llvm-project/llvm/lib/Target/RISCV/MCTargetDesc/RISCVMatInt.cpp

130 lines
5.1 KiB
C++

//===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "RISCVMatInt.h"
#include "MCTargetDesc/RISCVMCTargetDesc.h"
#include "llvm/ADT/APInt.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
// Recursively generate a sequence for materializing an integer.
static void generateInstSeqImpl(int64_t Val, bool IsRV64,
RISCVMatInt::InstSeq &Res) {
if (isInt<32>(Val)) {
// Depending on the active bits in the immediate Value v, the following
// instruction sequences are emitted:
//
// v == 0 : ADDI
// v[0,12) != 0 && v[12,32) == 0 : ADDI
// v[0,12) == 0 && v[12,32) != 0 : LUI
// v[0,32) != 0 : LUI+ADDI(W)
int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
int64_t Lo12 = SignExtend64<12>(Val);
if (Hi20)
Res.push_back(RISCVMatInt::Inst(RISCV::LUI, Hi20));
if (Lo12 || Hi20 == 0) {
unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
Res.push_back(RISCVMatInt::Inst(AddiOpc, Lo12));
}
return;
}
assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
// In the worst case, for a full 64-bit constant, a sequence of 8 instructions
// (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emmitted. Note
// that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
// while the following ADDI instructions contribute up to 12 bits each.
//
// On the first glance, implementing this seems to be possible by simply
// emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
// shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
// fact that ADDI performs a sign extended addition, doing it like that would
// only be possible when at most 11 bits of the ADDI instructions are used.
// Using all 12 bits of the ADDI instructions, like done by GAS, actually
// requires that the constant is processed starting with the least significant
// bit.
//
// In the following, constants are processed from LSB to MSB but instruction
// emission is performed from MSB to LSB by recursively calling
// generateInstSeq. In each recursion, first the lowest 12 bits are removed
// from the constant and the optimal shift amount, which can be greater than
// 12 bits if the constant is sparse, is determined. Then, the shifted
// remaining constant is processed recursively and gets emitted as soon as it
// fits into 32 bits. The emission of the shifts and additions is subsequently
// performed when the recursion returns.
int64_t Lo12 = SignExtend64<12>(Val);
int64_t Hi52 = ((uint64_t)Val + 0x800ull) >> 12;
int ShiftAmount = 12 + findFirstSet((uint64_t)Hi52);
Hi52 = SignExtend64(Hi52 >> (ShiftAmount - 12), 64 - ShiftAmount);
generateInstSeqImpl(Hi52, IsRV64, Res);
Res.push_back(RISCVMatInt::Inst(RISCV::SLLI, ShiftAmount));
if (Lo12)
Res.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12));
}
namespace llvm {
namespace RISCVMatInt {
InstSeq generateInstSeq(int64_t Val, bool IsRV64) {
RISCVMatInt::InstSeq Res;
generateInstSeqImpl(Val, IsRV64, Res);
// If the constant is positive we might be able to generate a shifted constant
// with no leading zeros and use a final SRLI to restore them.
if (Val > 0 && Res.size() > 2) {
assert(IsRV64 && "Expected RV32 to only need 2 instructions");
unsigned ShiftAmount = countLeadingZeros((uint64_t)Val);
Val <<= ShiftAmount;
// Fill in the bits that will be shifted out with 1s. An example where this
// helps is trailing one masks with 32 or more ones. This will generate
// ADDI -1 and an SRLI.
Val |= maskTrailingOnes<uint64_t>(ShiftAmount);
RISCVMatInt::InstSeq TmpSeq;
generateInstSeqImpl(Val, IsRV64, TmpSeq);
TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, ShiftAmount));
// Keep the new sequence if it is an improvement.
if (TmpSeq.size() < Res.size())
Res = TmpSeq;
// Some cases can benefit from filling the lower bits with zeros instead.
Val &= maskTrailingZeros<uint64_t>(ShiftAmount);
TmpSeq.clear();
generateInstSeqImpl(Val, IsRV64, TmpSeq);
TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, ShiftAmount));
// Keep the new sequence if it is an improvement.
if (TmpSeq.size() < Res.size())
Res = TmpSeq;
}
return Res;
}
int getIntMatCost(const APInt &Val, unsigned Size, bool IsRV64) {
int PlatRegSize = IsRV64 ? 64 : 32;
// Split the constant into platform register sized chunks, and calculate cost
// of each chunk.
int Cost = 0;
for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), IsRV64);
Cost += MatSeq.size();
}
return std::max(1, Cost);
}
} // namespace RISCVMatInt
} // namespace llvm