
/// conversion.
DenseMap<Region *, std::unique_ptr<Region>> regionMapping;
/// An instance of the unknown location that is used when materializing
/// conversions.
Location loc;
/// The type converter to use when changing types.
TypeConverter *typeConverter;
/// The pattern rewriter to use when materializing conversions.
PatternRewriter &rewriter;
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Rewrite Application
void ArgConverter::notifyOpRemoved(Operation *op) {
for (Region &region : op->getRegions()) {
for (Block &block : region) {
// Drop any rewrites from within.
for (Operation &nestedOp : block)
if (nestedOp.getNumRegions())
notifyOpRemoved(&nestedOp);
// Check if this block was converted.
auto it = conversionInfo.find(&block);
if (it == conversionInfo.end())
continue;
// Drop all uses of the original arguments and delete the original block.
Block *origBlock = it->second.origBlock;
for (BlockArgument arg : origBlock->getArguments())
arg.dropAllUses();
conversionInfo.erase(it);
}
}
}
void ArgConverter::discardRewrites(Block *block) {
auto it = conversionInfo.find(block);
if (it == conversionInfo.end())
return;
Block *origBlock = it->second.origBlock;
// Drop all uses of the new block arguments and replace uses of the new block.
for (int i = block->getNumArguments() - 1; i >= 0; --i)
block->getArgument(i).dropAllUses();
block->replaceAllUsesWith(origBlock);
// Move the operations back the original block and the delete the new block.
origBlock->getOperations().splice(origBlock->end(), block->getOperations());
origBlock->moveBefore(block);
block->erase();
conversionInfo.erase(it);
}
void ArgConverter::applyRewrites(ConversionValueMapping &mapping) {
for (auto &info : conversionInfo) {
Block *newBlock = info.first;
ConvertedBlockInfo &blockInfo = info.second;
Block *origBlock = blockInfo.origBlock;
// Process the remapping for each of the original arguments.
for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i];
BlockArgument origArg = origBlock->getArgument(i);
// Handle the case of a 1->0 value mapping.
if (!argInfo) {
// If a replacement value was given for this argument, use that to
// replace all uses.
auto argReplacementValue = mapping.lookupOrDefault(origArg);
if (argReplacementValue != origArg) {
origArg.replaceAllUsesWith(argReplacementValue);
continue;
}
// If there are any dangling uses then replace the argument with one
// generated by the type converter. This is necessary as the cast must
// persist in the IR after conversion.
if (!origArg.use_empty()) {
rewriter.setInsertionPointToStart(newBlock);
auto *newOp = typeConverter->materializeConversion(
rewriter, origArg.getType(), llvm::None, loc);
origArg.replaceAllUsesWith(newOp->getResult(0));
}
continue;
}
// If mapping is 1-1, replace the remaining uses and drop the cast
// operation.
// FIXME(riverriddle) This should check that the result type and operand
// type are the same, otherwise it should force a conversion to be
// materialized.
if (argInfo->newArgSize == 1) {
origArg.replaceAllUsesWith(
mapping.lookupOrDefault(newBlock->getArgument(argInfo->newArgIdx)));
continue;
}
// Otherwise this is a 1->N value mapping.
Value castValue = argInfo->castValue;
assert(argInfo->newArgSize > 1 && castValue && "expected 1->N mapping");
// If the argument is still used, replace it with the generated cast.
if (!origArg.use_empty())
origArg.replaceAllUsesWith(mapping.lookupOrDefault(castValue));
// If all users of the cast were removed, we can drop it. Otherwise, keep
// the operation alive and let the user handle any remaining usages.
if (castValue.use_empty())
castValue.getDefiningOp()->erase();
}
}
}
//===----------------------------------------------------------------------===//
// Conversion
Block *ArgConverter::convertSignature(Block *block,
ConversionValueMapping &mapping) {
if (auto conversion = typeConverter->convertBlockSignature(block))
return applySignatureConversion(block, *conversion, mapping);
return nullptr;
}
Block *ArgConverter::applySignatureConversion(
Block *block, TypeConverter::SignatureConversion &signatureConversion,
ConversionValueMapping &mapping) {
// If no arguments are being changed or added, there is nothing to do.
unsigned origArgCount = block->getNumArguments();
auto convertedTypes = signatureConversion.getConvertedTypes();
if (origArgCount == 0 && convertedTypes.empty())
return block;
// Split the block at the beginning to get a new block to use for the updated
// signature.
Block *newBlock = block->splitBlock(block->begin());
block->replaceAllUsesWith(newBlock);
SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes));
ArrayRef<Value> newArgs(newArgRange);
// Remap each of the original arguments as determined by the signature
// conversion.
ConvertedBlockInfo info(block);
info.argInfo.resize(origArgCount);
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(newBlock);
for (unsigned i = 0; i != origArgCount; ++i) {
auto inputMap = signatureConversion.getInputMapping(i);
if (!inputMap)
continue;
BlockArgument origArg = block->getArgument(i);
// If inputMap->replacementValue is not nullptr, then the argument is
// dropped and a replacement value is provided to be the remappedValue.
if (inputMap->replacementValue) {
assert(inputMap->size == 0 &&
"invalid to provide a replacement value when the argument isn't "
"dropped");
mapping.map(origArg, inputMap->replacementValue);
continue;
}
// If this is a 1->1 mapping, then map the argument directly.
if (inputMap->size == 1) {
mapping.map(origArg, newArgs[inputMap->inputNo]);
info.argInfo[i] = ConvertedArgInfo(inputMap->inputNo, inputMap->size);
continue;
}
// Otherwise, this is a 1->N mapping. Call into the provided type converter
// to pack the new values.
auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size);
Operation *cast = typeConverter->materializeConversion(
rewriter, origArg.getType(), replArgs, loc);
assert(cast->getNumResults() == 1);
mapping.map(origArg, cast->getResult(0));
info.argInfo[i] =
ConvertedArgInfo(inputMap->inputNo, inputMap->size, cast->getResult(0));
}
// Remove the original block from the region and return the new one.
insertConversion(newBlock, std::move(info));
return newBlock;
}
void ArgConverter::insertConversion(Block *newBlock,
ConvertedBlockInfo &&info) {
// Get a region to insert the old block.
Region *region = newBlock->getParent();
std::unique_ptr<Region> &mappedRegion = regionMapping[region];
if (!mappedRegion)
mappedRegion = std::make_unique<Region>(region->getParentOp());
// Move the original block to the mapped region and emplace the conversion.
mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(),
info.origBlock->getIterator());
conversionInfo.insert({newBlock, std::move(info)});
}
//===----------------------------------------------------------------------===//
// ConversionPatternRewriterImpl
//===----------------------------------------------------------------------===//
namespace {
/// This class contains a snapshot of the current conversion rewriter state.
/// This is useful when saving and undoing a set of rewrites.
struct RewriterState {
RewriterState(unsigned numCreatedOps, unsigned numReplacements,
unsigned numBlockActions, unsigned numIgnoredOperations,
unsigned numRootUpdates)
: numCreatedOps(numCreatedOps), numReplacements(numReplacements),
numBlockActions(numBlockActions),
numIgnoredOperations(numIgnoredOperations),
numRootUpdates(numRootUpdates) {}
/// The current number of created operations.
unsigned numCreatedOps;
/// The current number of replacements queued.
unsigned numReplacements;
/// The current number of block actions performed.
unsigned numBlockActions;
/// The current number of ignored operations.
unsigned numIgnoredOperations;
/// The current number of operations that were updated in place.
unsigned numRootUpdates;
};
/// The state of an operation that was updated by a pattern in-place. This
/// contains all of the necessary information to reconstruct an operation that
/// was updated in place.
class OperationTransactionState {
public:
OperationTransactionState() = default;
OperationTransactionState(Operation *op)
: op(op), loc(op->getLoc()), attrs(op->getAttrList()),
operands(op->operand_begin(), op->operand_end()),
successors(op->successor_begin(), op->successor_end()) {}
/// Discard the transaction state and reset the state of the original
/// operation.
void resetOperation() const {
op->setLoc(loc);
op->setAttrs(attrs);
op->setOperands(operands);
for (auto it : llvm::enumerate(successors))
op->setSuccessor(it.value(), it.index());
}
/// Return the original operation of this state.
Operation *getOperation() const { return op; }
private:
Operation *op;
LocationAttr loc;
NamedAttributeList attrs;
SmallVector<Value, 8> operands;
SmallVector<Block *, 2> successors;
};
} // end anonymous namespace
namespace mlir {
namespace detail {
struct ConversionPatternRewriterImpl {
/// This class represents one requested operation replacement via 'replaceOp'.
struct OpReplacement {
OpReplacement() = default;
OpReplacement(Operation *op, ValueRange newValues)
: op(op), newValues(newValues.begin(), newValues.end()) {}
Operation *op;
SmallVector<Value, 2> newValues;
};
/// The kind of the block action performed during the rewrite. Actions can be
/// undone if the conversion fails.
enum class BlockActionKind { Create, Move, Split, TypeConversion };
/// Original position of the given block in its parent region. We cannot use
/// a region iterator because it could have been invalidated by other region
/// operations since the position was stored.
struct BlockPosition {
Region *region;
Region::iterator::difference_type position;
};
/// The storage class for an undoable block action (one of BlockActionKind),
/// contains the information necessary to undo this action.
struct BlockAction {
static BlockAction getCreate(Block *block) {
return {BlockActionKind::Create, block, {}};
}
static BlockAction getMove(Block *block, BlockPosition originalPos) {
return {BlockActionKind::Move, block, {originalPos}};
}
static BlockAction getSplit(Block *block, Block *originalBlock) {
BlockAction action{BlockActionKind::Split, block, {}};
action.originalBlock = originalBlock;
return action;
}
static BlockAction getTypeConversion(Block *block) {
return BlockAction{BlockActionKind::TypeConversion, block, {}};
}
// The action kind.
BlockActionKind kind;
// A pointer to the block that was created by the action.
Block *block;
union {
// In use if kind == BlockActionKind::Move and contains a pointer to the
// region that originally contained the block as well as the position of
// the block in that region.
BlockPosition originalPosition;
// In use if kind == BlockActionKind::Split and contains a pointer to the
// block that was split into two parts.
Block *originalBlock;
};
};
ConversionPatternRewriterImpl(PatternRewriter &rewriter,
TypeConverter *converter)
: argConverter(converter, rewriter) {}
/// Return the current state of the rewriter.
RewriterState getCurrentState();
/// Reset the state of the rewriter to a previously saved point.
void resetState(RewriterState state);
/// Undo the block actions (motions, splits) one by one in reverse order until
/// "numActionsToKeep" actions remains.
void undoBlockActions(unsigned numActionsToKeep = 0);
/// Cleanup and destroy any generated rewrite operations. This method is
/// invoked when the conversion process fails.
void discardRewrites();
/// Apply all requested operation rewrites. This method is invoked when the
/// conversion process succeeds.
void applyRewrites();
/// Convert the signature of the given block.
LogicalResult convertBlockSignature(Block *block);
/// Apply a signature conversion on the given region.
Block *
applySignatureConversion(Region *region,
TypeConverter::SignatureConversion &conversion);
/// PatternRewriter hook for replacing the results of an operation.
void replaceOp(Operation *op, ValueRange newValues);
/// Notifies that a block was split.
void notifySplitBlock(Block *block, Block *continuation);
/// Notifies that the blocks of a region are about to be moved.
void notifyRegionIsBeingInlinedBefore(Region &region, Region &parent,
Region::iterator before);
/// Notifies that the blocks of a region were cloned into another.
void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks,
Location origRegionLoc);
/// Remap the given operands to those with potentially different types.
void remapValues(Operation::operand_range operands,
SmallVectorImpl<Value> &remapped);
/// Returns true if the given operation is ignored, and does not need to be
/// converted.
bool isOpIgnored(Operation *op) const;
/// Recursively marks the nested operations under 'op' as ignored. This
/// removes them from being considered for legalization.
void markNestedOpsIgnored(Operation *op);
// Mapping between replaced values that differ in type. This happens when
// replacing a value with one of a different type.
ConversionValueMapping mapping;
/// Utility used to convert block arguments.
ArgConverter argConverter;
/// Ordered vector of all of the newly created operations during conversion.
std::vector<Operation *> createdOps;
/// Ordered vector of any requested operation replacements.
SmallVector<OpReplacement, 4> replacements;
/// Ordered list of block operations (creations, splits, motions).
SmallVector<BlockAction, 4> blockActions;
/// A set of operations that have been erased/replaced/etc that should no
/// longer be considered for legalization. This is not meant to be an
/// exhaustive list of all operations, but the minimal set that can be used to
/// detect if a given operation should be `ignored`. For example, we may add
/// the operations that define non-empty regions to the set, but not any of
/// the others. This simplifies the amount of memory needed as we can query if
/// the parent operation was ignored.
llvm::SetVector<Operation *> ignoredOps;
/// A transaction state for each of operations that were updated in-place.
SmallVector<OperationTransactionState, 4> rootUpdates;
#ifndef NDEBUG
/// A set of operations that have pending updates. This tracking isn't
/// strictly necessary, and is thus only active during debug builds for extra
/// verification.
SmallPtrSet<Operation *, 1> pendingRootUpdates;
/// A logger used to emit diagnostics during the conversion process.
llvm::ScopedPrinter logger{llvm::dbgs()};
#endif
};
} // end namespace detail
} // end namespace mlir
RewriterState ConversionPatternRewriterImpl::getCurrentState() {
return RewriterState(createdOps.size(), replacements.size(),
blockActions.size(), ignoredOps.size(),
rootUpdates.size());
}
void ConversionPatternRewriterImpl::resetState(RewriterState state) {
// Reset any operations that were updated in place.
for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i)
rootUpdates[i].resetOperation();
rootUpdates.resize(state.numRootUpdates);
// Undo any block actions.
undoBlockActions(state.numBlockActions);
// Reset any replaced operations and undo any saved mappings.
for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
for (auto result : repl.op->getResults())
mapping.erase(result);
replacements.resize(state.numReplacements);
// Pop all of the newly created operations.
while (createdOps.size() != state.numCreatedOps) {
createdOps.back()->erase();
createdOps.pop_back();
}
// Pop all of the recorded ignored operations that are no longer valid.
while (ignoredOps.size() != state.numIgnoredOperations)
ignoredOps.pop_back();
}
void ConversionPatternRewriterImpl::undoBlockActions(
unsigned numActionsToKeep) {
for (auto &action :
llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
switch (action.kind) {
// Delete the created block.
case BlockActionKind::Create: {
// Unlink all of the operations within this block, they will be deleted
// separately.
auto &blockOps = action.block->getOperations();
while (!blockOps.empty())
blockOps.remove(blockOps.begin());
action.block->dropAllDefinedValueUses();
action.block->erase();
break;
}
// Move the block back to its original position.
case BlockActionKind::Move: {
Region *originalRegion = action.originalPosition.region;
originalRegion->getBlocks().splice(
std::next(originalRegion->begin(), action.originalPosition.position),
action.block->getParent()->getBlocks(), action.block);
break;
}
// Merge back the block that was split out.
case BlockActionKind::Split: {
action.originalBlock->getOperations().splice(
action.originalBlock->end(), action.block->getOperations());
action.block->dropAllDefinedValueUses();
action.block->erase();
break;
}
// Undo the type conversion.
case BlockActionKind::TypeConversion: {
argConverter.discardRewrites(action.block);
break;
}
}
}
blockActions.resize(numActionsToKeep);
}
void ConversionPatternRewriterImpl::discardRewrites() {
// Reset any operations that were updated in place.
for (auto &state : rootUpdates)
state.resetOperation();
undoBlockActions();
// Remove any newly created ops.
for (auto *op : llvm::reverse(createdOps))
op->erase();
}
void ConversionPatternRewriterImpl::applyRewrites() {
// Apply all of the rewrites replacements requested during conversion.
for (auto &repl : replacements) {
for (unsigned i = 0, e = repl.newValues.size(); i != e; ++i) {
if (auto newValue = repl.newValues[i])
repl.op->getResult(i).replaceAllUsesWith(
mapping.lookupOrDefault(newValue));
}
// If this operation defines any regions, drop any pending argument
// rewrites.
if (argConverter.typeConverter && repl.op->getNumRegions())
argConverter.notifyOpRemoved(repl.op);
}
// In a second pass, erase all of the replaced operations in reverse. This
// allows processing nested operations before their parent region is
// destroyed.
for (auto &repl : llvm::reverse(replacements))
repl.op->erase();
argConverter.applyRewrites(mapping);
}
LogicalResult
ConversionPatternRewriterImpl::convertBlockSignature(Block *block) {
// Check to see if this block should not be converted:
// * There is no type converter.
// * The block has already been converted.
// * This is an entry block, these are converted explicitly via patterns.
if (!argConverter.typeConverter || argConverter.hasBeenConverted(block) ||
!block->getParent() || block->isEntryBlock())
return success();
// Otherwise, try to convert the block signature.
Block *newBlock = argConverter.convertSignature(block, mapping);
if (newBlock)
blockActions.push_back(BlockAction::getTypeConversion(newBlock));
return success(newBlock);
}
Block *ConversionPatternRewriterImpl::applySignatureConversion(
Region *region, TypeConverter::SignatureConversion &conversion) {
if (!region->empty()) {
Block *newEntry = argConverter.applySignatureConversion(
&region->front(), conversion, mapping);
blockActions.push_back(BlockAction::getTypeConversion(newEntry));
return newEntry;
}
return nullptr;
}
void ConversionPatternRewriterImpl::replaceOp(Operation *op,
ValueRange newValues) {
assert(newValues.size() == op->getNumResults());
// Create mappings for each of the new result values.
for (unsigned i = 0, e = newValues.size(); i < e; ++i)
if (auto repl = newValues[i])
mapping.map(op->getResult(i), repl);
// Record the requested operation replacement.
replacements.emplace_back(op, newValues);
/// Mark this operation as recursively ignored so that we don't need to
/// convert any nested operations.
markNestedOpsIgnored(op);
}
void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
Block *continuation) {
blockActions.push_back(BlockAction::getSplit(continuation, block));
}
void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore(
Region &region, Region &parent, Region::iterator before) {
for (auto &pair : llvm::enumerate(region)) {
Block &block = pair.value();
Region::iterator::difference_type position = pair.index();
blockActions.push_back(BlockAction::getMove(&block, {&region, position}));
}
}
void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore(
iterator_range<Region::iterator> &blocks, Location origRegionLoc) {
for (Block &block : blocks)
blockActions.push_back(BlockAction::getCreate(&block));
// Compute the conversion set for the inlined region.
auto result = computeConversionSet(blocks, origRegionLoc, createdOps);
// This original region has already had its conversion set computed, so there
// shouldn't be any new failures.
(void)result;
assert(succeeded(result) && "expected region to have no unreachable blocks");
}
void ConversionPatternRewriterImpl::remapValues(
Operation::operand_range operands, SmallVectorImpl<Value> &remapped) {
remapped.reserve(llvm::size(operands));
for (Value operand : operands)
remapped.push_back(mapping.lookupOrDefault(operand));
}
bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
// Check to see if this operation or its parent were ignored.
return ignoredOps.count(op) || ignoredOps.count(op->getParentOp());
}
void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) {
// Walk this operation and collect nested operations that define non-empty
// regions. We mark such operations as 'ignored' so that we know we don't have
// to convert them, or their nested ops.
if (op->getNumRegions() == 0)
return;
op->walk([&](Operation *op) {
if (llvm::any_of(op->getRegions(),
[](Region &region) { return !region.empty(); }))
ignoredOps.insert(op);
});
}
//===----------------------------------------------------------------------===//
// ConversionPatternRewriter
//===----------------------------------------------------------------------===//
ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx,
TypeConverter *converter)
: PatternRewriter(ctx),
impl(new detail::ConversionPatternRewriterImpl(*this, converter)) {}
ConversionPatternRewriter::~ConversionPatternRewriter() {}
/// PatternRewriter hook for replacing the results of an operation.
void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
LLVM_DEBUG({
impl->logger.startLine()
<< "** Replace : '" << op->getName() << "'(" << op << ")\n";
});
impl->replaceOp(op, newValues);
}
/// PatternRewriter hook for erasing a dead operation. The uses of this
/// operation *must* be made dead by the end of the conversion process,
/// otherwise an assert will be issued.
void ConversionPatternRewriter::eraseOp(Operation *op) {
LLVM_DEBUG({
impl->logger.startLine()
<< "** Erase : '" << op->getName() << "'(" << op << ")\n";
});
SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
impl->replaceOp(op, nullRepls);
}
/// Apply a signature conversion to the entry block of the given region.
Block *ConversionPatternRewriter::applySignatureConversion(
Region *region, TypeConverter::SignatureConversion &conversion) {
return impl->applySignatureConversion(region, conversion);
}
void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
Value to) {
for (auto &u : from.getUses()) {
if (u.getOwner() == to.getDefiningOp())
continue;
u.getOwner()->replaceUsesOfWith(from, to);
}
impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
}
/// Return the converted value that replaces 'key'. Return 'key' if there is
/// no such a converted value.
Value ConversionPatternRewriter::getRemappedValue(Value key) {
return impl->mapping.lookupOrDefault(key);
}
/// PatternRewriter hook for splitting a block into two parts.
Block *ConversionPatternRewriter::splitBlock(Block *block,
Block::iterator before) {
auto *continuation = PatternRewriter::splitBlock(block, before);
impl->notifySplitBlock(block, continuation);
return continuation;
}
/// PatternRewriter hook for merging a block into another.
void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest,
ValueRange argValues) {
// TODO(riverriddle) This requires fixing the implementation of
// 'replaceUsesOfBlockArgument', which currently isn't undoable.
llvm_unreachable("block merging updates are currently not supported");
}
/// PatternRewriter hook for moving blocks out of a region.
void ConversionPatternRewriter::inlineRegionBefore(Region &region,
Region &parent,
Region::iterator before) {
impl->notifyRegionIsBeingInlinedBefore(region, parent, before);
PatternRewriter::inlineRegionBefore(region, parent, before);
}
/// PatternRewriter hook for cloning blocks of one region into another.
void ConversionPatternRewriter::cloneRegionBefore(
Region &region, Region &parent, Region::iterator before,
BlockAndValueMapping &mapping) {
if (region.empty())
return;
PatternRewriter::cloneRegionBefore(region, parent, before, mapping);
// Collect the range of the cloned blocks.
auto clonedBeginIt = mapping.lookup(&region.front())->getIterator();
auto clonedBlocks = llvm::make_range(clonedBeginIt, before);
impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc());
}
/// PatternRewriter hook for creating a new operation.
Operation *ConversionPatternRewriter::insert(Operation *op) {
LLVM_DEBUG({
impl->logger.startLine()
<< "** Insert : '" << op->getName() << "'(" << op << ")\n";
});
impl->createdOps.push_back(op);
return OpBuilder::insert(op);
}
/// PatternRewriter hook for updating the root operation in-place.
void ConversionPatternRewriter::startRootUpdate(Operation *op) {
#ifndef NDEBUG
impl->pendingRootUpdates.insert(op);
#endif
impl->rootUpdates.emplace_back(op);
}
/// PatternRewriter hook for updating the root operation in-place.
void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) {
// There is nothing to do here, we only need to track the operation at the
// start of the update.
#ifndef NDEBUG
assert(impl->pendingRootUpdates.erase(op) &&
"operation did not have a pending in-place update");
#endif
}
/// PatternRewriter hook for updating the root operation in-place.
void ConversionPatternRewriter::cancelRootUpdate(Operation *op) {
#ifndef NDEBUG
assert(impl->pendingRootUpdates.erase(op) &&
"operation did not have a pending in-place update");
#endif
// Erase the last update for this operation.
auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; };
auto &rootUpdates = impl->rootUpdates;
auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp);
rootUpdates.erase(rootUpdates.begin() + (rootUpdates.rend() - it));
}
/// Return a reference to the internal implementation.
detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
return *impl;
}
//===----------------------------------------------------------------------===//
// Conversion Patterns
//===----------------------------------------------------------------------===//
/// Attempt to match and rewrite the IR root at the specified operation.
PatternMatchResult
ConversionPattern::matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const {
SmallVector<Value, 4> operands;
auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
dialectRewriter.getImpl().remapValues(op->getOperands(), operands);
// If this operation has no successors, invoke the rewrite directly.
if (op->getNumSuccessors() == 0)
return matchAndRewrite(op, operands, dialectRewriter);
// Otherwise, we need to remap the successors.
SmallVector<Block *, 2> destinations;
destinations.reserve(op->getNumSuccessors());
SmallVector<ArrayRef<Value>, 2> operandsPerDestination;
unsigned firstSuccessorOperand = op->getSuccessorOperandIndex(0);
for (unsigned i = 0, seen = 0, e = op->getNumSuccessors(); i < e; ++i) {
destinations.push_back(op->getSuccessor(i));
// Lookup the successors operands.
unsigned n = op->getNumSuccessorOperands(i);
operandsPerDestination.push_back(
llvm::makeArrayRef(operands.data() + firstSuccessorOperand + seen, n));
seen += n;
}
// Rewrite the operation.
return matchAndRewrite(
op,
llvm::makeArrayRef(operands.data(),
operands.data() + firstSuccessorOperand),
destinations, operandsPerDestination, dialectRewriter);
}
//===----------------------------------------------------------------------===//
// OperationLegalizer
//===----------------------------------------------------------------------===//
namespace {
/// A set of rewrite patterns that can be used to legalize a given operation.
using LegalizationPatterns = SmallVector<RewritePattern *, 1>;
/// This class defines a recursive operation legalizer.
class OperationLegalizer {
public:
using LegalizationAction = ConversionTarget::LegalizationAction;
OperationLegalizer(ConversionTarget &targetInfo,
const OwningRewritePatternList &patterns)
: target(targetInfo) {
buildLegalizationGraph(patterns);
computeLegalizationGraphBenefit();
}
/// Returns if the given operation is known to be illegal on the target.
bool isIllegal(Operation *op) const;
/// Attempt to legalize the given operation. Returns success if the operation
/// was legalized, failure otherwise.
LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
/// Returns the conversion target in use by the legalizer.
ConversionTarget &getTarget() { return target; }
private:
/// Attempt to legalize the given operation by folding it.
LogicalResult legalizeWithFold(Operation *op,
ConversionPatternRewriter &rewriter);
/// Attempt to legalize the given operation by applying the provided pattern.
/// Returns success if the operation was legalized, failure otherwise.
LogicalResult legalizePattern(Operation *op, RewritePattern *pattern,
ConversionPatternRewriter &rewriter);
/// Build an optimistic legalization graph given the provided patterns. This
/// function populates 'legalizerPatterns' with the operations that are not
/// directly legal, but may be transitively legal for the current target given
/// the provided patterns.
void buildLegalizationGraph(const OwningRewritePatternList &patterns);
/// Compute the benefit of each node within the computed legalization graph.
/// This orders the patterns within 'legalizerPatterns' based upon two
/// criteria:
/// 1) Prefer patterns that have the lowest legalization depth, i.e.
/// represent the more direct mapping to the target.
/// 2) When comparing patterns with the same legalization depth, prefer the
/// pattern with the highest PatternBenefit. This allows for users to
/// prefer specific legalizations over others.
void computeLegalizationGraphBenefit();
/// The current set of patterns that have been applied.
SmallPtrSet<RewritePattern *, 8> appliedPatterns;
/// The set of legality information for operations transitively supported by
/// the target.
DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
/// The legalization information provided by the target.
ConversionTarget &target;
};
} // namespace
bool OperationLegalizer::isIllegal(Operation *op) const {
// Check if the target explicitly marked this operation as illegal.
return target.getOpAction(op->getName()) == LegalizationAction::Illegal;
}
LogicalResult
OperationLegalizer::legalize(Operation *op,
ConversionPatternRewriter &rewriter) {
#ifndef NDEBUG
const char *logLineComment =
"//===-------------------------------------------===//\n";
auto &rewriterImpl = rewriter.getImpl();
#endif
LLVM_DEBUG({
auto &os = rewriterImpl.logger;
os.getOStream() << "\n";
os.startLine() << logLineComment;
os.startLine() << "Legalizing operation : '" << op->getName() << "'(" << op
<< ") {\n";
os.indent();
});
// Check if this operation is legal on the target.
if (auto legalityInfo = target.isLegal(op)) {
LLVM_DEBUG({
logSuccess(
rewriterImpl.logger, "operation marked legal by the target{0}",
legalityInfo->isRecursivelyLegal
? "; NOTE: operation is recursively legal; skipping internals"
: "");
rewriterImpl.logger.startLine() << logLineComment;
});
// If this operation is recursively legal, mark its children as ignored so
// that we don't consider them for legalization.
if (legalityInfo->isRecursivelyLegal)
rewriter.getImpl().markNestedOpsIgnored(op);
return success();
}
// Check to see if the operation is ignored and doesn't need to be converted.
if (rewriter.getImpl().isOpIgnored(op)) {
LLVM_DEBUG({
logSuccess(rewriterImpl.logger,
"operation marked 'ignored' during conversion");
rewriterImpl.logger.startLine() << logLineComment;
});
return success();
}
// If the operation isn't legal, try to fold it in-place.
// TODO(riverriddle) Should we always try to do this, even if the op is
// already legal?
if (succeeded(legalizeWithFold(op, rewriter))) {
LLVM_DEBUG({
logSuccess(rewriterImpl.logger, "operation was folded");
rewriterImpl.logger.startLine() << logLineComment;
});
return success();
}
// Otherwise, we need to apply a legalization pattern to this operation.
auto it = legalizerPatterns.find(op->getName());
if (it == legalizerPatterns.end()) {
LLVM_DEBUG({
logFailure(rewriterImpl.logger, "no known legalization path");
rewriterImpl.logger.startLine() << logLineComment;
});
return failure();
}
// The patterns are sorted by expected benefit, so try to apply each in-order.
for (auto *pattern : it->second) {
if (succeeded(legalizePattern(op, pattern, rewriter))) {
LLVM_DEBUG({
logSuccess(rewriterImpl.logger, "");
rewriterImpl.logger.startLine() << logLineComment;
});
return success();
}
}
LLVM_DEBUG({
logFailure(rewriterImpl.logger, "no matched legalization pattern");
rewriterImpl.logger.startLine() << logLineComment;
});
return failure();
}
LogicalResult
OperationLegalizer::legalizeWithFold(Operation *op,
ConversionPatternRewriter &rewriter) {
auto &rewriterImpl = rewriter.getImpl();
RewriterState curState = rewriterImpl.getCurrentState();
LLVM_DEBUG({
rewriterImpl.logger.startLine() << "* Fold {\n";
rewriterImpl.logger.indent();
});
// Try to fold the operation.
SmallVector<Value, 2> replacementValues;
rewriter.setInsertionPoint(op);
if (failed(rewriter.tryFold(op, replacementValues))) {
LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
return failure();
}
// Insert a replacement for 'op' with the folded replacement values.
rewriter.replaceOp(op, replacementValues);
// Recursively legalize any new constant operations.
for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
i != e; ++i) {
Operation *cstOp = rewriterImpl.createdOps[i];
if (failed(legalize(cstOp, rewriter))) {
LLVM_DEBUG(logFailure(rewriterImpl.logger,
"generated constant '{0}' was illegal",
cstOp->getName()));
rewriterImpl.resetState(curState);
return failure();
}
}
LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
return success();
}
LogicalResult
OperationLegalizer::legalizePattern(Operation *op, RewritePattern *pattern,
ConversionPatternRewriter &rewriter) {
auto &rewriterImpl = rewriter.getImpl();
LLVM_DEBUG({
auto &os = rewriterImpl.logger;
os.getOStream() << "\n";
os.startLine() << "* Pattern : '" << pattern->getRootKind() << " -> (";
interleaveComma(pattern->getGeneratedOps(), llvm::dbgs());
os.getOStream() << ")' {\n";
os.indent();
});
// Ensure that we don't cycle by not allowing the same pattern to be
// applied twice in the same recursion stack.
// TODO(riverriddle) We could eventually converge, but that requires more
// complicated analysis.
if (!appliedPatterns.insert(pattern).second) {
LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern was already applied"));
return failure();
}
RewriterState curState = rewriterImpl.getCurrentState();
auto cleanupFailure = [&] {
// Reset the rewriter state and pop this pattern.
rewriterImpl.resetState(curState);
appliedPatterns.erase(pattern);
return failure();
};
// Try to rewrite with the given pattern.
rewriter.setInsertionPoint(op);
auto matchedPattern = pattern->matchAndRewrite(op, rewriter);
#ifndef NDEBUG
assert(rewriterImpl.pendingRootUpdates.empty() && "dangling root updates");
#endif
if (!matchedPattern) {
LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match"));
return cleanupFailure();
}
// If the pattern moved or created any blocks, try to legalize their types.
// This ensures that the types of the block arguments are legal for the region
// they were moved into.
for (unsigned i = curState.numBlockActions,
e = rewriterImpl.blockActions.size();
i != e; ++i) {
auto &action = rewriterImpl.blockActions[i];
if (action.kind ==
ConversionPatternRewriterImpl::BlockActionKind::TypeConversion)
continue;
// Convert the block signature.
if (failed(rewriterImpl.convertBlockSignature(action.block))) {
LLVM_DEBUG(logFailure(rewriterImpl.logger,
"failed to convert types of moved block"));
return cleanupFailure();
}
}
// Check all of the replacements to ensure that the pattern actually replaced
// the root operation. We also mark any other replaced ops as 'dead' so that
// we don't try to legalize them later.
bool replacedRoot = false;
for (unsigned i = curState.numReplacements,
e = rewriterImpl.replacements.size();
i != e; ++i) {
Operation *replacedOp = rewriterImpl.replacements[i].op;
if (replacedOp == op)
replacedRoot = true;
else
rewriterImpl.ignoredOps.insert(replacedOp);
}
// Check that the root was either updated or replace.
auto updatedRootInPlace = [&] {
return llvm::any_of(
llvm::drop_begin(rewriterImpl.rootUpdates, curState.numRootUpdates),
[op](auto &state) { return state.getOperation() == op; });
};
(void)replacedRoot;
(void)updatedRootInPlace;
assert((replacedRoot || updatedRootInPlace()) &&
"expected pattern to replace the root operation");
// Recursively legalize each of the operations updated in place.
for (unsigned i = curState.numRootUpdates,
e = rewriterImpl.rootUpdates.size();
i != e; ++i) {
auto &state = rewriterImpl.rootUpdates[i];
if (failed(legalize(state.getOperation(), rewriter))) {
LLVM_DEBUG(logFailure(rewriterImpl.logger,
"operation updated in-place '{0}' was illegal",
op->getName()));
return cleanupFailure();
}
}
// Recursively legalize each of the new operations.
for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
i != e; ++i) {
Operation *op = rewriterImpl.createdOps[i];
if (failed(legalize(op, rewriter))) {
LLVM_DEBUG(logFailure(rewriterImpl.logger,
"generated operation '{0}'({1}) was illegal",
op->getName(), op));
return cleanupFailure();
}
}
LLVM_DEBUG(logSuccess(rewriterImpl.logger, "pattern applied successfully"));
appliedPatterns.erase(pattern);
return success();
}
void OperationLegalizer::buildLegalizationGraph(
const OwningRewritePatternList &patterns) {
// A mapping between an operation and a set of operations that can be used to
// generate it.
DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
// A mapping between an operation and any currently invalid patterns it has.
DenseMap<OperationName, SmallPtrSet<RewritePattern *, 2>> invalidPatterns;
// A worklist of patterns to consider for legality.
llvm::SetVector<RewritePattern *> patternWorklist;
// Build the mapping from operations to the parent ops that may generate them.
for (auto &pattern : patterns) {
auto root = pattern->getRootKind();
// Skip operations that are always known to be legal.
if (target.getOpAction(root) == LegalizationAction::Legal)
continue;
// Add this pattern to the invalid set for the root op and record this root
// as a parent for any generated operations.
invalidPatterns[root].insert(pattern.get());
for (auto op : pattern->getGeneratedOps())
parentOps[op].insert(root);
// Add this pattern to the worklist.
patternWorklist.insert(pattern.get());
}
while (!patternWorklist.empty()) {
auto *pattern = patternWorklist.pop_back_val();
// Check to see if any of the generated operations are invalid.
if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
Optional<LegalizationAction> action = target.getOpAction(op);
return !legalizerPatterns.count(op) &&
(!action || action == LegalizationAction::Illegal);
}))
continue;
// Otherwise, if all of the generated operation are valid, this op is now
// legal so add all of the child patterns to the worklist.
legalizerPatterns[pattern->getRootKind()].push_back(pattern);
invalidPatterns[pattern->getRootKind()].erase(pattern);
// Add any invalid patterns of the parent operations to see if they have now
// become legal.
for (auto op : parentOps[pattern->getRootKind()])
patternWorklist.set_union(invalidPatterns[op]);
}
}
void OperationLegalizer::computeLegalizationGraphBenefit() {
// The smallest pattern depth, when legalizing an operation.
DenseMap<OperationName, unsigned> minPatternDepth;
// Compute the minimum legalization depth for a given operation.
std::function<unsigned(OperationName)> computeDepth = [&](OperationName op) {
// Check for existing depth.
auto depthIt = minPatternDepth.find(op);
if (depthIt != minPatternDepth.end())
return depthIt->second;
// If a mapping for this operation does not exist, then this operation
// is always legal. Return 0 as the depth for a directly legal operation.
auto opPatternsIt = legalizerPatterns.find(op);
if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
return 0u;
// Initialize the depth to the maximum value.
unsigned minDepth = std::numeric_limits<unsigned>::max();
// Record this initial depth in case we encounter this op again when
// recursively computing the depth.
minPatternDepth.try_emplace(op, minDepth);
// Compute the depth for each pattern used to legalize this operation.
SmallVector<std::pair<RewritePattern *, unsigned>, 4> patternsByDepth;
patternsByDepth.reserve(opPatternsIt->second.size());
for (RewritePattern *pattern : opPatternsIt->second) {
unsigned depth = 0;
for (auto generatedOp : pattern->getGeneratedOps())
depth = std::max(depth, computeDepth(generatedOp) + 1);
patternsByDepth.emplace_back(pattern, depth);
// Update the min depth for this operation.
minDepth = std::min(minDepth, depth);
}
// Update the pattern depth.
minPatternDepth[op] = minDepth;
// If the operation only has one legalization pattern, there is no need to
// sort them.
if (patternsByDepth.size() == 1)
return minDepth;
// Sort the patterns by those likely to be the most beneficial.
llvm::array_pod_sort(
patternsByDepth.begin(), patternsByDepth.end(),
[](const std::pair<RewritePattern *, unsigned> *lhs,
const std::pair<RewritePattern *, unsigned> *rhs) {
// First sort by the smaller pattern legalization depth.
if (lhs->second != rhs->second)
return llvm::array_pod_sort_comparator<unsigned>(&lhs->second,
&rhs->second);
// Then sort by the larger pattern benefit.
auto lhsBenefit = lhs->first->getBenefit();
auto rhsBenefit = rhs->first->getBenefit();
return llvm::array_pod_sort_comparator<PatternBenefit>(&rhsBenefit,
&lhsBenefit);
});
// Update the legalization pattern to use the new sorted list.
opPatternsIt->second.clear();
for (auto &patternIt : patternsByDepth)
opPatternsIt->second.push_back(patternIt.first);
return minDepth;
};
// For each operation that is transitively legal, compute a cost for it.
for (auto &opIt : legalizerPatterns)
if (!minPatternDepth.count(opIt.first))
computeDepth(opIt.first);
}
//===----------------------------------------------------------------------===//
// OperationConverter
//===----------------------------------------------------------------------===//
namespace {
enum OpConversionMode {
// In this mode, the conversion will ignore failed conversions to allow
// illegal operations to co-exist in the IR.
Partial,
// In this mode, all operations must be legal for the given target for the
// conversion to succeed.
Full,
// In this mode, operations are analyzed for legality. No actual rewrites are
// applied to the operations on success.
Analysis,
};
// This class converts operations to a given conversion target via a set of
// rewrite patterns. The conversion behaves differently depending on the
// conversion mode.
struct OperationConverter {
explicit OperationConverter(ConversionTarget &target,
const OwningRewritePatternList &patterns,
OpConversionMode mode,
DenseSet<Operation *> *legalizableOps = nullptr)
: opLegalizer(target, patterns), mode(mode),
legalizableOps(legalizableOps) {}
/// Converts the given operations to the conversion target.
LogicalResult convertOperations(ArrayRef<Operation *> ops,
TypeConverter *typeConverter);
private:
/// Converts an operation with the given rewriter.
LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
/// Converts the type signatures of the blocks nested within 'op'.
LogicalResult convertBlockSignatures(ConversionPatternRewriter &rewriter,
Operation *op);
/// The legalizer to use when converting operations.
OperationLegalizer opLegalizer;
/// The conversion mode to use when legalizing operations.
OpConversionMode mode;
/// A set of pre-existing operations that were found to be legalizable to the
/// target. This field is only used when mode == OpConversionMode::Analysis.
DenseSet<Operation *> *legalizableOps;
};
} // end anonymous namespace
LogicalResult
OperationConverter::convertBlockSignatures(ConversionPatternRewriter &rewriter,
Operation *op) {
// Check to see if type signatures need to be converted.
if (!rewriter.getImpl().argConverter.typeConverter)
return success();
for (auto &region : op->getRegions()) {
for (auto &block : llvm::make_early_inc_range(region))
if (failed(rewriter.getImpl().convertBlockSignature(&block)))
return failure();
}
return success();
}
LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
Operation *op) {
// Legalize the given operation.
if (failed(opLegalizer.legalize(op, rewriter))) {
// Handle the case of a failed conversion for each of the different modes.
/// Full conversions expect all operations to be converted.
if (mode == OpConversionMode::Full)
return op->emitError()
<< "failed to legalize operation '" << op->getName() << "'";
/// Partial conversions allow conversions to fail iff the operation was not
/// explicitly marked as illegal.
if (mode == OpConversionMode::Partial && opLegalizer.isIllegal(op))
return op->emitError()
<< "failed to legalize operation '" << op->getName()
<< "' that was explicitly marked illegal";
} else {
/// Analysis conversions don't fail if any operations fail to legalize,
/// they are only interested in the operations that were successfully
/// legalized.
if (mode == OpConversionMode::Analysis)
legalizableOps->insert(op);
// If legalization succeeded, convert the types any of the blocks within
// this operation.
if (failed(convertBlockSignatures(rewriter, op)))
return failure();
}
return success();
}
LogicalResult
OperationConverter::convertOperations(ArrayRef<Operation *> ops,
TypeConverter *typeConverter) {
if (ops.empty())
return success();
ConversionTarget &target = opLegalizer.getTarget();
/// Compute the set of operations and blocks to convert.
std::vector<Operation *> toConvert;
for (auto *op : ops) {
toConvert.emplace_back(op);
for (auto &region : op->getRegions())
if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
toConvert, &target)))
return failure();
}
// Convert each operation and discard rewrites on failure.
ConversionPatternRewriter rewriter(ops.front()->getContext(), typeConverter);
for (auto *op : toConvert)
if (failed(convert(rewriter, op)))
return rewriter.getImpl().discardRewrites(), failure();
// Otherwise, the body conversion succeeded. Apply rewrites if this is not an
// analysis conversion.
if (mode == OpConversionMode::Analysis)
rewriter.getImpl().discardRewrites();
else
rewriter.getImpl().applyRewrites();
return success();
}
//===----------------------------------------------------------------------===//
// Type Conversion
//===----------------------------------------------------------------------===//
/// Remap an input of the original signature with a new set of types. The
/// new types are appended to the new signature conversion.
void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
ArrayRef<Type> types) {
assert(!types.empty() && "expected valid types");
remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
addInputs(types);
}
/// Append new input types to the signature conversion, this should only be
/// used if the new types are not intended to remap an existing input.
void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
assert(!types.empty() &&
"1->0 type remappings don't need to be added explicitly");
argTypes.append(types.begin(), types.end());
}
/// Remap an input of the original signature with a range of types in the
/// new signature.
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
unsigned newInputNo,
unsigned newInputCount) {
assert(!remappedInputs[origInputNo] && "input has already been remapped");
assert(newInputCount != 0 && "expected valid input count");
remappedInputs[origInputNo] =
InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
}
/// Remap an input of the original signature to another `replacementValue`
/// value. This would make the signature converter drop this argument.
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
Value replacementValue) {
assert(!remappedInputs[origInputNo] && "input has already been remapped");
remappedInputs[origInputNo] =
InputMapping{origInputNo, /*size=*/0, replacementValue};
}
/// This hooks allows for converting a type.
LogicalResult TypeConverter::convertType(Type t,
SmallVectorImpl<Type> &results) {
// Walk the added converters in reverse order to apply the most recently
// registered first.
for (ConversionCallbackFn &converter : llvm::reverse(conversions))
if (Optional<LogicalResult> result = converter(t, results))
return *result;
return failure();
}
/// This hook simplifies defining 1-1 type conversions. This function returns
/// the type to convert to on success, and a null type on failure.
Type TypeConverter::convertType(Type t) {
// Use the multi-type result version to convert the type.
SmallVector<Type, 1> results;
if (failed(convertType(t, results)))
return nullptr;
// Check to ensure that only one type was produced.
return results.size() == 1 ? results.front() : nullptr;
}
/// Convert the given set of types, filling 'results' as necessary. This
/// returns failure if the conversion of any of the types fails, success
/// otherwise.
LogicalResult TypeConverter::convertTypes(ArrayRef<Type> types,
SmallVectorImpl<Type> &results) {
for (auto type : types)
if (failed(convertType(type, results)))
return failure();
return success();
}
/// Return true if the given type is legal for this type converter, i.e. the
/// type converts to itself.
bool TypeConverter::isLegal(Type type) {
SmallVector<Type, 1> results;
return succeeded(convertType(type, results)) && results.size() == 1 &&
results.front() == type;
}
/// Return true if the inputs and outputs of the given function type are
/// legal.
bool TypeConverter::isSignatureLegal(FunctionType funcType) {
return llvm::all_of(
llvm::concat<const Type>(funcType.getInputs(), funcType.getResults()),
[this](Type type) { return isLegal(type); });
}
/// This hook allows for converting a specific argument of a signature.
LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
SignatureConversion &result) {
// Try to convert the given input type.
SmallVector<Type, 1> convertedTypes;
if (failed(convertType(type, convertedTypes)))
return failure();
// If this argument is being dropped, there is nothing left to do.
if (convertedTypes.empty())
return success();
// Otherwise, add the new inputs.
result.addInputs(inputNo, convertedTypes);
return success();
}
/// Create a default conversion pattern that rewrites the type signature of a
/// FuncOp.
namespace {
struct FuncOpSignatureConversion : public OpConversionPattern<FuncOp> {
FuncOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
: OpConversionPattern(ctx), converter(converter) {}
/// Hook for derived classes to implement combined matching and rewriting.
PatternMatchResult
matchAndRewrite(FuncOp funcOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
FunctionType type = funcOp.getType();
// Convert the original function arguments.
TypeConverter::SignatureConversion result(type.getNumInputs());
for (unsigned i = 0, e = type.getNumInputs(); i != e; ++i)
if (failed(converter.convertSignatureArg(i, type.getInput(i), result)))
return matchFailure();
// Convert the original function results.
SmallVector<Type, 1> convertedResults;
if (failed(converter.convertTypes(type.getResults(), convertedResults)))
return matchFailure();
// Update the function signature in-place.
rewriter.updateRootInPlace(funcOp, [&] {
funcOp.setType(FunctionType::get(result.getConvertedTypes(),
convertedResults, funcOp.getContext()));
rewriter.applySignatureConversion(&funcOp.getBody(), result);
});
return matchSuccess();
}
/// The type converter to use when rewriting the signature.
TypeConverter &converter;
};
} // end anonymous namespace
void mlir::populateFuncOpTypeConversionPattern(
OwningRewritePatternList &patterns, MLIRContext *ctx,
TypeConverter &converter) {
patterns.insert<FuncOpSignatureConversion>(ctx, converter);
}
/// This function converts the type signature of the given block, by invoking
/// 'convertSignatureArg' for each argument. This function should return a valid
/// conversion for the signature on success, None otherwise.
auto TypeConverter::convertBlockSignature(Block *block)
-> Optional<SignatureConversion> {
SignatureConversion conversion(block->getNumArguments());
for (unsigned i = 0, e = block->getNumArguments(); i != e; ++i)
if (failed(convertSignatureArg(i, block->getArgument(i).getType(),
conversion)))
return llvm::None;
return conversion;
}
//===----------------------------------------------------------------------===//
// ConversionTarget
//===----------------------------------------------------------------------===//
/// Register a legality action for the given operation.
void ConversionTarget::setOpAction(OperationName op,
LegalizationAction action) {
legalOperations[op] = {action, /*isRecursivelyLegal=*/false, llvm::None};
}
/// Register a legality action for the given dialects.
void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
LegalizationAction action) {
for (StringRef dialect : dialectNames)
legalDialects[dialect] = action;
}
/// Get the legality action for the given operation.
auto ConversionTarget::getOpAction(OperationName op) const
-> Optional<LegalizationAction> {
Optional<LegalizationInfo> info = getOpInfo(op);
return info ? info->action : Optional<LegalizationAction>();
}
/// If the given operation instance is legal on this target, a structure
/// containing legality information is returned. If the operation is not legal,
/// None is returned.
auto ConversionTarget::isLegal(Operation *op) const
-> Optional<LegalOpDetails> {
Optional<LegalizationInfo> info = getOpInfo(op->getName());
if (!info)
return llvm::None;
// Returns true if this operation instance is known to be legal.
auto isOpLegal = [&] {
// Handle dynamic legality either with the provided legality function, or
// the default hook on the derived instance.
if (info->action == LegalizationAction::Dynamic)
return info->legalityFn ? (*info->legalityFn)(op)
: isDynamicallyLegal(op);
// Otherwise, the operation is only legal if it was marked 'Legal'.
return info->action == LegalizationAction::Legal;
};
if (!isOpLegal())
return llvm::None;
// This operation is legal, compute any additional legality information.
LegalOpDetails legalityDetails;
if (info->isRecursivelyLegal) {
auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
if (legalityFnIt != opRecursiveLegalityFns.end())
legalityDetails.isRecursivelyLegal = legalityFnIt->second(op);
else
legalityDetails.isRecursivelyLegal = true;
}
return legalityDetails;
}
/// Set the dynamic legality callback for the given operation.
void ConversionTarget::setLegalityCallback(
OperationName name, const DynamicLegalityCallbackFn &callback) {
assert(callback && "expected valid legality callback");
auto infoIt = legalOperations.find(name);
assert(infoIt != legalOperations.end() &&
infoIt->second.action == LegalizationAction::Dynamic &&
"expected operation to already be marked as dynamically legal");
infoIt->second.legalityFn = callback;
}
/// Set the recursive legality callback for the given operation and mark the
/// operation as recursively legal.
void ConversionTarget::markOpRecursivelyLegal(
OperationName name, const DynamicLegalityCallbackFn &callback) {
auto infoIt = legalOperations.find(name);
assert(infoIt != legalOperations.end() &&
infoIt->second.action != LegalizationAction::Illegal &&
"expected operation to already be marked as legal");
infoIt->second.isRecursivelyLegal = true;
if (callback)
opRecursiveLegalityFns[name] = callback;
else
opRecursiveLegalityFns.erase(name);
}
/// Set the dynamic legality callback for the given dialects.
void ConversionTarget::setLegalityCallback(
ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
assert(callback && "expected valid legality callback");
for (StringRef dialect : dialects)
dialectLegalityFns[dialect] = callback;
}
/// Get the legalization information for the given operation.
auto ConversionTarget::getOpInfo(OperationName op) const
-> Optional<LegalizationInfo> {
// Check for info for this specific operation.
auto it = legalOperations.find(op);
if (it != legalOperations.end())
return it->second;
// Check for info for the parent dialect.
auto dialectIt = legalDialects.find(op.getDialect());
if (dialectIt != legalDialects.end()) {
Optional<DynamicLegalityCallbackFn> callback;
auto dialectFn = dialectLegalityFns.find(op.getDialect());
if (dialectFn != dialectLegalityFns.end())
callback = dialectFn->second;
return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
callback};
}
// Otherwise, check if we mark unknown operations as dynamic.
if (unknownOpsDynamicallyLegal)
return LegalizationInfo{LegalizationAction::Dynamic,
/*isRecursivelyLegal=*/false, unknownLegalityFn};
return llvm::None;
}
//===----------------------------------------------------------------------===//
// Op Conversion Entry Points
//===----------------------------------------------------------------------===//
/// Apply a partial conversion on the given operations, and all nested
/// operations. This method converts as many operations to the target as
/// possible, ignoring operations that failed to legalize.
LogicalResult mlir::applyPartialConversion(
ArrayRef<Operation *> ops, ConversionTarget &target,
const OwningRewritePatternList &patterns, TypeConverter *converter) {
OperationConverter opConverter(target, patterns, OpConversionMode::Partial);
return opConverter.convertOperations(ops, converter);
}
LogicalResult
mlir::applyPartialConversion(Operation *op, ConversionTarget &target,
const OwningRewritePatternList &patterns,
TypeConverter *converter) {
return applyPartialConversion(llvm::makeArrayRef(op), target, patterns,
converter);
}
/// Apply a complete conversion on the given operations, and all nested
/// operations. This method will return failure if the conversion of any
/// operation fails.
LogicalResult
mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target,
const OwningRewritePatternList &patterns,
TypeConverter *converter) {
OperationConverter opConverter(target, patterns, OpConversionMode::Full);
return opConverter.convertOperations(ops, converter);
}
LogicalResult
mlir::applyFullConversion(Operation *op, ConversionTarget &target,
const OwningRewritePatternList &patterns,
TypeConverter *converter) {
return applyFullConversion(llvm::makeArrayRef(op), target, patterns,
converter);
}
/// Apply an analysis conversion on the given operations, and all nested
/// operations. This method analyzes which operations would be successfully
/// converted to the target if a conversion was applied. All operations that
/// were found to be legalizable to the given 'target' are placed within the
/// provided 'convertedOps' set; note that no actual rewrites are applied to the
/// operations on success and only pre-existing operations are added to the set.
LogicalResult mlir::applyAnalysisConversion(
ArrayRef<Operation *> ops, ConversionTarget &target,
const OwningRewritePatternList &patterns,
DenseSet<Operation *> &convertedOps, TypeConverter *converter) {
OperationConverter opConverter(target, patterns, OpConversionMode::Analysis,
&convertedOps);
return opConverter.convertOperations(ops, converter);
}
LogicalResult
mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
const OwningRewritePatternList &patterns,
DenseSet<Operation *> &convertedOps,
TypeConverter *converter) {
return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns,
convertedOps, converter);
}