llvm-project/clang/lib/AST/RecordLayoutBuilder.cpp

509 lines
18 KiB
C++

//=== ASTRecordLayoutBuilder.cpp - Helper class for building record layouts ==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "RecordLayoutBuilder.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/TargetInfo.h"
#include <llvm/ADT/SmallSet.h>
#include <llvm/Support/MathExtras.h>
using namespace clang;
ASTRecordLayoutBuilder::ASTRecordLayoutBuilder(ASTContext &Ctx)
: Ctx(Ctx), Size(0), Alignment(8), Packed(false), MaxFieldAlignment(0),
NextOffset(0), IsUnion(false), NonVirtualSize(0), NonVirtualAlignment(8) {}
/// LayoutVtable - Lay out the vtable and set PrimaryBase.
void ASTRecordLayoutBuilder::LayoutVtable(const CXXRecordDecl *RD,
llvm::SmallSet<const CXXRecordDecl*, 32> &IndirectPrimary) {
if (!RD->isDynamicClass()) {
// There is no primary base in this case.
setPrimaryBase(0, false);
return;
}
SelectPrimaryBase(RD, IndirectPrimary);
if (PrimaryBase == 0) {
int AS = 0;
UpdateAlignment(Ctx.Target.getPointerAlign(AS));
Size += Ctx.Target.getPointerWidth(AS);
NextOffset = Size;
}
}
void
ASTRecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
e = RD->bases_end(); i != e; ++i) {
if (!i->isVirtual()) {
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
// Skip the PrimaryBase here, as it is laid down first.
if (Base != PrimaryBase || PrimaryBaseWasVirtual)
LayoutBaseNonVirtually(Base, false);
}
}
}
// Helper routines related to the abi definition from:
// http://www.codesourcery.com/public/cxx-abi/abi.html
//
/// IsNearlyEmpty - Indicates when a class has a vtable pointer, but
/// no other data.
bool ASTRecordLayoutBuilder::IsNearlyEmpty(const CXXRecordDecl *RD) {
// FIXME: Audit the corners
if (!RD->isDynamicClass())
return false;
const ASTRecordLayout &BaseInfo = Ctx.getASTRecordLayout(RD);
if (BaseInfo.getNonVirtualSize() == Ctx.Target.getPointerWidth(0))
return true;
return false;
}
void ASTRecordLayoutBuilder::SelectPrimaryForBase(const CXXRecordDecl *RD,
llvm::SmallSet<const CXXRecordDecl*, 32> &IndirectPrimary) {
const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
const bool PrimaryBaseWasVirtual = Layout.getPrimaryBaseWasVirtual();
if (PrimaryBaseWasVirtual)
IndirectPrimary.insert(PrimaryBase);
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
e = RD->bases_end(); i != e; ++i) {
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
// Only bases with virtual bases participate in computing the
// indirect primary virtual base classes.
if (Base->getNumVBases())
SelectPrimaryForBase(Base, IndirectPrimary);
}
}
void ASTRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD,
const CXXRecordDecl *&FirstPrimary,
llvm::SmallSet<const CXXRecordDecl*, 32> &IndirectPrimary) {
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
e = RD->bases_end(); i != e; ++i) {
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
if (!i->isVirtual()) {
SelectPrimaryVBase(Base, FirstPrimary, IndirectPrimary);
if (PrimaryBase)
return;
continue;
}
if (IsNearlyEmpty(Base)) {
if (FirstPrimary==0)
FirstPrimary = Base;
if (!IndirectPrimary.count(Base)) {
setPrimaryBase(Base, true);
return;
}
}
}
}
/// SelectPrimaryBase - Selects the primary base for the given class and
/// record that with setPrimaryBase. We also calculate the IndirectPrimaries.
void ASTRecordLayoutBuilder::SelectPrimaryBase(const CXXRecordDecl *RD,
llvm::SmallSet<const CXXRecordDecl*, 32> &IndirectPrimary) {
// We compute all the primary virtual bases for all of our direct and
// indirect bases, and record all their primary virtual base classes.
const CXXRecordDecl *FirstPrimary = 0;
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
e = RD->bases_end(); i != e; ++i) {
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
SelectPrimaryForBase(Base, IndirectPrimary);
}
// The primary base is the first non-virtual indirect or direct base class,
// if one exists.
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
e = RD->bases_end(); i != e; ++i) {
if (!i->isVirtual()) {
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
if (Base->isDynamicClass()) {
setPrimaryBase(Base, false);
return;
}
}
}
setPrimaryBase(0, false);
// Otherwise, it is the first nearly empty virtual base that is not an
// indirect primary virtual base class, if one exists.
// If we have no virtual bases at this point, bail out as the searching below
// is expensive.
if (RD->getNumVBases() == 0)
return;
// Then we can search for the first nearly empty virtual base itself.
SelectPrimaryVBase(RD, FirstPrimary, IndirectPrimary);
// Otherwise if is the first nearly empty virtual base, if one exists,
// otherwise there is no primary base class.
setPrimaryBase(FirstPrimary, true);
return;
}
void ASTRecordLayoutBuilder::LayoutVirtualBase(const CXXRecordDecl *RD) {
LayoutBaseNonVirtually(RD, true);
}
void ASTRecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
const CXXRecordDecl *PB,
int64_t Offset,
llvm::SmallSet<const CXXRecordDecl*, 32> &mark,
llvm::SmallSet<const CXXRecordDecl*, 32> &IndirectPrimary) {
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
e = RD->bases_end(); i != e; ++i) {
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
#if 0
const ASTRecordLayout &L = Ctx.getASTRecordLayout(Base);
const CXXRecordDecl *PB = L.getPrimaryBase();
if (PB && L.getPrimaryBaseWasVirtual()
&& IndirectPrimary.count(PB)) {
int64_t BaseOffset;
// FIXME: calculate this.
BaseOffset = (1<<63) | (1<<31);
VBases.push_back(PB);
VBaseOffsets.push_back(BaseOffset);
}
#endif
int64_t BaseOffset = Offset;;
// FIXME: Calculate BaseOffset.
if (i->isVirtual()) {
if (Base == PB) {
// Only lay things out once.
if (mark.count(Base))
continue;
// Mark it so we don't lay it out twice.
mark.insert(Base);
assert (IndirectPrimary.count(Base) && "IndirectPrimary was wrong");
VBases.push_back(Base);
VBaseOffsets.push_back(Offset);
} else if (IndirectPrimary.count(Base)) {
// Someone else will eventually lay this out.
;
} else {
// Only lay things out once.
if (mark.count(Base))
continue;
// Mark it so we don't lay it out twice.
mark.insert(Base);
LayoutVirtualBase(Base);
BaseOffset = *(VBaseOffsets.end()-1);
}
}
if (Base->getNumVBases()) {
const ASTRecordLayout &L = Ctx.getASTRecordLayout(Base);
const CXXRecordDecl *PB = L.getPrimaryBase();
LayoutVirtualBases(Base, PB, BaseOffset, mark, IndirectPrimary);
}
}
}
void ASTRecordLayoutBuilder::LayoutBaseNonVirtually(const CXXRecordDecl *RD,
bool IsVirtualBase) {
const ASTRecordLayout &BaseInfo = Ctx.getASTRecordLayout(RD);
assert(BaseInfo.getDataSize() > 0 &&
"FIXME: Handle empty classes.");
unsigned BaseAlign = BaseInfo.getNonVirtualAlign();
uint64_t BaseSize = BaseInfo.getNonVirtualSize();
// Round up the current record size to the base's alignment boundary.
Size = (Size + (BaseAlign-1)) & ~(BaseAlign-1);
// Add base class offsets.
if (IsVirtualBase) {
VBases.push_back(RD);
VBaseOffsets.push_back(Size);
} else {
Bases.push_back(RD);
BaseOffsets.push_back(Size);
}
#if 0
// And now add offsets for all our primary virtual bases as well, so
// they all have offsets.
const ASTRecordLayout *L = &BaseInfo;
const CXXRecordDecl *PB = L->getPrimaryBase();
while (PB) {
if (L->getPrimaryBaseWasVirtual()) {
VBases.push_back(PB);
VBaseOffsets.push_back(Size);
}
PB = L->getPrimaryBase();
if (PB)
L = &Ctx.getASTRecordLayout(PB);
}
#endif
// Reserve space for this base.
Size += BaseSize;
// Remember the next available offset.
NextOffset = Size;
// Remember max struct/class alignment.
UpdateAlignment(BaseAlign);
}
void ASTRecordLayoutBuilder::Layout(const RecordDecl *D) {
IsUnion = D->isUnion();
Packed = D->hasAttr<PackedAttr>();
// The #pragma pack attribute specifies the maximum field alignment.
if (const PragmaPackAttr *PPA = D->getAttr<PragmaPackAttr>())
MaxFieldAlignment = PPA->getAlignment();
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
UpdateAlignment(AA->getAlignment());
llvm::SmallSet<const CXXRecordDecl*, 32> IndirectPrimary;
// If this is a C++ class, lay out the vtable and the non-virtual bases.
const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D);
if (RD) {
LayoutVtable(RD, IndirectPrimary);
// PrimaryBase goes first.
if (PrimaryBase) {
if (PrimaryBaseWasVirtual)
IndirectPrimary.insert(PrimaryBase);
LayoutBaseNonVirtually(PrimaryBase, PrimaryBaseWasVirtual);
}
LayoutNonVirtualBases(RD);
}
LayoutFields(D);
NonVirtualSize = Size;
NonVirtualAlignment = Alignment;
if (RD) {
llvm::SmallSet<const CXXRecordDecl*, 32> mark;
LayoutVirtualBases(RD, PrimaryBase, 0, mark, IndirectPrimary);
}
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
FinishLayout();
}
void ASTRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D,
const ObjCImplementationDecl *Impl) {
if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
const ASTRecordLayout &SL = Ctx.getASTObjCInterfaceLayout(SD);
UpdateAlignment(SL.getAlignment());
// We start laying out ivars not at the end of the superclass
// structure, but at the next byte following the last field.
Size = llvm::RoundUpToAlignment(SL.getDataSize(), 8);
NextOffset = Size;
}
Packed = D->hasAttr<PackedAttr>();
// The #pragma pack attribute specifies the maximum field alignment.
if (const PragmaPackAttr *PPA = D->getAttr<PragmaPackAttr>())
MaxFieldAlignment = PPA->getAlignment();
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
UpdateAlignment(AA->getAlignment());
// Layout each ivar sequentially.
llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
Ctx.ShallowCollectObjCIvars(D, Ivars, Impl);
for (unsigned i = 0, e = Ivars.size(); i != e; ++i)
LayoutField(Ivars[i]);
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
FinishLayout();
}
void ASTRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
// Layout each field, for now, just sequentially, respecting alignment. In
// the future, this will need to be tweakable by targets.
for (RecordDecl::field_iterator Field = D->field_begin(),
FieldEnd = D->field_end(); Field != FieldEnd; ++Field)
LayoutField(*Field);
}
void ASTRecordLayoutBuilder::LayoutField(const FieldDecl *D) {
bool FieldPacked = Packed;
uint64_t FieldOffset = IsUnion ? 0 : Size;
uint64_t FieldSize;
unsigned FieldAlign;
FieldPacked |= D->hasAttr<PackedAttr>();
if (const Expr *BitWidthExpr = D->getBitWidth()) {
// TODO: Need to check this algorithm on other targets!
// (tested on Linux-X86)
FieldSize = BitWidthExpr->EvaluateAsInt(Ctx).getZExtValue();
std::pair<uint64_t, unsigned> FieldInfo = Ctx.getTypeInfo(D->getType());
uint64_t TypeSize = FieldInfo.first;
FieldAlign = FieldInfo.second;
if (FieldPacked)
FieldAlign = 1;
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
FieldAlign = std::max(FieldAlign, AA->getAlignment());
// The maximum field alignment overrides the aligned attribute.
if (MaxFieldAlignment)
FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
// Check if we need to add padding to give the field the correct
// alignment.
if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
// Padding members don't affect overall alignment
if (!D->getIdentifier())
FieldAlign = 1;
} else {
if (D->getType()->isIncompleteArrayType()) {
// This is a flexible array member; we can't directly
// query getTypeInfo about these, so we figure it out here.
// Flexible array members don't have any size, but they
// have to be aligned appropriately for their element type.
FieldSize = 0;
const ArrayType* ATy = Ctx.getAsArrayType(D->getType());
FieldAlign = Ctx.getTypeAlign(ATy->getElementType());
} else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
unsigned AS = RT->getPointeeType().getAddressSpace();
FieldSize = Ctx.Target.getPointerWidth(AS);
FieldAlign = Ctx.Target.getPointerAlign(AS);
} else {
std::pair<uint64_t, unsigned> FieldInfo = Ctx.getTypeInfo(D->getType());
FieldSize = FieldInfo.first;
FieldAlign = FieldInfo.second;
}
if (FieldPacked)
FieldAlign = 8;
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
FieldAlign = std::max(FieldAlign, AA->getAlignment());
// The maximum field alignment overrides the aligned attribute.
if (MaxFieldAlignment)
FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
// Round up the current record size to the field's alignment boundary.
FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
}
// Place this field at the current location.
FieldOffsets.push_back(FieldOffset);
// Reserve space for this field.
if (IsUnion)
Size = std::max(Size, FieldSize);
else
Size = FieldOffset + FieldSize;
// Remember the next available offset.
NextOffset = Size;
// Remember max struct/class alignment.
UpdateAlignment(FieldAlign);
}
void ASTRecordLayoutBuilder::FinishLayout() {
// In C++, records cannot be of size 0.
if (Ctx.getLangOptions().CPlusPlus && Size == 0)
Size = 8;
// Finally, round the size of the record up to the alignment of the
// record itself.
Size = (Size + (Alignment-1)) & ~(Alignment-1);
}
void ASTRecordLayoutBuilder::UpdateAlignment(unsigned NewAlignment) {
if (NewAlignment <= Alignment)
return;
assert(llvm::isPowerOf2_32(NewAlignment && "Alignment not a power of 2"));
Alignment = NewAlignment;
}
const ASTRecordLayout *
ASTRecordLayoutBuilder::ComputeLayout(ASTContext &Ctx,
const RecordDecl *D) {
ASTRecordLayoutBuilder Builder(Ctx);
Builder.Layout(D);
if (!isa<CXXRecordDecl>(D))
return new ASTRecordLayout(Builder.Size, Builder.Alignment, Builder.Size,
Builder.FieldOffsets.data(),
Builder.FieldOffsets.size());
// FIXME: This is not always correct. See the part about bitfields at
// http://www.codesourcery.com/public/cxx-abi/abi.html#POD for more info.
// FIXME: IsPODForThePurposeOfLayout should be stored in the record layout.
bool IsPODForThePurposeOfLayout = cast<CXXRecordDecl>(D)->isPOD();
assert(Builder.Bases.size() == Builder.BaseOffsets.size() &&
"Base offsets vector must be same size as bases vector!");
assert(Builder.VBases.size() == Builder.VBaseOffsets.size() &&
"Base offsets vector must be same size as bases vector!");
// FIXME: This should be done in FinalizeLayout.
uint64_t DataSize =
IsPODForThePurposeOfLayout ? Builder.Size : Builder.NextOffset;
uint64_t NonVirtualSize =
IsPODForThePurposeOfLayout ? DataSize : Builder.NonVirtualSize;
return new ASTRecordLayout(Builder.Size, Builder.Alignment, DataSize,
Builder.FieldOffsets.data(),
Builder.FieldOffsets.size(),
NonVirtualSize,
Builder.NonVirtualAlignment,
Builder.PrimaryBase,
Builder.PrimaryBaseWasVirtual,
Builder.Bases.data(),
Builder.BaseOffsets.data(),
Builder.Bases.size(),
Builder.VBases.data(),
Builder.VBaseOffsets.data(),
Builder.VBases.size());
}
const ASTRecordLayout *
ASTRecordLayoutBuilder::ComputeLayout(ASTContext &Ctx,
const ObjCInterfaceDecl *D,
const ObjCImplementationDecl *Impl) {
ASTRecordLayoutBuilder Builder(Ctx);
Builder.Layout(D, Impl);
return new ASTRecordLayout(Builder.Size, Builder.Alignment,
Builder.NextOffset,
Builder.FieldOffsets.data(),
Builder.FieldOffsets.size());
}