llvm-project/llvm/utils/TableGen/EDEmitter.cpp

926 lines
30 KiB
C++

//===- EDEmitter.cpp - Generate instruction descriptions for ED -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting a description of each
// instruction in a format that the enhanced disassembler can use to tokenize
// and parse instructions.
//
//===----------------------------------------------------------------------===//
#include "EDEmitter.h"
#include "AsmWriterInst.h"
#include "CodeGenTarget.h"
#include "Record.h"
#include "llvm/MC/EDInstInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
#include <string>
#include <vector>
using namespace llvm;
///////////////////////////////////////////////////////////
// Support classes for emitting nested C data structures //
///////////////////////////////////////////////////////////
namespace {
class EnumEmitter {
private:
std::string Name;
std::vector<std::string> Entries;
public:
EnumEmitter(const char *N) : Name(N) {
}
int addEntry(const char *e) {
Entries.push_back(std::string(e));
return Entries.size() - 1;
}
void emit(raw_ostream &o, unsigned int &i) {
o.indent(i) << "enum " << Name.c_str() << " {" << "\n";
i += 2;
unsigned int index = 0;
unsigned int numEntries = Entries.size();
for (index = 0; index < numEntries; ++index) {
o.indent(i) << Entries[index];
if (index < (numEntries - 1))
o << ",";
o << "\n";
}
i -= 2;
o.indent(i) << "};" << "\n";
}
void emitAsFlags(raw_ostream &o, unsigned int &i) {
o.indent(i) << "enum " << Name.c_str() << " {" << "\n";
i += 2;
unsigned int index = 0;
unsigned int numEntries = Entries.size();
unsigned int flag = 1;
for (index = 0; index < numEntries; ++index) {
o.indent(i) << Entries[index] << " = " << format("0x%x", flag);
if (index < (numEntries - 1))
o << ",";
o << "\n";
flag <<= 1;
}
i -= 2;
o.indent(i) << "};" << "\n";
}
};
class ConstantEmitter {
public:
virtual ~ConstantEmitter() { }
virtual void emit(raw_ostream &o, unsigned int &i) = 0;
};
class LiteralConstantEmitter : public ConstantEmitter {
private:
bool IsNumber;
union {
int Number;
const char* String;
};
public:
LiteralConstantEmitter(int number = 0) :
IsNumber(true),
Number(number) {
}
void set(const char *string) {
IsNumber = false;
Number = 0;
String = string;
}
bool is(const char *string) {
return !strcmp(String, string);
}
void emit(raw_ostream &o, unsigned int &i) {
if (IsNumber)
o << Number;
else
o << String;
}
};
class CompoundConstantEmitter : public ConstantEmitter {
private:
unsigned int Padding;
std::vector<ConstantEmitter *> Entries;
public:
CompoundConstantEmitter(unsigned int padding = 0) : Padding(padding) {
}
CompoundConstantEmitter &addEntry(ConstantEmitter *e) {
Entries.push_back(e);
return *this;
}
~CompoundConstantEmitter() {
while (Entries.size()) {
ConstantEmitter *entry = Entries.back();
Entries.pop_back();
delete entry;
}
}
void emit(raw_ostream &o, unsigned int &i) {
o << "{" << "\n";
i += 2;
unsigned int index;
unsigned int numEntries = Entries.size();
unsigned int numToPrint;
if (Padding) {
if (numEntries > Padding) {
fprintf(stderr, "%u entries but %u padding\n", numEntries, Padding);
llvm_unreachable("More entries than padding");
}
numToPrint = Padding;
} else {
numToPrint = numEntries;
}
for (index = 0; index < numToPrint; ++index) {
o.indent(i);
if (index < numEntries)
Entries[index]->emit(o, i);
else
o << "-1";
if (index < (numToPrint - 1))
o << ",";
o << "\n";
}
i -= 2;
o.indent(i) << "}";
}
};
class FlagsConstantEmitter : public ConstantEmitter {
private:
std::vector<std::string> Flags;
public:
FlagsConstantEmitter() {
}
FlagsConstantEmitter &addEntry(const char *f) {
Flags.push_back(std::string(f));
return *this;
}
void emit(raw_ostream &o, unsigned int &i) {
unsigned int index;
unsigned int numFlags = Flags.size();
if (numFlags == 0)
o << "0";
for (index = 0; index < numFlags; ++index) {
o << Flags[index].c_str();
if (index < (numFlags - 1))
o << " | ";
}
}
};
}
EDEmitter::EDEmitter(RecordKeeper &R) : Records(R) {
}
/// populateOperandOrder - Accepts a CodeGenInstruction and generates its
/// AsmWriterInst for the desired assembly syntax, giving an ordered list of
/// operands in the order they appear in the printed instruction. Then, for
/// each entry in that list, determines the index of the same operand in the
/// CodeGenInstruction, and emits the resulting mapping into an array, filling
/// in unused slots with -1.
///
/// @arg operandOrder - The array that will be populated with the operand
/// mapping. Each entry will contain -1 (invalid index
/// into the operands present in the AsmString) or a number
/// representing an index in the operand descriptor array.
/// @arg inst - The instruction to use when looking up the operands
/// @arg syntax - The syntax to use, according to LLVM's enumeration
void populateOperandOrder(CompoundConstantEmitter *operandOrder,
const CodeGenInstruction &inst,
unsigned syntax) {
unsigned int numArgs = 0;
AsmWriterInst awInst(inst, syntax, -1, -1);
std::vector<AsmWriterOperand>::iterator operandIterator;
for (operandIterator = awInst.Operands.begin();
operandIterator != awInst.Operands.end();
++operandIterator) {
if (operandIterator->OperandType ==
AsmWriterOperand::isMachineInstrOperand) {
operandOrder->addEntry(
new LiteralConstantEmitter(operandIterator->CGIOpNo));
numArgs++;
}
}
}
/////////////////////////////////////////////////////
// Support functions for handling X86 instructions //
/////////////////////////////////////////////////////
#define SET(flag) { type->set(flag); return 0; }
#define REG(str) if (name == str) SET("kOperandTypeRegister");
#define MEM(str) if (name == str) SET("kOperandTypeX86Memory");
#define LEA(str) if (name == str) SET("kOperandTypeX86EffectiveAddress");
#define IMM(str) if (name == str) SET("kOperandTypeImmediate");
#define PCR(str) if (name == str) SET("kOperandTypeX86PCRelative");
/// X86TypeFromOpName - Processes the name of a single X86 operand (which is
/// actually its type) and translates it into an operand type
///
/// @arg flags - The type object to set
/// @arg name - The name of the operand
static int X86TypeFromOpName(LiteralConstantEmitter *type,
const std::string &name) {
REG("GR8");
REG("GR8_NOREX");
REG("GR16");
REG("GR32");
REG("GR32_NOREX");
REG("GR32_TC");
REG("FR32");
REG("RFP32");
REG("GR64");
REG("GR64_TC");
REG("FR64");
REG("VR64");
REG("RFP64");
REG("RFP80");
REG("VR128");
REG("VR256");
REG("RST");
REG("SEGMENT_REG");
REG("DEBUG_REG");
REG("CONTROL_REG");
IMM("i8imm");
IMM("i16imm");
IMM("i16i8imm");
IMM("i32imm");
IMM("i32i8imm");
IMM("i64imm");
IMM("i64i8imm");
IMM("i64i32imm");
IMM("SSECC");
// all R, I, R, I, R
MEM("i8mem");
MEM("i8mem_NOREX");
MEM("i16mem");
MEM("i32mem");
MEM("i32mem_TC");
MEM("f32mem");
MEM("ssmem");
MEM("opaque32mem");
MEM("opaque48mem");
MEM("i64mem");
MEM("i64mem_TC");
MEM("f64mem");
MEM("sdmem");
MEM("f80mem");
MEM("opaque80mem");
MEM("i128mem");
MEM("i256mem");
MEM("f128mem");
MEM("f256mem");
MEM("opaque512mem");
// all R, I, R, I
LEA("lea32mem");
LEA("lea64_32mem");
LEA("lea64mem");
// all I
PCR("i16imm_pcrel");
PCR("i32imm_pcrel");
PCR("i64i32imm_pcrel");
PCR("brtarget8");
PCR("offset8");
PCR("offset16");
PCR("offset32");
PCR("offset64");
PCR("brtarget");
PCR("uncondbrtarget");
PCR("bltarget");
// all I, ARM mode only, conditional/unconditional
PCR("br_target");
PCR("bl_target");
return 1;
}
#undef REG
#undef MEM
#undef LEA
#undef IMM
#undef PCR
#undef SET
/// X86PopulateOperands - Handles all the operands in an X86 instruction, adding
/// the appropriate flags to their descriptors
///
/// @operandFlags - A reference the array of operand flag objects
/// @inst - The instruction to use as a source of information
static void X86PopulateOperands(
LiteralConstantEmitter *(&operandTypes)[EDIS_MAX_OPERANDS],
const CodeGenInstruction &inst) {
if (!inst.TheDef->isSubClassOf("X86Inst"))
return;
unsigned int index;
unsigned int numOperands = inst.Operands.size();
for (index = 0; index < numOperands; ++index) {
const CGIOperandList::OperandInfo &operandInfo = inst.Operands[index];
Record &rec = *operandInfo.Rec;
if (X86TypeFromOpName(operandTypes[index], rec.getName()) &&
!rec.isSubClassOf("PointerLikeRegClass")) {
errs() << "Operand type: " << rec.getName().c_str() << "\n";
errs() << "Operand name: " << operandInfo.Name.c_str() << "\n";
errs() << "Instruction name: " << inst.TheDef->getName().c_str() << "\n";
llvm_unreachable("Unhandled type");
}
}
}
/// decorate1 - Decorates a named operand with a new flag
///
/// @operandFlags - The array of operand flag objects, which don't have names
/// @inst - The CodeGenInstruction, which provides a way to translate
/// between names and operand indices
/// @opName - The name of the operand
/// @flag - The name of the flag to add
static inline void decorate1(
FlagsConstantEmitter *(&operandFlags)[EDIS_MAX_OPERANDS],
const CodeGenInstruction &inst,
const char *opName,
const char *opFlag) {
unsigned opIndex;
opIndex = inst.Operands.getOperandNamed(std::string(opName));
operandFlags[opIndex]->addEntry(opFlag);
}
#define DECORATE1(opName, opFlag) decorate1(operandFlags, inst, opName, opFlag)
#define MOV(source, target) { \
instType.set("kInstructionTypeMove"); \
DECORATE1(source, "kOperandFlagSource"); \
DECORATE1(target, "kOperandFlagTarget"); \
}
#define BRANCH(target) { \
instType.set("kInstructionTypeBranch"); \
DECORATE1(target, "kOperandFlagTarget"); \
}
#define PUSH(source) { \
instType.set("kInstructionTypePush"); \
DECORATE1(source, "kOperandFlagSource"); \
}
#define POP(target) { \
instType.set("kInstructionTypePop"); \
DECORATE1(target, "kOperandFlagTarget"); \
}
#define CALL(target) { \
instType.set("kInstructionTypeCall"); \
DECORATE1(target, "kOperandFlagTarget"); \
}
#define RETURN() { \
instType.set("kInstructionTypeReturn"); \
}
/// X86ExtractSemantics - Performs various checks on the name of an X86
/// instruction to determine what sort of an instruction it is and then adds
/// the appropriate flags to the instruction and its operands
///
/// @arg instType - A reference to the type for the instruction as a whole
/// @arg operandFlags - A reference to the array of operand flag object pointers
/// @arg inst - A reference to the original instruction
static void X86ExtractSemantics(
LiteralConstantEmitter &instType,
FlagsConstantEmitter *(&operandFlags)[EDIS_MAX_OPERANDS],
const CodeGenInstruction &inst) {
const std::string &name = inst.TheDef->getName();
if (name.find("MOV") != name.npos) {
if (name.find("MOV_V") != name.npos) {
// ignore (this is a pseudoinstruction)
} else if (name.find("MASK") != name.npos) {
// ignore (this is a masking move)
} else if (name.find("r0") != name.npos) {
// ignore (this is a pseudoinstruction)
} else if (name.find("PS") != name.npos ||
name.find("PD") != name.npos) {
// ignore (this is a shuffling move)
} else if (name.find("MOVS") != name.npos) {
// ignore (this is a string move)
} else if (name.find("_F") != name.npos) {
// TODO handle _F moves to ST(0)
} else if (name.find("a") != name.npos) {
// TODO handle moves to/from %ax
} else if (name.find("CMOV") != name.npos) {
MOV("src2", "dst");
} else if (name.find("PC") != name.npos) {
MOV("label", "reg")
} else {
MOV("src", "dst");
}
}
if (name.find("JMP") != name.npos ||
name.find("J") == 0) {
if (name.find("FAR") != name.npos && name.find("i") != name.npos) {
BRANCH("off");
} else {
BRANCH("dst");
}
}
if (name.find("PUSH") != name.npos) {
if (name.find("CS") != name.npos ||
name.find("DS") != name.npos ||
name.find("ES") != name.npos ||
name.find("FS") != name.npos ||
name.find("GS") != name.npos ||
name.find("SS") != name.npos) {
instType.set("kInstructionTypePush");
// TODO add support for fixed operands
} else if (name.find("F") != name.npos) {
// ignore (this pushes onto the FP stack)
} else if (name.find("A") != name.npos) {
// ignore (pushes all GP registoers onto the stack)
} else if (name[name.length() - 1] == 'm') {
PUSH("src");
} else if (name.find("i") != name.npos) {
PUSH("imm");
} else {
PUSH("reg");
}
}
if (name.find("POP") != name.npos) {
if (name.find("POPCNT") != name.npos) {
// ignore (not a real pop)
} else if (name.find("CS") != name.npos ||
name.find("DS") != name.npos ||
name.find("ES") != name.npos ||
name.find("FS") != name.npos ||
name.find("GS") != name.npos ||
name.find("SS") != name.npos) {
instType.set("kInstructionTypePop");
// TODO add support for fixed operands
} else if (name.find("F") != name.npos) {
// ignore (this pops from the FP stack)
} else if (name.find("A") != name.npos) {
// ignore (pushes all GP registoers onto the stack)
} else if (name[name.length() - 1] == 'm') {
POP("dst");
} else {
POP("reg");
}
}
if (name.find("CALL") != name.npos) {
if (name.find("ADJ") != name.npos) {
// ignore (not a call)
} else if (name.find("SYSCALL") != name.npos) {
// ignore (doesn't go anywhere we know about)
} else if (name.find("VMCALL") != name.npos) {
// ignore (rather different semantics than a regular call)
} else if (name.find("FAR") != name.npos && name.find("i") != name.npos) {
CALL("off");
} else {
CALL("dst");
}
}
if (name.find("RET") != name.npos) {
RETURN();
}
}
#undef MOV
#undef BRANCH
#undef PUSH
#undef POP
#undef CALL
#undef RETURN
/////////////////////////////////////////////////////
// Support functions for handling ARM instructions //
/////////////////////////////////////////////////////
#define SET(flag) { type->set(flag); return 0; }
#define REG(str) if (name == str) SET("kOperandTypeRegister");
#define IMM(str) if (name == str) SET("kOperandTypeImmediate");
#define MISC(str, type) if (name == str) SET(type);
/// ARMFlagFromOpName - Processes the name of a single ARM operand (which is
/// actually its type) and translates it into an operand type
///
/// @arg type - The type object to set
/// @arg name - The name of the operand
static int ARMFlagFromOpName(LiteralConstantEmitter *type,
const std::string &name) {
REG("GPR");
REG("rGPR");
REG("tcGPR");
REG("cc_out");
REG("s_cc_out");
REG("tGPR");
REG("DPR");
REG("DPR_VFP2");
REG("DPR_8");
REG("SPR");
REG("QPR");
REG("QQPR");
REG("QQQQPR");
IMM("i32imm");
IMM("i32imm_hilo16");
IMM("bf_inv_mask_imm");
IMM("lsb_pos_imm");
IMM("width_imm");
IMM("jtblock_operand");
IMM("nohash_imm");
IMM("p_imm");
IMM("c_imm");
IMM("imod_op");
IMM("iflags_op");
IMM("cpinst_operand");
IMM("setend_op");
IMM("cps_opt");
IMM("vfp_f64imm");
IMM("vfp_f32imm");
IMM("memb_opt");
IMM("msr_mask");
IMM("neg_zero");
IMM("imm0_31");
IMM("imm0_31_m1");
IMM("nModImm");
IMM("imm0_4095");
IMM("jt2block_operand");
IMM("t_imm_s4");
IMM("pclabel");
IMM("adrlabel");
IMM("t_adrlabel");
IMM("t2adrlabel");
IMM("shift_imm");
IMM("neon_vcvt_imm32");
IMM("shr_imm8");
IMM("shr_imm16");
IMM("shr_imm32");
IMM("shr_imm64");
IMM("t2ldrlabel");
MISC("brtarget", "kOperandTypeARMBranchTarget"); // ?
MISC("uncondbrtarget", "kOperandTypeARMBranchTarget"); // ?
MISC("t_brtarget", "kOperandTypeARMBranchTarget"); // ?
MISC("t_bcctarget", "kOperandTypeARMBranchTarget"); // ?
MISC("t_cbtarget", "kOperandTypeARMBranchTarget"); // ?
MISC("bltarget", "kOperandTypeARMBranchTarget"); // ?
MISC("br_target", "kOperandTypeARMBranchTarget"); // ?
MISC("bl_target", "kOperandTypeARMBranchTarget"); // ?
MISC("t_bltarget", "kOperandTypeARMBranchTarget"); // ?
MISC("t_blxtarget", "kOperandTypeARMBranchTarget"); // ?
MISC("so_reg", "kOperandTypeARMSoReg"); // R, R, I
MISC("shift_so_reg", "kOperandTypeARMSoReg"); // R, R, I
MISC("t2_so_reg", "kOperandTypeThumb2SoReg"); // R, I
MISC("so_imm", "kOperandTypeARMSoImm"); // I
MISC("rot_imm", "kOperandTypeARMRotImm"); // I
MISC("t2_so_imm", "kOperandTypeThumb2SoImm"); // I
MISC("so_imm2part", "kOperandTypeARMSoImm2Part"); // I
MISC("pred", "kOperandTypeARMPredicate"); // I, R
MISC("it_pred", "kOperandTypeARMPredicate"); // I
MISC("addrmode_imm12", "kOperandTypeAddrModeImm12"); // R, I
MISC("ldst_so_reg", "kOperandTypeLdStSOReg"); // R, R, I
MISC("addrmode2", "kOperandTypeARMAddrMode2"); // R, R, I
MISC("am2offset", "kOperandTypeARMAddrMode2Offset"); // R, I
MISC("addrmode3", "kOperandTypeARMAddrMode3"); // R, R, I
MISC("am3offset", "kOperandTypeARMAddrMode3Offset"); // R, I
MISC("ldstm_mode", "kOperandTypeARMLdStmMode"); // I
MISC("addrmode5", "kOperandTypeARMAddrMode5"); // R, I
MISC("addrmode6", "kOperandTypeARMAddrMode6"); // R, R, I, I
MISC("am6offset", "kOperandTypeARMAddrMode6Offset"); // R, I, I
MISC("addrmode6dup", "kOperandTypeARMAddrMode6"); // R, R, I, I
MISC("addrmodepc", "kOperandTypeARMAddrModePC"); // R, I
MISC("addrmode7", "kOperandTypeARMAddrMode7"); // R
MISC("reglist", "kOperandTypeARMRegisterList"); // I, R, ...
MISC("dpr_reglist", "kOperandTypeARMDPRRegisterList"); // I, R, ...
MISC("spr_reglist", "kOperandTypeARMSPRRegisterList"); // I, R, ...
MISC("it_mask", "kOperandTypeThumbITMask"); // I
MISC("t2addrmode_reg", "kOperandTypeThumb2AddrModeReg"); // R
MISC("t2addrmode_imm8", "kOperandTypeThumb2AddrModeImm8"); // R, I
MISC("t2am_imm8_offset", "kOperandTypeThumb2AddrModeImm8Offset");//I
MISC("t2addrmode_imm12", "kOperandTypeThumb2AddrModeImm12"); // R, I
MISC("t2addrmode_so_reg", "kOperandTypeThumb2AddrModeSoReg"); // R, R, I
MISC("t2addrmode_imm8s4", "kOperandTypeThumb2AddrModeImm8s4"); // R, I
MISC("t2am_imm8s4_offset", "kOperandTypeThumb2AddrModeImm8s4Offset");
// R, I
MISC("tb_addrmode", "kOperandTypeARMTBAddrMode"); // I
MISC("t_addrmode_rrs1", "kOperandTypeThumbAddrModeRegS"); // R, R
MISC("t_addrmode_rrs2", "kOperandTypeThumbAddrModeRegS"); // R, R
MISC("t_addrmode_rrs4", "kOperandTypeThumbAddrModeRegS"); // R, R
MISC("t_addrmode_is1", "kOperandTypeThumbAddrModeImmS"); // R, I
MISC("t_addrmode_is2", "kOperandTypeThumbAddrModeImmS"); // R, I
MISC("t_addrmode_is4", "kOperandTypeThumbAddrModeImmS"); // R, I
MISC("t_addrmode_rr", "kOperandTypeThumbAddrModeRR"); // R, R
MISC("t_addrmode_sp", "kOperandTypeThumbAddrModeSP"); // R, I
MISC("t_addrmode_pc", "kOperandTypeThumbAddrModePC"); // R, I
return 1;
}
#undef SOREG
#undef SOIMM
#undef PRED
#undef REG
#undef MEM
#undef LEA
#undef IMM
#undef PCR
#undef SET
/// ARMPopulateOperands - Handles all the operands in an ARM instruction, adding
/// the appropriate flags to their descriptors
///
/// @operandFlags - A reference the array of operand flag objects
/// @inst - The instruction to use as a source of information
static void ARMPopulateOperands(
LiteralConstantEmitter *(&operandTypes)[EDIS_MAX_OPERANDS],
const CodeGenInstruction &inst) {
if (!inst.TheDef->isSubClassOf("InstARM") &&
!inst.TheDef->isSubClassOf("InstThumb"))
return;
unsigned int index;
unsigned int numOperands = inst.Operands.size();
if (numOperands > EDIS_MAX_OPERANDS) {
errs() << "numOperands == " << numOperands << " > " <<
EDIS_MAX_OPERANDS << '\n';
llvm_unreachable("Too many operands");
}
for (index = 0; index < numOperands; ++index) {
const CGIOperandList::OperandInfo &operandInfo = inst.Operands[index];
Record &rec = *operandInfo.Rec;
if (ARMFlagFromOpName(operandTypes[index], rec.getName())) {
errs() << "Operand type: " << rec.getName() << '\n';
errs() << "Operand name: " << operandInfo.Name << '\n';
errs() << "Instruction name: " << inst.TheDef->getName() << '\n';
llvm_unreachable("Unhandled type");
}
}
}
#define BRANCH(target) { \
instType.set("kInstructionTypeBranch"); \
DECORATE1(target, "kOperandFlagTarget"); \
}
/// ARMExtractSemantics - Performs various checks on the name of an ARM
/// instruction to determine what sort of an instruction it is and then adds
/// the appropriate flags to the instruction and its operands
///
/// @arg instType - A reference to the type for the instruction as a whole
/// @arg operandTypes - A reference to the array of operand type object pointers
/// @arg operandFlags - A reference to the array of operand flag object pointers
/// @arg inst - A reference to the original instruction
static void ARMExtractSemantics(
LiteralConstantEmitter &instType,
LiteralConstantEmitter *(&operandTypes)[EDIS_MAX_OPERANDS],
FlagsConstantEmitter *(&operandFlags)[EDIS_MAX_OPERANDS],
const CodeGenInstruction &inst) {
const std::string &name = inst.TheDef->getName();
if (name == "tBcc" ||
name == "tB" ||
name == "t2Bcc" ||
name == "Bcc" ||
name == "tCBZ" ||
name == "tCBNZ") {
BRANCH("target");
}
if (name == "tBLr9" ||
name == "BLr9_pred" ||
name == "tBLXi_r9" ||
name == "tBLXr_r9" ||
name == "BLXr9" ||
name == "t2BXJ" ||
name == "BXJ") {
BRANCH("func");
unsigned opIndex;
opIndex = inst.Operands.getOperandNamed("func");
if (operandTypes[opIndex]->is("kOperandTypeImmediate"))
operandTypes[opIndex]->set("kOperandTypeARMBranchTarget");
}
}
#undef BRANCH
/// populateInstInfo - Fills an array of InstInfos with information about each
/// instruction in a target
///
/// @arg infoArray - The array of InstInfo objects to populate
/// @arg target - The CodeGenTarget to use as a source of instructions
static void populateInstInfo(CompoundConstantEmitter &infoArray,
CodeGenTarget &target) {
const std::vector<const CodeGenInstruction*> &numberedInstructions =
target.getInstructionsByEnumValue();
unsigned int index;
unsigned int numInstructions = numberedInstructions.size();
for (index = 0; index < numInstructions; ++index) {
const CodeGenInstruction& inst = *numberedInstructions[index];
CompoundConstantEmitter *infoStruct = new CompoundConstantEmitter;
infoArray.addEntry(infoStruct);
LiteralConstantEmitter *instType = new LiteralConstantEmitter;
infoStruct->addEntry(instType);
LiteralConstantEmitter *numOperandsEmitter =
new LiteralConstantEmitter(inst.Operands.size());
infoStruct->addEntry(numOperandsEmitter);
CompoundConstantEmitter *operandTypeArray = new CompoundConstantEmitter;
infoStruct->addEntry(operandTypeArray);
LiteralConstantEmitter *operandTypes[EDIS_MAX_OPERANDS];
CompoundConstantEmitter *operandFlagArray = new CompoundConstantEmitter;
infoStruct->addEntry(operandFlagArray);
FlagsConstantEmitter *operandFlags[EDIS_MAX_OPERANDS];
for (unsigned operandIndex = 0;
operandIndex < EDIS_MAX_OPERANDS;
++operandIndex) {
operandTypes[operandIndex] = new LiteralConstantEmitter;
operandTypeArray->addEntry(operandTypes[operandIndex]);
operandFlags[operandIndex] = new FlagsConstantEmitter;
operandFlagArray->addEntry(operandFlags[operandIndex]);
}
unsigned numSyntaxes = 0;
if (target.getName() == "X86") {
X86PopulateOperands(operandTypes, inst);
X86ExtractSemantics(*instType, operandFlags, inst);
numSyntaxes = 2;
}
else if (target.getName() == "ARM") {
ARMPopulateOperands(operandTypes, inst);
ARMExtractSemantics(*instType, operandTypes, operandFlags, inst);
numSyntaxes = 1;
}
CompoundConstantEmitter *operandOrderArray = new CompoundConstantEmitter;
infoStruct->addEntry(operandOrderArray);
for (unsigned syntaxIndex = 0;
syntaxIndex < EDIS_MAX_SYNTAXES;
++syntaxIndex) {
CompoundConstantEmitter *operandOrder =
new CompoundConstantEmitter(EDIS_MAX_OPERANDS);
operandOrderArray->addEntry(operandOrder);
if (syntaxIndex < numSyntaxes) {
populateOperandOrder(operandOrder, inst, syntaxIndex);
}
}
infoStruct = NULL;
}
}
static void emitCommonEnums(raw_ostream &o, unsigned int &i) {
EnumEmitter operandTypes("OperandTypes");
operandTypes.addEntry("kOperandTypeNone");
operandTypes.addEntry("kOperandTypeImmediate");
operandTypes.addEntry("kOperandTypeRegister");
operandTypes.addEntry("kOperandTypeX86Memory");
operandTypes.addEntry("kOperandTypeX86EffectiveAddress");
operandTypes.addEntry("kOperandTypeX86PCRelative");
operandTypes.addEntry("kOperandTypeARMBranchTarget");
operandTypes.addEntry("kOperandTypeARMSoReg");
operandTypes.addEntry("kOperandTypeARMSoImm");
operandTypes.addEntry("kOperandTypeARMRotImm");
operandTypes.addEntry("kOperandTypeARMSoImm2Part");
operandTypes.addEntry("kOperandTypeARMPredicate");
operandTypes.addEntry("kOperandTypeAddrModeImm12");
operandTypes.addEntry("kOperandTypeLdStSOReg");
operandTypes.addEntry("kOperandTypeARMAddrMode2");
operandTypes.addEntry("kOperandTypeARMAddrMode2Offset");
operandTypes.addEntry("kOperandTypeARMAddrMode3");
operandTypes.addEntry("kOperandTypeARMAddrMode3Offset");
operandTypes.addEntry("kOperandTypeARMLdStmMode");
operandTypes.addEntry("kOperandTypeARMAddrMode5");
operandTypes.addEntry("kOperandTypeARMAddrMode6");
operandTypes.addEntry("kOperandTypeARMAddrMode6Offset");
operandTypes.addEntry("kOperandTypeARMAddrMode7");
operandTypes.addEntry("kOperandTypeARMAddrModePC");
operandTypes.addEntry("kOperandTypeARMRegisterList");
operandTypes.addEntry("kOperandTypeARMDPRRegisterList");
operandTypes.addEntry("kOperandTypeARMSPRRegisterList");
operandTypes.addEntry("kOperandTypeARMTBAddrMode");
operandTypes.addEntry("kOperandTypeThumbITMask");
operandTypes.addEntry("kOperandTypeThumbAddrModeRegS");
operandTypes.addEntry("kOperandTypeThumbAddrModeImmS");
operandTypes.addEntry("kOperandTypeThumbAddrModeRR");
operandTypes.addEntry("kOperandTypeThumbAddrModeSP");
operandTypes.addEntry("kOperandTypeThumbAddrModePC");
operandTypes.addEntry("kOperandTypeThumb2AddrModeReg");
operandTypes.addEntry("kOperandTypeThumb2SoReg");
operandTypes.addEntry("kOperandTypeThumb2SoImm");
operandTypes.addEntry("kOperandTypeThumb2AddrModeImm8");
operandTypes.addEntry("kOperandTypeThumb2AddrModeImm8Offset");
operandTypes.addEntry("kOperandTypeThumb2AddrModeImm12");
operandTypes.addEntry("kOperandTypeThumb2AddrModeSoReg");
operandTypes.addEntry("kOperandTypeThumb2AddrModeImm8s4");
operandTypes.addEntry("kOperandTypeThumb2AddrModeImm8s4Offset");
operandTypes.emit(o, i);
o << "\n";
EnumEmitter operandFlags("OperandFlags");
operandFlags.addEntry("kOperandFlagSource");
operandFlags.addEntry("kOperandFlagTarget");
operandFlags.emitAsFlags(o, i);
o << "\n";
EnumEmitter instructionTypes("InstructionTypes");
instructionTypes.addEntry("kInstructionTypeNone");
instructionTypes.addEntry("kInstructionTypeMove");
instructionTypes.addEntry("kInstructionTypeBranch");
instructionTypes.addEntry("kInstructionTypePush");
instructionTypes.addEntry("kInstructionTypePop");
instructionTypes.addEntry("kInstructionTypeCall");
instructionTypes.addEntry("kInstructionTypeReturn");
instructionTypes.emit(o, i);
o << "\n";
}
void EDEmitter::run(raw_ostream &o) {
unsigned int i = 0;
CompoundConstantEmitter infoArray;
CodeGenTarget target(Records);
populateInstInfo(infoArray, target);
emitCommonEnums(o, i);
o << "namespace {\n";
o << "llvm::EDInstInfo instInfo" << target.getName().c_str() << "[] = ";
infoArray.emit(o, i);
o << ";" << "\n";
o << "}\n";
}