forked from OSchip/llvm-project
618 lines
24 KiB
C++
618 lines
24 KiB
C++
//===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
|
|
//
|
|
// This register allocator allocates registers to a basic block at a time,
|
|
// attempting to keep values in registers and reusing registers as appropriate.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "Support/Statistic.h"
|
|
#include "Support/CommandLine.h"
|
|
#include <iostream>
|
|
|
|
namespace {
|
|
Statistic<> NumSpilled ("ra-local", "Number of registers spilled");
|
|
Statistic<> NumReloaded("ra-local", "Number of registers reloaded");
|
|
cl::opt<bool> DisableKill("no-kill", cl::Hidden,
|
|
cl::desc("Disable register kill in local-ra"));
|
|
|
|
class RA : public MachineFunctionPass {
|
|
const TargetMachine *TM;
|
|
MachineFunction *MF;
|
|
const MRegisterInfo *RegInfo;
|
|
LiveVariables *LV;
|
|
|
|
// StackSlotForVirtReg - Maps SSA Regs => frame index where these values are
|
|
// spilled
|
|
std::map<unsigned, int> StackSlotForVirtReg;
|
|
|
|
// Virt2PhysRegMap - This map contains entries for each virtual register
|
|
// that is currently available in a physical register.
|
|
//
|
|
std::map<unsigned, unsigned> Virt2PhysRegMap;
|
|
|
|
// PhysRegsUsed - This map contains entries for each physical register that
|
|
// currently has a value (ie, it is in Virt2PhysRegMap). The value mapped
|
|
// to is the virtual register corresponding to the physical register (the
|
|
// inverse of the Virt2PhysRegMap), or 0. The value is set to 0 if this
|
|
// register is pinned because it is used by a future instruction.
|
|
//
|
|
std::map<unsigned, unsigned> PhysRegsUsed;
|
|
|
|
// PhysRegsUseOrder - This contains a list of the physical registers that
|
|
// currently have a virtual register value in them. This list provides an
|
|
// ordering of registers, imposing a reallocation order. This list is only
|
|
// used if all registers are allocated and we have to spill one, in which
|
|
// case we spill the least recently used register. Entries at the front of
|
|
// the list are the least recently used registers, entries at the back are
|
|
// the most recently used.
|
|
//
|
|
std::vector<unsigned> PhysRegsUseOrder;
|
|
|
|
// VirtRegModified - This bitset contains information about which virtual
|
|
// registers need to be spilled back to memory when their registers are
|
|
// scavenged. If a virtual register has simply been rematerialized, there
|
|
// is no reason to spill it to memory when we need the register back.
|
|
//
|
|
std::vector<bool> VirtRegModified;
|
|
|
|
void markVirtRegModified(unsigned Reg, bool Val = true) {
|
|
assert(Reg >= MRegisterInfo::FirstVirtualRegister && "Illegal VirtReg!");
|
|
Reg -= MRegisterInfo::FirstVirtualRegister;
|
|
if (VirtRegModified.size() <= Reg) VirtRegModified.resize(Reg+1);
|
|
VirtRegModified[Reg] = Val;
|
|
}
|
|
|
|
bool isVirtRegModified(unsigned Reg) const {
|
|
assert(Reg >= MRegisterInfo::FirstVirtualRegister && "Illegal VirtReg!");
|
|
assert(Reg - MRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
|
|
&& "Illegal virtual register!");
|
|
return VirtRegModified[Reg - MRegisterInfo::FirstVirtualRegister];
|
|
}
|
|
|
|
void MarkPhysRegRecentlyUsed(unsigned Reg) {
|
|
assert(!PhysRegsUseOrder.empty() && "No registers used!");
|
|
if (PhysRegsUseOrder.back() == Reg) return; // Already most recently used
|
|
|
|
for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
|
|
if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
|
|
unsigned RegMatch = PhysRegsUseOrder[i-1]; // remove from middle
|
|
PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
|
|
// Add it to the end of the list
|
|
PhysRegsUseOrder.push_back(RegMatch);
|
|
if (RegMatch == Reg)
|
|
return; // Found an exact match, exit early
|
|
}
|
|
}
|
|
|
|
public:
|
|
virtual const char *getPassName() const {
|
|
return "Local Register Allocator";
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
if (!DisableKill)
|
|
AU.addRequired<LiveVariables>();
|
|
AU.addRequiredID(PHIEliminationID);
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
private:
|
|
/// runOnMachineFunction - Register allocate the whole function
|
|
bool runOnMachineFunction(MachineFunction &Fn);
|
|
|
|
/// AllocateBasicBlock - Register allocate the specified basic block.
|
|
void AllocateBasicBlock(MachineBasicBlock &MBB);
|
|
|
|
|
|
/// areRegsEqual - This method returns true if the specified registers are
|
|
/// related to each other. To do this, it checks to see if they are equal
|
|
/// or if the first register is in the alias set of the second register.
|
|
///
|
|
bool areRegsEqual(unsigned R1, unsigned R2) const {
|
|
if (R1 == R2) return true;
|
|
if (const unsigned *AliasSet = RegInfo->getAliasSet(R2))
|
|
for (unsigned i = 0; AliasSet[i]; ++i)
|
|
if (AliasSet[i] == R1) return true;
|
|
return false;
|
|
}
|
|
|
|
/// getStackSpaceFor - This returns the frame index of the specified virtual
|
|
/// register on the stack, allocating space if neccesary.
|
|
int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
|
|
|
|
void removePhysReg(unsigned PhysReg);
|
|
|
|
/// spillVirtReg - This method spills the value specified by PhysReg into
|
|
/// the virtual register slot specified by VirtReg. It then updates the RA
|
|
/// data structures to indicate the fact that PhysReg is now available.
|
|
///
|
|
void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
|
|
unsigned VirtReg, unsigned PhysReg);
|
|
|
|
/// spillPhysReg - This method spills the specified physical register into
|
|
/// the virtual register slot associated with it.
|
|
///
|
|
void spillPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
|
|
unsigned PhysReg);
|
|
|
|
/// assignVirtToPhysReg - This method updates local state so that we know
|
|
/// that PhysReg is the proper container for VirtReg now. The physical
|
|
/// register must not be used for anything else when this is called.
|
|
///
|
|
void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
|
|
|
|
/// liberatePhysReg - Make sure the specified physical register is available
|
|
/// for use. If there is currently a value in it, it is either moved out of
|
|
/// the way or spilled to memory.
|
|
///
|
|
void liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
|
|
unsigned PhysReg);
|
|
|
|
/// isPhysRegAvailable - Return true if the specified physical register is
|
|
/// free and available for use. This also includes checking to see if
|
|
/// aliased registers are all free...
|
|
///
|
|
bool isPhysRegAvailable(unsigned PhysReg) const;
|
|
|
|
/// getFreeReg - Look to see if there is a free register available in the
|
|
/// specified register class. If not, return 0.
|
|
///
|
|
unsigned getFreeReg(const TargetRegisterClass *RC);
|
|
|
|
/// getReg - Find a physical register to hold the specified virtual
|
|
/// register. If all compatible physical registers are used, this method
|
|
/// spills the last used virtual register to the stack, and uses that
|
|
/// register.
|
|
///
|
|
unsigned getReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
|
|
unsigned VirtReg);
|
|
|
|
/// reloadVirtReg - This method loads the specified virtual register into a
|
|
/// physical register, returning the physical register chosen. This updates
|
|
/// the regalloc data structures to reflect the fact that the virtual reg is
|
|
/// now alive in a physical register, and the previous one isn't.
|
|
///
|
|
unsigned reloadVirtReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator &I, unsigned VirtReg);
|
|
};
|
|
}
|
|
|
|
|
|
/// getStackSpaceFor - This allocates space for the specified virtual
|
|
/// register to be held on the stack.
|
|
int RA::getStackSpaceFor(unsigned VirtReg,
|
|
const TargetRegisterClass *RC) {
|
|
// Find the location VirtReg would belong...
|
|
std::map<unsigned, int>::iterator I =
|
|
StackSlotForVirtReg.lower_bound(VirtReg);
|
|
|
|
if (I != StackSlotForVirtReg.end() && I->first == VirtReg)
|
|
return I->second; // Already has space allocated?
|
|
|
|
// Allocate a new stack object for this spill location...
|
|
int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC);
|
|
|
|
// Assign the slot...
|
|
StackSlotForVirtReg.insert(I, std::make_pair(VirtReg, FrameIdx));
|
|
return FrameIdx;
|
|
}
|
|
|
|
|
|
/// removePhysReg - This method marks the specified physical register as no
|
|
/// longer being in use.
|
|
///
|
|
void RA::removePhysReg(unsigned PhysReg) {
|
|
PhysRegsUsed.erase(PhysReg); // PhyReg no longer used
|
|
|
|
std::vector<unsigned>::iterator It =
|
|
std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
|
|
assert(It != PhysRegsUseOrder.end() &&
|
|
"Spilled a physical register, but it was not in use list!");
|
|
PhysRegsUseOrder.erase(It);
|
|
}
|
|
|
|
|
|
/// spillVirtReg - This method spills the value specified by PhysReg into the
|
|
/// virtual register slot specified by VirtReg. It then updates the RA data
|
|
/// structures to indicate the fact that PhysReg is now available.
|
|
///
|
|
void RA::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
|
|
unsigned VirtReg, unsigned PhysReg) {
|
|
// If this is just a marker register, we don't need to spill it.
|
|
if (VirtReg != 0) {
|
|
const TargetRegisterClass *RegClass =
|
|
MF->getSSARegMap()->getRegClass(VirtReg);
|
|
int FrameIndex = getStackSpaceFor(VirtReg, RegClass);
|
|
|
|
// If we need to spill this value, do so now...
|
|
if (isVirtRegModified(VirtReg)) {
|
|
// Add move instruction(s)
|
|
RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIndex, RegClass);
|
|
++NumSpilled; // Update statistics
|
|
}
|
|
Virt2PhysRegMap.erase(VirtReg); // VirtReg no longer available
|
|
}
|
|
|
|
removePhysReg(PhysReg);
|
|
}
|
|
|
|
|
|
/// spillPhysReg - This method spills the specified physical register into the
|
|
/// virtual register slot associated with it.
|
|
///
|
|
void RA::spillPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
|
|
unsigned PhysReg) {
|
|
std::map<unsigned, unsigned>::iterator PI = PhysRegsUsed.find(PhysReg);
|
|
if (PI != PhysRegsUsed.end()) { // Only spill it if it's used!
|
|
spillVirtReg(MBB, I, PI->second, PhysReg);
|
|
} else if (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg)) {
|
|
// If the selected register aliases any other registers, we must make
|
|
// sure that one of the aliases isn't alive...
|
|
for (unsigned i = 0; AliasSet[i]; ++i) {
|
|
PI = PhysRegsUsed.find(AliasSet[i]);
|
|
if (PI != PhysRegsUsed.end()) // Spill aliased register...
|
|
spillVirtReg(MBB, I, PI->second, AliasSet[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// assignVirtToPhysReg - This method updates local state so that we know
|
|
/// that PhysReg is the proper container for VirtReg now. The physical
|
|
/// register must not be used for anything else when this is called.
|
|
///
|
|
void RA::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
|
|
assert(PhysRegsUsed.find(PhysReg) == PhysRegsUsed.end() &&
|
|
"Phys reg already assigned!");
|
|
// Update information to note the fact that this register was just used, and
|
|
// it holds VirtReg.
|
|
PhysRegsUsed[PhysReg] = VirtReg;
|
|
Virt2PhysRegMap[VirtReg] = PhysReg;
|
|
PhysRegsUseOrder.push_back(PhysReg); // New use of PhysReg
|
|
}
|
|
|
|
|
|
/// isPhysRegAvailable - Return true if the specified physical register is free
|
|
/// and available for use. This also includes checking to see if aliased
|
|
/// registers are all free...
|
|
///
|
|
bool RA::isPhysRegAvailable(unsigned PhysReg) const {
|
|
if (PhysRegsUsed.count(PhysReg)) return false;
|
|
|
|
// If the selected register aliases any other allocated registers, it is
|
|
// not free!
|
|
if (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg))
|
|
for (unsigned i = 0; AliasSet[i]; ++i)
|
|
if (PhysRegsUsed.count(AliasSet[i])) // Aliased register in use?
|
|
return false; // Can't use this reg then.
|
|
return true;
|
|
}
|
|
|
|
|
|
/// getFreeReg - Look to see if there is a free register available in the
|
|
/// specified register class. If not, return 0.
|
|
///
|
|
unsigned RA::getFreeReg(const TargetRegisterClass *RC) {
|
|
// Get iterators defining the range of registers that are valid to allocate in
|
|
// this class, which also specifies the preferred allocation order.
|
|
TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
|
|
TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
|
|
|
|
for (; RI != RE; ++RI)
|
|
if (isPhysRegAvailable(*RI)) { // Is reg unused?
|
|
assert(*RI != 0 && "Cannot use register!");
|
|
return *RI; // Found an unused register!
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/// liberatePhysReg - Make sure the specified physical register is available for
|
|
/// use. If there is currently a value in it, it is either moved out of the way
|
|
/// or spilled to memory.
|
|
///
|
|
void RA::liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
|
|
unsigned PhysReg) {
|
|
// FIXME: This code checks to see if a register is available, but it really
|
|
// wants to know if a reg is available BEFORE the instruction executes. If
|
|
// called after killed operands are freed, it runs the risk of reallocating a
|
|
// used operand...
|
|
#if 0
|
|
if (isPhysRegAvailable(PhysReg)) return; // Already available...
|
|
|
|
// Check to see if the register is directly used, not indirectly used through
|
|
// aliases. If aliased registers are the ones actually used, we cannot be
|
|
// sure that we will be able to save the whole thing if we do a reg-reg copy.
|
|
std::map<unsigned, unsigned>::iterator PRUI = PhysRegsUsed.find(PhysReg);
|
|
if (PRUI != PhysRegsUsed.end()) {
|
|
unsigned VirtReg = PRUI->second; // The virtual register held...
|
|
|
|
// Check to see if there is a compatible register available. If so, we can
|
|
// move the value into the new register...
|
|
//
|
|
const TargetRegisterClass *RC = RegInfo->getRegClass(PhysReg);
|
|
if (unsigned NewReg = getFreeReg(RC)) {
|
|
// Emit the code to copy the value...
|
|
RegInfo->copyRegToReg(MBB, I, NewReg, PhysReg, RC);
|
|
|
|
// Update our internal state to indicate that PhysReg is available and Reg
|
|
// isn't.
|
|
Virt2PhysRegMap.erase(VirtReg);
|
|
removePhysReg(PhysReg); // Free the physreg
|
|
|
|
// Move reference over to new register...
|
|
assignVirtToPhysReg(VirtReg, NewReg);
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
spillPhysReg(MBB, I, PhysReg);
|
|
}
|
|
|
|
|
|
/// getReg - Find a physical register to hold the specified virtual
|
|
/// register. If all compatible physical registers are used, this method spills
|
|
/// the last used virtual register to the stack, and uses that register.
|
|
///
|
|
unsigned RA::getReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
|
|
unsigned VirtReg) {
|
|
const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
|
|
|
|
// First check to see if we have a free register of the requested type...
|
|
unsigned PhysReg = getFreeReg(RC);
|
|
|
|
// If we didn't find an unused register, scavenge one now!
|
|
if (PhysReg == 0) {
|
|
assert(!PhysRegsUseOrder.empty() && "No allocated registers??");
|
|
|
|
// Loop over all of the preallocated registers from the least recently used
|
|
// to the most recently used. When we find one that is capable of holding
|
|
// our register, use it.
|
|
for (unsigned i = 0; PhysReg == 0; ++i) {
|
|
assert(i != PhysRegsUseOrder.size() &&
|
|
"Couldn't find a register of the appropriate class!");
|
|
|
|
unsigned R = PhysRegsUseOrder[i];
|
|
// If the current register is compatible, use it.
|
|
if (RegInfo->getRegClass(R) == RC) {
|
|
PhysReg = R;
|
|
break;
|
|
} else {
|
|
// If one of the registers aliased to the current register is
|
|
// compatible, use it.
|
|
if (const unsigned *AliasSet = RegInfo->getAliasSet(R))
|
|
for (unsigned a = 0; AliasSet[a]; ++a)
|
|
if (RegInfo->getRegClass(AliasSet[a]) == RC) {
|
|
PhysReg = AliasSet[a]; // Take an aliased register
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(PhysReg && "Physical register not assigned!?!?");
|
|
|
|
// At this point PhysRegsUseOrder[i] is the least recently used register of
|
|
// compatible register class. Spill it to memory and reap its remains.
|
|
spillPhysReg(MBB, I, PhysReg);
|
|
}
|
|
|
|
// Now that we know which register we need to assign this to, do it now!
|
|
assignVirtToPhysReg(VirtReg, PhysReg);
|
|
return PhysReg;
|
|
}
|
|
|
|
|
|
/// reloadVirtReg - This method loads the specified virtual register into a
|
|
/// physical register, returning the physical register chosen. This updates the
|
|
/// regalloc data structures to reflect the fact that the virtual reg is now
|
|
/// alive in a physical register, and the previous one isn't.
|
|
///
|
|
unsigned RA::reloadVirtReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator &I,
|
|
unsigned VirtReg) {
|
|
std::map<unsigned, unsigned>::iterator It = Virt2PhysRegMap.find(VirtReg);
|
|
if (It != Virt2PhysRegMap.end()) {
|
|
MarkPhysRegRecentlyUsed(It->second);
|
|
return It->second; // Already have this value available!
|
|
}
|
|
|
|
unsigned PhysReg = getReg(MBB, I, VirtReg);
|
|
|
|
const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
|
|
int FrameIndex = getStackSpaceFor(VirtReg, RC);
|
|
|
|
markVirtRegModified(VirtReg, false); // Note that this reg was just reloaded
|
|
|
|
// Add move instruction(s)
|
|
RegInfo->loadRegFromStackSlot(MBB, I, PhysReg, FrameIndex, RC);
|
|
++NumReloaded; // Update statistics
|
|
return PhysReg;
|
|
}
|
|
|
|
void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
|
|
// loop over each instruction
|
|
MachineBasicBlock::iterator I = MBB.begin();
|
|
for (; I != MBB.end(); ++I) {
|
|
MachineInstr *MI = *I;
|
|
const TargetInstrDescriptor &TID = TM->getInstrInfo().get(MI->getOpcode());
|
|
|
|
// Loop over the implicit uses, making sure that they are at the head of the
|
|
// use order list, so they don't get reallocated.
|
|
if (const unsigned *ImplicitUses = TID.ImplicitUses)
|
|
for (unsigned i = 0; ImplicitUses[i]; ++i)
|
|
MarkPhysRegRecentlyUsed(ImplicitUses[i]);
|
|
|
|
// Get the used operands into registers. This has the potiential to spill
|
|
// incoming values if we are out of registers.
|
|
//
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
|
|
if (MI->getOperand(i).opIsUse() &&
|
|
MI->getOperand(i).isVirtualRegister()) {
|
|
unsigned VirtSrcReg = MI->getOperand(i).getAllocatedRegNum();
|
|
unsigned PhysSrcReg = reloadVirtReg(MBB, I, VirtSrcReg);
|
|
MI->SetMachineOperandReg(i, PhysSrcReg); // Assign the input register
|
|
}
|
|
|
|
if (!DisableKill) {
|
|
// If this instruction is the last user of anything in registers, kill the
|
|
// value, freeing the register being used, so it doesn't need to be
|
|
// spilled to memory.
|
|
//
|
|
for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
|
|
KE = LV->killed_end(MI); KI != KE; ++KI) {
|
|
unsigned VirtReg = KI->second;
|
|
unsigned PhysReg = VirtReg;
|
|
if (VirtReg >= MRegisterInfo::FirstVirtualRegister) {
|
|
std::map<unsigned, unsigned>::iterator I =
|
|
Virt2PhysRegMap.find(VirtReg);
|
|
assert(I != Virt2PhysRegMap.end());
|
|
PhysReg = I->second;
|
|
Virt2PhysRegMap.erase(I);
|
|
}
|
|
|
|
if (PhysReg) {
|
|
DEBUG(std::cerr << "V: " << VirtReg << " P: " << PhysReg
|
|
<< " Killed by: " << *MI);
|
|
removePhysReg(PhysReg);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Loop over all of the operands of the instruction, spilling registers that
|
|
// are defined, and marking explicit destinations in the PhysRegsUsed map.
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
|
|
if ((MI->getOperand(i).opIsDefOnly() || MI->getOperand(i).opIsDefAndUse()) &&
|
|
MI->getOperand(i).isPhysicalRegister()) {
|
|
unsigned Reg = MI->getOperand(i).getAllocatedRegNum();
|
|
spillPhysReg(MBB, I, Reg); // Spill any existing value in the reg
|
|
PhysRegsUsed[Reg] = 0; // It is free and reserved now
|
|
PhysRegsUseOrder.push_back(Reg);
|
|
}
|
|
|
|
// Loop over the implicit defs, spilling them as well.
|
|
if (const unsigned *ImplicitDefs = TID.ImplicitDefs)
|
|
for (unsigned i = 0; ImplicitDefs[i]; ++i) {
|
|
unsigned Reg = ImplicitDefs[i];
|
|
spillPhysReg(MBB, I, Reg);
|
|
PhysRegsUseOrder.push_back(Reg);
|
|
PhysRegsUsed[Reg] = 0; // It is free and reserved now
|
|
}
|
|
|
|
// Okay, we have allocated all of the source operands and spilled any values
|
|
// that would be destroyed by defs of this instruction. Loop over the
|
|
// implicit defs and assign them to a register, spilling incoming values if
|
|
// we need to scavenge a register.
|
|
//
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
|
|
if ((MI->getOperand(i).opIsDefOnly() || MI->getOperand(i).opIsDefAndUse())
|
|
&& MI->getOperand(i).isVirtualRegister()) {
|
|
unsigned DestVirtReg = MI->getOperand(i).getAllocatedRegNum();
|
|
unsigned DestPhysReg;
|
|
|
|
// If DestVirtReg already has a value, forget about it. Why doesn't
|
|
// getReg do this right?
|
|
std::map<unsigned, unsigned>::iterator DestI =
|
|
Virt2PhysRegMap.find(DestVirtReg);
|
|
if (DestI != Virt2PhysRegMap.end()) {
|
|
unsigned PhysReg = DestI->second;
|
|
Virt2PhysRegMap.erase(DestI);
|
|
removePhysReg(PhysReg);
|
|
}
|
|
|
|
if (TM->getInstrInfo().isTwoAddrInstr(MI->getOpcode()) && i == 0) {
|
|
// must be same register number as the first operand
|
|
// This maps a = b + c into b += c, and saves b into a's spot
|
|
assert(MI->getOperand(1).isRegister() &&
|
|
MI->getOperand(1).getAllocatedRegNum() &&
|
|
MI->getOperand(1).opIsUse() &&
|
|
"Two address instruction invalid!");
|
|
DestPhysReg = MI->getOperand(1).getAllocatedRegNum();
|
|
|
|
liberatePhysReg(MBB, I, DestPhysReg);
|
|
assignVirtToPhysReg(DestVirtReg, DestPhysReg);
|
|
} else {
|
|
DestPhysReg = getReg(MBB, I, DestVirtReg);
|
|
}
|
|
markVirtRegModified(DestVirtReg);
|
|
MI->SetMachineOperandReg(i, DestPhysReg); // Assign the output register
|
|
}
|
|
|
|
if (!DisableKill) {
|
|
// If this instruction defines any registers that are immediately dead,
|
|
// kill them now.
|
|
//
|
|
for (LiveVariables::killed_iterator KI = LV->dead_begin(MI),
|
|
KE = LV->dead_end(MI); KI != KE; ++KI) {
|
|
unsigned VirtReg = KI->second;
|
|
unsigned PhysReg = VirtReg;
|
|
if (VirtReg >= MRegisterInfo::FirstVirtualRegister) {
|
|
std::map<unsigned, unsigned>::iterator I =
|
|
Virt2PhysRegMap.find(VirtReg);
|
|
assert(I != Virt2PhysRegMap.end());
|
|
PhysReg = I->second;
|
|
Virt2PhysRegMap.erase(I);
|
|
}
|
|
|
|
if (PhysReg) {
|
|
DEBUG(std::cerr << "V: " << VirtReg << " P: " << PhysReg
|
|
<< " dead after: " << *MI);
|
|
removePhysReg(PhysReg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Rewind the iterator to point to the first flow control instruction...
|
|
const TargetInstrInfo &TII = TM->getInstrInfo();
|
|
I = MBB.end();
|
|
while (I != MBB.begin() && TII.isTerminatorInstr((*(I-1))->getOpcode()))
|
|
--I;
|
|
|
|
// Spill all physical registers holding virtual registers now.
|
|
while (!PhysRegsUsed.empty())
|
|
spillVirtReg(MBB, I, PhysRegsUsed.begin()->second,
|
|
PhysRegsUsed.begin()->first);
|
|
|
|
for (std::map<unsigned, unsigned>::iterator I = Virt2PhysRegMap.begin(),
|
|
E = Virt2PhysRegMap.end(); I != E; ++I)
|
|
std::cerr << "Register still mapped: " << I->first << " -> "
|
|
<< I->second << "\n";
|
|
|
|
assert(Virt2PhysRegMap.empty() && "Virtual registers still in phys regs?");
|
|
assert(PhysRegsUseOrder.empty() && "Physical regs still allocated?");
|
|
}
|
|
|
|
|
|
/// runOnMachineFunction - Register allocate the whole function
|
|
///
|
|
bool RA::runOnMachineFunction(MachineFunction &Fn) {
|
|
DEBUG(std::cerr << "Machine Function " << "\n");
|
|
MF = &Fn;
|
|
TM = &Fn.getTarget();
|
|
RegInfo = TM->getRegisterInfo();
|
|
|
|
if (!DisableKill)
|
|
LV = &getAnalysis<LiveVariables>();
|
|
|
|
// Loop over all of the basic blocks, eliminating virtual register references
|
|
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
|
|
MBB != MBBe; ++MBB)
|
|
AllocateBasicBlock(*MBB);
|
|
|
|
StackSlotForVirtReg.clear();
|
|
VirtRegModified.clear();
|
|
return true;
|
|
}
|
|
|
|
Pass *createLocalRegisterAllocator() {
|
|
return new RA();
|
|
}
|