llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfo.td

1331 lines
52 KiB
TableGen

//===-- RISCVInstrInfo.td - Target Description for RISCV ---*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the RISC-V instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// RISC-V specific DAG Nodes.
//===----------------------------------------------------------------------===//
// Target-independent type requirements, but with target-specific formats.
def SDT_CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>,
SDTCisVT<1, i32>]>;
def SDT_CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>,
SDTCisVT<1, i32>]>;
// Target-dependent type requirements.
def SDT_RISCVCall : SDTypeProfile<0, -1, [SDTCisVT<0, XLenVT>]>;
def SDT_RISCVSelectCC : SDTypeProfile<1, 5, [SDTCisSameAs<1, 2>,
SDTCisSameAs<0, 4>,
SDTCisSameAs<4, 5>]>;
def SDT_RISCVBrCC : SDTypeProfile<0, 4, [SDTCisSameAs<0, 1>,
SDTCisVT<2, OtherVT>,
SDTCisVT<3, OtherVT>]>;
def SDT_RISCVReadCSR : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisInt<1>]>;
def SDT_RISCVWriteCSR : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisInt<1>]>;
def SDT_RISCVSwapCSR : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
SDTCisInt<2>]>;
def SDT_RISCVReadCycleWide : SDTypeProfile<2, 0, [SDTCisVT<0, i32>,
SDTCisVT<1, i32>]>;
def SDT_RISCVIntUnaryOpW : SDTypeProfile<1, 1, [
SDTCisSameAs<0, 1>, SDTCisVT<0, i64>
]>;
def SDT_RISCVIntBinOpW : SDTypeProfile<1, 2, [
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<0, i64>
]>;
def SDT_RISCVIntShiftDOpW : SDTypeProfile<1, 3, [
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<0, i64>, SDTCisVT<3, i64>
]>;
// Target-independent nodes, but with target-specific formats.
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_CallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_CallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
// Target-dependent nodes.
def riscv_call : SDNode<"RISCVISD::CALL", SDT_RISCVCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def riscv_ret_flag : SDNode<"RISCVISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def riscv_uret_flag : SDNode<"RISCVISD::URET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue]>;
def riscv_sret_flag : SDNode<"RISCVISD::SRET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue]>;
def riscv_mret_flag : SDNode<"RISCVISD::MRET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue]>;
def riscv_selectcc : SDNode<"RISCVISD::SELECT_CC", SDT_RISCVSelectCC>;
def riscv_brcc : SDNode<"RISCVISD::BR_CC", SDT_RISCVBrCC,
[SDNPHasChain]>;
def riscv_tail : SDNode<"RISCVISD::TAIL", SDT_RISCVCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def riscv_sllw : SDNode<"RISCVISD::SLLW", SDT_RISCVIntBinOpW>;
def riscv_sraw : SDNode<"RISCVISD::SRAW", SDT_RISCVIntBinOpW>;
def riscv_srlw : SDNode<"RISCVISD::SRLW", SDT_RISCVIntBinOpW>;
def riscv_read_csr : SDNode<"RISCVISD::READ_CSR", SDT_RISCVReadCSR,
[SDNPHasChain]>;
def riscv_write_csr : SDNode<"RISCVISD::WRITE_CSR", SDT_RISCVWriteCSR,
[SDNPHasChain]>;
def riscv_swap_csr : SDNode<"RISCVISD::SWAP_CSR", SDT_RISCVSwapCSR,
[SDNPHasChain]>;
def riscv_read_cycle_wide : SDNode<"RISCVISD::READ_CYCLE_WIDE",
SDT_RISCVReadCycleWide,
[SDNPHasChain, SDNPSideEffect]>;
//===----------------------------------------------------------------------===//
// Operand and SDNode transformation definitions.
//===----------------------------------------------------------------------===//
class ImmXLenAsmOperand<string prefix, string suffix = ""> : AsmOperandClass {
let Name = prefix # "ImmXLen" # suffix;
let RenderMethod = "addImmOperands";
let DiagnosticType = !strconcat("Invalid", Name);
}
class ImmAsmOperand<string prefix, int width, string suffix> : AsmOperandClass {
let Name = prefix # "Imm" # width # suffix;
let RenderMethod = "addImmOperands";
let DiagnosticType = !strconcat("Invalid", Name);
}
def ImmZeroAsmOperand : AsmOperandClass {
let Name = "ImmZero";
let RenderMethod = "addImmOperands";
let DiagnosticType = !strconcat("Invalid", Name);
}
class SImmAsmOperand<int width, string suffix = "">
: ImmAsmOperand<"S", width, suffix> {
}
class UImmAsmOperand<int width, string suffix = "">
: ImmAsmOperand<"U", width, suffix> {
}
def FenceArg : AsmOperandClass {
let Name = "FenceArg";
let RenderMethod = "addFenceArgOperands";
let DiagnosticType = "InvalidFenceArg";
}
def fencearg : Operand<XLenVT> {
let ParserMatchClass = FenceArg;
let PrintMethod = "printFenceArg";
let DecoderMethod = "decodeUImmOperand<4>";
let OperandType = "OPERAND_UIMM4";
let OperandNamespace = "RISCVOp";
}
def UImmLog2XLenAsmOperand : AsmOperandClass {
let Name = "UImmLog2XLen";
let RenderMethod = "addImmOperands";
let DiagnosticType = "InvalidUImmLog2XLen";
}
def uimmlog2xlen : Operand<XLenVT>, ImmLeaf<XLenVT, [{
if (Subtarget->is64Bit())
return isUInt<6>(Imm);
return isUInt<5>(Imm);
}]> {
let ParserMatchClass = UImmLog2XLenAsmOperand;
// TODO: should ensure invalid shamt is rejected when decoding.
let DecoderMethod = "decodeUImmOperand<6>";
let MCOperandPredicate = [{
int64_t Imm;
if (!MCOp.evaluateAsConstantImm(Imm))
return false;
if (STI.getTargetTriple().isArch64Bit())
return isUInt<6>(Imm);
return isUInt<5>(Imm);
}];
let OperandType = "OPERAND_UIMMLOG2XLEN";
let OperandNamespace = "RISCVOp";
}
def uimm5 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isUInt<5>(Imm);}]> {
let ParserMatchClass = UImmAsmOperand<5>;
let DecoderMethod = "decodeUImmOperand<5>";
let OperandType = "OPERAND_UIMM5";
let OperandNamespace = "RISCVOp";
}
def simm12 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isInt<12>(Imm);}]> {
let ParserMatchClass = SImmAsmOperand<12>;
let EncoderMethod = "getImmOpValue";
let DecoderMethod = "decodeSImmOperand<12>";
let MCOperandPredicate = [{
int64_t Imm;
if (MCOp.evaluateAsConstantImm(Imm))
return isInt<12>(Imm);
return MCOp.isBareSymbolRef();
}];
let OperandType = "OPERAND_SIMM12";
let OperandNamespace = "RISCVOp";
}
// A 13-bit signed immediate where the least significant bit is zero.
def simm13_lsb0 : Operand<OtherVT> {
let ParserMatchClass = SImmAsmOperand<13, "Lsb0">;
let PrintMethod = "printBranchOperand";
let EncoderMethod = "getImmOpValueAsr1";
let DecoderMethod = "decodeSImmOperandAndLsl1<13>";
let MCOperandPredicate = [{
int64_t Imm;
if (MCOp.evaluateAsConstantImm(Imm))
return isShiftedInt<12, 1>(Imm);
return MCOp.isBareSymbolRef();
}];
let OperandType = "OPERAND_PCREL";
}
class UImm20Operand : Operand<XLenVT> {
let EncoderMethod = "getImmOpValue";
let DecoderMethod = "decodeUImmOperand<20>";
let MCOperandPredicate = [{
int64_t Imm;
if (MCOp.evaluateAsConstantImm(Imm))
return isUInt<20>(Imm);
return MCOp.isBareSymbolRef();
}];
let OperandType = "OPERAND_UIMM20";
let OperandNamespace = "RISCVOp";
}
def uimm20_lui : UImm20Operand {
let ParserMatchClass = UImmAsmOperand<20, "LUI">;
}
def uimm20_auipc : UImm20Operand {
let ParserMatchClass = UImmAsmOperand<20, "AUIPC">;
}
def Simm21Lsb0JALAsmOperand : SImmAsmOperand<21, "Lsb0JAL"> {
let ParserMethod = "parseJALOffset";
}
// A 21-bit signed immediate where the least significant bit is zero.
def simm21_lsb0_jal : Operand<OtherVT> {
let ParserMatchClass = Simm21Lsb0JALAsmOperand;
let PrintMethod = "printBranchOperand";
let EncoderMethod = "getImmOpValueAsr1";
let DecoderMethod = "decodeSImmOperandAndLsl1<21>";
let MCOperandPredicate = [{
int64_t Imm;
if (MCOp.evaluateAsConstantImm(Imm))
return isShiftedInt<20, 1>(Imm);
return MCOp.isBareSymbolRef();
}];
let OperandType = "OPERAND_PCREL";
}
def BareSymbol : AsmOperandClass {
let Name = "BareSymbol";
let RenderMethod = "addImmOperands";
let DiagnosticType = "InvalidBareSymbol";
let ParserMethod = "parseBareSymbol";
}
// A bare symbol.
def bare_symbol : Operand<XLenVT> {
let ParserMatchClass = BareSymbol;
}
def CallSymbol : AsmOperandClass {
let Name = "CallSymbol";
let RenderMethod = "addImmOperands";
let DiagnosticType = "InvalidCallSymbol";
let ParserMethod = "parseCallSymbol";
}
// A bare symbol used in call/tail only.
def call_symbol : Operand<XLenVT> {
let ParserMatchClass = CallSymbol;
}
def PseudoJumpSymbol : AsmOperandClass {
let Name = "PseudoJumpSymbol";
let RenderMethod = "addImmOperands";
let DiagnosticType = "InvalidPseudoJumpSymbol";
let ParserMethod = "parsePseudoJumpSymbol";
}
// A bare symbol used for pseudo jumps only.
def pseudo_jump_symbol : Operand<XLenVT> {
let ParserMatchClass = PseudoJumpSymbol;
}
def TPRelAddSymbol : AsmOperandClass {
let Name = "TPRelAddSymbol";
let RenderMethod = "addImmOperands";
let DiagnosticType = "InvalidTPRelAddSymbol";
let ParserMethod = "parseOperandWithModifier";
}
// A bare symbol with the %tprel_add variant.
def tprel_add_symbol : Operand<XLenVT> {
let ParserMatchClass = TPRelAddSymbol;
}
def CSRSystemRegister : AsmOperandClass {
let Name = "CSRSystemRegister";
let ParserMethod = "parseCSRSystemRegister";
let DiagnosticType = "InvalidCSRSystemRegister";
}
def csr_sysreg : Operand<XLenVT> {
let ParserMatchClass = CSRSystemRegister;
let PrintMethod = "printCSRSystemRegister";
let DecoderMethod = "decodeUImmOperand<12>";
let OperandType = "OPERAND_UIMM12";
let OperandNamespace = "RISCVOp";
}
// A parameterized register class alternative to i32imm/i64imm from Target.td.
def ixlenimm : Operand<XLenVT>;
def ixlenimm_li : Operand<XLenVT> {
let ParserMatchClass = ImmXLenAsmOperand<"", "LI">;
}
// Standalone (codegen-only) immleaf patterns.
// A 12-bit signed immediate plus one where the imm range will be -2047~2048.
def simm12_plus1 : ImmLeaf<XLenVT,
[{return (isInt<12>(Imm) && Imm != -2048) || Imm == 2048;}]>;
// A 6-bit constant greater than 32.
def uimm6gt32 : ImmLeaf<XLenVT, [{
return isUInt<6>(Imm) && Imm > 32;
}]>;
// Addressing modes.
// Necessary because a frameindex can't be matched directly in a pattern.
def AddrFI : ComplexPattern<iPTR, 1, "SelectAddrFI", [frameindex], []>;
def BaseAddr : ComplexPattern<iPTR, 1, "SelectBaseAddr">;
// Return the negation of an immediate value.
def NegImm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(-N->getSExtValue(), SDLoc(N),
N->getValueType(0));
}]>;
// Return an immediate value minus 32.
def ImmSub32 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue() - 32, SDLoc(N),
N->getValueType(0));
}]>;
// Return an immediate value plus 32.
def ImmPlus32 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue() + 32, SDLoc(N),
N->getValueType(0));
}]>;
// Return an immediate subtracted from XLen.
def ImmSubFromXLen : SDNodeXForm<imm, [{
uint64_t XLen = Subtarget->getXLen();
return CurDAG->getTargetConstant(XLen - N->getZExtValue(), SDLoc(N),
N->getValueType(0));
}]>;
// Return an immediate subtracted from 32.
def ImmSubFrom32 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(32 - N->getZExtValue(), SDLoc(N),
N->getValueType(0));
}]>;
// Check if (add r, imm) can be optimized to (ADDI (ADDI r, imm0), imm1),
// in which imm = imm0 + imm1 and both imm0 and imm1 are simm12.
def AddiPair : PatLeaf<(imm), [{
if (!N->hasOneUse())
return false;
// The immediate operand must be in range [-4096,-2049] or [2048,4094].
int64_t Imm = N->getSExtValue();
return (-4096 <= Imm && Imm <= -2049) || (2048 <= Imm && Imm <= 4094);
}]>;
// Return imm/2.
def AddiPairImmA : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue() / 2, SDLoc(N),
N->getValueType(0));
}]>;
// Return imm - imm/2.
def AddiPairImmB : SDNodeXForm<imm, [{
int64_t Imm = N->getSExtValue();
return CurDAG->getTargetConstant(Imm - Imm / 2, SDLoc(N),
N->getValueType(0));
}]>;
//===----------------------------------------------------------------------===//
// Instruction Formats
//===----------------------------------------------------------------------===//
include "RISCVInstrFormats.td"
//===----------------------------------------------------------------------===//
// Instruction Class Templates
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class BranchCC_rri<bits<3> funct3, string opcodestr>
: RVInstB<funct3, OPC_BRANCH, (outs),
(ins GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12),
opcodestr, "$rs1, $rs2, $imm12">,
Sched<[WriteJmp, ReadJmp, ReadJmp]> {
let isBranch = 1;
let isTerminator = 1;
}
let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
class Load_ri<bits<3> funct3, string opcodestr>
: RVInstI<funct3, OPC_LOAD, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12),
opcodestr, "$rd, ${imm12}(${rs1})">;
// Operands for stores are in the order srcreg, base, offset rather than
// reflecting the order these fields are specified in the instruction
// encoding.
let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
class Store_rri<bits<3> funct3, string opcodestr>
: RVInstS<funct3, OPC_STORE, (outs),
(ins GPR:$rs2, GPR:$rs1, simm12:$imm12),
opcodestr, "$rs2, ${imm12}(${rs1})">;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ALU_ri<bits<3> funct3, string opcodestr>
: RVInstI<funct3, OPC_OP_IMM, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12),
opcodestr, "$rd, $rs1, $imm12">,
Sched<[WriteIALU, ReadIALU]>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class Shift_ri<bits<5> imm11_7, bits<3> funct3, string opcodestr>
: RVInstIShift<imm11_7, funct3, OPC_OP_IMM, (outs GPR:$rd),
(ins GPR:$rs1, uimmlog2xlen:$shamt), opcodestr,
"$rd, $rs1, $shamt">,
Sched<[WriteShiftImm, ReadShiftImm]>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ALU_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
: RVInstR<funct7, funct3, OPC_OP, (outs GPR:$rd), (ins GPR:$rs1, GPR:$rs2),
opcodestr, "$rd, $rs1, $rs2">;
let hasNoSchedulingInfo = 1,
hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
class CSR_ir<bits<3> funct3, string opcodestr>
: RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd), (ins csr_sysreg:$imm12, GPR:$rs1),
opcodestr, "$rd, $imm12, $rs1">, Sched<[WriteCSR, ReadCSR]>;
let hasNoSchedulingInfo = 1,
hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
class CSR_ii<bits<3> funct3, string opcodestr>
: RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd),
(ins csr_sysreg:$imm12, uimm5:$rs1),
opcodestr, "$rd, $imm12, $rs1">, Sched<[WriteCSR]>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ShiftW_ri<bits<7> imm11_5, bits<3> funct3, string opcodestr>
: RVInstIShiftW<imm11_5, funct3, OPC_OP_IMM_32, (outs GPR:$rd),
(ins GPR:$rs1, uimm5:$shamt), opcodestr,
"$rd, $rs1, $shamt">,
Sched<[WriteShiftImm32, ReadShiftImm32]>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ALUW_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
: RVInstR<funct7, funct3, OPC_OP_32, (outs GPR:$rd),
(ins GPR:$rs1, GPR:$rs2), opcodestr, "$rd, $rs1, $rs2">;
let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
class Priv<string opcodestr, bits<7> funct7>
: RVInstR<funct7, 0b000, OPC_SYSTEM, (outs), (ins GPR:$rs1, GPR:$rs2),
opcodestr, "">;
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
def LUI : RVInstU<OPC_LUI, (outs GPR:$rd), (ins uimm20_lui:$imm20),
"lui", "$rd, $imm20">, Sched<[WriteIALU]>;
def AUIPC : RVInstU<OPC_AUIPC, (outs GPR:$rd), (ins uimm20_auipc:$imm20),
"auipc", "$rd, $imm20">, Sched<[WriteIALU]>;
let isCall = 1 in
def JAL : RVInstJ<OPC_JAL, (outs GPR:$rd), (ins simm21_lsb0_jal:$imm20),
"jal", "$rd, $imm20">, Sched<[WriteJal]>;
let isCall = 1 in
def JALR : RVInstI<0b000, OPC_JALR, (outs GPR:$rd),
(ins GPR:$rs1, simm12:$imm12),
"jalr", "$rd, ${imm12}(${rs1})">,
Sched<[WriteJalr, ReadJalr]>;
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
def BEQ : BranchCC_rri<0b000, "beq">;
def BNE : BranchCC_rri<0b001, "bne">;
def BLT : BranchCC_rri<0b100, "blt">;
def BGE : BranchCC_rri<0b101, "bge">;
def BLTU : BranchCC_rri<0b110, "bltu">;
def BGEU : BranchCC_rri<0b111, "bgeu">;
def LB : Load_ri<0b000, "lb">, Sched<[WriteLDB, ReadMemBase]>;
def LH : Load_ri<0b001, "lh">, Sched<[WriteLDH, ReadMemBase]>;
def LW : Load_ri<0b010, "lw">, Sched<[WriteLDW, ReadMemBase]>;
def LBU : Load_ri<0b100, "lbu">, Sched<[WriteLDB, ReadMemBase]>;
def LHU : Load_ri<0b101, "lhu">, Sched<[WriteLDH, ReadMemBase]>;
def SB : Store_rri<0b000, "sb">, Sched<[WriteSTB, ReadStoreData, ReadMemBase]>;
def SH : Store_rri<0b001, "sh">, Sched<[WriteSTH, ReadStoreData, ReadMemBase]>;
def SW : Store_rri<0b010, "sw">, Sched<[WriteSTW, ReadStoreData, ReadMemBase]>;
// ADDI isn't always rematerializable, but isReMaterializable will be used as
// a hint which is verified in isReallyTriviallyReMaterializable.
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
def ADDI : ALU_ri<0b000, "addi">;
def SLTI : ALU_ri<0b010, "slti">;
def SLTIU : ALU_ri<0b011, "sltiu">;
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
def XORI : ALU_ri<0b100, "xori">;
def ORI : ALU_ri<0b110, "ori">;
}
def ANDI : ALU_ri<0b111, "andi">;
def SLLI : Shift_ri<0b00000, 0b001, "slli">;
def SRLI : Shift_ri<0b00000, 0b101, "srli">;
def SRAI : Shift_ri<0b01000, 0b101, "srai">;
def ADD : ALU_rr<0b0000000, 0b000, "add">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def SUB : ALU_rr<0b0100000, 0b000, "sub">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def SLL : ALU_rr<0b0000000, 0b001, "sll">, Sched<[WriteShiftReg, ReadShiftReg, ReadShiftReg]>;
def SLT : ALU_rr<0b0000000, 0b010, "slt">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def SLTU : ALU_rr<0b0000000, 0b011, "sltu">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def XOR : ALU_rr<0b0000000, 0b100, "xor">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def SRL : ALU_rr<0b0000000, 0b101, "srl">, Sched<[WriteShiftReg, ReadShiftReg, ReadShiftReg]>;
def SRA : ALU_rr<0b0100000, 0b101, "sra">, Sched<[WriteShiftReg, ReadShiftReg, ReadShiftReg]>;
def OR : ALU_rr<0b0000000, 0b110, "or">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def AND : ALU_rr<0b0000000, 0b111, "and">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in {
def FENCE : RVInstI<0b000, OPC_MISC_MEM, (outs),
(ins fencearg:$pred, fencearg:$succ),
"fence", "$pred, $succ">, Sched<[]> {
bits<4> pred;
bits<4> succ;
let rs1 = 0;
let rd = 0;
let imm12 = {0b0000,pred,succ};
}
def FENCE_TSO : RVInstI<0b000, OPC_MISC_MEM, (outs), (ins), "fence.tso", "">, Sched<[]> {
let rs1 = 0;
let rd = 0;
let imm12 = {0b1000,0b0011,0b0011};
}
def FENCE_I : RVInstI<0b001, OPC_MISC_MEM, (outs), (ins), "fence.i", "">, Sched<[]> {
let rs1 = 0;
let rd = 0;
let imm12 = 0;
}
def ECALL : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ecall", "">, Sched<[WriteJmp]> {
let rs1 = 0;
let rd = 0;
let imm12 = 0;
}
def EBREAK : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ebreak", "">,
Sched<[]> {
let rs1 = 0;
let rd = 0;
let imm12 = 1;
}
// This is a de facto standard (as set by GNU binutils) 32-bit unimplemented
// instruction (i.e., it should always trap, if your implementation has invalid
// instruction traps).
def UNIMP : RVInstI<0b001, OPC_SYSTEM, (outs), (ins), "unimp", "">,
Sched<[]> {
let rs1 = 0;
let rd = 0;
let imm12 = 0b110000000000;
}
} // hasSideEffects = 1, mayLoad = 0, mayStore = 0
def CSRRW : CSR_ir<0b001, "csrrw">;
def CSRRS : CSR_ir<0b010, "csrrs">;
def CSRRC : CSR_ir<0b011, "csrrc">;
def CSRRWI : CSR_ii<0b101, "csrrwi">;
def CSRRSI : CSR_ii<0b110, "csrrsi">;
def CSRRCI : CSR_ii<0b111, "csrrci">;
/// RV64I instructions
let Predicates = [IsRV64] in {
def LWU : Load_ri<0b110, "lwu">, Sched<[WriteLDWU, ReadMemBase]>;
def LD : Load_ri<0b011, "ld">, Sched<[WriteLDD, ReadMemBase]>;
def SD : Store_rri<0b011, "sd">, Sched<[WriteSTD, ReadStoreData, ReadMemBase]>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
def ADDIW : RVInstI<0b000, OPC_OP_IMM_32, (outs GPR:$rd),
(ins GPR:$rs1, simm12:$imm12),
"addiw", "$rd, $rs1, $imm12">,
Sched<[WriteIALU32, ReadIALU32]>;
def SLLIW : ShiftW_ri<0b0000000, 0b001, "slliw">;
def SRLIW : ShiftW_ri<0b0000000, 0b101, "srliw">;
def SRAIW : ShiftW_ri<0b0100000, 0b101, "sraiw">;
def ADDW : ALUW_rr<0b0000000, 0b000, "addw">,
Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
def SUBW : ALUW_rr<0b0100000, 0b000, "subw">,
Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
def SLLW : ALUW_rr<0b0000000, 0b001, "sllw">,
Sched<[WriteShiftReg32, ReadShiftReg32, ReadShiftReg32]>;
def SRLW : ALUW_rr<0b0000000, 0b101, "srlw">,
Sched<[WriteShiftReg32, ReadShiftReg32, ReadShiftReg32]>;
def SRAW : ALUW_rr<0b0100000, 0b101, "sraw">,
Sched<[WriteShiftReg32, ReadShiftReg32, ReadShiftReg32]>;
} // Predicates = [IsRV64]
//===----------------------------------------------------------------------===//
// Privileged instructions
//===----------------------------------------------------------------------===//
let isBarrier = 1, isReturn = 1, isTerminator = 1 in {
def URET : Priv<"uret", 0b0000000>, Sched<[]> {
let rd = 0;
let rs1 = 0;
let rs2 = 0b00010;
}
def SRET : Priv<"sret", 0b0001000>, Sched<[]> {
let rd = 0;
let rs1 = 0;
let rs2 = 0b00010;
}
def MRET : Priv<"mret", 0b0011000>, Sched<[]> {
let rd = 0;
let rs1 = 0;
let rs2 = 0b00010;
}
} // isBarrier = 1, isReturn = 1, isTerminator = 1
def WFI : Priv<"wfi", 0b0001000>, Sched<[]> {
let rd = 0;
let rs1 = 0;
let rs2 = 0b00101;
}
let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
def SFENCE_VMA : RVInstR<0b0001001, 0b000, OPC_SYSTEM, (outs),
(ins GPR:$rs1, GPR:$rs2),
"sfence.vma", "$rs1, $rs2">, Sched<[]> {
let rd = 0;
}
//===----------------------------------------------------------------------===//
// Debug instructions
//===----------------------------------------------------------------------===//
let isBarrier = 1, isReturn = 1, isTerminator = 1 in {
def DRET : Priv<"dret", 0b0111101>, Sched<[]> {
let rd = 0;
let rs1 = 0;
let rs2 = 0b10010;
}
} // isBarrier = 1, isReturn = 1, isTerminator = 1
//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
//===----------------------------------------------------------------------===//
def : InstAlias<"nop", (ADDI X0, X0, 0)>;
// Note that the size is 32 because up to 8 32-bit instructions are needed to
// generate an arbitrary 64-bit immediate. However, the size does not really
// matter since PseudoLI is currently only used in the AsmParser where it gets
// expanded to real instructions immediately.
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 32,
isCodeGenOnly = 0, isAsmParserOnly = 1 in
def PseudoLI : Pseudo<(outs GPR:$rd), (ins ixlenimm_li:$imm), [],
"li", "$rd, $imm">;
def PseudoLB : PseudoLoad<"lb">;
def PseudoLBU : PseudoLoad<"lbu">;
def PseudoLH : PseudoLoad<"lh">;
def PseudoLHU : PseudoLoad<"lhu">;
def PseudoLW : PseudoLoad<"lw">;
def PseudoSB : PseudoStore<"sb">;
def PseudoSH : PseudoStore<"sh">;
def PseudoSW : PseudoStore<"sw">;
let Predicates = [IsRV64] in {
def PseudoLWU : PseudoLoad<"lwu">;
def PseudoLD : PseudoLoad<"ld">;
def PseudoSD : PseudoStore<"sd">;
} // Predicates = [IsRV64]
def : InstAlias<"mv $rd, $rs", (ADDI GPR:$rd, GPR:$rs, 0)>;
def : InstAlias<"not $rd, $rs", (XORI GPR:$rd, GPR:$rs, -1)>;
def : InstAlias<"neg $rd, $rs", (SUB GPR:$rd, X0, GPR:$rs)>;
let Predicates = [IsRV64] in {
def : InstAlias<"negw $rd, $rs", (SUBW GPR:$rd, X0, GPR:$rs)>;
def : InstAlias<"sext.w $rd, $rs", (ADDIW GPR:$rd, GPR:$rs, 0)>;
} // Predicates = [IsRV64]
def : InstAlias<"seqz $rd, $rs", (SLTIU GPR:$rd, GPR:$rs, 1)>;
def : InstAlias<"snez $rd, $rs", (SLTU GPR:$rd, X0, GPR:$rs)>;
def : InstAlias<"sltz $rd, $rs", (SLT GPR:$rd, GPR:$rs, X0)>;
def : InstAlias<"sgtz $rd, $rs", (SLT GPR:$rd, X0, GPR:$rs)>;
// sgt/sgtu are recognised by the GNU assembler but the canonical slt/sltu
// form will always be printed. Therefore, set a zero weight.
def : InstAlias<"sgt $rd, $rs, $rt", (SLT GPR:$rd, GPR:$rt, GPR:$rs), 0>;
def : InstAlias<"sgtu $rd, $rs, $rt", (SLTU GPR:$rd, GPR:$rt, GPR:$rs), 0>;
def : InstAlias<"beqz $rs, $offset",
(BEQ GPR:$rs, X0, simm13_lsb0:$offset)>;
def : InstAlias<"bnez $rs, $offset",
(BNE GPR:$rs, X0, simm13_lsb0:$offset)>;
def : InstAlias<"blez $rs, $offset",
(BGE X0, GPR:$rs, simm13_lsb0:$offset)>;
def : InstAlias<"bgez $rs, $offset",
(BGE GPR:$rs, X0, simm13_lsb0:$offset)>;
def : InstAlias<"bltz $rs, $offset",
(BLT GPR:$rs, X0, simm13_lsb0:$offset)>;
def : InstAlias<"bgtz $rs, $offset",
(BLT X0, GPR:$rs, simm13_lsb0:$offset)>;
// Always output the canonical mnemonic for the pseudo branch instructions.
// The GNU tools emit the canonical mnemonic for the branch pseudo instructions
// as well (e.g. "bgt" will be recognised by the assembler but never printed by
// objdump). Match this behaviour by setting a zero weight.
def : InstAlias<"bgt $rs, $rt, $offset",
(BLT GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
def : InstAlias<"ble $rs, $rt, $offset",
(BGE GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
def : InstAlias<"bgtu $rs, $rt, $offset",
(BLTU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
def : InstAlias<"bleu $rs, $rt, $offset",
(BGEU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
def : InstAlias<"j $offset", (JAL X0, simm21_lsb0_jal:$offset)>;
def : InstAlias<"jal $offset", (JAL X1, simm21_lsb0_jal:$offset)>;
// Non-zero offset aliases of "jalr" are the lowest weight, followed by the
// two-register form, then the one-register forms and finally "ret".
def : InstAlias<"jr $rs", (JALR X0, GPR:$rs, 0), 3>;
def : InstAlias<"jr ${offset}(${rs})", (JALR X0, GPR:$rs, simm12:$offset)>;
def : InstAlias<"jalr $rs", (JALR X1, GPR:$rs, 0), 3>;
def : InstAlias<"jalr ${offset}(${rs})", (JALR X1, GPR:$rs, simm12:$offset)>;
def : InstAlias<"jalr $rd, $rs", (JALR GPR:$rd, GPR:$rs, 0), 2>;
def : InstAlias<"ret", (JALR X0, X1, 0), 4>;
// Non-canonical forms for jump targets also accepted by the assembler.
def : InstAlias<"jr $rs, $offset", (JALR X0, GPR:$rs, simm12:$offset), 0>;
def : InstAlias<"jalr $rs, $offset", (JALR X1, GPR:$rs, simm12:$offset), 0>;
def : InstAlias<"jalr $rd, $rs, $offset", (JALR GPR:$rd, GPR:$rs, simm12:$offset), 0>;
def : InstAlias<"fence", (FENCE 0xF, 0xF)>; // 0xF == iorw
def : InstAlias<"rdinstret $rd", (CSRRS GPR:$rd, INSTRET.Encoding, X0)>;
def : InstAlias<"rdcycle $rd", (CSRRS GPR:$rd, CYCLE.Encoding, X0)>;
def : InstAlias<"rdtime $rd", (CSRRS GPR:$rd, TIME.Encoding, X0)>;
let Predicates = [IsRV32] in {
def : InstAlias<"rdinstreth $rd", (CSRRS GPR:$rd, INSTRETH.Encoding, X0)>;
def : InstAlias<"rdcycleh $rd", (CSRRS GPR:$rd, CYCLEH.Encoding, X0)>;
def : InstAlias<"rdtimeh $rd", (CSRRS GPR:$rd, TIMEH.Encoding, X0)>;
} // Predicates = [IsRV32]
def : InstAlias<"csrr $rd, $csr", (CSRRS GPR:$rd, csr_sysreg:$csr, X0)>;
def : InstAlias<"csrw $csr, $rs", (CSRRW X0, csr_sysreg:$csr, GPR:$rs)>;
def : InstAlias<"csrs $csr, $rs", (CSRRS X0, csr_sysreg:$csr, GPR:$rs)>;
def : InstAlias<"csrc $csr, $rs", (CSRRC X0, csr_sysreg:$csr, GPR:$rs)>;
def : InstAlias<"csrwi $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrsi $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrci $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>;
let EmitPriority = 0 in {
def : InstAlias<"csrw $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrs $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrc $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrrw $rd, $csr, $imm", (CSRRWI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrrs $rd, $csr, $imm", (CSRRSI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrrc $rd, $csr, $imm", (CSRRCI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
}
def : InstAlias<"sfence.vma", (SFENCE_VMA X0, X0)>;
def : InstAlias<"sfence.vma $rs", (SFENCE_VMA GPR:$rs, X0)>;
let EmitPriority = 0 in {
def : InstAlias<"lb $rd, (${rs1})",
(LB GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"lh $rd, (${rs1})",
(LH GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"lw $rd, (${rs1})",
(LW GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"lbu $rd, (${rs1})",
(LBU GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"lhu $rd, (${rs1})",
(LHU GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"sb $rs2, (${rs1})",
(SB GPR:$rs2, GPR:$rs1, 0)>;
def : InstAlias<"sh $rs2, (${rs1})",
(SH GPR:$rs2, GPR:$rs1, 0)>;
def : InstAlias<"sw $rs2, (${rs1})",
(SW GPR:$rs2, GPR:$rs1, 0)>;
def : InstAlias<"add $rd, $rs1, $imm12",
(ADDI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"and $rd, $rs1, $imm12",
(ANDI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"xor $rd, $rs1, $imm12",
(XORI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"or $rd, $rs1, $imm12",
(ORI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"sll $rd, $rs1, $shamt",
(SLLI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
def : InstAlias<"srl $rd, $rs1, $shamt",
(SRLI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
def : InstAlias<"sra $rd, $rs1, $shamt",
(SRAI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
let Predicates = [IsRV64] in {
def : InstAlias<"lwu $rd, (${rs1})",
(LWU GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"ld $rd, (${rs1})",
(LD GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"sd $rs2, (${rs1})",
(SD GPR:$rs2, GPR:$rs1, 0)>;
def : InstAlias<"addw $rd, $rs1, $imm12",
(ADDIW GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"sllw $rd, $rs1, $shamt",
(SLLIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
def : InstAlias<"srlw $rd, $rs1, $shamt",
(SRLIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
def : InstAlias<"sraw $rd, $rs1, $shamt",
(SRAIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
} // Predicates = [IsRV64]
def : InstAlias<"slt $rd, $rs1, $imm12",
(SLTI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"sltu $rd, $rs1, $imm12",
(SLTIU GPR:$rd, GPR:$rs1, simm12:$imm12)>;
}
def : MnemonicAlias<"move", "mv">;
// The SCALL and SBREAK instructions wererenamed to ECALL and EBREAK in
// version 2.1 of the user-level ISA. Like the GNU toolchain, we still accept
// the old name for backwards compatibility.
def : MnemonicAlias<"scall", "ecall">;
def : MnemonicAlias<"sbreak", "ebreak">;
// This alias was added to the spec in December 2020. Don't print it by default
// to allow assembly we print to be compatible with versions of GNU assembler
// that don't support this alias.
def : InstAlias<"zext.b $rd, $rs", (ANDI GPR:$rd, GPR:$rs, 0xFF), 0>;
//===----------------------------------------------------------------------===//
// Pseudo-instructions and codegen patterns
//
// Naming convention: For 'generic' pattern classes, we use the naming
// convention PatTy1Ty2. For pattern classes which offer a more complex
// expansion, prefix the class name, e.g. BccPat.
//===----------------------------------------------------------------------===//
/// Generic pattern classes
class PatGpr<SDPatternOperator OpNode, RVInst Inst>
: Pat<(OpNode GPR:$rs1), (Inst GPR:$rs1)>;
class PatGprGpr<SDPatternOperator OpNode, RVInst Inst>
: Pat<(OpNode GPR:$rs1, GPR:$rs2), (Inst GPR:$rs1, GPR:$rs2)>;
class PatGprImm<SDPatternOperator OpNode, RVInst Inst, ImmLeaf ImmType>
: Pat<(XLenVT (OpNode (XLenVT GPR:$rs1), ImmType:$imm)),
(Inst GPR:$rs1, ImmType:$imm)>;
class PatGprSimm12<SDPatternOperator OpNode, RVInstI Inst>
: PatGprImm<OpNode, Inst, simm12>;
class PatGprUimmLog2XLen<SDPatternOperator OpNode, RVInstIShift Inst>
: PatGprImm<OpNode, Inst, uimmlog2xlen>;
/// Predicates
def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{
return isOrEquivalentToAdd(N);
}]>;
def assertsexti32 : PatFrag<(ops node:$src), (assertsext node:$src), [{
return cast<VTSDNode>(N->getOperand(1))->getVT().bitsLE(MVT::i32);
}]>;
def sexti32 : ComplexPattern<i64, 1, "selectSExti32">;
def assertzexti32 : PatFrag<(ops node:$src), (assertzext node:$src), [{
return cast<VTSDNode>(N->getOperand(1))->getVT().bitsLE(MVT::i32);
}]>;
def zexti32 : ComplexPattern<i64, 1, "selectZExti32">;
// Check that it is a SLLIUW (Shift Logical Left Immediate Unsigned i32
// on RV64). Also used to optimize the same sequence without SLLIUW.
def SLLIUWPat : PatFrag<(ops node:$A, node:$B),
(and (shl node:$A, node:$B), imm), [{
return MatchSLLIUW(N);
}]>;
def add_oneuse : PatFrag<(ops node:$A, node:$B), (add node:$A, node:$B), [{
return N->hasOneUse();
}]>;
/// Simple arithmetic operations
def : PatGprGpr<add, ADD>;
def : PatGprSimm12<add, ADDI>;
def : PatGprGpr<sub, SUB>;
def : PatGprGpr<or, OR>;
def : PatGprSimm12<or, ORI>;
def : PatGprGpr<and, AND>;
def : PatGprSimm12<and, ANDI>;
def : PatGprGpr<xor, XOR>;
def : PatGprSimm12<xor, XORI>;
def : PatGprUimmLog2XLen<shl, SLLI>;
def : PatGprUimmLog2XLen<srl, SRLI>;
def : PatGprUimmLog2XLen<sra, SRAI>;
// Match both a plain shift and one where the shift amount is masked (this is
// typically introduced when the legalizer promotes the shift amount and
// zero-extends it). For RISC-V, the mask is unnecessary as shifts in the base
// ISA only read the least significant 5 bits (RV32I) or 6 bits (RV64I).
def shiftMaskXLen : ComplexPattern<XLenVT, 1, "selectShiftMaskXLen", [], [], 0>;
def shiftMask32 : ComplexPattern<i64, 1, "selectShiftMask32", [], [], 0>;
class shiftop<SDPatternOperator operator>
: PatFrag<(ops node:$val, node:$count),
(operator node:$val, (XLenVT (shiftMaskXLen node:$count)))>;
class shiftopw<SDPatternOperator operator>
: PatFrag<(ops node:$val, node:$count),
(operator node:$val, (i64 (shiftMask32 node:$count)))>;
def : PatGprGpr<shiftop<shl>, SLL>;
def : PatGprGpr<shiftop<srl>, SRL>;
def : PatGprGpr<shiftop<sra>, SRA>;
// This is a special case of the ADD instruction used to facilitate the use of a
// fourth operand to emit a relocation on a symbol relating to this instruction.
// The relocation does not affect any bits of the instruction itself but is used
// as a hint to the linker.
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0 in
def PseudoAddTPRel : Pseudo<(outs GPR:$rd),
(ins GPR:$rs1, GPR:$rs2, tprel_add_symbol:$src), [],
"add", "$rd, $rs1, $rs2, $src">;
/// FrameIndex calculations
def : Pat<(add (XLenVT AddrFI:$Rs), simm12:$imm12),
(ADDI (XLenVT AddrFI:$Rs), simm12:$imm12)>;
def : Pat<(IsOrAdd (XLenVT AddrFI:$Rs), simm12:$imm12),
(ADDI (XLenVT AddrFI:$Rs), simm12:$imm12)>;
/// Setcc
def : PatGprGpr<setlt, SLT>;
def : PatGprSimm12<setlt, SLTI>;
def : PatGprGpr<setult, SLTU>;
def : PatGprSimm12<setult, SLTIU>;
// Define pattern expansions for setcc operations that aren't directly
// handled by a RISC-V instruction.
def : Pat<(seteq GPR:$rs1, 0), (SLTIU GPR:$rs1, 1)>;
def : Pat<(seteq GPR:$rs1, GPR:$rs2), (SLTIU (XOR GPR:$rs1, GPR:$rs2), 1)>;
def : Pat<(seteq GPR:$rs1, simm12_plus1:$imm12),
(SLTIU (ADDI GPR:$rs1, (NegImm simm12_plus1:$imm12)), 1)>;
def : Pat<(setne GPR:$rs1, 0), (SLTU X0, GPR:$rs1)>;
def : Pat<(setne GPR:$rs1, GPR:$rs2), (SLTU X0, (XOR GPR:$rs1, GPR:$rs2))>;
def : Pat<(setne GPR:$rs1, simm12_plus1:$imm12),
(SLTU X0, (ADDI GPR:$rs1, (NegImm simm12_plus1:$imm12)))>;
def : Pat<(setugt GPR:$rs1, GPR:$rs2), (SLTU GPR:$rs2, GPR:$rs1)>;
def : Pat<(setuge GPR:$rs1, GPR:$rs2), (XORI (SLTU GPR:$rs1, GPR:$rs2), 1)>;
def : Pat<(setule GPR:$rs1, GPR:$rs2), (XORI (SLTU GPR:$rs2, GPR:$rs1), 1)>;
def : Pat<(setgt GPR:$rs1, GPR:$rs2), (SLT GPR:$rs2, GPR:$rs1)>;
def : Pat<(setge GPR:$rs1, GPR:$rs2), (XORI (SLT GPR:$rs1, GPR:$rs2), 1)>;
def : Pat<(setle GPR:$rs1, GPR:$rs2), (XORI (SLT GPR:$rs2, GPR:$rs1), 1)>;
let usesCustomInserter = 1 in
class SelectCC_rrirr<RegisterClass valty, RegisterClass cmpty>
: Pseudo<(outs valty:$dst),
(ins cmpty:$lhs, cmpty:$rhs, ixlenimm:$imm,
valty:$truev, valty:$falsev),
[(set valty:$dst, (riscv_selectcc cmpty:$lhs, cmpty:$rhs,
(XLenVT timm:$imm), valty:$truev, valty:$falsev))]>;
def Select_GPR_Using_CC_GPR : SelectCC_rrirr<GPR, GPR>;
/// Branches and jumps
// Match `riscv_brcc` and lower to the appropriate RISC-V branch instruction.
class BccPat<CondCode Cond, RVInstB Inst>
: Pat<(riscv_brcc GPR:$rs1, GPR:$rs2, Cond, bb:$imm12),
(Inst GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12)>;
def : BccPat<SETEQ, BEQ>;
def : BccPat<SETNE, BNE>;
def : BccPat<SETLT, BLT>;
def : BccPat<SETGE, BGE>;
def : BccPat<SETULT, BLTU>;
def : BccPat<SETUGE, BGEU>;
let isBarrier = 1, isBranch = 1, isTerminator = 1 in
def PseudoBR : Pseudo<(outs), (ins simm21_lsb0_jal:$imm20), [(br bb:$imm20)]>,
PseudoInstExpansion<(JAL X0, simm21_lsb0_jal:$imm20)>;
let isBarrier = 1, isBranch = 1, isIndirectBranch = 1, isTerminator = 1 in
def PseudoBRIND : Pseudo<(outs), (ins GPR:$rs1, simm12:$imm12), []>,
PseudoInstExpansion<(JALR X0, GPR:$rs1, simm12:$imm12)>;
def : Pat<(brind GPR:$rs1), (PseudoBRIND GPR:$rs1, 0)>;
def : Pat<(brind (add GPR:$rs1, simm12:$imm12)),
(PseudoBRIND GPR:$rs1, simm12:$imm12)>;
// PseudoCALLReg is a generic pseudo instruction for calls which will eventually
// expand to auipc and jalr while encoding, with any given register used as the
// destination.
// Define AsmString to print "call" when compile with -S flag.
// Define isCodeGenOnly = 0 to support parsing assembly "call" instruction.
let isCall = 1, isBarrier = 1, isCodeGenOnly = 0, hasSideEffects = 0,
mayStore = 0, mayLoad = 0 in
def PseudoCALLReg : Pseudo<(outs GPR:$rd), (ins call_symbol:$func), []> {
let AsmString = "call\t$rd, $func";
}
// PseudoCALL is a pseudo instruction which will eventually expand to auipc
// and jalr while encoding. This is desirable, as an auipc+jalr pair with
// R_RISCV_CALL and R_RISCV_RELAX relocations can be be relaxed by the linker
// if the offset fits in a signed 21-bit immediate.
// Define AsmString to print "call" when compile with -S flag.
// Define isCodeGenOnly = 0 to support parsing assembly "call" instruction.
let isCall = 1, Defs = [X1], isCodeGenOnly = 0 in
def PseudoCALL : Pseudo<(outs), (ins call_symbol:$func), []> {
let AsmString = "call\t$func";
}
def : Pat<(riscv_call tglobaladdr:$func), (PseudoCALL tglobaladdr:$func)>;
def : Pat<(riscv_call texternalsym:$func), (PseudoCALL texternalsym:$func)>;
def : Pat<(riscv_uret_flag), (URET X0, X0)>;
def : Pat<(riscv_sret_flag), (SRET X0, X0)>;
def : Pat<(riscv_mret_flag), (MRET X0, X0)>;
let isCall = 1, Defs = [X1] in
def PseudoCALLIndirect : Pseudo<(outs), (ins GPR:$rs1),
[(riscv_call GPR:$rs1)]>,
PseudoInstExpansion<(JALR X1, GPR:$rs1, 0)>;
let isBarrier = 1, isReturn = 1, isTerminator = 1 in
def PseudoRET : Pseudo<(outs), (ins), [(riscv_ret_flag)]>,
PseudoInstExpansion<(JALR X0, X1, 0)>;
// PseudoTAIL is a pseudo instruction similar to PseudoCALL and will eventually
// expand to auipc and jalr while encoding.
// Define AsmString to print "tail" when compile with -S flag.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2],
isCodeGenOnly = 0 in
def PseudoTAIL : Pseudo<(outs), (ins call_symbol:$dst), []> {
let AsmString = "tail\t$dst";
}
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2] in
def PseudoTAILIndirect : Pseudo<(outs), (ins GPRTC:$rs1),
[(riscv_tail GPRTC:$rs1)]>,
PseudoInstExpansion<(JALR X0, GPR:$rs1, 0)>;
def : Pat<(riscv_tail (iPTR tglobaladdr:$dst)),
(PseudoTAIL texternalsym:$dst)>;
def : Pat<(riscv_tail (iPTR texternalsym:$dst)),
(PseudoTAIL texternalsym:$dst)>;
let isCall = 0, isBarrier = 1, isBranch = 1, isTerminator = 1,
isCodeGenOnly = 0, hasSideEffects = 0, mayStore = 0, mayLoad = 0 in
def PseudoJump : Pseudo<(outs GPR:$rd), (ins pseudo_jump_symbol:$target), []> {
let AsmString = "jump\t$target, $rd";
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0,
isAsmParserOnly = 1 in
def PseudoLLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
"lla", "$dst, $src">;
let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0,
isAsmParserOnly = 1 in
def PseudoLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
"la", "$dst, $src">;
let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0,
isAsmParserOnly = 1 in
def PseudoLA_TLS_IE : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
"la.tls.ie", "$dst, $src">;
let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0,
isAsmParserOnly = 1 in
def PseudoLA_TLS_GD : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
"la.tls.gd", "$dst, $src">;
/// Sign/Zero Extends
// There are single-instruction versions of these in Zbb, so disable these
// Pseudos if that extension is present.
let hasSideEffects = 0, mayLoad = 0,
mayStore = 0, isCodeGenOnly = 0, isAsmParserOnly = 1 in {
def PseudoSEXT_B : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "sext.b", "$rd, $rs">;
def PseudoSEXT_H : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "sext.h", "$rd, $rs">;
// rv64's sext.w is defined above, using InstAlias<"sext.w ...
// zext.b is defined above, using InstAlias<"zext.b ...
def PseudoZEXT_H : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "zext.h", "$rd, $rs">;
} // hasSideEffects = 0, ...
let Predicates = [IsRV64], hasSideEffects = 0, mayLoad = 0, mayStore = 0,
isCodeGenOnly = 0, isAsmParserOnly = 1 in {
def PseudoZEXT_W : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "zext.w", "$rd, $rs">;
} // Predicates = [IsRV64], ...
/// Loads
multiclass LdPat<PatFrag LoadOp, RVInst Inst, ValueType vt = XLenVT> {
def : Pat<(vt (LoadOp BaseAddr:$rs1)), (Inst BaseAddr:$rs1, 0)>;
def : Pat<(vt (LoadOp (add BaseAddr:$rs1, simm12:$imm12))),
(Inst BaseAddr:$rs1, simm12:$imm12)>;
def : Pat<(vt (LoadOp (IsOrAdd AddrFI:$rs1, simm12:$imm12))),
(Inst AddrFI:$rs1, simm12:$imm12)>;
}
defm : LdPat<sextloadi8, LB>;
defm : LdPat<extloadi8, LB>;
defm : LdPat<sextloadi16, LH>;
defm : LdPat<extloadi16, LH>;
defm : LdPat<load, LW, i32>, Requires<[IsRV32]>;
defm : LdPat<zextloadi8, LBU>;
defm : LdPat<zextloadi16, LHU>;
/// Stores
multiclass StPat<PatFrag StoreOp, RVInst Inst, RegisterClass StTy,
ValueType vt> {
def : Pat<(StoreOp (vt StTy:$rs2), BaseAddr:$rs1),
(Inst StTy:$rs2, BaseAddr:$rs1, 0)>;
def : Pat<(StoreOp (vt StTy:$rs2), (add BaseAddr:$rs1, simm12:$imm12)),
(Inst StTy:$rs2, BaseAddr:$rs1, simm12:$imm12)>;
def : Pat<(StoreOp (vt StTy:$rs2), (IsOrAdd AddrFI:$rs1, simm12:$imm12)),
(Inst StTy:$rs2, AddrFI:$rs1, simm12:$imm12)>;
}
defm : StPat<truncstorei8, SB, GPR, XLenVT>;
defm : StPat<truncstorei16, SH, GPR, XLenVT>;
defm : StPat<store, SW, GPR, i32>, Requires<[IsRV32]>;
/// Fences
// Refer to Table A.6 in the version 2.3 draft of the RISC-V Instruction Set
// Manual: Volume I.
// fence acquire -> fence r, rw
def : Pat<(atomic_fence (XLenVT 4), (timm)), (FENCE 0b10, 0b11)>;
// fence release -> fence rw, w
def : Pat<(atomic_fence (XLenVT 5), (timm)), (FENCE 0b11, 0b1)>;
// fence acq_rel -> fence.tso
def : Pat<(atomic_fence (XLenVT 6), (timm)), (FENCE_TSO)>;
// fence seq_cst -> fence rw, rw
def : Pat<(atomic_fence (XLenVT 7), (timm)), (FENCE 0b11, 0b11)>;
// Lowering for atomic load and store is defined in RISCVInstrInfoA.td.
// Although these are lowered to fence+load/store instructions defined in the
// base RV32I/RV64I ISA, this lowering is only used when the A extension is
// present. This is necessary as it isn't valid to mix __atomic_* libcalls
// with inline atomic operations for the same object.
/// Access to system registers
// Helpers for defining specific operations. They are defined for each system
// register separately. Side effect is not used because dependencies are
// expressed via use-def properties.
class ReadSysReg<SysReg SR, list<Register> Regs>
: Pseudo<(outs GPR:$rd), (ins),
[(set GPR:$rd, (riscv_read_csr (XLenVT SR.Encoding)))]>,
PseudoInstExpansion<(CSRRS GPR:$rd, SR.Encoding, X0)> {
let hasSideEffects = 0;
let Uses = Regs;
}
class WriteSysReg<SysReg SR, list<Register> Regs>
: Pseudo<(outs), (ins GPR:$val),
[(riscv_write_csr (XLenVT SR.Encoding), GPR:$val)]>,
PseudoInstExpansion<(CSRRW X0, SR.Encoding, GPR:$val)> {
let hasSideEffects = 0;
let Defs = Regs;
}
class WriteSysRegImm<SysReg SR, list<Register> Regs>
: Pseudo<(outs), (ins uimm5:$val),
[(riscv_write_csr (XLenVT SR.Encoding), uimm5:$val)]>,
PseudoInstExpansion<(CSRRWI X0, SR.Encoding, uimm5:$val)> {
let hasSideEffects = 0;
let Defs = Regs;
}
class SwapSysReg<SysReg SR, list<Register> Regs>
: Pseudo<(outs GPR:$rd), (ins GPR:$val),
[(set GPR:$rd, (riscv_swap_csr (XLenVT SR.Encoding), GPR:$val))]>,
PseudoInstExpansion<(CSRRW GPR:$rd, SR.Encoding, GPR:$val)> {
let hasSideEffects = 0;
let Uses = Regs;
let Defs = Regs;
}
class SwapSysRegImm<SysReg SR, list<Register> Regs>
: Pseudo<(outs GPR:$rd), (ins uimm5:$val),
[(set GPR:$rd, (riscv_swap_csr (XLenVT SR.Encoding), uimm5:$val))]>,
PseudoInstExpansion<(CSRRWI GPR:$rd, SR.Encoding, uimm5:$val)> {
let hasSideEffects = 0;
let Uses = Regs;
let Defs = Regs;
}
def ReadFRM : ReadSysReg<SysRegFRM, [FRM]>;
def WriteFRM : WriteSysReg<SysRegFRM, [FRM]>;
def WriteFRMImm : WriteSysRegImm<SysRegFRM, [FRM]>;
/// Other pseudo-instructions
// Pessimistically assume the stack pointer will be clobbered
let Defs = [X2], Uses = [X2] in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
[(callseq_start timm:$amt1, timm:$amt2)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
[(callseq_end timm:$amt1, timm:$amt2)]>;
} // Defs = [X2], Uses = [X2]
/// RV64 patterns
let Predicates = [IsRV64, NotHasStdExtZba] in {
def : Pat<(i64 (and GPR:$rs1, 0xffffffff)), (SRLI (SLLI GPR:$rs1, 32), 32)>;
// If we're shifting a 32-bit zero extended value left by 0-31 bits, use 2
// shifts instead of 3. This can occur when unsigned is used to index an array.
def : Pat<(i64 (shl (and GPR:$rs1, 0xffffffff), uimm5:$shamt)),
(SRLI (SLLI GPR:$rs1, 32), (ImmSubFrom32 uimm5:$shamt))>;
// shl/and can appear in the other order too.
def : Pat<(i64 (SLLIUWPat GPR:$rs1, uimm5:$shamt)),
(SRLI (SLLI GPR:$rs1, 32), (ImmSubFrom32 uimm5:$shamt))>;
// If we're shifting a value left by 0-31 bits, and then masking to 32-bits,
// use 2 shifts instead of 3.
def : Pat<(i64 (and (shl GPR:$rs1, uimm5:$shamt), 0xffffffff)),
(SRLI (SLLI GPR:$rs1, (ImmPlus32 uimm5:$shamt)), 32)>;
}
let Predicates = [IsRV64] in {
/// sext and zext
def : Pat<(sext_inreg GPR:$rs1, i32), (ADDIW GPR:$rs1, 0)>;
/// ALU operations
def : Pat<(sext_inreg (add GPR:$rs1, GPR:$rs2), i32),
(ADDW GPR:$rs1, GPR:$rs2)>;
def : Pat<(sext_inreg (add GPR:$rs1, simm12:$imm12), i32),
(ADDIW GPR:$rs1, simm12:$imm12)>;
def : Pat<(sext_inreg (sub GPR:$rs1, GPR:$rs2), i32),
(SUBW GPR:$rs1, GPR:$rs2)>;
def : Pat<(sext_inreg (shl GPR:$rs1, uimm5:$shamt), i32),
(SLLIW GPR:$rs1, uimm5:$shamt)>;
def : Pat<(i64 (srl (and GPR:$rs1, 0xffffffff), uimm5:$shamt)),
(SRLIW GPR:$rs1, uimm5:$shamt)>;
def : Pat<(i64 (srl (shl GPR:$rs1, (i64 32)), uimm6gt32:$shamt)),
(SRLIW GPR:$rs1, (ImmSub32 uimm6gt32:$shamt))>;
def : Pat<(sra (sext_inreg GPR:$rs1, i32), uimm5:$shamt),
(SRAIW GPR:$rs1, uimm5:$shamt)>;
def : Pat<(i64 (sra (shl GPR:$rs1, (i64 32)), uimm6gt32:$shamt)),
(SRAIW GPR:$rs1, (ImmSub32 uimm6gt32:$shamt))>;
def : PatGprGpr<shiftopw<riscv_sllw>, SLLW>;
def : PatGprGpr<shiftopw<riscv_srlw>, SRLW>;
def : PatGprGpr<shiftopw<riscv_sraw>, SRAW>;
/// Loads
defm : LdPat<sextloadi32, LW, i64>;
defm : LdPat<extloadi32, LW, i64>;
defm : LdPat<zextloadi32, LWU, i64>;
defm : LdPat<load, LD, i64>;
/// Stores
defm : StPat<truncstorei32, SW, GPR, i64>;
defm : StPat<store, SD, GPR, i64>;
} // Predicates = [IsRV64]
/// readcyclecounter
// On RV64, we can directly read the 64-bit "cycle" CSR.
let Predicates = [IsRV64] in
def : Pat<(i64 (readcyclecounter)), (CSRRS CYCLE.Encoding, X0)>;
// On RV32, ReadCycleWide will be expanded to the suggested loop reading both
// halves of the 64-bit "cycle" CSR.
let Predicates = [IsRV32], usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
def ReadCycleWide : Pseudo<(outs GPR:$lo, GPR:$hi), (ins),
[(set GPR:$lo, GPR:$hi, (riscv_read_cycle_wide))],
"", "">;
/// traps
// We lower `trap` to `unimp`, as this causes a hard exception on nearly all
// systems.
def : Pat<(trap), (UNIMP)>;
// We lower `debugtrap` to `ebreak`, as this will get the attention of the
// debugger if possible.
def : Pat<(debugtrap), (EBREAK)>;
/// Simple optimization
def : Pat<(add GPR:$rs1, (AddiPair:$rs2)),
(ADDI (ADDI GPR:$rs1, (AddiPairImmB AddiPair:$rs2)),
(AddiPairImmA GPR:$rs2))>;
let Predicates = [IsRV64] in {
def : Pat<(sext_inreg (add_oneuse GPR:$rs1, (AddiPair:$rs2)), i32),
(ADDIW (ADDIW GPR:$rs1, (AddiPairImmB AddiPair:$rs2)),
(AddiPairImmA AddiPair:$rs2))>;
}
//===----------------------------------------------------------------------===//
// Standard extensions
//===----------------------------------------------------------------------===//
include "RISCVInstrInfoM.td"
include "RISCVInstrInfoA.td"
include "RISCVInstrInfoF.td"
include "RISCVInstrInfoD.td"
include "RISCVInstrInfoC.td"
include "RISCVInstrInfoB.td"
include "RISCVInstrInfoV.td"
include "RISCVInstrInfoZfh.td"