forked from OSchip/llvm-project
1852 lines
66 KiB
C++
1852 lines
66 KiB
C++
//===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the SplitAnalysis class as well as mutator functions for
|
|
// live range splitting.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SplitKit.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/LiveRangeEdit.h"
|
|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/CodeGen/VirtRegMap.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/BlockFrequency.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <tuple>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
|
|
STATISTIC(NumFinished, "Number of splits finished");
|
|
STATISTIC(NumSimple, "Number of splits that were simple");
|
|
STATISTIC(NumCopies, "Number of copies inserted for splitting");
|
|
STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
|
|
STATISTIC(NumRepairs, "Number of invalid live ranges repaired");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Last Insert Point Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
|
|
unsigned BBNum)
|
|
: LIS(lis), LastInsertPoint(BBNum) {}
|
|
|
|
SlotIndex
|
|
InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
|
|
const MachineBasicBlock &MBB) {
|
|
unsigned Num = MBB.getNumber();
|
|
std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
|
|
SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
|
|
|
|
SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
|
|
bool EHPadSuccessor = false;
|
|
for (const MachineBasicBlock *SMBB : MBB.successors()) {
|
|
if (SMBB->isEHPad()) {
|
|
ExceptionalSuccessors.push_back(SMBB);
|
|
EHPadSuccessor = true;
|
|
} else if (SMBB->isInlineAsmBrIndirectTarget())
|
|
ExceptionalSuccessors.push_back(SMBB);
|
|
}
|
|
|
|
// Compute insert points on the first call. The pair is independent of the
|
|
// current live interval.
|
|
if (!LIP.first.isValid()) {
|
|
MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
|
|
if (FirstTerm == MBB.end())
|
|
LIP.first = MBBEnd;
|
|
else
|
|
LIP.first = LIS.getInstructionIndex(*FirstTerm);
|
|
|
|
// If there is a landing pad or inlineasm_br successor, also find the
|
|
// instruction. If there is no such instruction, we don't need to do
|
|
// anything special. We assume there cannot be multiple instructions that
|
|
// are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
|
|
// assume that if there are any, they will be after any other call
|
|
// instructions in the block.
|
|
if (ExceptionalSuccessors.empty())
|
|
return LIP.first;
|
|
for (auto I = MBB.rbegin(), E = MBB.rend(); I != E; ++I) {
|
|
if ((EHPadSuccessor && I->isCall()) ||
|
|
I->getOpcode() == TargetOpcode::INLINEASM_BR) {
|
|
LIP.second = LIS.getInstructionIndex(*I);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If CurLI is live into a landing pad successor, move the last insert point
|
|
// back to the call that may throw.
|
|
if (!LIP.second)
|
|
return LIP.first;
|
|
|
|
if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
|
|
return LIS.isLiveInToMBB(CurLI, EHPad);
|
|
}))
|
|
return LIP.first;
|
|
|
|
// Find the value leaving MBB.
|
|
const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
|
|
if (!VNI)
|
|
return LIP.first;
|
|
|
|
// If the value leaving MBB was defined after the call in MBB, it can't
|
|
// really be live-in to the landing pad. This can happen if the landing pad
|
|
// has a PHI, and this register is undef on the exceptional edge.
|
|
// <rdar://problem/10664933>
|
|
if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
|
|
return LIP.first;
|
|
|
|
// Value is properly live-in to the landing pad.
|
|
// Only allow inserts before the call.
|
|
return LIP.second;
|
|
}
|
|
|
|
MachineBasicBlock::iterator
|
|
InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
|
|
MachineBasicBlock &MBB) {
|
|
SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
|
|
if (LIP == LIS.getMBBEndIdx(&MBB))
|
|
return MBB.end();
|
|
return LIS.getInstructionFromIndex(LIP);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Split Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
|
|
const MachineLoopInfo &mli)
|
|
: MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
|
|
TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
|
|
|
|
void SplitAnalysis::clear() {
|
|
UseSlots.clear();
|
|
UseBlocks.clear();
|
|
ThroughBlocks.clear();
|
|
CurLI = nullptr;
|
|
DidRepairRange = false;
|
|
}
|
|
|
|
/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
|
|
void SplitAnalysis::analyzeUses() {
|
|
assert(UseSlots.empty() && "Call clear first");
|
|
|
|
// First get all the defs from the interval values. This provides the correct
|
|
// slots for early clobbers.
|
|
for (const VNInfo *VNI : CurLI->valnos)
|
|
if (!VNI->isPHIDef() && !VNI->isUnused())
|
|
UseSlots.push_back(VNI->def);
|
|
|
|
// Get use slots form the use-def chain.
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
|
|
if (!MO.isUndef())
|
|
UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
|
|
|
|
array_pod_sort(UseSlots.begin(), UseSlots.end());
|
|
|
|
// Remove duplicates, keeping the smaller slot for each instruction.
|
|
// That is what we want for early clobbers.
|
|
UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
|
|
SlotIndex::isSameInstr),
|
|
UseSlots.end());
|
|
|
|
// Compute per-live block info.
|
|
if (!calcLiveBlockInfo()) {
|
|
// FIXME: calcLiveBlockInfo found inconsistencies in the live range.
|
|
// I am looking at you, RegisterCoalescer!
|
|
DidRepairRange = true;
|
|
++NumRepairs;
|
|
LLVM_DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
|
|
const_cast<LiveIntervals&>(LIS)
|
|
.shrinkToUses(const_cast<LiveInterval*>(CurLI));
|
|
UseBlocks.clear();
|
|
ThroughBlocks.clear();
|
|
bool fixed = calcLiveBlockInfo();
|
|
(void)fixed;
|
|
assert(fixed && "Couldn't fix broken live interval");
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
|
|
<< UseBlocks.size() << " blocks, through "
|
|
<< NumThroughBlocks << " blocks.\n");
|
|
}
|
|
|
|
/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
|
|
/// where CurLI is live.
|
|
bool SplitAnalysis::calcLiveBlockInfo() {
|
|
ThroughBlocks.resize(MF.getNumBlockIDs());
|
|
NumThroughBlocks = NumGapBlocks = 0;
|
|
if (CurLI->empty())
|
|
return true;
|
|
|
|
LiveInterval::const_iterator LVI = CurLI->begin();
|
|
LiveInterval::const_iterator LVE = CurLI->end();
|
|
|
|
SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
|
|
UseI = UseSlots.begin();
|
|
UseE = UseSlots.end();
|
|
|
|
// Loop over basic blocks where CurLI is live.
|
|
MachineFunction::iterator MFI =
|
|
LIS.getMBBFromIndex(LVI->start)->getIterator();
|
|
while (true) {
|
|
BlockInfo BI;
|
|
BI.MBB = &*MFI;
|
|
SlotIndex Start, Stop;
|
|
std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
|
|
|
|
// If the block contains no uses, the range must be live through. At one
|
|
// point, RegisterCoalescer could create dangling ranges that ended
|
|
// mid-block.
|
|
if (UseI == UseE || *UseI >= Stop) {
|
|
++NumThroughBlocks;
|
|
ThroughBlocks.set(BI.MBB->getNumber());
|
|
// The range shouldn't end mid-block if there are no uses. This shouldn't
|
|
// happen.
|
|
if (LVI->end < Stop)
|
|
return false;
|
|
} else {
|
|
// This block has uses. Find the first and last uses in the block.
|
|
BI.FirstInstr = *UseI;
|
|
assert(BI.FirstInstr >= Start);
|
|
do ++UseI;
|
|
while (UseI != UseE && *UseI < Stop);
|
|
BI.LastInstr = UseI[-1];
|
|
assert(BI.LastInstr < Stop);
|
|
|
|
// LVI is the first live segment overlapping MBB.
|
|
BI.LiveIn = LVI->start <= Start;
|
|
|
|
// When not live in, the first use should be a def.
|
|
if (!BI.LiveIn) {
|
|
assert(LVI->start == LVI->valno->def && "Dangling Segment start");
|
|
assert(LVI->start == BI.FirstInstr && "First instr should be a def");
|
|
BI.FirstDef = BI.FirstInstr;
|
|
}
|
|
|
|
// Look for gaps in the live range.
|
|
BI.LiveOut = true;
|
|
while (LVI->end < Stop) {
|
|
SlotIndex LastStop = LVI->end;
|
|
if (++LVI == LVE || LVI->start >= Stop) {
|
|
BI.LiveOut = false;
|
|
BI.LastInstr = LastStop;
|
|
break;
|
|
}
|
|
|
|
if (LastStop < LVI->start) {
|
|
// There is a gap in the live range. Create duplicate entries for the
|
|
// live-in snippet and the live-out snippet.
|
|
++NumGapBlocks;
|
|
|
|
// Push the Live-in part.
|
|
BI.LiveOut = false;
|
|
UseBlocks.push_back(BI);
|
|
UseBlocks.back().LastInstr = LastStop;
|
|
|
|
// Set up BI for the live-out part.
|
|
BI.LiveIn = false;
|
|
BI.LiveOut = true;
|
|
BI.FirstInstr = BI.FirstDef = LVI->start;
|
|
}
|
|
|
|
// A Segment that starts in the middle of the block must be a def.
|
|
assert(LVI->start == LVI->valno->def && "Dangling Segment start");
|
|
if (!BI.FirstDef)
|
|
BI.FirstDef = LVI->start;
|
|
}
|
|
|
|
UseBlocks.push_back(BI);
|
|
|
|
// LVI is now at LVE or LVI->end >= Stop.
|
|
if (LVI == LVE)
|
|
break;
|
|
}
|
|
|
|
// Live segment ends exactly at Stop. Move to the next segment.
|
|
if (LVI->end == Stop && ++LVI == LVE)
|
|
break;
|
|
|
|
// Pick the next basic block.
|
|
if (LVI->start < Stop)
|
|
++MFI;
|
|
else
|
|
MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
|
|
}
|
|
|
|
assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
|
|
return true;
|
|
}
|
|
|
|
unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
|
|
if (cli->empty())
|
|
return 0;
|
|
LiveInterval *li = const_cast<LiveInterval*>(cli);
|
|
LiveInterval::iterator LVI = li->begin();
|
|
LiveInterval::iterator LVE = li->end();
|
|
unsigned Count = 0;
|
|
|
|
// Loop over basic blocks where li is live.
|
|
MachineFunction::const_iterator MFI =
|
|
LIS.getMBBFromIndex(LVI->start)->getIterator();
|
|
SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
|
|
while (true) {
|
|
++Count;
|
|
LVI = li->advanceTo(LVI, Stop);
|
|
if (LVI == LVE)
|
|
return Count;
|
|
do {
|
|
++MFI;
|
|
Stop = LIS.getMBBEndIdx(&*MFI);
|
|
} while (Stop <= LVI->start);
|
|
}
|
|
}
|
|
|
|
bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
|
|
unsigned OrigReg = VRM.getOriginal(CurLI->reg);
|
|
const LiveInterval &Orig = LIS.getInterval(OrigReg);
|
|
assert(!Orig.empty() && "Splitting empty interval?");
|
|
LiveInterval::const_iterator I = Orig.find(Idx);
|
|
|
|
// Range containing Idx should begin at Idx.
|
|
if (I != Orig.end() && I->start <= Idx)
|
|
return I->start == Idx;
|
|
|
|
// Range does not contain Idx, previous must end at Idx.
|
|
return I != Orig.begin() && (--I)->end == Idx;
|
|
}
|
|
|
|
void SplitAnalysis::analyze(const LiveInterval *li) {
|
|
clear();
|
|
CurLI = li;
|
|
analyzeUses();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Split Editor
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
|
|
SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa,
|
|
LiveIntervals &lis, VirtRegMap &vrm,
|
|
MachineDominatorTree &mdt,
|
|
MachineBlockFrequencyInfo &mbfi)
|
|
: SA(sa), AA(aa), LIS(lis), VRM(vrm),
|
|
MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt),
|
|
TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
|
|
TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
|
|
MBFI(mbfi), RegAssign(Allocator) {}
|
|
|
|
void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
|
|
Edit = &LRE;
|
|
SpillMode = SM;
|
|
OpenIdx = 0;
|
|
RegAssign.clear();
|
|
Values.clear();
|
|
|
|
// Reset the LiveIntervalCalc instances needed for this spill mode.
|
|
LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
|
|
&LIS.getVNInfoAllocator());
|
|
if (SpillMode)
|
|
LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
|
|
&LIS.getVNInfoAllocator());
|
|
|
|
// We don't need an AliasAnalysis since we will only be performing
|
|
// cheap-as-a-copy remats anyway.
|
|
Edit->anyRematerializable(nullptr);
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void SplitEditor::dump() const {
|
|
if (RegAssign.empty()) {
|
|
dbgs() << " empty\n";
|
|
return;
|
|
}
|
|
|
|
for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
|
|
dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
|
|
dbgs() << '\n';
|
|
}
|
|
#endif
|
|
|
|
LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
|
|
LiveInterval &LI) {
|
|
for (LiveInterval::SubRange &S : LI.subranges())
|
|
if (S.LaneMask == LM)
|
|
return S;
|
|
llvm_unreachable("SubRange for this mask not found");
|
|
}
|
|
|
|
void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
|
|
if (!LI.hasSubRanges()) {
|
|
LI.createDeadDef(VNI);
|
|
return;
|
|
}
|
|
|
|
SlotIndex Def = VNI->def;
|
|
if (Original) {
|
|
// If we are transferring a def from the original interval, make sure
|
|
// to only update the subranges for which the original subranges had
|
|
// a def at this location.
|
|
for (LiveInterval::SubRange &S : LI.subranges()) {
|
|
auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
|
|
VNInfo *PV = PS.getVNInfoAt(Def);
|
|
if (PV != nullptr && PV->def == Def)
|
|
S.createDeadDef(Def, LIS.getVNInfoAllocator());
|
|
}
|
|
} else {
|
|
// This is a new def: either from rematerialization, or from an inserted
|
|
// copy. Since rematerialization can regenerate a definition of a sub-
|
|
// register, we need to check which subranges need to be updated.
|
|
const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
|
|
assert(DefMI != nullptr);
|
|
LaneBitmask LM;
|
|
for (const MachineOperand &DefOp : DefMI->defs()) {
|
|
Register R = DefOp.getReg();
|
|
if (R != LI.reg)
|
|
continue;
|
|
if (unsigned SR = DefOp.getSubReg())
|
|
LM |= TRI.getSubRegIndexLaneMask(SR);
|
|
else {
|
|
LM = MRI.getMaxLaneMaskForVReg(R);
|
|
break;
|
|
}
|
|
}
|
|
for (LiveInterval::SubRange &S : LI.subranges())
|
|
if ((S.LaneMask & LM).any())
|
|
S.createDeadDef(Def, LIS.getVNInfoAllocator());
|
|
}
|
|
}
|
|
|
|
VNInfo *SplitEditor::defValue(unsigned RegIdx,
|
|
const VNInfo *ParentVNI,
|
|
SlotIndex Idx,
|
|
bool Original) {
|
|
assert(ParentVNI && "Mapping NULL value");
|
|
assert(Idx.isValid() && "Invalid SlotIndex");
|
|
assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
|
|
LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
|
|
|
|
// Create a new value.
|
|
VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
|
|
|
|
bool Force = LI->hasSubRanges();
|
|
ValueForcePair FP(Force ? nullptr : VNI, Force);
|
|
// Use insert for lookup, so we can add missing values with a second lookup.
|
|
std::pair<ValueMap::iterator, bool> InsP =
|
|
Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
|
|
|
|
// This was the first time (RegIdx, ParentVNI) was mapped, and it is not
|
|
// forced. Keep it as a simple def without any liveness.
|
|
if (!Force && InsP.second)
|
|
return VNI;
|
|
|
|
// If the previous value was a simple mapping, add liveness for it now.
|
|
if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
|
|
addDeadDef(*LI, OldVNI, Original);
|
|
|
|
// No longer a simple mapping. Switch to a complex mapping. If the
|
|
// interval has subranges, make it a forced mapping.
|
|
InsP.first->second = ValueForcePair(nullptr, Force);
|
|
}
|
|
|
|
// This is a complex mapping, add liveness for VNI
|
|
addDeadDef(*LI, VNI, Original);
|
|
return VNI;
|
|
}
|
|
|
|
void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
|
|
ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
|
|
VNInfo *VNI = VFP.getPointer();
|
|
|
|
// ParentVNI was either unmapped or already complex mapped. Either way, just
|
|
// set the force bit.
|
|
if (!VNI) {
|
|
VFP.setInt(true);
|
|
return;
|
|
}
|
|
|
|
// This was previously a single mapping. Make sure the old def is represented
|
|
// by a trivial live range.
|
|
addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
|
|
|
|
// Mark as complex mapped, forced.
|
|
VFP = ValueForcePair(nullptr, true);
|
|
}
|
|
|
|
SlotIndex SplitEditor::buildSingleSubRegCopy(unsigned FromReg, unsigned ToReg,
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
|
|
unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
|
|
const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
|
|
bool FirstCopy = !Def.isValid();
|
|
MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
|
|
.addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
|
|
| getInternalReadRegState(!FirstCopy), SubIdx)
|
|
.addReg(FromReg, 0, SubIdx);
|
|
|
|
BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
|
|
SlotIndexes &Indexes = *LIS.getSlotIndexes();
|
|
if (FirstCopy) {
|
|
Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
|
|
} else {
|
|
CopyMI->bundleWithPred();
|
|
}
|
|
LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx);
|
|
DestLI.refineSubRanges(Allocator, LaneMask,
|
|
[Def, &Allocator](LiveInterval::SubRange &SR) {
|
|
SR.createDeadDef(Def, Allocator);
|
|
},
|
|
Indexes, TRI);
|
|
return Def;
|
|
}
|
|
|
|
SlotIndex SplitEditor::buildCopy(unsigned FromReg, unsigned ToReg,
|
|
LaneBitmask LaneMask, MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
|
|
const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
|
|
if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
|
|
// The full vreg is copied.
|
|
MachineInstr *CopyMI =
|
|
BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
|
|
SlotIndexes &Indexes = *LIS.getSlotIndexes();
|
|
return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
|
|
}
|
|
|
|
// Only a subset of lanes needs to be copied. The following is a simple
|
|
// heuristic to construct a sequence of COPYs. We could add a target
|
|
// specific callback if this turns out to be suboptimal.
|
|
LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
|
|
|
|
// First pass: Try to find a perfectly matching subregister index. If none
|
|
// exists find the one covering the most lanemask bits.
|
|
SmallVector<unsigned, 8> PossibleIndexes;
|
|
unsigned BestIdx = 0;
|
|
unsigned BestCover = 0;
|
|
const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
|
|
assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
|
|
for (unsigned Idx = 1, E = TRI.getNumSubRegIndices(); Idx < E; ++Idx) {
|
|
// Is this index even compatible with the given class?
|
|
if (TRI.getSubClassWithSubReg(RC, Idx) != RC)
|
|
continue;
|
|
LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
|
|
// Early exit if we found a perfect match.
|
|
if (SubRegMask == LaneMask) {
|
|
BestIdx = Idx;
|
|
break;
|
|
}
|
|
|
|
// The index must not cover any lanes outside \p LaneMask.
|
|
if ((SubRegMask & ~LaneMask).any())
|
|
continue;
|
|
|
|
unsigned PopCount = SubRegMask.getNumLanes();
|
|
PossibleIndexes.push_back(Idx);
|
|
if (PopCount > BestCover) {
|
|
BestCover = PopCount;
|
|
BestIdx = Idx;
|
|
}
|
|
}
|
|
|
|
// Abort if we cannot possibly implement the COPY with the given indexes.
|
|
if (BestIdx == 0)
|
|
report_fatal_error("Impossible to implement partial COPY");
|
|
|
|
SlotIndex Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore,
|
|
BestIdx, DestLI, Late, SlotIndex());
|
|
|
|
// Greedy heuristic: Keep iterating keeping the best covering subreg index
|
|
// each time.
|
|
LaneBitmask LanesLeft = LaneMask & ~(TRI.getSubRegIndexLaneMask(BestIdx));
|
|
while (LanesLeft.any()) {
|
|
unsigned BestIdx = 0;
|
|
int BestCover = std::numeric_limits<int>::min();
|
|
for (unsigned Idx : PossibleIndexes) {
|
|
LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
|
|
// Early exit if we found a perfect match.
|
|
if (SubRegMask == LanesLeft) {
|
|
BestIdx = Idx;
|
|
break;
|
|
}
|
|
|
|
// Try to cover as much of the remaining lanes as possible but
|
|
// as few of the already covered lanes as possible.
|
|
int Cover = (SubRegMask & LanesLeft).getNumLanes()
|
|
- (SubRegMask & ~LanesLeft).getNumLanes();
|
|
if (Cover > BestCover) {
|
|
BestCover = Cover;
|
|
BestIdx = Idx;
|
|
}
|
|
}
|
|
|
|
if (BestIdx == 0)
|
|
report_fatal_error("Impossible to implement partial COPY");
|
|
|
|
buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
|
|
DestLI, Late, Def);
|
|
LanesLeft &= ~TRI.getSubRegIndexLaneMask(BestIdx);
|
|
}
|
|
|
|
return Def;
|
|
}
|
|
|
|
VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
|
|
VNInfo *ParentVNI,
|
|
SlotIndex UseIdx,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I) {
|
|
SlotIndex Def;
|
|
LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
|
|
|
|
// We may be trying to avoid interference that ends at a deleted instruction,
|
|
// so always begin RegIdx 0 early and all others late.
|
|
bool Late = RegIdx != 0;
|
|
|
|
// Attempt cheap-as-a-copy rematerialization.
|
|
unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
|
|
LiveInterval &OrigLI = LIS.getInterval(Original);
|
|
VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
|
|
|
|
unsigned Reg = LI->reg;
|
|
bool DidRemat = false;
|
|
if (OrigVNI) {
|
|
LiveRangeEdit::Remat RM(ParentVNI);
|
|
RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
|
|
if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
|
|
Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
|
|
++NumRemats;
|
|
DidRemat = true;
|
|
}
|
|
}
|
|
if (!DidRemat) {
|
|
LaneBitmask LaneMask;
|
|
if (LI->hasSubRanges()) {
|
|
LaneMask = LaneBitmask::getNone();
|
|
for (LiveInterval::SubRange &S : LI->subranges())
|
|
LaneMask |= S.LaneMask;
|
|
} else {
|
|
LaneMask = LaneBitmask::getAll();
|
|
}
|
|
|
|
++NumCopies;
|
|
Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
|
|
}
|
|
|
|
// Define the value in Reg.
|
|
return defValue(RegIdx, ParentVNI, Def, false);
|
|
}
|
|
|
|
/// Create a new virtual register and live interval.
|
|
unsigned SplitEditor::openIntv() {
|
|
// Create the complement as index 0.
|
|
if (Edit->empty())
|
|
Edit->createEmptyInterval();
|
|
|
|
// Create the open interval.
|
|
OpenIdx = Edit->size();
|
|
Edit->createEmptyInterval();
|
|
return OpenIdx;
|
|
}
|
|
|
|
void SplitEditor::selectIntv(unsigned Idx) {
|
|
assert(Idx != 0 && "Cannot select the complement interval");
|
|
assert(Idx < Edit->size() && "Can only select previously opened interval");
|
|
LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
|
|
OpenIdx = Idx;
|
|
}
|
|
|
|
SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
|
|
assert(OpenIdx && "openIntv not called before enterIntvBefore");
|
|
LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx);
|
|
Idx = Idx.getBaseIndex();
|
|
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
|
|
if (!ParentVNI) {
|
|
LLVM_DEBUG(dbgs() << ": not live\n");
|
|
return Idx;
|
|
}
|
|
LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
|
|
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
|
|
assert(MI && "enterIntvBefore called with invalid index");
|
|
|
|
VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
|
|
return VNI->def;
|
|
}
|
|
|
|
SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
|
|
assert(OpenIdx && "openIntv not called before enterIntvAfter");
|
|
LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx);
|
|
Idx = Idx.getBoundaryIndex();
|
|
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
|
|
if (!ParentVNI) {
|
|
LLVM_DEBUG(dbgs() << ": not live\n");
|
|
return Idx;
|
|
}
|
|
LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
|
|
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
|
|
assert(MI && "enterIntvAfter called with invalid index");
|
|
|
|
VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
|
|
std::next(MachineBasicBlock::iterator(MI)));
|
|
return VNI->def;
|
|
}
|
|
|
|
SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
|
|
assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
|
|
SlotIndex End = LIS.getMBBEndIdx(&MBB);
|
|
SlotIndex Last = End.getPrevSlot();
|
|
LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", "
|
|
<< Last);
|
|
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
|
|
if (!ParentVNI) {
|
|
LLVM_DEBUG(dbgs() << ": not live\n");
|
|
return End;
|
|
}
|
|
LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
|
|
VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
|
|
SA.getLastSplitPointIter(&MBB));
|
|
RegAssign.insert(VNI->def, End, OpenIdx);
|
|
LLVM_DEBUG(dump());
|
|
return VNI->def;
|
|
}
|
|
|
|
/// useIntv - indicate that all instructions in MBB should use OpenLI.
|
|
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
|
|
useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
|
|
}
|
|
|
|
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
|
|
assert(OpenIdx && "openIntv not called before useIntv");
|
|
LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
|
|
RegAssign.insert(Start, End, OpenIdx);
|
|
LLVM_DEBUG(dump());
|
|
}
|
|
|
|
SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
|
|
assert(OpenIdx && "openIntv not called before leaveIntvAfter");
|
|
LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx);
|
|
|
|
// The interval must be live beyond the instruction at Idx.
|
|
SlotIndex Boundary = Idx.getBoundaryIndex();
|
|
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
|
|
if (!ParentVNI) {
|
|
LLVM_DEBUG(dbgs() << ": not live\n");
|
|
return Boundary.getNextSlot();
|
|
}
|
|
LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
|
|
MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
|
|
assert(MI && "No instruction at index");
|
|
|
|
// In spill mode, make live ranges as short as possible by inserting the copy
|
|
// before MI. This is only possible if that instruction doesn't redefine the
|
|
// value. The inserted COPY is not a kill, and we don't need to recompute
|
|
// the source live range. The spiller also won't try to hoist this copy.
|
|
if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
|
|
MI->readsVirtualRegister(Edit->getReg())) {
|
|
forceRecompute(0, *ParentVNI);
|
|
defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
|
|
return Idx;
|
|
}
|
|
|
|
VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
|
|
std::next(MachineBasicBlock::iterator(MI)));
|
|
return VNI->def;
|
|
}
|
|
|
|
SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
|
|
assert(OpenIdx && "openIntv not called before leaveIntvBefore");
|
|
LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx);
|
|
|
|
// The interval must be live into the instruction at Idx.
|
|
Idx = Idx.getBaseIndex();
|
|
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
|
|
if (!ParentVNI) {
|
|
LLVM_DEBUG(dbgs() << ": not live\n");
|
|
return Idx.getNextSlot();
|
|
}
|
|
LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
|
|
|
|
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
|
|
assert(MI && "No instruction at index");
|
|
VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
|
|
return VNI->def;
|
|
}
|
|
|
|
SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
|
|
assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
|
|
SlotIndex Start = LIS.getMBBStartIdx(&MBB);
|
|
LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", "
|
|
<< Start);
|
|
|
|
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
|
|
if (!ParentVNI) {
|
|
LLVM_DEBUG(dbgs() << ": not live\n");
|
|
return Start;
|
|
}
|
|
|
|
VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
|
|
MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
|
|
RegAssign.insert(Start, VNI->def, OpenIdx);
|
|
LLVM_DEBUG(dump());
|
|
return VNI->def;
|
|
}
|
|
|
|
void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
|
|
assert(OpenIdx && "openIntv not called before overlapIntv");
|
|
const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
|
|
assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
|
|
"Parent changes value in extended range");
|
|
assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
|
|
"Range cannot span basic blocks");
|
|
|
|
// The complement interval will be extended as needed by LICalc.extend().
|
|
if (ParentVNI)
|
|
forceRecompute(0, *ParentVNI);
|
|
LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
|
|
RegAssign.insert(Start, End, OpenIdx);
|
|
LLVM_DEBUG(dump());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Spill modes
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
|
|
LiveInterval *LI = &LIS.getInterval(Edit->get(0));
|
|
LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
|
|
RegAssignMap::iterator AssignI;
|
|
AssignI.setMap(RegAssign);
|
|
|
|
for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
|
|
SlotIndex Def = Copies[i]->def;
|
|
MachineInstr *MI = LIS.getInstructionFromIndex(Def);
|
|
assert(MI && "No instruction for back-copy");
|
|
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
MachineBasicBlock::iterator MBBI(MI);
|
|
bool AtBegin;
|
|
do AtBegin = MBBI == MBB->begin();
|
|
while (!AtBegin && (--MBBI)->isDebugInstr());
|
|
|
|
LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
|
|
LIS.removeVRegDefAt(*LI, Def);
|
|
LIS.RemoveMachineInstrFromMaps(*MI);
|
|
MI->eraseFromParent();
|
|
|
|
// Adjust RegAssign if a register assignment is killed at Def. We want to
|
|
// avoid calculating the live range of the source register if possible.
|
|
AssignI.find(Def.getPrevSlot());
|
|
if (!AssignI.valid() || AssignI.start() >= Def)
|
|
continue;
|
|
// If MI doesn't kill the assigned register, just leave it.
|
|
if (AssignI.stop() != Def)
|
|
continue;
|
|
unsigned RegIdx = AssignI.value();
|
|
if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
|
|
LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx
|
|
<< '\n');
|
|
forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
|
|
} else {
|
|
SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot();
|
|
LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI);
|
|
AssignI.setStop(Kill);
|
|
}
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock*
|
|
SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
|
|
MachineBasicBlock *DefMBB) {
|
|
if (MBB == DefMBB)
|
|
return MBB;
|
|
assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
|
|
|
|
const MachineLoopInfo &Loops = SA.Loops;
|
|
const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
|
|
MachineDomTreeNode *DefDomNode = MDT[DefMBB];
|
|
|
|
// Best candidate so far.
|
|
MachineBasicBlock *BestMBB = MBB;
|
|
unsigned BestDepth = std::numeric_limits<unsigned>::max();
|
|
|
|
while (true) {
|
|
const MachineLoop *Loop = Loops.getLoopFor(MBB);
|
|
|
|
// MBB isn't in a loop, it doesn't get any better. All dominators have a
|
|
// higher frequency by definition.
|
|
if (!Loop) {
|
|
LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
|
|
<< " dominates " << printMBBReference(*MBB)
|
|
<< " at depth 0\n");
|
|
return MBB;
|
|
}
|
|
|
|
// We'll never be able to exit the DefLoop.
|
|
if (Loop == DefLoop) {
|
|
LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
|
|
<< " dominates " << printMBBReference(*MBB)
|
|
<< " in the same loop\n");
|
|
return MBB;
|
|
}
|
|
|
|
// Least busy dominator seen so far.
|
|
unsigned Depth = Loop->getLoopDepth();
|
|
if (Depth < BestDepth) {
|
|
BestMBB = MBB;
|
|
BestDepth = Depth;
|
|
LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
|
|
<< " dominates " << printMBBReference(*MBB)
|
|
<< " at depth " << Depth << '\n');
|
|
}
|
|
|
|
// Leave loop by going to the immediate dominator of the loop header.
|
|
// This is a bigger stride than simply walking up the dominator tree.
|
|
MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
|
|
|
|
// Too far up the dominator tree?
|
|
if (!IDom || !MDT.dominates(DefDomNode, IDom))
|
|
return BestMBB;
|
|
|
|
MBB = IDom->getBlock();
|
|
}
|
|
}
|
|
|
|
void SplitEditor::computeRedundantBackCopies(
|
|
DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
|
|
LiveInterval *LI = &LIS.getInterval(Edit->get(0));
|
|
LiveInterval *Parent = &Edit->getParent();
|
|
SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
|
|
SmallPtrSet<VNInfo *, 8> DominatedVNIs;
|
|
|
|
// Aggregate VNIs having the same value as ParentVNI.
|
|
for (VNInfo *VNI : LI->valnos) {
|
|
if (VNI->isUnused())
|
|
continue;
|
|
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
|
|
EqualVNs[ParentVNI->id].insert(VNI);
|
|
}
|
|
|
|
// For VNI aggregation of each ParentVNI, collect dominated, i.e.,
|
|
// redundant VNIs to BackCopies.
|
|
for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
|
|
VNInfo *ParentVNI = Parent->getValNumInfo(i);
|
|
if (!NotToHoistSet.count(ParentVNI->id))
|
|
continue;
|
|
SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
|
|
SmallPtrSetIterator<VNInfo *> It2 = It1;
|
|
for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
|
|
It2 = It1;
|
|
for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
|
|
if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
|
|
continue;
|
|
|
|
MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
|
|
MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
|
|
if (MBB1 == MBB2) {
|
|
DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
|
|
} else if (MDT.dominates(MBB1, MBB2)) {
|
|
DominatedVNIs.insert(*It2);
|
|
} else if (MDT.dominates(MBB2, MBB1)) {
|
|
DominatedVNIs.insert(*It1);
|
|
}
|
|
}
|
|
}
|
|
if (!DominatedVNIs.empty()) {
|
|
forceRecompute(0, *ParentVNI);
|
|
for (auto VNI : DominatedVNIs) {
|
|
BackCopies.push_back(VNI);
|
|
}
|
|
DominatedVNIs.clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// For SM_Size mode, find a common dominator for all the back-copies for
|
|
/// the same ParentVNI and hoist the backcopies to the dominator BB.
|
|
/// For SM_Speed mode, if the common dominator is hot and it is not beneficial
|
|
/// to do the hoisting, simply remove the dominated backcopies for the same
|
|
/// ParentVNI.
|
|
void SplitEditor::hoistCopies() {
|
|
// Get the complement interval, always RegIdx 0.
|
|
LiveInterval *LI = &LIS.getInterval(Edit->get(0));
|
|
LiveInterval *Parent = &Edit->getParent();
|
|
|
|
// Track the nearest common dominator for all back-copies for each ParentVNI,
|
|
// indexed by ParentVNI->id.
|
|
using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
|
|
SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
|
|
// The total cost of all the back-copies for each ParentVNI.
|
|
SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
|
|
// The ParentVNI->id set for which hoisting back-copies are not beneficial
|
|
// for Speed.
|
|
DenseSet<unsigned> NotToHoistSet;
|
|
|
|
// Find the nearest common dominator for parent values with multiple
|
|
// back-copies. If a single back-copy dominates, put it in DomPair.second.
|
|
for (VNInfo *VNI : LI->valnos) {
|
|
if (VNI->isUnused())
|
|
continue;
|
|
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
|
|
assert(ParentVNI && "Parent not live at complement def");
|
|
|
|
// Don't hoist remats. The complement is probably going to disappear
|
|
// completely anyway.
|
|
if (Edit->didRematerialize(ParentVNI))
|
|
continue;
|
|
|
|
MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
|
|
|
|
DomPair &Dom = NearestDom[ParentVNI->id];
|
|
|
|
// Keep directly defined parent values. This is either a PHI or an
|
|
// instruction in the complement range. All other copies of ParentVNI
|
|
// should be eliminated.
|
|
if (VNI->def == ParentVNI->def) {
|
|
LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
|
|
Dom = DomPair(ValMBB, VNI->def);
|
|
continue;
|
|
}
|
|
// Skip the singly mapped values. There is nothing to gain from hoisting a
|
|
// single back-copy.
|
|
if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
|
|
LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
|
|
continue;
|
|
}
|
|
|
|
if (!Dom.first) {
|
|
// First time we see ParentVNI. VNI dominates itself.
|
|
Dom = DomPair(ValMBB, VNI->def);
|
|
} else if (Dom.first == ValMBB) {
|
|
// Two defs in the same block. Pick the earlier def.
|
|
if (!Dom.second.isValid() || VNI->def < Dom.second)
|
|
Dom.second = VNI->def;
|
|
} else {
|
|
// Different basic blocks. Check if one dominates.
|
|
MachineBasicBlock *Near =
|
|
MDT.findNearestCommonDominator(Dom.first, ValMBB);
|
|
if (Near == ValMBB)
|
|
// Def ValMBB dominates.
|
|
Dom = DomPair(ValMBB, VNI->def);
|
|
else if (Near != Dom.first)
|
|
// None dominate. Hoist to common dominator, need new def.
|
|
Dom = DomPair(Near, SlotIndex());
|
|
Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
|
|
<< VNI->def << " for parent " << ParentVNI->id << '@'
|
|
<< ParentVNI->def << " hoist to "
|
|
<< printMBBReference(*Dom.first) << ' ' << Dom.second
|
|
<< '\n');
|
|
}
|
|
|
|
// Insert the hoisted copies.
|
|
for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
|
|
DomPair &Dom = NearestDom[i];
|
|
if (!Dom.first || Dom.second.isValid())
|
|
continue;
|
|
// This value needs a hoisted copy inserted at the end of Dom.first.
|
|
VNInfo *ParentVNI = Parent->getValNumInfo(i);
|
|
MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
|
|
// Get a less loopy dominator than Dom.first.
|
|
Dom.first = findShallowDominator(Dom.first, DefMBB);
|
|
if (SpillMode == SM_Speed &&
|
|
MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
|
|
NotToHoistSet.insert(ParentVNI->id);
|
|
continue;
|
|
}
|
|
SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
|
|
Dom.second =
|
|
defFromParent(0, ParentVNI, Last, *Dom.first,
|
|
SA.getLastSplitPointIter(Dom.first))->def;
|
|
}
|
|
|
|
// Remove redundant back-copies that are now known to be dominated by another
|
|
// def with the same value.
|
|
SmallVector<VNInfo*, 8> BackCopies;
|
|
for (VNInfo *VNI : LI->valnos) {
|
|
if (VNI->isUnused())
|
|
continue;
|
|
VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
|
|
const DomPair &Dom = NearestDom[ParentVNI->id];
|
|
if (!Dom.first || Dom.second == VNI->def ||
|
|
NotToHoistSet.count(ParentVNI->id))
|
|
continue;
|
|
BackCopies.push_back(VNI);
|
|
forceRecompute(0, *ParentVNI);
|
|
}
|
|
|
|
// If it is not beneficial to hoist all the BackCopies, simply remove
|
|
// redundant BackCopies in speed mode.
|
|
if (SpillMode == SM_Speed && !NotToHoistSet.empty())
|
|
computeRedundantBackCopies(NotToHoistSet, BackCopies);
|
|
|
|
removeBackCopies(BackCopies);
|
|
}
|
|
|
|
/// transferValues - Transfer all possible values to the new live ranges.
|
|
/// Values that were rematerialized are left alone, they need LICalc.extend().
|
|
bool SplitEditor::transferValues() {
|
|
bool Skipped = false;
|
|
RegAssignMap::const_iterator AssignI = RegAssign.begin();
|
|
for (const LiveRange::Segment &S : Edit->getParent()) {
|
|
LLVM_DEBUG(dbgs() << " blit " << S << ':');
|
|
VNInfo *ParentVNI = S.valno;
|
|
// RegAssign has holes where RegIdx 0 should be used.
|
|
SlotIndex Start = S.start;
|
|
AssignI.advanceTo(Start);
|
|
do {
|
|
unsigned RegIdx;
|
|
SlotIndex End = S.end;
|
|
if (!AssignI.valid()) {
|
|
RegIdx = 0;
|
|
} else if (AssignI.start() <= Start) {
|
|
RegIdx = AssignI.value();
|
|
if (AssignI.stop() < End) {
|
|
End = AssignI.stop();
|
|
++AssignI;
|
|
}
|
|
} else {
|
|
RegIdx = 0;
|
|
End = std::min(End, AssignI.start());
|
|
}
|
|
|
|
// The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
|
|
LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
|
|
<< printReg(Edit->get(RegIdx)) << ')');
|
|
LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
|
|
|
|
// Check for a simply defined value that can be blitted directly.
|
|
ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
|
|
if (VNInfo *VNI = VFP.getPointer()) {
|
|
LLVM_DEBUG(dbgs() << ':' << VNI->id);
|
|
LI.addSegment(LiveInterval::Segment(Start, End, VNI));
|
|
Start = End;
|
|
continue;
|
|
}
|
|
|
|
// Skip values with forced recomputation.
|
|
if (VFP.getInt()) {
|
|
LLVM_DEBUG(dbgs() << "(recalc)");
|
|
Skipped = true;
|
|
Start = End;
|
|
continue;
|
|
}
|
|
|
|
LiveIntervalCalc &LIC = getLICalc(RegIdx);
|
|
|
|
// This value has multiple defs in RegIdx, but it wasn't rematerialized,
|
|
// so the live range is accurate. Add live-in blocks in [Start;End) to the
|
|
// LiveInBlocks.
|
|
MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
|
|
SlotIndex BlockStart, BlockEnd;
|
|
std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
|
|
|
|
// The first block may be live-in, or it may have its own def.
|
|
if (Start != BlockStart) {
|
|
VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
|
|
assert(VNI && "Missing def for complex mapped value");
|
|
LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
|
|
// MBB has its own def. Is it also live-out?
|
|
if (BlockEnd <= End)
|
|
LIC.setLiveOutValue(&*MBB, VNI);
|
|
|
|
// Skip to the next block for live-in.
|
|
++MBB;
|
|
BlockStart = BlockEnd;
|
|
}
|
|
|
|
// Handle the live-in blocks covered by [Start;End).
|
|
assert(Start <= BlockStart && "Expected live-in block");
|
|
while (BlockStart < End) {
|
|
LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
|
|
BlockEnd = LIS.getMBBEndIdx(&*MBB);
|
|
if (BlockStart == ParentVNI->def) {
|
|
// This block has the def of a parent PHI, so it isn't live-in.
|
|
assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
|
|
VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
|
|
assert(VNI && "Missing def for complex mapped parent PHI");
|
|
if (End >= BlockEnd)
|
|
LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
|
|
} else {
|
|
// This block needs a live-in value. The last block covered may not
|
|
// be live-out.
|
|
if (End < BlockEnd)
|
|
LIC.addLiveInBlock(LI, MDT[&*MBB], End);
|
|
else {
|
|
// Live-through, and we don't know the value.
|
|
LIC.addLiveInBlock(LI, MDT[&*MBB]);
|
|
LIC.setLiveOutValue(&*MBB, nullptr);
|
|
}
|
|
}
|
|
BlockStart = BlockEnd;
|
|
++MBB;
|
|
}
|
|
Start = End;
|
|
} while (Start != S.end);
|
|
LLVM_DEBUG(dbgs() << '\n');
|
|
}
|
|
|
|
LICalc[0].calculateValues();
|
|
if (SpillMode)
|
|
LICalc[1].calculateValues();
|
|
|
|
return Skipped;
|
|
}
|
|
|
|
static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
|
|
const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
|
|
if (Seg == nullptr)
|
|
return true;
|
|
if (Seg->end != Def.getDeadSlot())
|
|
return false;
|
|
// This is a dead PHI. Remove it.
|
|
LR.removeSegment(*Seg, true);
|
|
return true;
|
|
}
|
|
|
|
void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
|
|
LiveRange &LR, LaneBitmask LM,
|
|
ArrayRef<SlotIndex> Undefs) {
|
|
for (MachineBasicBlock *P : B.predecessors()) {
|
|
SlotIndex End = LIS.getMBBEndIdx(P);
|
|
SlotIndex LastUse = End.getPrevSlot();
|
|
// The predecessor may not have a live-out value. That is OK, like an
|
|
// undef PHI operand.
|
|
LiveInterval &PLI = Edit->getParent();
|
|
// Need the cast because the inputs to ?: would otherwise be deemed
|
|
// "incompatible": SubRange vs LiveInterval.
|
|
LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI)
|
|
: static_cast<LiveRange&>(PLI);
|
|
if (PSR.liveAt(LastUse))
|
|
LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
|
|
}
|
|
}
|
|
|
|
void SplitEditor::extendPHIKillRanges() {
|
|
// Extend live ranges to be live-out for successor PHI values.
|
|
|
|
// Visit each PHI def slot in the parent live interval. If the def is dead,
|
|
// remove it. Otherwise, extend the live interval to reach the end indexes
|
|
// of all predecessor blocks.
|
|
|
|
LiveInterval &ParentLI = Edit->getParent();
|
|
for (const VNInfo *V : ParentLI.valnos) {
|
|
if (V->isUnused() || !V->isPHIDef())
|
|
continue;
|
|
|
|
unsigned RegIdx = RegAssign.lookup(V->def);
|
|
LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
|
|
LiveIntervalCalc &LIC = getLICalc(RegIdx);
|
|
MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
|
|
if (!removeDeadSegment(V->def, LI))
|
|
extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
|
|
}
|
|
|
|
SmallVector<SlotIndex, 4> Undefs;
|
|
LiveIntervalCalc SubLIC;
|
|
|
|
for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
|
|
for (const VNInfo *V : PS.valnos) {
|
|
if (V->isUnused() || !V->isPHIDef())
|
|
continue;
|
|
unsigned RegIdx = RegAssign.lookup(V->def);
|
|
LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
|
|
LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI);
|
|
if (removeDeadSegment(V->def, S))
|
|
continue;
|
|
|
|
MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
|
|
SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
|
|
&LIS.getVNInfoAllocator());
|
|
Undefs.clear();
|
|
LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
|
|
extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// rewriteAssigned - Rewrite all uses of Edit->getReg().
|
|
void SplitEditor::rewriteAssigned(bool ExtendRanges) {
|
|
struct ExtPoint {
|
|
ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
|
|
: MO(O), RegIdx(R), Next(N) {}
|
|
|
|
MachineOperand MO;
|
|
unsigned RegIdx;
|
|
SlotIndex Next;
|
|
};
|
|
|
|
SmallVector<ExtPoint,4> ExtPoints;
|
|
|
|
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
|
|
RE = MRI.reg_end(); RI != RE;) {
|
|
MachineOperand &MO = *RI;
|
|
MachineInstr *MI = MO.getParent();
|
|
++RI;
|
|
// LiveDebugVariables should have handled all DBG_VALUE instructions.
|
|
if (MI->isDebugValue()) {
|
|
LLVM_DEBUG(dbgs() << "Zapping " << *MI);
|
|
MO.setReg(0);
|
|
continue;
|
|
}
|
|
|
|
// <undef> operands don't really read the register, so it doesn't matter
|
|
// which register we choose. When the use operand is tied to a def, we must
|
|
// use the same register as the def, so just do that always.
|
|
SlotIndex Idx = LIS.getInstructionIndex(*MI);
|
|
if (MO.isDef() || MO.isUndef())
|
|
Idx = Idx.getRegSlot(MO.isEarlyClobber());
|
|
|
|
// Rewrite to the mapped register at Idx.
|
|
unsigned RegIdx = RegAssign.lookup(Idx);
|
|
LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
|
|
MO.setReg(LI.reg);
|
|
LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent())
|
|
<< '\t' << Idx << ':' << RegIdx << '\t' << *MI);
|
|
|
|
// Extend liveness to Idx if the instruction reads reg.
|
|
if (!ExtendRanges || MO.isUndef())
|
|
continue;
|
|
|
|
// Skip instructions that don't read Reg.
|
|
if (MO.isDef()) {
|
|
if (!MO.getSubReg() && !MO.isEarlyClobber())
|
|
continue;
|
|
// We may want to extend a live range for a partial redef, or for a use
|
|
// tied to an early clobber.
|
|
Idx = Idx.getPrevSlot();
|
|
if (!Edit->getParent().liveAt(Idx))
|
|
continue;
|
|
} else
|
|
Idx = Idx.getRegSlot(true);
|
|
|
|
SlotIndex Next = Idx.getNextSlot();
|
|
if (LI.hasSubRanges()) {
|
|
// We have to delay extending subranges until we have seen all operands
|
|
// defining the register. This is because a <def,read-undef> operand
|
|
// will create an "undef" point, and we cannot extend any subranges
|
|
// until all of them have been accounted for.
|
|
if (MO.isUse())
|
|
ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
|
|
} else {
|
|
LiveIntervalCalc &LIC = getLICalc(RegIdx);
|
|
LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
|
|
}
|
|
}
|
|
|
|
for (ExtPoint &EP : ExtPoints) {
|
|
LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
|
|
assert(LI.hasSubRanges());
|
|
|
|
LiveIntervalCalc SubLIC;
|
|
Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
|
|
LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
|
|
: MRI.getMaxLaneMaskForVReg(Reg);
|
|
for (LiveInterval::SubRange &S : LI.subranges()) {
|
|
if ((S.LaneMask & LM).none())
|
|
continue;
|
|
// The problem here can be that the new register may have been created
|
|
// for a partially defined original register. For example:
|
|
// %0:subreg_hireg<def,read-undef> = ...
|
|
// ...
|
|
// %1 = COPY %0
|
|
if (S.empty())
|
|
continue;
|
|
SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
|
|
&LIS.getVNInfoAllocator());
|
|
SmallVector<SlotIndex, 4> Undefs;
|
|
LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
|
|
SubLIC.extend(S, EP.Next, 0, Undefs);
|
|
}
|
|
}
|
|
|
|
for (unsigned R : *Edit) {
|
|
LiveInterval &LI = LIS.getInterval(R);
|
|
if (!LI.hasSubRanges())
|
|
continue;
|
|
LI.clear();
|
|
LI.removeEmptySubRanges();
|
|
LIS.constructMainRangeFromSubranges(LI);
|
|
}
|
|
}
|
|
|
|
void SplitEditor::deleteRematVictims() {
|
|
SmallVector<MachineInstr*, 8> Dead;
|
|
for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
|
|
LiveInterval *LI = &LIS.getInterval(*I);
|
|
for (const LiveRange::Segment &S : LI->segments) {
|
|
// Dead defs end at the dead slot.
|
|
if (S.end != S.valno->def.getDeadSlot())
|
|
continue;
|
|
if (S.valno->isPHIDef())
|
|
continue;
|
|
MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
|
|
assert(MI && "Missing instruction for dead def");
|
|
MI->addRegisterDead(LI->reg, &TRI);
|
|
|
|
if (!MI->allDefsAreDead())
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
|
|
Dead.push_back(MI);
|
|
}
|
|
}
|
|
|
|
if (Dead.empty())
|
|
return;
|
|
|
|
Edit->eliminateDeadDefs(Dead, None, &AA);
|
|
}
|
|
|
|
void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
|
|
// Fast-path for common case.
|
|
if (!ParentVNI.isPHIDef()) {
|
|
for (unsigned I = 0, E = Edit->size(); I != E; ++I)
|
|
forceRecompute(I, ParentVNI);
|
|
return;
|
|
}
|
|
|
|
// Trace value through phis.
|
|
SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
|
|
SmallVector<const VNInfo *, 4> WorkList;
|
|
Visited.insert(&ParentVNI);
|
|
WorkList.push_back(&ParentVNI);
|
|
|
|
const LiveInterval &ParentLI = Edit->getParent();
|
|
const SlotIndexes &Indexes = *LIS.getSlotIndexes();
|
|
do {
|
|
const VNInfo &VNI = *WorkList.back();
|
|
WorkList.pop_back();
|
|
for (unsigned I = 0, E = Edit->size(); I != E; ++I)
|
|
forceRecompute(I, VNI);
|
|
if (!VNI.isPHIDef())
|
|
continue;
|
|
|
|
MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
|
|
for (const MachineBasicBlock *Pred : MBB.predecessors()) {
|
|
SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
|
|
VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
|
|
assert(PredVNI && "Value available in PhiVNI predecessor");
|
|
if (Visited.insert(PredVNI).second)
|
|
WorkList.push_back(PredVNI);
|
|
}
|
|
} while(!WorkList.empty());
|
|
}
|
|
|
|
void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
|
|
++NumFinished;
|
|
|
|
// At this point, the live intervals in Edit contain VNInfos corresponding to
|
|
// the inserted copies.
|
|
|
|
// Add the original defs from the parent interval.
|
|
for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
|
|
if (ParentVNI->isUnused())
|
|
continue;
|
|
unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
|
|
defValue(RegIdx, ParentVNI, ParentVNI->def, true);
|
|
|
|
// Force rematted values to be recomputed everywhere.
|
|
// The new live ranges may be truncated.
|
|
if (Edit->didRematerialize(ParentVNI))
|
|
forceRecomputeVNI(*ParentVNI);
|
|
}
|
|
|
|
// Hoist back-copies to the complement interval when in spill mode.
|
|
switch (SpillMode) {
|
|
case SM_Partition:
|
|
// Leave all back-copies as is.
|
|
break;
|
|
case SM_Size:
|
|
case SM_Speed:
|
|
// hoistCopies will behave differently between size and speed.
|
|
hoistCopies();
|
|
}
|
|
|
|
// Transfer the simply mapped values, check if any are skipped.
|
|
bool Skipped = transferValues();
|
|
|
|
// Rewrite virtual registers, possibly extending ranges.
|
|
rewriteAssigned(Skipped);
|
|
|
|
if (Skipped)
|
|
extendPHIKillRanges();
|
|
else
|
|
++NumSimple;
|
|
|
|
// Delete defs that were rematted everywhere.
|
|
if (Skipped)
|
|
deleteRematVictims();
|
|
|
|
// Get rid of unused values and set phi-kill flags.
|
|
for (unsigned Reg : *Edit) {
|
|
LiveInterval &LI = LIS.getInterval(Reg);
|
|
LI.removeEmptySubRanges();
|
|
LI.RenumberValues();
|
|
}
|
|
|
|
// Provide a reverse mapping from original indices to Edit ranges.
|
|
if (LRMap) {
|
|
LRMap->clear();
|
|
for (unsigned i = 0, e = Edit->size(); i != e; ++i)
|
|
LRMap->push_back(i);
|
|
}
|
|
|
|
// Now check if any registers were separated into multiple components.
|
|
ConnectedVNInfoEqClasses ConEQ(LIS);
|
|
for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
|
|
// Don't use iterators, they are invalidated by create() below.
|
|
unsigned VReg = Edit->get(i);
|
|
LiveInterval &LI = LIS.getInterval(VReg);
|
|
SmallVector<LiveInterval*, 8> SplitLIs;
|
|
LIS.splitSeparateComponents(LI, SplitLIs);
|
|
unsigned Original = VRM.getOriginal(VReg);
|
|
for (LiveInterval *SplitLI : SplitLIs)
|
|
VRM.setIsSplitFromReg(SplitLI->reg, Original);
|
|
|
|
// The new intervals all map back to i.
|
|
if (LRMap)
|
|
LRMap->resize(Edit->size(), i);
|
|
}
|
|
|
|
// Calculate spill weight and allocation hints for new intervals.
|
|
Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
|
|
|
|
assert(!LRMap || LRMap->size() == Edit->size());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Single Block Splitting
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
|
|
bool SingleInstrs) const {
|
|
// Always split for multiple instructions.
|
|
if (!BI.isOneInstr())
|
|
return true;
|
|
// Don't split for single instructions unless explicitly requested.
|
|
if (!SingleInstrs)
|
|
return false;
|
|
// Splitting a live-through range always makes progress.
|
|
if (BI.LiveIn && BI.LiveOut)
|
|
return true;
|
|
// No point in isolating a copy. It has no register class constraints.
|
|
if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
|
|
return false;
|
|
// Finally, don't isolate an end point that was created by earlier splits.
|
|
return isOriginalEndpoint(BI.FirstInstr);
|
|
}
|
|
|
|
void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
|
|
openIntv();
|
|
SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
|
|
SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
|
|
LastSplitPoint));
|
|
if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
|
|
useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
|
|
} else {
|
|
// The last use is after the last valid split point.
|
|
SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
|
|
useIntv(SegStart, SegStop);
|
|
overlapIntv(SegStop, BI.LastInstr);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Global Live Range Splitting Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// These methods support a method of global live range splitting that uses a
|
|
// global algorithm to decide intervals for CFG edges. They will insert split
|
|
// points and color intervals in basic blocks while avoiding interference.
|
|
//
|
|
// Note that splitSingleBlock is also useful for blocks where both CFG edges
|
|
// are on the stack.
|
|
|
|
void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
|
|
unsigned IntvIn, SlotIndex LeaveBefore,
|
|
unsigned IntvOut, SlotIndex EnterAfter){
|
|
SlotIndex Start, Stop;
|
|
std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
|
|
|
|
LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
|
|
<< ") intf " << LeaveBefore << '-' << EnterAfter
|
|
<< ", live-through " << IntvIn << " -> " << IntvOut);
|
|
|
|
assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
|
|
|
|
assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
|
|
assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
|
|
assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
|
|
|
|
MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
|
|
|
|
if (!IntvOut) {
|
|
LLVM_DEBUG(dbgs() << ", spill on entry.\n");
|
|
//
|
|
// <<<<<<<<< Possible LeaveBefore interference.
|
|
// |-----------| Live through.
|
|
// -____________ Spill on entry.
|
|
//
|
|
selectIntv(IntvIn);
|
|
SlotIndex Idx = leaveIntvAtTop(*MBB);
|
|
assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
|
|
(void)Idx;
|
|
return;
|
|
}
|
|
|
|
if (!IntvIn) {
|
|
LLVM_DEBUG(dbgs() << ", reload on exit.\n");
|
|
//
|
|
// >>>>>>> Possible EnterAfter interference.
|
|
// |-----------| Live through.
|
|
// ___________-- Reload on exit.
|
|
//
|
|
selectIntv(IntvOut);
|
|
SlotIndex Idx = enterIntvAtEnd(*MBB);
|
|
assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
|
|
(void)Idx;
|
|
return;
|
|
}
|
|
|
|
if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
|
|
LLVM_DEBUG(dbgs() << ", straight through.\n");
|
|
//
|
|
// |-----------| Live through.
|
|
// ------------- Straight through, same intv, no interference.
|
|
//
|
|
selectIntv(IntvOut);
|
|
useIntv(Start, Stop);
|
|
return;
|
|
}
|
|
|
|
// We cannot legally insert splits after LSP.
|
|
SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
|
|
assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
|
|
|
|
if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
|
|
LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
|
|
LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
|
|
//
|
|
// >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
|
|
// |-----------| Live through.
|
|
// ------======= Switch intervals between interference.
|
|
//
|
|
selectIntv(IntvOut);
|
|
SlotIndex Idx;
|
|
if (LeaveBefore && LeaveBefore < LSP) {
|
|
Idx = enterIntvBefore(LeaveBefore);
|
|
useIntv(Idx, Stop);
|
|
} else {
|
|
Idx = enterIntvAtEnd(*MBB);
|
|
}
|
|
selectIntv(IntvIn);
|
|
useIntv(Start, Idx);
|
|
assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
|
|
assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
|
|
return;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
|
|
//
|
|
// >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
|
|
// |-----------| Live through.
|
|
// ==---------== Switch intervals before/after interference.
|
|
//
|
|
assert(LeaveBefore <= EnterAfter && "Missed case");
|
|
|
|
selectIntv(IntvOut);
|
|
SlotIndex Idx = enterIntvAfter(EnterAfter);
|
|
useIntv(Idx, Stop);
|
|
assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
|
|
|
|
selectIntv(IntvIn);
|
|
Idx = leaveIntvBefore(LeaveBefore);
|
|
useIntv(Start, Idx);
|
|
assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
|
|
}
|
|
|
|
void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
|
|
unsigned IntvIn, SlotIndex LeaveBefore) {
|
|
SlotIndex Start, Stop;
|
|
std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
|
|
|
|
LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
|
|
<< Stop << "), uses " << BI.FirstInstr << '-'
|
|
<< BI.LastInstr << ", reg-in " << IntvIn
|
|
<< ", leave before " << LeaveBefore
|
|
<< (BI.LiveOut ? ", stack-out" : ", killed in block"));
|
|
|
|
assert(IntvIn && "Must have register in");
|
|
assert(BI.LiveIn && "Must be live-in");
|
|
assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
|
|
|
|
if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
|
|
LLVM_DEBUG(dbgs() << " before interference.\n");
|
|
//
|
|
// <<< Interference after kill.
|
|
// |---o---x | Killed in block.
|
|
// ========= Use IntvIn everywhere.
|
|
//
|
|
selectIntv(IntvIn);
|
|
useIntv(Start, BI.LastInstr);
|
|
return;
|
|
}
|
|
|
|
SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
|
|
|
|
if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
|
|
//
|
|
// <<< Possible interference after last use.
|
|
// |---o---o---| Live-out on stack.
|
|
// =========____ Leave IntvIn after last use.
|
|
//
|
|
// < Interference after last use.
|
|
// |---o---o--o| Live-out on stack, late last use.
|
|
// ============ Copy to stack after LSP, overlap IntvIn.
|
|
// \_____ Stack interval is live-out.
|
|
//
|
|
if (BI.LastInstr < LSP) {
|
|
LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
|
|
selectIntv(IntvIn);
|
|
SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
|
|
useIntv(Start, Idx);
|
|
assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
|
|
selectIntv(IntvIn);
|
|
SlotIndex Idx = leaveIntvBefore(LSP);
|
|
overlapIntv(Idx, BI.LastInstr);
|
|
useIntv(Start, Idx);
|
|
assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
|
|
}
|
|
return;
|
|
}
|
|
|
|
// The interference is overlapping somewhere we wanted to use IntvIn. That
|
|
// means we need to create a local interval that can be allocated a
|
|
// different register.
|
|
unsigned LocalIntv = openIntv();
|
|
(void)LocalIntv;
|
|
LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
|
|
|
|
if (!BI.LiveOut || BI.LastInstr < LSP) {
|
|
//
|
|
// <<<<<<< Interference overlapping uses.
|
|
// |---o---o---| Live-out on stack.
|
|
// =====----____ Leave IntvIn before interference, then spill.
|
|
//
|
|
SlotIndex To = leaveIntvAfter(BI.LastInstr);
|
|
SlotIndex From = enterIntvBefore(LeaveBefore);
|
|
useIntv(From, To);
|
|
selectIntv(IntvIn);
|
|
useIntv(Start, From);
|
|
assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
|
|
return;
|
|
}
|
|
|
|
// <<<<<<< Interference overlapping uses.
|
|
// |---o---o--o| Live-out on stack, late last use.
|
|
// =====------- Copy to stack before LSP, overlap LocalIntv.
|
|
// \_____ Stack interval is live-out.
|
|
//
|
|
SlotIndex To = leaveIntvBefore(LSP);
|
|
overlapIntv(To, BI.LastInstr);
|
|
SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
|
|
useIntv(From, To);
|
|
selectIntv(IntvIn);
|
|
useIntv(Start, From);
|
|
assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
|
|
}
|
|
|
|
void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
|
|
unsigned IntvOut, SlotIndex EnterAfter) {
|
|
SlotIndex Start, Stop;
|
|
std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
|
|
|
|
LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
|
|
<< Stop << "), uses " << BI.FirstInstr << '-'
|
|
<< BI.LastInstr << ", reg-out " << IntvOut
|
|
<< ", enter after " << EnterAfter
|
|
<< (BI.LiveIn ? ", stack-in" : ", defined in block"));
|
|
|
|
SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
|
|
|
|
assert(IntvOut && "Must have register out");
|
|
assert(BI.LiveOut && "Must be live-out");
|
|
assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
|
|
|
|
if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
|
|
LLVM_DEBUG(dbgs() << " after interference.\n");
|
|
//
|
|
// >>>> Interference before def.
|
|
// | o---o---| Defined in block.
|
|
// ========= Use IntvOut everywhere.
|
|
//
|
|
selectIntv(IntvOut);
|
|
useIntv(BI.FirstInstr, Stop);
|
|
return;
|
|
}
|
|
|
|
if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
|
|
LLVM_DEBUG(dbgs() << ", reload after interference.\n");
|
|
//
|
|
// >>>> Interference before def.
|
|
// |---o---o---| Live-through, stack-in.
|
|
// ____========= Enter IntvOut before first use.
|
|
//
|
|
selectIntv(IntvOut);
|
|
SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
|
|
useIntv(Idx, Stop);
|
|
assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
|
|
return;
|
|
}
|
|
|
|
// The interference is overlapping somewhere we wanted to use IntvOut. That
|
|
// means we need to create a local interval that can be allocated a
|
|
// different register.
|
|
LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
|
|
//
|
|
// >>>>>>> Interference overlapping uses.
|
|
// |---o---o---| Live-through, stack-in.
|
|
// ____---====== Create local interval for interference range.
|
|
//
|
|
selectIntv(IntvOut);
|
|
SlotIndex Idx = enterIntvAfter(EnterAfter);
|
|
useIntv(Idx, Stop);
|
|
assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
|
|
|
|
openIntv();
|
|
SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
|
|
useIntv(From, Idx);
|
|
}
|