llvm-project/llvm/tools/llvm-readobj/ELFDumper.cpp

6186 lines
223 KiB
C++

//===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the ELF-specific dumper for llvm-readobj.
///
//===----------------------------------------------------------------------===//
#include "ARMEHABIPrinter.h"
#include "DwarfCFIEHPrinter.h"
#include "Error.h"
#include "ObjDumper.h"
#include "StackMapPrinter.h"
#include "llvm-readobj.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/Object/ELF.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ELFTypes.h"
#include "llvm/Object/Error.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/RelocationResolver.h"
#include "llvm/Object/StackMapParser.h"
#include "llvm/Support/AMDGPUMetadata.h"
#include "llvm/Support/ARMAttributeParser.h"
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MipsABIFlags.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cinttypes>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <memory>
#include <string>
#include <system_error>
#include <unordered_set>
#include <vector>
using namespace llvm;
using namespace llvm::object;
using namespace ELF;
#define LLVM_READOBJ_ENUM_CASE(ns, enum) \
case ns::enum: \
return #enum;
#define ENUM_ENT(enum, altName) \
{ #enum, altName, ELF::enum }
#define ENUM_ENT_1(enum) \
{ #enum, #enum, ELF::enum }
#define LLVM_READOBJ_PHDR_ENUM(ns, enum) \
case ns::enum: \
return std::string(#enum).substr(3);
#define TYPEDEF_ELF_TYPES(ELFT) \
using ELFO = ELFFile<ELFT>; \
using Elf_Addr = typename ELFT::Addr; \
using Elf_Shdr = typename ELFT::Shdr; \
using Elf_Sym = typename ELFT::Sym; \
using Elf_Dyn = typename ELFT::Dyn; \
using Elf_Dyn_Range = typename ELFT::DynRange; \
using Elf_Rel = typename ELFT::Rel; \
using Elf_Rela = typename ELFT::Rela; \
using Elf_Relr = typename ELFT::Relr; \
using Elf_Rel_Range = typename ELFT::RelRange; \
using Elf_Rela_Range = typename ELFT::RelaRange; \
using Elf_Relr_Range = typename ELFT::RelrRange; \
using Elf_Phdr = typename ELFT::Phdr; \
using Elf_Half = typename ELFT::Half; \
using Elf_Ehdr = typename ELFT::Ehdr; \
using Elf_Word = typename ELFT::Word; \
using Elf_Hash = typename ELFT::Hash; \
using Elf_GnuHash = typename ELFT::GnuHash; \
using Elf_Note = typename ELFT::Note; \
using Elf_Sym_Range = typename ELFT::SymRange; \
using Elf_Versym = typename ELFT::Versym; \
using Elf_Verneed = typename ELFT::Verneed; \
using Elf_Vernaux = typename ELFT::Vernaux; \
using Elf_Verdef = typename ELFT::Verdef; \
using Elf_Verdaux = typename ELFT::Verdaux; \
using Elf_CGProfile = typename ELFT::CGProfile; \
using uintX_t = typename ELFT::uint;
namespace {
template <class ELFT> class DumpStyle;
/// Represents a contiguous uniform range in the file. We cannot just create a
/// range directly because when creating one of these from the .dynamic table
/// the size, entity size and virtual address are different entries in arbitrary
/// order (DT_REL, DT_RELSZ, DT_RELENT for example).
struct DynRegionInfo {
DynRegionInfo(StringRef ObjName) : FileName(ObjName) {}
DynRegionInfo(const void *A, uint64_t S, uint64_t ES, StringRef ObjName)
: Addr(A), Size(S), EntSize(ES), FileName(ObjName) {}
/// Address in current address space.
const void *Addr = nullptr;
/// Size in bytes of the region.
uint64_t Size = 0;
/// Size of each entity in the region.
uint64_t EntSize = 0;
/// Name of the file. Used for error reporting.
StringRef FileName;
template <typename Type> ArrayRef<Type> getAsArrayRef() const {
const Type *Start = reinterpret_cast<const Type *>(Addr);
if (!Start)
return {Start, Start};
if (EntSize != sizeof(Type) || Size % EntSize) {
// TODO: Add a section index to this warning.
reportWarning(createError("invalid section size (" + Twine(Size) +
") or entity size (" + Twine(EntSize) + ")"),
FileName);
return {Start, Start};
}
return {Start, Start + (Size / EntSize)};
}
};
template <typename ELFT> class ELFDumper : public ObjDumper {
public:
ELFDumper(const object::ELFObjectFile<ELFT> *ObjF, ScopedPrinter &Writer);
void printFileHeaders() override;
void printSectionHeaders() override;
void printRelocations() override;
void printDynamicRelocations() override;
void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
void printHashSymbols() override;
void printUnwindInfo() override;
void printDynamicTable() override;
void printNeededLibraries() override;
void printProgramHeaders(bool PrintProgramHeaders,
cl::boolOrDefault PrintSectionMapping) override;
void printHashTable() override;
void printGnuHashTable() override;
void printLoadName() override;
void printVersionInfo() override;
void printGroupSections() override;
void printArchSpecificInfo() override;
void printStackMap() const override;
void printHashHistogram() override;
void printCGProfile() override;
void printAddrsig() override;
void printNotes() override;
void printELFLinkerOptions() override;
void printStackSizes() override;
const object::ELFObjectFile<ELFT> *getElfObject() const { return ObjF; };
private:
std::unique_ptr<DumpStyle<ELFT>> ELFDumperStyle;
TYPEDEF_ELF_TYPES(ELFT)
DynRegionInfo checkDRI(DynRegionInfo DRI) {
const ELFFile<ELFT> *Obj = ObjF->getELFFile();
if (DRI.Addr < Obj->base() ||
reinterpret_cast<const uint8_t *>(DRI.Addr) + DRI.Size >
Obj->base() + Obj->getBufSize())
reportError(errorCodeToError(llvm::object::object_error::parse_failed),
ObjF->getFileName());
return DRI;
}
DynRegionInfo createDRIFrom(const Elf_Phdr *P, uintX_t EntSize) {
return checkDRI({ObjF->getELFFile()->base() + P->p_offset, P->p_filesz,
EntSize, ObjF->getFileName()});
}
DynRegionInfo createDRIFrom(const Elf_Shdr *S) {
return checkDRI({ObjF->getELFFile()->base() + S->sh_offset, S->sh_size,
S->sh_entsize, ObjF->getFileName()});
}
void printAttributes();
void printMipsReginfo();
void printMipsOptions();
std::pair<const Elf_Phdr *, const Elf_Shdr *>
findDynamic(const ELFFile<ELFT> *Obj);
void loadDynamicTable(const ELFFile<ELFT> *Obj);
void parseDynamicTable();
StringRef getSymbolVersion(StringRef StrTab, const Elf_Sym *symb,
bool &IsDefault) const;
void LoadVersionMap() const;
void LoadVersionNeeds(const Elf_Shdr *ec) const;
void LoadVersionDefs(const Elf_Shdr *sec) const;
const object::ELFObjectFile<ELFT> *ObjF;
DynRegionInfo DynRelRegion;
DynRegionInfo DynRelaRegion;
DynRegionInfo DynRelrRegion;
DynRegionInfo DynPLTRelRegion;
DynRegionInfo DynSymRegion;
DynRegionInfo DynamicTable;
StringRef DynamicStringTable;
std::string SOName = "<Not found>";
const Elf_Hash *HashTable = nullptr;
const Elf_GnuHash *GnuHashTable = nullptr;
const Elf_Shdr *DotSymtabSec = nullptr;
const Elf_Shdr *DotCGProfileSec = nullptr;
const Elf_Shdr *DotAddrsigSec = nullptr;
StringRef DynSymtabName;
ArrayRef<Elf_Word> ShndxTable;
const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version
const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
// Records for each version index the corresponding Verdef or Vernaux entry.
// This is filled the first time LoadVersionMap() is called.
class VersionMapEntry : public PointerIntPair<const void *, 1> {
public:
// If the integer is 0, this is an Elf_Verdef*.
// If the integer is 1, this is an Elf_Vernaux*.
VersionMapEntry() : PointerIntPair<const void *, 1>(nullptr, 0) {}
VersionMapEntry(const Elf_Verdef *verdef)
: PointerIntPair<const void *, 1>(verdef, 0) {}
VersionMapEntry(const Elf_Vernaux *vernaux)
: PointerIntPair<const void *, 1>(vernaux, 1) {}
bool isNull() const { return getPointer() == nullptr; }
bool isVerdef() const { return !isNull() && getInt() == 0; }
bool isVernaux() const { return !isNull() && getInt() == 1; }
const Elf_Verdef *getVerdef() const {
return isVerdef() ? (const Elf_Verdef *)getPointer() : nullptr;
}
const Elf_Vernaux *getVernaux() const {
return isVernaux() ? (const Elf_Vernaux *)getPointer() : nullptr;
}
};
mutable SmallVector<VersionMapEntry, 16> VersionMap;
public:
Elf_Dyn_Range dynamic_table() const {
// A valid .dynamic section contains an array of entries terminated
// with a DT_NULL entry. However, sometimes the section content may
// continue past the DT_NULL entry, so to dump the section correctly,
// we first find the end of the entries by iterating over them.
Elf_Dyn_Range Table = DynamicTable.getAsArrayRef<Elf_Dyn>();
size_t Size = 0;
while (Size < Table.size())
if (Table[Size++].getTag() == DT_NULL)
break;
return Table.slice(0, Size);
}
Elf_Sym_Range dynamic_symbols() const {
return DynSymRegion.getAsArrayRef<Elf_Sym>();
}
Elf_Rel_Range dyn_rels() const;
Elf_Rela_Range dyn_relas() const;
Elf_Relr_Range dyn_relrs() const;
std::string getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable,
bool IsDynamic) const;
Expected<unsigned> getSymbolSectionIndex(const Elf_Sym *Symbol,
const Elf_Sym *FirstSym) const;
Expected<StringRef> getSymbolSectionName(const Elf_Sym *Symbol,
unsigned SectionIndex) const;
Expected<std::string> getStaticSymbolName(uint32_t Index) const;
std::string getDynamicString(uint64_t Value) const;
StringRef getSymbolVersionByIndex(StringRef StrTab,
uint32_t VersionSymbolIndex,
bool &IsDefault) const;
void printSymbolsHelper(bool IsDynamic) const;
void printDynamicEntry(raw_ostream &OS, uint64_t Type, uint64_t Value) const;
const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; }
const Elf_Shdr *getDotCGProfileSec() const { return DotCGProfileSec; }
const Elf_Shdr *getDotAddrsigSec() const { return DotAddrsigSec; }
ArrayRef<Elf_Word> getShndxTable() const { return ShndxTable; }
StringRef getDynamicStringTable() const { return DynamicStringTable; }
const DynRegionInfo &getDynRelRegion() const { return DynRelRegion; }
const DynRegionInfo &getDynRelaRegion() const { return DynRelaRegion; }
const DynRegionInfo &getDynRelrRegion() const { return DynRelrRegion; }
const DynRegionInfo &getDynPLTRelRegion() const { return DynPLTRelRegion; }
const DynRegionInfo &getDynamicTableRegion() const { return DynamicTable; }
const Elf_Hash *getHashTable() const { return HashTable; }
const Elf_GnuHash *getGnuHashTable() const { return GnuHashTable; }
};
template <class ELFT>
void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
StringRef StrTable, SymtabName;
size_t Entries = 0;
Elf_Sym_Range Syms(nullptr, nullptr);
const ELFFile<ELFT> *Obj = ObjF->getELFFile();
if (IsDynamic) {
StrTable = DynamicStringTable;
Syms = dynamic_symbols();
SymtabName = DynSymtabName;
if (DynSymRegion.Addr)
Entries = DynSymRegion.Size / DynSymRegion.EntSize;
} else {
if (!DotSymtabSec)
return;
StrTable = unwrapOrError(ObjF->getFileName(),
Obj->getStringTableForSymtab(*DotSymtabSec));
Syms = unwrapOrError(ObjF->getFileName(), Obj->symbols(DotSymtabSec));
SymtabName =
unwrapOrError(ObjF->getFileName(), Obj->getSectionName(DotSymtabSec));
Entries = DotSymtabSec->getEntityCount();
}
if (Syms.begin() == Syms.end())
return;
// The st_other field has 2 logical parts. The first two bits hold the symbol
// visibility (STV_*) and the remainder hold other platform-specific values.
bool NonVisibilityBitsUsed = llvm::find_if(Syms, [](const Elf_Sym &S) {
return S.st_other & ~0x3;
}) != Syms.end();
ELFDumperStyle->printSymtabMessage(Obj, SymtabName, Entries,
NonVisibilityBitsUsed);
for (const auto &Sym : Syms)
ELFDumperStyle->printSymbol(Obj, &Sym, Syms.begin(), StrTable, IsDynamic,
NonVisibilityBitsUsed);
}
template <class ELFT> class MipsGOTParser;
template <typename ELFT> class DumpStyle {
public:
using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym;
using Elf_Addr = typename ELFT::Addr;
DumpStyle(ELFDumper<ELFT> *Dumper) : Dumper(Dumper) {
FileName = this->Dumper->getElfObject()->getFileName();
// Dumper reports all non-critical errors as warnings.
// It does not print the same warning more than once.
WarningHandler = [this](const Twine &Msg) {
if (Warnings.insert(Msg.str()).second)
reportWarning(createError(Msg), FileName);
return Error::success();
};
}
virtual ~DumpStyle() = default;
virtual void printFileHeaders(const ELFFile<ELFT> *Obj) = 0;
virtual void printGroupSections(const ELFFile<ELFT> *Obj) = 0;
virtual void printRelocations(const ELFFile<ELFT> *Obj) = 0;
virtual void printSectionHeaders(const ELFFile<ELFT> *Obj) = 0;
virtual void printSymbols(const ELFFile<ELFT> *Obj, bool PrintSymbols,
bool PrintDynamicSymbols) = 0;
virtual void printHashSymbols(const ELFFile<ELFT> *Obj) {}
virtual void printDynamic(const ELFFile<ELFT> *Obj) {}
virtual void printDynamicRelocations(const ELFFile<ELFT> *Obj) = 0;
virtual void printSymtabMessage(const ELFFile<ELFT> *Obj, StringRef Name,
size_t Offset, bool NonVisibilityBitsUsed) {}
virtual void printSymbol(const ELFFile<ELFT> *Obj, const Elf_Sym *Symbol,
const Elf_Sym *FirstSym, StringRef StrTable,
bool IsDynamic, bool NonVisibilityBitsUsed) = 0;
virtual void printProgramHeaders(const ELFFile<ELFT> *Obj,
bool PrintProgramHeaders,
cl::boolOrDefault PrintSectionMapping) = 0;
virtual void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
const Elf_Shdr *Sec) = 0;
virtual void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
const Elf_Shdr *Sec) = 0;
virtual void printVersionDependencySection(const ELFFile<ELFT> *Obj,
const Elf_Shdr *Sec) = 0;
virtual void printHashHistogram(const ELFFile<ELFT> *Obj) = 0;
virtual void printCGProfile(const ELFFile<ELFT> *Obj) = 0;
virtual void printAddrsig(const ELFFile<ELFT> *Obj) = 0;
virtual void printNotes(const ELFFile<ELFT> *Obj) = 0;
virtual void printELFLinkerOptions(const ELFFile<ELFT> *Obj) = 0;
virtual void printStackSizes(const ELFObjectFile<ELFT> *Obj) = 0;
void printNonRelocatableStackSizes(const ELFObjectFile<ELFT> *Obj,
std::function<void()> PrintHeader);
void printRelocatableStackSizes(const ELFObjectFile<ELFT> *Obj,
std::function<void()> PrintHeader);
void printFunctionStackSize(const ELFObjectFile<ELFT> *Obj, uint64_t SymValue,
SectionRef FunctionSec,
const StringRef SectionName, DataExtractor Data,
uint64_t *Offset);
void printStackSize(const ELFObjectFile<ELFT> *Obj, RelocationRef Rel,
SectionRef FunctionSec,
const StringRef &StackSizeSectionName,
const RelocationResolver &Resolver, DataExtractor Data);
virtual void printStackSizeEntry(uint64_t Size, StringRef FuncName) = 0;
virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
virtual void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) = 0;
const ELFDumper<ELFT> *dumper() const { return Dumper; }
void reportUniqueWarning(Error Err) const;
protected:
std::function<Error(const Twine &Msg)> WarningHandler;
StringRef FileName;
private:
std::unordered_set<std::string> Warnings;
const ELFDumper<ELFT> *Dumper;
};
template <typename ELFT> class GNUStyle : public DumpStyle<ELFT> {
formatted_raw_ostream &OS;
public:
TYPEDEF_ELF_TYPES(ELFT)
GNUStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
: DumpStyle<ELFT>(Dumper),
OS(static_cast<formatted_raw_ostream&>(W.getOStream())) {
assert (&W.getOStream() == &llvm::fouts());
}
void printFileHeaders(const ELFO *Obj) override;
void printGroupSections(const ELFFile<ELFT> *Obj) override;
void printRelocations(const ELFO *Obj) override;
void printSectionHeaders(const ELFO *Obj) override;
void printSymbols(const ELFO *Obj, bool PrintSymbols,
bool PrintDynamicSymbols) override;
void printHashSymbols(const ELFO *Obj) override;
void printDynamic(const ELFFile<ELFT> *Obj) override;
void printDynamicRelocations(const ELFO *Obj) override;
void printSymtabMessage(const ELFO *Obj, StringRef Name, size_t Offset,
bool NonVisibilityBitsUsed) override;
void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders,
cl::boolOrDefault PrintSectionMapping) override;
void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
const Elf_Shdr *Sec) override;
void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
const Elf_Shdr *Sec) override;
void printVersionDependencySection(const ELFFile<ELFT> *Obj,
const Elf_Shdr *Sec) override;
void printHashHistogram(const ELFFile<ELFT> *Obj) override;
void printCGProfile(const ELFFile<ELFT> *Obj) override;
void printAddrsig(const ELFFile<ELFT> *Obj) override;
void printNotes(const ELFFile<ELFT> *Obj) override;
void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
void printStackSizes(const ELFObjectFile<ELFT> *Obj) override;
void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) override;
private:
struct Field {
std::string Str;
unsigned Column;
Field(StringRef S, unsigned Col) : Str(S), Column(Col) {}
Field(unsigned Col) : Column(Col) {}
};
template <typename T, typename TEnum>
std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) {
for (const auto &EnumItem : EnumValues)
if (EnumItem.Value == Value)
return EnumItem.AltName;
return to_hexString(Value, false);
}
template <typename T, typename TEnum>
std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
TEnum EnumMask3 = {}) {
std::string Str;
for (const auto &Flag : EnumValues) {
if (Flag.Value == 0)
continue;
TEnum EnumMask{};
if (Flag.Value & EnumMask1)
EnumMask = EnumMask1;
else if (Flag.Value & EnumMask2)
EnumMask = EnumMask2;
else if (Flag.Value & EnumMask3)
EnumMask = EnumMask3;
bool IsEnum = (Flag.Value & EnumMask) != 0;
if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
(IsEnum && (Value & EnumMask) == Flag.Value)) {
if (!Str.empty())
Str += ", ";
Str += Flag.AltName;
}
}
return Str;
}
formatted_raw_ostream &printField(struct Field F) {
if (F.Column != 0)
OS.PadToColumn(F.Column);
OS << F.Str;
OS.flush();
return OS;
}
void printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym, uint32_t Sym,
StringRef StrTable, uint32_t Bucket);
void printRelocHeader(unsigned SType);
void printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
const Elf_Rela &R, bool IsRela);
void printRelocation(const ELFO *Obj, const Elf_Sym *Sym,
StringRef SymbolName, const Elf_Rela &R, bool IsRela);
void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
StringRef StrTable, bool IsDynamic,
bool NonVisibilityBitsUsed) override;
std::string getSymbolSectionNdx(const ELFO *Obj, const Elf_Sym *Symbol,
const Elf_Sym *FirstSym);
void printDynamicRelocation(const ELFO *Obj, Elf_Rela R, bool IsRela);
bool checkTLSSections(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
bool checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
bool checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
bool checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
void printProgramHeaders(const ELFO *Obj);
void printSectionMapping(const ELFO *Obj);
};
template <class ELFT>
void DumpStyle<ELFT>::reportUniqueWarning(Error Err) const {
handleAllErrors(std::move(Err), [&](const ErrorInfoBase &EI) {
cantFail(WarningHandler(EI.message()),
"WarningHandler should always return ErrorSuccess");
});
}
template <typename ELFT> class LLVMStyle : public DumpStyle<ELFT> {
public:
TYPEDEF_ELF_TYPES(ELFT)
LLVMStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
: DumpStyle<ELFT>(Dumper), W(W) {}
void printFileHeaders(const ELFO *Obj) override;
void printGroupSections(const ELFFile<ELFT> *Obj) override;
void printRelocations(const ELFO *Obj) override;
void printRelocations(const Elf_Shdr *Sec, const ELFO *Obj);
void printSectionHeaders(const ELFO *Obj) override;
void printSymbols(const ELFO *Obj, bool PrintSymbols,
bool PrintDynamicSymbols) override;
void printDynamic(const ELFFile<ELFT> *Obj) override;
void printDynamicRelocations(const ELFO *Obj) override;
void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders,
cl::boolOrDefault PrintSectionMapping) override;
void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
const Elf_Shdr *Sec) override;
void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
const Elf_Shdr *Sec) override;
void printVersionDependencySection(const ELFFile<ELFT> *Obj,
const Elf_Shdr *Sec) override;
void printHashHistogram(const ELFFile<ELFT> *Obj) override;
void printCGProfile(const ELFFile<ELFT> *Obj) override;
void printAddrsig(const ELFFile<ELFT> *Obj) override;
void printNotes(const ELFFile<ELFT> *Obj) override;
void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
void printStackSizes(const ELFObjectFile<ELFT> *Obj) override;
void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) override;
private:
void printRelocation(const ELFO *Obj, Elf_Rela Rel, const Elf_Shdr *SymTab);
void printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel);
void printSymbols(const ELFO *Obj);
void printDynamicSymbols(const ELFO *Obj);
void printSymbolSection(const Elf_Sym *Symbol, const Elf_Sym *First);
void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
StringRef StrTable, bool IsDynamic,
bool /*NonVisibilityBitsUsed*/) override;
void printProgramHeaders(const ELFO *Obj);
void printSectionMapping(const ELFO *Obj) {}
ScopedPrinter &W;
};
} // end anonymous namespace
namespace llvm {
template <class ELFT>
static std::error_code createELFDumper(const ELFObjectFile<ELFT> *Obj,
ScopedPrinter &Writer,
std::unique_ptr<ObjDumper> &Result) {
Result.reset(new ELFDumper<ELFT>(Obj, Writer));
return readobj_error::success;
}
std::error_code createELFDumper(const object::ObjectFile *Obj,
ScopedPrinter &Writer,
std::unique_ptr<ObjDumper> &Result) {
// Little-endian 32-bit
if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
return createELFDumper(ELFObj, Writer, Result);
// Big-endian 32-bit
if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
return createELFDumper(ELFObj, Writer, Result);
// Little-endian 64-bit
if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
return createELFDumper(ELFObj, Writer, Result);
// Big-endian 64-bit
if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj))
return createELFDumper(ELFObj, Writer, Result);
return readobj_error::unsupported_obj_file_format;
}
} // end namespace llvm
// Iterate through the versions needed section, and place each Elf_Vernaux
// in the VersionMap according to its index.
template <class ELFT>
void ELFDumper<ELFT>::LoadVersionNeeds(const Elf_Shdr *Sec) const {
unsigned VerneedSize = Sec->sh_size; // Size of section in bytes
unsigned VerneedEntries = Sec->sh_info; // Number of Verneed entries
const uint8_t *VerneedStart = reinterpret_cast<const uint8_t *>(
ObjF->getELFFile()->base() + Sec->sh_offset);
const uint8_t *VerneedEnd = VerneedStart + VerneedSize;
// The first Verneed entry is at the start of the section.
const uint8_t *VerneedBuf = VerneedStart;
for (unsigned VerneedIndex = 0; VerneedIndex < VerneedEntries;
++VerneedIndex) {
if (VerneedBuf + sizeof(Elf_Verneed) > VerneedEnd)
report_fatal_error("Section ended unexpectedly while scanning "
"version needed records.");
const Elf_Verneed *Verneed =
reinterpret_cast<const Elf_Verneed *>(VerneedBuf);
if (Verneed->vn_version != ELF::VER_NEED_CURRENT)
report_fatal_error("Unexpected verneed version");
// Iterate through the Vernaux entries
const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux;
for (unsigned VernauxIndex = 0; VernauxIndex < Verneed->vn_cnt;
++VernauxIndex) {
if (VernauxBuf + sizeof(Elf_Vernaux) > VerneedEnd)
report_fatal_error("Section ended unexpected while scanning auxiliary "
"version needed records.");
if ((ptrdiff_t)VernauxBuf % sizeof(uint32_t) != 0)
reportError(createError("SHT_GNU_verneed: the vn_aux field of the "
"entry with index " +
Twine(VerneedIndex) +
" references a misaligned auxiliary record"),
ObjF->getFileName());
const Elf_Vernaux *Vernaux =
reinterpret_cast<const Elf_Vernaux *>(VernauxBuf);
size_t Index = Vernaux->vna_other & ELF::VERSYM_VERSION;
if (Index >= VersionMap.size())
VersionMap.resize(Index + 1);
VersionMap[Index] = VersionMapEntry(Vernaux);
VernauxBuf += Vernaux->vna_next;
}
VerneedBuf += Verneed->vn_next;
}
}
// Iterate through the version definitions, and place each Elf_Verdef
// in the VersionMap according to its index.
template <class ELFT>
void ELFDumper<ELFT>::LoadVersionDefs(const Elf_Shdr *Sec) const {
unsigned VerdefSize = Sec->sh_size; // Size of section in bytes
unsigned VerdefEntries = Sec->sh_info; // Number of Verdef entries
const uint8_t *VerdefStart = reinterpret_cast<const uint8_t *>(
ObjF->getELFFile()->base() + Sec->sh_offset);
const uint8_t *VerdefEnd = VerdefStart + VerdefSize;
// The first Verdef entry is at the start of the section.
const uint8_t *VerdefBuf = VerdefStart;
for (unsigned VerdefIndex = 0; VerdefIndex < VerdefEntries; ++VerdefIndex) {
if (VerdefBuf + sizeof(Elf_Verdef) > VerdefEnd)
report_fatal_error("Section ended unexpectedly while scanning "
"version definitions.");
const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(VerdefBuf);
if (Verdef->vd_version != ELF::VER_DEF_CURRENT)
report_fatal_error("Unexpected verdef version");
size_t Index = Verdef->vd_ndx & ELF::VERSYM_VERSION;
if (Index >= VersionMap.size())
VersionMap.resize(Index + 1);
VersionMap[Index] = VersionMapEntry(Verdef);
VerdefBuf += Verdef->vd_next;
}
}
template <class ELFT> void ELFDumper<ELFT>::LoadVersionMap() const {
// If there is no dynamic symtab or version table, there is nothing to do.
if (!DynSymRegion.Addr || !SymbolVersionSection)
return;
// Has the VersionMap already been loaded?
if (!VersionMap.empty())
return;
// The first two version indexes are reserved.
// Index 0 is LOCAL, index 1 is GLOBAL.
VersionMap.push_back(VersionMapEntry());
VersionMap.push_back(VersionMapEntry());
if (SymbolVersionDefSection)
LoadVersionDefs(SymbolVersionDefSection);
if (SymbolVersionNeedSection)
LoadVersionNeeds(SymbolVersionNeedSection);
}
template <typename ELFT>
StringRef ELFDumper<ELFT>::getSymbolVersion(StringRef StrTab,
const Elf_Sym *Sym,
bool &IsDefault) const {
// This is a dynamic symbol. Look in the GNU symbol version table.
if (!SymbolVersionSection) {
// No version table.
IsDefault = false;
return "";
}
// Determine the position in the symbol table of this entry.
size_t EntryIndex = (reinterpret_cast<uintptr_t>(Sym) -
reinterpret_cast<uintptr_t>(DynSymRegion.Addr)) /
sizeof(Elf_Sym);
// Get the corresponding version index entry.
const Elf_Versym *Versym = unwrapOrError(
ObjF->getFileName(), ObjF->getELFFile()->template getEntry<Elf_Versym>(
SymbolVersionSection, EntryIndex));
return this->getSymbolVersionByIndex(StrTab, Versym->vs_index, IsDefault);
}
static std::string maybeDemangle(StringRef Name) {
return opts::Demangle ? demangle(Name) : Name.str();
}
template <typename ELFT>
Expected<std::string>
ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
const ELFFile<ELFT> *Obj = ObjF->getELFFile();
Expected<const typename ELFT::Sym *> SymOrErr =
Obj->getSymbol(DotSymtabSec, Index);
if (!SymOrErr)
return SymOrErr.takeError();
Expected<StringRef> StrTabOrErr = Obj->getStringTableForSymtab(*DotSymtabSec);
if (!StrTabOrErr)
return StrTabOrErr.takeError();
Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
if (!NameOrErr)
return NameOrErr.takeError();
return maybeDemangle(*NameOrErr);
}
template <typename ELFT>
StringRef ELFDumper<ELFT>::getSymbolVersionByIndex(StringRef StrTab,
uint32_t SymbolVersionIndex,
bool &IsDefault) const {
size_t VersionIndex = SymbolVersionIndex & VERSYM_VERSION;
// Special markers for unversioned symbols.
if (VersionIndex == VER_NDX_LOCAL || VersionIndex == VER_NDX_GLOBAL) {
IsDefault = false;
return "";
}
// Lookup this symbol in the version table.
LoadVersionMap();
if (VersionIndex >= VersionMap.size() || VersionMap[VersionIndex].isNull())
reportError(createError("Invalid version entry"), ObjF->getFileName());
const VersionMapEntry &Entry = VersionMap[VersionIndex];
// Get the version name string.
size_t NameOffset;
if (Entry.isVerdef()) {
// The first Verdaux entry holds the name.
NameOffset = Entry.getVerdef()->getAux()->vda_name;
IsDefault = !(SymbolVersionIndex & VERSYM_HIDDEN);
} else {
NameOffset = Entry.getVernaux()->vna_name;
IsDefault = false;
}
if (NameOffset >= StrTab.size())
reportError(createError("Invalid string offset"), ObjF->getFileName());
return StrTab.data() + NameOffset;
}
template <typename ELFT>
std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym *Symbol,
StringRef StrTable,
bool IsDynamic) const {
std::string SymbolName = maybeDemangle(
unwrapOrError(ObjF->getFileName(), Symbol->getName(StrTable)));
if (SymbolName.empty() && Symbol->getType() == ELF::STT_SECTION) {
Elf_Sym_Range Syms = unwrapOrError(
ObjF->getFileName(), ObjF->getELFFile()->symbols(DotSymtabSec));
Expected<unsigned> SectionIndex =
getSymbolSectionIndex(Symbol, Syms.begin());
if (!SectionIndex) {
ELFDumperStyle->reportUniqueWarning(SectionIndex.takeError());
return "<?>";
}
Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
if (!NameOrErr) {
ELFDumperStyle->reportUniqueWarning(NameOrErr.takeError());
return ("<section " + Twine(*SectionIndex) + ">").str();
}
return *NameOrErr;
}
if (!IsDynamic)
return SymbolName;
bool IsDefault;
StringRef Version = getSymbolVersion(StrTable, &*Symbol, IsDefault);
if (!Version.empty()) {
SymbolName += (IsDefault ? "@@" : "@");
SymbolName += Version;
}
return SymbolName;
}
template <typename ELFT>
Expected<unsigned>
ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym *Symbol,
const Elf_Sym *FirstSym) const {
return Symbol->st_shndx == SHN_XINDEX
? object::getExtendedSymbolTableIndex<ELFT>(Symbol, FirstSym,
ShndxTable)
: Symbol->st_shndx;
}
// If the Symbol has a reserved st_shndx other than SHN_XINDEX, return a
// descriptive interpretation of the st_shndx value. Otherwise, return the name
// of the section with index SectionIndex. This function assumes that if the
// Symbol has st_shndx == SHN_XINDEX the SectionIndex will be the value derived
// from the SHT_SYMTAB_SHNDX section.
template <typename ELFT>
Expected<StringRef>
ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym *Symbol,
unsigned SectionIndex) const {
if (Symbol->isUndefined())
return "Undefined";
if (Symbol->isProcessorSpecific())
return "Processor Specific";
if (Symbol->isOSSpecific())
return "Operating System Specific";
if (Symbol->isAbsolute())
return "Absolute";
if (Symbol->isCommon())
return "Common";
if (Symbol->isReserved() && Symbol->st_shndx != SHN_XINDEX)
return "Reserved";
const ELFFile<ELFT> *Obj = ObjF->getELFFile();
Expected<const Elf_Shdr *> SecOrErr =
Obj->getSection(SectionIndex);
if (!SecOrErr)
return SecOrErr.takeError();
return Obj->getSectionName(*SecOrErr);
}
template <class ELFO>
static const typename ELFO::Elf_Shdr *
findNotEmptySectionByAddress(const ELFO *Obj, StringRef FileName,
uint64_t Addr) {
for (const auto &Shdr : unwrapOrError(FileName, Obj->sections()))
if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
return &Shdr;
return nullptr;
}
template <class ELFO>
static const typename ELFO::Elf_Shdr *
findSectionByName(const ELFO &Obj, StringRef FileName, StringRef Name) {
for (const auto &Shdr : unwrapOrError(FileName, Obj.sections()))
if (Name == unwrapOrError(FileName, Obj.getSectionName(&Shdr)))
return &Shdr;
return nullptr;
}
static const EnumEntry<unsigned> ElfClass[] = {
{"None", "none", ELF::ELFCLASSNONE},
{"32-bit", "ELF32", ELF::ELFCLASS32},
{"64-bit", "ELF64", ELF::ELFCLASS64},
};
static const EnumEntry<unsigned> ElfDataEncoding[] = {
{"None", "none", ELF::ELFDATANONE},
{"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
{"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB},
};
static const EnumEntry<unsigned> ElfObjectFileType[] = {
{"None", "NONE (none)", ELF::ET_NONE},
{"Relocatable", "REL (Relocatable file)", ELF::ET_REL},
{"Executable", "EXEC (Executable file)", ELF::ET_EXEC},
{"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
{"Core", "CORE (Core file)", ELF::ET_CORE},
};
static const EnumEntry<unsigned> ElfOSABI[] = {
{"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE},
{"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX},
{"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD},
{"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX},
{"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD},
{"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS},
{"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX},
{"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX},
{"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD},
{"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64},
{"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO},
{"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD},
{"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS},
{"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
{"AROS", "AROS", ELF::ELFOSABI_AROS},
{"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS},
{"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI},
{"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE}
};
static const EnumEntry<unsigned> SymVersionFlags[] = {
{"Base", "BASE", VER_FLG_BASE},
{"Weak", "WEAK", VER_FLG_WEAK},
{"Info", "INFO", VER_FLG_INFO}};
static const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
{"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA},
{"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL},
{"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
};
static const EnumEntry<unsigned> ARMElfOSABI[] = {
{"ARM", "ARM", ELF::ELFOSABI_ARM}
};
static const EnumEntry<unsigned> C6000ElfOSABI[] = {
{"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
{"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX}
};
static const EnumEntry<unsigned> ElfMachineType[] = {
ENUM_ENT(EM_NONE, "None"),
ENUM_ENT(EM_M32, "WE32100"),
ENUM_ENT(EM_SPARC, "Sparc"),
ENUM_ENT(EM_386, "Intel 80386"),
ENUM_ENT(EM_68K, "MC68000"),
ENUM_ENT(EM_88K, "MC88000"),
ENUM_ENT(EM_IAMCU, "EM_IAMCU"),
ENUM_ENT(EM_860, "Intel 80860"),
ENUM_ENT(EM_MIPS, "MIPS R3000"),
ENUM_ENT(EM_S370, "IBM System/370"),
ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"),
ENUM_ENT(EM_PARISC, "HPPA"),
ENUM_ENT(EM_VPP500, "Fujitsu VPP500"),
ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"),
ENUM_ENT(EM_960, "Intel 80960"),
ENUM_ENT(EM_PPC, "PowerPC"),
ENUM_ENT(EM_PPC64, "PowerPC64"),
ENUM_ENT(EM_S390, "IBM S/390"),
ENUM_ENT(EM_SPU, "SPU"),
ENUM_ENT(EM_V800, "NEC V800 series"),
ENUM_ENT(EM_FR20, "Fujistsu FR20"),
ENUM_ENT(EM_RH32, "TRW RH-32"),
ENUM_ENT(EM_RCE, "Motorola RCE"),
ENUM_ENT(EM_ARM, "ARM"),
ENUM_ENT(EM_ALPHA, "EM_ALPHA"),
ENUM_ENT(EM_SH, "Hitachi SH"),
ENUM_ENT(EM_SPARCV9, "Sparc v9"),
ENUM_ENT(EM_TRICORE, "Siemens Tricore"),
ENUM_ENT(EM_ARC, "ARC"),
ENUM_ENT(EM_H8_300, "Hitachi H8/300"),
ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"),
ENUM_ENT(EM_H8S, "Hitachi H8S"),
ENUM_ENT(EM_H8_500, "Hitachi H8/500"),
ENUM_ENT(EM_IA_64, "Intel IA-64"),
ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"),
ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"),
ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"),
ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"),
ENUM_ENT(EM_PCP, "Siemens PCP"),
ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"),
ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"),
ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"),
ENUM_ENT(EM_ME16, "Toyota ME16 processor"),
ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"),
ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"),
ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"),
ENUM_ENT(EM_PDSP, "Sony DSP processor"),
ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"),
ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"),
ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"),
ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"),
ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"),
ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"),
ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"),
ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"),
ENUM_ENT(EM_SVX, "Silicon Graphics SVx"),
ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"),
ENUM_ENT(EM_VAX, "Digital VAX"),
ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"),
ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"),
ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"),
ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"),
ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"),
ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"),
ENUM_ENT(EM_PRISM, "Vitesse Prism"),
ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"),
ENUM_ENT(EM_FR30, "Fujitsu FR30"),
ENUM_ENT(EM_D10V, "Mitsubishi D10V"),
ENUM_ENT(EM_D30V, "Mitsubishi D30V"),
ENUM_ENT(EM_V850, "NEC v850"),
ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"),
ENUM_ENT(EM_MN10300, "Matsushita MN10300"),
ENUM_ENT(EM_MN10200, "Matsushita MN10200"),
ENUM_ENT(EM_PJ, "picoJava"),
ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"),
ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"),
ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"),
ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"),
ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"),
ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"),
ENUM_ENT(EM_TPC, "Tenor Network TPC processor"),
ENUM_ENT(EM_SNP1K, "EM_SNP1K"),
ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"),
ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"),
ENUM_ENT(EM_MAX, "MAX Processor"),
ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"),
ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"),
ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"),
ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"),
ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"),
ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"),
ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"),
ENUM_ENT(EM_UNICORE, "Unicore"),
ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"),
ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"),
ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"),
ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"),
ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"),
ENUM_ENT(EM_C166, "Infineon Technologies xc16x"),
ENUM_ENT(EM_M16C, "Renesas M16C"),
ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"),
ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"),
ENUM_ENT(EM_M32C, "Renesas M32C"),
ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"),
ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"),
ENUM_ENT(EM_SHARC, "EM_SHARC"),
ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"),
ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"),
ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"),
ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"),
ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"),
ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"),
ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"),
ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"),
ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"),
ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"),
ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"),
ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"),
ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"),
ENUM_ENT(EM_8051, "Intel 8051 and variants"),
ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"),
ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"),
ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"),
ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"),
ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"),
ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"),
ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"),
ENUM_ENT(EM_RX, "Renesas RX"),
ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"),
ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"),
ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"),
ENUM_ENT(EM_CR16, "Xilinx MicroBlaze"),
ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"),
ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"),
ENUM_ENT(EM_L10M, "EM_L10M"),
ENUM_ENT(EM_K10M, "EM_K10M"),
ENUM_ENT(EM_AARCH64, "AArch64"),
ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"),
ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"),
ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"),
ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"),
ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"),
ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"),
ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"),
ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"),
ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"),
ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"),
ENUM_ENT(EM_OPEN8, "EM_OPEN8"),
ENUM_ENT(EM_RL78, "Renesas RL78"),
ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"),
ENUM_ENT(EM_78KOR, "EM_78KOR"),
ENUM_ENT(EM_56800EX, "EM_56800EX"),
ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"),
ENUM_ENT(EM_RISCV, "RISC-V"),
ENUM_ENT(EM_LANAI, "EM_LANAI"),
ENUM_ENT(EM_BPF, "EM_BPF"),
};
static const EnumEntry<unsigned> ElfSymbolBindings[] = {
{"Local", "LOCAL", ELF::STB_LOCAL},
{"Global", "GLOBAL", ELF::STB_GLOBAL},
{"Weak", "WEAK", ELF::STB_WEAK},
{"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
static const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
{"DEFAULT", "DEFAULT", ELF::STV_DEFAULT},
{"INTERNAL", "INTERNAL", ELF::STV_INTERNAL},
{"HIDDEN", "HIDDEN", ELF::STV_HIDDEN},
{"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
{ "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL }
};
static const char *getGroupType(uint32_t Flag) {
if (Flag & ELF::GRP_COMDAT)
return "COMDAT";
else
return "(unknown)";
}
static const EnumEntry<unsigned> ElfSectionFlags[] = {
ENUM_ENT(SHF_WRITE, "W"),
ENUM_ENT(SHF_ALLOC, "A"),
ENUM_ENT(SHF_EXCLUDE, "E"),
ENUM_ENT(SHF_EXECINSTR, "X"),
ENUM_ENT(SHF_MERGE, "M"),
ENUM_ENT(SHF_STRINGS, "S"),
ENUM_ENT(SHF_INFO_LINK, "I"),
ENUM_ENT(SHF_LINK_ORDER, "L"),
ENUM_ENT(SHF_OS_NONCONFORMING, "o"),
ENUM_ENT(SHF_GROUP, "G"),
ENUM_ENT(SHF_TLS, "T"),
ENUM_ENT(SHF_MASKOS, "o"),
ENUM_ENT(SHF_MASKPROC, "p"),
ENUM_ENT_1(SHF_COMPRESSED),
};
static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_CP_SECTION),
LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_DP_SECTION)
};
static const EnumEntry<unsigned> ElfARMSectionFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, SHF_ARM_PURECODE)
};
static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, SHF_HEX_GPREL)
};
static const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NODUPES),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NAMES ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_LOCAL ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NOSTRIP),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_GPREL ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_MERGE ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_ADDR ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_STRING )
};
static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, SHF_X86_64_LARGE)
};
static std::string getGNUFlags(uint64_t Flags) {
std::string Str;
for (auto Entry : ElfSectionFlags) {
uint64_t Flag = Entry.Value & Flags;
Flags &= ~Entry.Value;
switch (Flag) {
case ELF::SHF_WRITE:
case ELF::SHF_ALLOC:
case ELF::SHF_EXECINSTR:
case ELF::SHF_MERGE:
case ELF::SHF_STRINGS:
case ELF::SHF_INFO_LINK:
case ELF::SHF_LINK_ORDER:
case ELF::SHF_OS_NONCONFORMING:
case ELF::SHF_GROUP:
case ELF::SHF_TLS:
case ELF::SHF_EXCLUDE:
Str += Entry.AltName;
break;
default:
if (Flag & ELF::SHF_MASKOS)
Str += "o";
else if (Flag & ELF::SHF_MASKPROC)
Str += "p";
else if (Flag)
Str += "x";
}
}
return Str;
}
static const char *getElfSegmentType(unsigned Arch, unsigned Type) {
// Check potentially overlapped processor-specific
// program header type.
switch (Arch) {
case ELF::EM_ARM:
switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
break;
case ELF::EM_MIPS:
case ELF::EM_MIPS_RS3_LE:
switch (Type) {
LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
}
break;
}
switch (Type) {
LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL );
LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD );
LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP );
LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE );
LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB );
LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR );
LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS );
LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
default:
return "";
}
}
static std::string getElfPtType(unsigned Arch, unsigned Type) {
switch (Type) {
LLVM_READOBJ_PHDR_ENUM(ELF, PT_NULL)
LLVM_READOBJ_PHDR_ENUM(ELF, PT_LOAD)
LLVM_READOBJ_PHDR_ENUM(ELF, PT_DYNAMIC)
LLVM_READOBJ_PHDR_ENUM(ELF, PT_INTERP)
LLVM_READOBJ_PHDR_ENUM(ELF, PT_NOTE)
LLVM_READOBJ_PHDR_ENUM(ELF, PT_SHLIB)
LLVM_READOBJ_PHDR_ENUM(ELF, PT_PHDR)
LLVM_READOBJ_PHDR_ENUM(ELF, PT_TLS)
LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_EH_FRAME)
LLVM_READOBJ_PHDR_ENUM(ELF, PT_SUNW_UNWIND)
LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_STACK)
LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_RELRO)
default:
// All machine specific PT_* types
switch (Arch) {
case ELF::EM_ARM:
if (Type == ELF::PT_ARM_EXIDX)
return "EXIDX";
break;
case ELF::EM_MIPS:
case ELF::EM_MIPS_RS3_LE:
switch (Type) {
case PT_MIPS_REGINFO:
return "REGINFO";
case PT_MIPS_RTPROC:
return "RTPROC";
case PT_MIPS_OPTIONS:
return "OPTIONS";
case PT_MIPS_ABIFLAGS:
return "ABIFLAGS";
}
break;
}
}
return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
}
static const EnumEntry<unsigned> ElfSegmentFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
};
static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
ENUM_ENT(EF_MIPS_PIC, "pic"),
ENUM_ENT(EF_MIPS_CPIC, "cpic"),
ENUM_ENT(EF_MIPS_ABI2, "abi2"),
ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
ENUM_ENT(EF_MIPS_FP64, "fp64"),
ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
};
static const EnumEntry<unsigned> ElfHeaderAMDGPUFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_XNACK),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_SRAM_ECC)
};
static const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
ENUM_ENT(EF_RISCV_RVC, "RVC"),
ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
ENUM_ENT(EF_RISCV_RVE, "RVE")
};
static const EnumEntry<unsigned> ElfSymOtherFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
};
static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
};
static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
};
static const char *getElfMipsOptionsOdkType(unsigned Odk) {
switch (Odk) {
LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
default:
return "Unknown";
}
}
template <typename ELFT>
std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
ELFDumper<ELFT>::findDynamic(const ELFFile<ELFT> *Obj) {
// Try to locate the PT_DYNAMIC header.
const Elf_Phdr *DynamicPhdr = nullptr;
for (const Elf_Phdr &Phdr :
unwrapOrError(ObjF->getFileName(), Obj->program_headers())) {
if (Phdr.p_type != ELF::PT_DYNAMIC)
continue;
DynamicPhdr = &Phdr;
break;
}
// Try to locate the .dynamic section in the sections header table.
const Elf_Shdr *DynamicSec = nullptr;
for (const Elf_Shdr &Sec :
unwrapOrError(ObjF->getFileName(), Obj->sections())) {
if (Sec.sh_type != ELF::SHT_DYNAMIC)
continue;
DynamicSec = &Sec;
break;
}
if (DynamicPhdr && DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
ObjF->getMemoryBufferRef().getBufferSize()) {
reportWarning(
createError(
"PT_DYNAMIC segment offset + size exceeds the size of the file"),
ObjF->getFileName());
// Don't use the broken dynamic header.
DynamicPhdr = nullptr;
}
if (DynamicPhdr && DynamicSec) {
StringRef Name =
unwrapOrError(ObjF->getFileName(), Obj->getSectionName(DynamicSec));
if (DynamicSec->sh_addr + DynamicSec->sh_size >
DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
reportWarning(createError("The SHT_DYNAMIC section '" + Name +
"' is not contained within the "
"PT_DYNAMIC segment"),
ObjF->getFileName());
if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
reportWarning(createError("The SHT_DYNAMIC section '" + Name +
"' is not at the start of "
"PT_DYNAMIC segment"),
ObjF->getFileName());
}
return std::make_pair(DynamicPhdr, DynamicSec);
}
template <typename ELFT>
void ELFDumper<ELFT>::loadDynamicTable(const ELFFile<ELFT> *Obj) {
const Elf_Phdr *DynamicPhdr;
const Elf_Shdr *DynamicSec;
std::tie(DynamicPhdr, DynamicSec) = findDynamic(Obj);
if (!DynamicPhdr && !DynamicSec)
return;
DynRegionInfo FromPhdr(ObjF->getFileName());
bool IsPhdrTableValid = false;
if (DynamicPhdr) {
FromPhdr = createDRIFrom(DynamicPhdr, sizeof(Elf_Dyn));
IsPhdrTableValid = !FromPhdr.getAsArrayRef<Elf_Dyn>().empty();
}
// Locate the dynamic table described in a section header.
// Ignore sh_entsize and use the expected value for entry size explicitly.
// This allows us to dump dynamic sections with a broken sh_entsize
// field.
DynRegionInfo FromSec(ObjF->getFileName());
bool IsSecTableValid = false;
if (DynamicSec) {
FromSec =
checkDRI({ObjF->getELFFile()->base() + DynamicSec->sh_offset,
DynamicSec->sh_size, sizeof(Elf_Dyn), ObjF->getFileName()});
IsSecTableValid = !FromSec.getAsArrayRef<Elf_Dyn>().empty();
}
// When we only have information from one of the SHT_DYNAMIC section header or
// PT_DYNAMIC program header, just use that.
if (!DynamicPhdr || !DynamicSec) {
if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
parseDynamicTable();
} else {
reportWarning(createError("no valid dynamic table was found"),
ObjF->getFileName());
}
return;
}
// At this point we have tables found from the section header and from the
// dynamic segment. Usually they match, but we have to do sanity checks to
// verify that.
if (FromPhdr.Addr != FromSec.Addr)
reportWarning(createError("SHT_DYNAMIC section header and PT_DYNAMIC "
"program header disagree about "
"the location of the dynamic table"),
ObjF->getFileName());
if (!IsPhdrTableValid && !IsSecTableValid) {
reportWarning(createError("no valid dynamic table was found"),
ObjF->getFileName());
return;
}
// Information in the PT_DYNAMIC program header has priority over the information
// in a section header.
if (IsPhdrTableValid) {
if (!IsSecTableValid)
reportWarning(
createError(
"SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used"),
ObjF->getFileName());
DynamicTable = FromPhdr;
} else {
reportWarning(
createError(
"PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used"),
ObjF->getFileName());
DynamicTable = FromSec;
}
parseDynamicTable();
}
template <typename ELFT>
ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> *ObjF,
ScopedPrinter &Writer)
: ObjDumper(Writer), ObjF(ObjF), DynRelRegion(ObjF->getFileName()),
DynRelaRegion(ObjF->getFileName()), DynRelrRegion(ObjF->getFileName()),
DynPLTRelRegion(ObjF->getFileName()), DynSymRegion(ObjF->getFileName()),
DynamicTable(ObjF->getFileName()) {
const ELFFile<ELFT> *Obj = ObjF->getELFFile();
for (const Elf_Shdr &Sec :
unwrapOrError(ObjF->getFileName(), Obj->sections())) {
switch (Sec.sh_type) {
case ELF::SHT_SYMTAB:
if (!DotSymtabSec)
DotSymtabSec = &Sec;
break;
case ELF::SHT_DYNSYM:
if (!DynSymRegion.Size) {
DynSymRegion = createDRIFrom(&Sec);
// This is only used (if Elf_Shdr present)for naming section in GNU
// style
DynSymtabName =
unwrapOrError(ObjF->getFileName(), Obj->getSectionName(&Sec));
if (Expected<StringRef> E = Obj->getStringTableForSymtab(Sec))
DynamicStringTable = *E;
else
reportWarning(E.takeError(), ObjF->getFileName());
}
break;
case ELF::SHT_SYMTAB_SHNDX:
ShndxTable = unwrapOrError(ObjF->getFileName(), Obj->getSHNDXTable(Sec));
break;
case ELF::SHT_GNU_versym:
if (!SymbolVersionSection)
SymbolVersionSection = &Sec;
break;
case ELF::SHT_GNU_verdef:
if (!SymbolVersionDefSection)
SymbolVersionDefSection = &Sec;
break;
case ELF::SHT_GNU_verneed:
if (!SymbolVersionNeedSection)
SymbolVersionNeedSection = &Sec;
break;
case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
if (!DotCGProfileSec)
DotCGProfileSec = &Sec;
break;
case ELF::SHT_LLVM_ADDRSIG:
if (!DotAddrsigSec)
DotAddrsigSec = &Sec;
break;
}
}
loadDynamicTable(Obj);
if (opts::Output == opts::GNU)
ELFDumperStyle.reset(new GNUStyle<ELFT>(Writer, this));
else
ELFDumperStyle.reset(new LLVMStyle<ELFT>(Writer, this));
}
static const char *getTypeString(unsigned Arch, uint64_t Type) {
#define DYNAMIC_TAG(n, v)
switch (Arch) {
case EM_AARCH64:
switch (Type) {
#define AARCH64_DYNAMIC_TAG(name, value) \
case DT_##name: \
return #name;
#include "llvm/BinaryFormat/DynamicTags.def"
#undef AARCH64_DYNAMIC_TAG
}
break;
case EM_HEXAGON:
switch (Type) {
#define HEXAGON_DYNAMIC_TAG(name, value) \
case DT_##name: \
return #name;
#include "llvm/BinaryFormat/DynamicTags.def"
#undef HEXAGON_DYNAMIC_TAG
}
break;
case EM_MIPS:
switch (Type) {
#define MIPS_DYNAMIC_TAG(name, value) \
case DT_##name: \
return #name;
#include "llvm/BinaryFormat/DynamicTags.def"
#undef MIPS_DYNAMIC_TAG
}
break;
case EM_PPC64:
switch (Type) {
#define PPC64_DYNAMIC_TAG(name, value) \
case DT_##name: \
return #name;
#include "llvm/BinaryFormat/DynamicTags.def"
#undef PPC64_DYNAMIC_TAG
}
break;
}
#undef DYNAMIC_TAG
switch (Type) {
// Now handle all dynamic tags except the architecture specific ones
#define AARCH64_DYNAMIC_TAG(name, value)
#define MIPS_DYNAMIC_TAG(name, value)
#define HEXAGON_DYNAMIC_TAG(name, value)
#define PPC64_DYNAMIC_TAG(name, value)
// Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
#define DYNAMIC_TAG_MARKER(name, value)
#define DYNAMIC_TAG(name, value) \
case DT_##name: \
return #name;
#include "llvm/BinaryFormat/DynamicTags.def"
#undef DYNAMIC_TAG
#undef AARCH64_DYNAMIC_TAG
#undef MIPS_DYNAMIC_TAG
#undef HEXAGON_DYNAMIC_TAG
#undef PPC64_DYNAMIC_TAG
#undef DYNAMIC_TAG_MARKER
default:
return "unknown";
}
}
template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
auto MappedAddrOrError = ObjF->getELFFile()->toMappedAddr(VAddr);
if (!MappedAddrOrError) {
Error Err =
createError("Unable to parse DT_" +
Twine(getTypeString(
ObjF->getELFFile()->getHeader()->e_machine, Tag)) +
": " + llvm::toString(MappedAddrOrError.takeError()));
reportWarning(std::move(Err), ObjF->getFileName());
return nullptr;
}
return MappedAddrOrError.get();
};
uint64_t SONameOffset = 0;
const char *StringTableBegin = nullptr;
uint64_t StringTableSize = 0;
for (const Elf_Dyn &Dyn : dynamic_table()) {
switch (Dyn.d_tag) {
case ELF::DT_HASH:
HashTable = reinterpret_cast<const Elf_Hash *>(
toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
break;
case ELF::DT_GNU_HASH:
GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
break;
case ELF::DT_STRTAB:
StringTableBegin = reinterpret_cast<const char *>(
toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
break;
case ELF::DT_STRSZ:
StringTableSize = Dyn.getVal();
break;
case ELF::DT_SYMTAB: {
// Often we find the information about the dynamic symbol table
// location in the SHT_DYNSYM section header. However, the value in
// DT_SYMTAB has priority, because it is used by dynamic loaders to
// locate .dynsym at runtime. The location we find in the section header
// and the location we find here should match. If we can't map the
// DT_SYMTAB value to an address (e.g. when there are no program headers), we
// ignore its value.
if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
// EntSize is non-zero if the dynamic symbol table has been found via a
// section header.
if (DynSymRegion.EntSize && VA != DynSymRegion.Addr)
reportWarning(
createError(
"SHT_DYNSYM section header and DT_SYMTAB disagree about "
"the location of the dynamic symbol table"),
ObjF->getFileName());
DynSymRegion.Addr = VA;
DynSymRegion.EntSize = sizeof(Elf_Sym);
}
break;
}
case ELF::DT_RELA:
DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
break;
case ELF::DT_RELASZ:
DynRelaRegion.Size = Dyn.getVal();
break;
case ELF::DT_RELAENT:
DynRelaRegion.EntSize = Dyn.getVal();
break;
case ELF::DT_SONAME:
SONameOffset = Dyn.getVal();
break;
case ELF::DT_REL:
DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
break;
case ELF::DT_RELSZ:
DynRelRegion.Size = Dyn.getVal();
break;
case ELF::DT_RELENT:
DynRelRegion.EntSize = Dyn.getVal();
break;
case ELF::DT_RELR:
case ELF::DT_ANDROID_RELR:
DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
break;
case ELF::DT_RELRSZ:
case ELF::DT_ANDROID_RELRSZ:
DynRelrRegion.Size = Dyn.getVal();
break;
case ELF::DT_RELRENT:
case ELF::DT_ANDROID_RELRENT:
DynRelrRegion.EntSize = Dyn.getVal();
break;
case ELF::DT_PLTREL:
if (Dyn.getVal() == DT_REL)
DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
else if (Dyn.getVal() == DT_RELA)
DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
else
reportError(createError(Twine("unknown DT_PLTREL value of ") +
Twine((uint64_t)Dyn.getVal())),
ObjF->getFileName());
break;
case ELF::DT_JMPREL:
DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
break;
case ELF::DT_PLTRELSZ:
DynPLTRelRegion.Size = Dyn.getVal();
break;
}
}
if (StringTableBegin)
DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
SOName = getDynamicString(SONameOffset);
}
template <typename ELFT>
typename ELFDumper<ELFT>::Elf_Rel_Range ELFDumper<ELFT>::dyn_rels() const {
return DynRelRegion.getAsArrayRef<Elf_Rel>();
}
template <typename ELFT>
typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const {
return DynRelaRegion.getAsArrayRef<Elf_Rela>();
}
template <typename ELFT>
typename ELFDumper<ELFT>::Elf_Relr_Range ELFDumper<ELFT>::dyn_relrs() const {
return DynRelrRegion.getAsArrayRef<Elf_Relr>();
}
template <class ELFT> void ELFDumper<ELFT>::printFileHeaders() {
ELFDumperStyle->printFileHeaders(ObjF->getELFFile());
}
template <class ELFT> void ELFDumper<ELFT>::printSectionHeaders() {
ELFDumperStyle->printSectionHeaders(ObjF->getELFFile());
}
template <class ELFT> void ELFDumper<ELFT>::printRelocations() {
ELFDumperStyle->printRelocations(ObjF->getELFFile());
}
template <class ELFT>
void ELFDumper<ELFT>::printProgramHeaders(
bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
ELFDumperStyle->printProgramHeaders(ObjF->getELFFile(), PrintProgramHeaders,
PrintSectionMapping);
}
template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
// Dump version symbol section.
ELFDumperStyle->printVersionSymbolSection(ObjF->getELFFile(),
SymbolVersionSection);
// Dump version definition section.
ELFDumperStyle->printVersionDefinitionSection(ObjF->getELFFile(),
SymbolVersionDefSection);
// Dump version dependency section.
ELFDumperStyle->printVersionDependencySection(ObjF->getELFFile(),
SymbolVersionNeedSection);
}
template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocations() {
ELFDumperStyle->printDynamicRelocations(ObjF->getELFFile());
}
template <class ELFT>
void ELFDumper<ELFT>::printSymbols(bool PrintSymbols,
bool PrintDynamicSymbols) {
ELFDumperStyle->printSymbols(ObjF->getELFFile(), PrintSymbols,
PrintDynamicSymbols);
}
template <class ELFT> void ELFDumper<ELFT>::printHashSymbols() {
ELFDumperStyle->printHashSymbols(ObjF->getELFFile());
}
template <class ELFT> void ELFDumper<ELFT>::printHashHistogram() {
ELFDumperStyle->printHashHistogram(ObjF->getELFFile());
}
template <class ELFT> void ELFDumper<ELFT>::printCGProfile() {
ELFDumperStyle->printCGProfile(ObjF->getELFFile());
}
template <class ELFT> void ELFDumper<ELFT>::printNotes() {
ELFDumperStyle->printNotes(ObjF->getELFFile());
}
template <class ELFT> void ELFDumper<ELFT>::printELFLinkerOptions() {
ELFDumperStyle->printELFLinkerOptions(ObjF->getELFFile());
}
template <class ELFT> void ELFDumper<ELFT>::printStackSizes() {
ELFDumperStyle->printStackSizes(ObjF);
}
#define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
{ #enum, prefix##_##enum }
static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
};
static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON)
};
static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
};
#undef LLVM_READOBJ_DT_FLAG_ENT
template <typename T, typename TFlag>
void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
using FlagEntry = EnumEntry<TFlag>;
using FlagVector = SmallVector<FlagEntry, 10>;
FlagVector SetFlags;
for (const auto &Flag : Flags) {
if (Flag.Value == 0)
continue;
if ((Value & Flag.Value) == Flag.Value)
SetFlags.push_back(Flag);
}
for (const auto &Flag : SetFlags) {
OS << Flag.Name << " ";
}
}
template <class ELFT>
void ELFDumper<ELFT>::printDynamicEntry(raw_ostream &OS, uint64_t Type,
uint64_t Value) const {
const char *ConvChar =
(opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
// Handle custom printing of architecture specific tags
switch (ObjF->getELFFile()->getHeader()->e_machine) {
case EM_AARCH64:
switch (Type) {
case DT_AARCH64_BTI_PLT:
case DT_AARCH64_PAC_PLT:
OS << Value;
return;
default:
break;
}
break;
case EM_HEXAGON:
switch (Type) {
case DT_HEXAGON_VER:
OS << Value;
return;
case DT_HEXAGON_SYMSZ:
case DT_HEXAGON_PLT:
OS << format(ConvChar, Value);
return;
default:
break;
}
break;
case EM_MIPS:
switch (Type) {
case DT_MIPS_RLD_VERSION:
case DT_MIPS_LOCAL_GOTNO:
case DT_MIPS_SYMTABNO:
case DT_MIPS_UNREFEXTNO:
OS << Value;
return;
case DT_MIPS_TIME_STAMP:
case DT_MIPS_ICHECKSUM:
case DT_MIPS_IVERSION:
case DT_MIPS_BASE_ADDRESS:
case DT_MIPS_MSYM:
case DT_MIPS_CONFLICT:
case DT_MIPS_LIBLIST:
case DT_MIPS_CONFLICTNO:
case DT_MIPS_LIBLISTNO:
case DT_MIPS_GOTSYM:
case DT_MIPS_HIPAGENO:
case DT_MIPS_RLD_MAP:
case DT_MIPS_DELTA_CLASS:
case DT_MIPS_DELTA_CLASS_NO:
case DT_MIPS_DELTA_INSTANCE:
case DT_MIPS_DELTA_RELOC:
case DT_MIPS_DELTA_RELOC_NO:
case DT_MIPS_DELTA_SYM:
case DT_MIPS_DELTA_SYM_NO:
case DT_MIPS_DELTA_CLASSSYM:
case DT_MIPS_DELTA_CLASSSYM_NO:
case DT_MIPS_CXX_FLAGS:
case DT_MIPS_PIXIE_INIT:
case DT_MIPS_SYMBOL_LIB:
case DT_MIPS_LOCALPAGE_GOTIDX:
case DT_MIPS_LOCAL_GOTIDX:
case DT_MIPS_HIDDEN_GOTIDX:
case DT_MIPS_PROTECTED_GOTIDX:
case DT_MIPS_OPTIONS:
case DT_MIPS_INTERFACE:
case DT_MIPS_DYNSTR_ALIGN:
case DT_MIPS_INTERFACE_SIZE:
case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
case DT_MIPS_PERF_SUFFIX:
case DT_MIPS_COMPACT_SIZE:
case DT_MIPS_GP_VALUE:
case DT_MIPS_AUX_DYNAMIC:
case DT_MIPS_PLTGOT:
case DT_MIPS_RWPLT:
case DT_MIPS_RLD_MAP_REL:
OS << format(ConvChar, Value);
return;
case DT_MIPS_FLAGS:
printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS);
return;
default:
break;
}
break;
default:
break;
}
switch (Type) {
case DT_PLTREL:
if (Value == DT_REL) {
OS << "REL";
break;
} else if (Value == DT_RELA) {
OS << "RELA";
break;
}
LLVM_FALLTHROUGH;
case DT_PLTGOT:
case DT_HASH:
case DT_STRTAB:
case DT_SYMTAB:
case DT_RELA:
case DT_INIT:
case DT_FINI:
case DT_REL:
case DT_JMPREL:
case DT_INIT_ARRAY:
case DT_FINI_ARRAY:
case DT_PREINIT_ARRAY:
case DT_DEBUG:
case DT_VERDEF:
case DT_VERNEED:
case DT_VERSYM:
case DT_GNU_HASH:
case DT_NULL:
OS << format(ConvChar, Value);
break;
case DT_RELACOUNT:
case DT_RELCOUNT:
case DT_VERDEFNUM:
case DT_VERNEEDNUM:
OS << Value;
break;
case DT_PLTRELSZ:
case DT_RELASZ:
case DT_RELAENT:
case DT_STRSZ:
case DT_SYMENT:
case DT_RELSZ:
case DT_RELENT:
case DT_INIT_ARRAYSZ:
case DT_FINI_ARRAYSZ:
case DT_PREINIT_ARRAYSZ:
case DT_ANDROID_RELSZ:
case DT_ANDROID_RELASZ:
OS << Value << " (bytes)";
break;
case DT_NEEDED:
case DT_SONAME:
case DT_AUXILIARY:
case DT_USED:
case DT_FILTER:
case DT_RPATH:
case DT_RUNPATH: {
const std::map<uint64_t, const char*> TagNames = {
{DT_NEEDED, "Shared library"},
{DT_SONAME, "Library soname"},
{DT_AUXILIARY, "Auxiliary library"},
{DT_USED, "Not needed object"},
{DT_FILTER, "Filter library"},
{DT_RPATH, "Library rpath"},
{DT_RUNPATH, "Library runpath"},
};
OS << TagNames.at(Type) << ": [" << getDynamicString(Value) << "]";
break;
}
case DT_FLAGS:
printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS);
break;
case DT_FLAGS_1:
printFlags(Value, makeArrayRef(ElfDynamicDTFlags1), OS);
break;
default:
OS << format(ConvChar, Value);
break;
}
}
template <class ELFT>
std::string ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
if (DynamicStringTable.empty())
return "<String table is empty or was not found>";
if (Value < DynamicStringTable.size())
return DynamicStringTable.data() + Value;
return Twine("<Invalid offset 0x" + utohexstr(Value) + ">").str();
}
template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
Ctx.printUnwindInformation();
}
namespace {
template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
const ELFFile<ELF32LE> *Obj = ObjF->getELFFile();
const unsigned Machine = Obj->getHeader()->e_machine;
if (Machine == EM_ARM) {
ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF->getFileName(),
DotSymtabSec);
Ctx.PrintUnwindInformation();
}
DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
Ctx.printUnwindInformation();
}
} // end anonymous namespace
template <class ELFT> void ELFDumper<ELFT>::printDynamicTable() {
ELFDumperStyle->printDynamic(ObjF->getELFFile());
}
template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
ListScope D(W, "NeededLibraries");
std::vector<std::string> Libs;
for (const auto &Entry : dynamic_table())
if (Entry.d_tag == ELF::DT_NEEDED)
Libs.push_back(getDynamicString(Entry.d_un.d_val));
llvm::stable_sort(Libs);
for (const auto &L : Libs)
W.startLine() << L << "\n";
}
template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
DictScope D(W, "HashTable");
if (!HashTable)
return;
W.printNumber("Num Buckets", HashTable->nbucket);
W.printNumber("Num Chains", HashTable->nchain);
W.printList("Buckets", HashTable->buckets());
W.printList("Chains", HashTable->chains());
}
template <typename ELFT> void ELFDumper<ELFT>::printGnuHashTable() {
DictScope D(W, "GnuHashTable");
if (!GnuHashTable)
return;
W.printNumber("Num Buckets", GnuHashTable->nbuckets);
W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
W.printNumber("Num Mask Words", GnuHashTable->maskwords);
W.printNumber("Shift Count", GnuHashTable->shift2);
W.printHexList("Bloom Filter", GnuHashTable->filter());
W.printList("Buckets", GnuHashTable->buckets());
Elf_Sym_Range Syms = dynamic_symbols();
unsigned NumSyms = std::distance(Syms.begin(), Syms.end());
if (!NumSyms)
reportError(createError("No dynamic symbol section"), ObjF->getFileName());
W.printHexList("Values", GnuHashTable->values(NumSyms));
}
template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
W.printString("LoadName", SOName);
}
template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
const ELFFile<ELFT> *Obj = ObjF->getELFFile();
switch (Obj->getHeader()->e_machine) {
case EM_ARM:
printAttributes();
break;
case EM_MIPS: {
ELFDumperStyle->printMipsABIFlags(ObjF);
printMipsOptions();
printMipsReginfo();
MipsGOTParser<ELFT> Parser(Obj, ObjF->getFileName(), dynamic_table(),
dynamic_symbols());
if (Parser.hasGot())
ELFDumperStyle->printMipsGOT(Parser);
if (Parser.hasPlt())
ELFDumperStyle->printMipsPLT(Parser);
break;
}
default:
break;
}
}
template <class ELFT> void ELFDumper<ELFT>::printAttributes() {
W.startLine() << "Attributes not implemented.\n";
}
namespace {
template <> void ELFDumper<ELF32LE>::printAttributes() {
const ELFFile<ELF32LE> *Obj = ObjF->getELFFile();
if (Obj->getHeader()->e_machine != EM_ARM) {
W.startLine() << "Attributes not implemented.\n";
return;
}
DictScope BA(W, "BuildAttributes");
for (const ELFO::Elf_Shdr &Sec :
unwrapOrError(ObjF->getFileName(), Obj->sections())) {
if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES)
continue;
ArrayRef<uint8_t> Contents =
unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(&Sec));
if (Contents[0] != ARMBuildAttrs::Format_Version) {
errs() << "unrecognised FormatVersion: 0x"
<< Twine::utohexstr(Contents[0]) << '\n';
continue;
}
W.printHex("FormatVersion", Contents[0]);
if (Contents.size() == 1)
continue;
ARMAttributeParser(&W).Parse(Contents, true);
}
}
template <class ELFT> class MipsGOTParser {
public:
TYPEDEF_ELF_TYPES(ELFT)
using Entry = typename ELFO::Elf_Addr;
using Entries = ArrayRef<Entry>;
const bool IsStatic;
const ELFO * const Obj;
MipsGOTParser(const ELFO *Obj, StringRef FileName, Elf_Dyn_Range DynTable,
Elf_Sym_Range DynSyms);
bool hasGot() const { return !GotEntries.empty(); }
bool hasPlt() const { return !PltEntries.empty(); }
uint64_t getGp() const;
const Entry *getGotLazyResolver() const;
const Entry *getGotModulePointer() const;
const Entry *getPltLazyResolver() const;
const Entry *getPltModulePointer() const;
Entries getLocalEntries() const;
Entries getGlobalEntries() const;
Entries getOtherEntries() const;
Entries getPltEntries() const;
uint64_t getGotAddress(const Entry * E) const;
int64_t getGotOffset(const Entry * E) const;
const Elf_Sym *getGotSym(const Entry *E) const;
uint64_t getPltAddress(const Entry * E) const;
const Elf_Sym *getPltSym(const Entry *E) const;
StringRef getPltStrTable() const { return PltStrTable; }
private:
const Elf_Shdr *GotSec;
size_t LocalNum;
size_t GlobalNum;
const Elf_Shdr *PltSec;
const Elf_Shdr *PltRelSec;
const Elf_Shdr *PltSymTable;
StringRef FileName;
Elf_Sym_Range GotDynSyms;
StringRef PltStrTable;
Entries GotEntries;
Entries PltEntries;
};
} // end anonymous namespace
template <class ELFT>
MipsGOTParser<ELFT>::MipsGOTParser(const ELFO *Obj, StringRef FileName,
Elf_Dyn_Range DynTable,
Elf_Sym_Range DynSyms)
: IsStatic(DynTable.empty()), Obj(Obj), GotSec(nullptr), LocalNum(0),
GlobalNum(0), PltSec(nullptr), PltRelSec(nullptr), PltSymTable(nullptr),
FileName(FileName) {
// See "Global Offset Table" in Chapter 5 in the following document
// for detailed GOT description.
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
// Find static GOT secton.
if (IsStatic) {
GotSec = findSectionByName(*Obj, FileName, ".got");
if (!GotSec)
return;
ArrayRef<uint8_t> Content =
unwrapOrError(FileName, Obj->getSectionContents(GotSec));
GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
Content.size() / sizeof(Entry));
LocalNum = GotEntries.size();
return;
}
// Lookup dynamic table tags which define GOT/PLT layouts.
Optional<uint64_t> DtPltGot;
Optional<uint64_t> DtLocalGotNum;
Optional<uint64_t> DtGotSym;
Optional<uint64_t> DtMipsPltGot;
Optional<uint64_t> DtJmpRel;
for (const auto &Entry : DynTable) {
switch (Entry.getTag()) {
case ELF::DT_PLTGOT:
DtPltGot = Entry.getVal();
break;
case ELF::DT_MIPS_LOCAL_GOTNO:
DtLocalGotNum = Entry.getVal();
break;
case ELF::DT_MIPS_GOTSYM:
DtGotSym = Entry.getVal();
break;
case ELF::DT_MIPS_PLTGOT:
DtMipsPltGot = Entry.getVal();
break;
case ELF::DT_JMPREL:
DtJmpRel = Entry.getVal();
break;
}
}
// Find dynamic GOT section.
if (DtPltGot || DtLocalGotNum || DtGotSym) {
if (!DtPltGot)
report_fatal_error("Cannot find PLTGOT dynamic table tag.");
if (!DtLocalGotNum)
report_fatal_error("Cannot find MIPS_LOCAL_GOTNO dynamic table tag.");
if (!DtGotSym)
report_fatal_error("Cannot find MIPS_GOTSYM dynamic table tag.");
size_t DynSymTotal = DynSyms.size();
if (*DtGotSym > DynSymTotal)
reportError(
createError("MIPS_GOTSYM exceeds a number of dynamic symbols"),
FileName);
GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
if (!GotSec)
reportError(createError("There is no not empty GOT section at 0x" +
Twine::utohexstr(*DtPltGot)),
FileName);
LocalNum = *DtLocalGotNum;
GlobalNum = DynSymTotal - *DtGotSym;
ArrayRef<uint8_t> Content =
unwrapOrError(FileName, Obj->getSectionContents(GotSec));
GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
Content.size() / sizeof(Entry));
GotDynSyms = DynSyms.drop_front(*DtGotSym);
}
// Find PLT section.
if (DtMipsPltGot || DtJmpRel) {
if (!DtMipsPltGot)
report_fatal_error("Cannot find MIPS_PLTGOT dynamic table tag.");
if (!DtJmpRel)
report_fatal_error("Cannot find JMPREL dynamic table tag.");
PltSec = findNotEmptySectionByAddress(Obj, FileName, * DtMipsPltGot);
if (!PltSec)
report_fatal_error("There is no not empty PLTGOT section at 0x " +
Twine::utohexstr(*DtMipsPltGot));
PltRelSec = findNotEmptySectionByAddress(Obj, FileName, * DtJmpRel);
if (!PltRelSec)
report_fatal_error("There is no not empty RELPLT section at 0x" +
Twine::utohexstr(*DtJmpRel));
ArrayRef<uint8_t> PltContent =
unwrapOrError(FileName, Obj->getSectionContents(PltSec));
PltEntries = Entries(reinterpret_cast<const Entry *>(PltContent.data()),
PltContent.size() / sizeof(Entry));
PltSymTable = unwrapOrError(FileName, Obj->getSection(PltRelSec->sh_link));
PltStrTable =
unwrapOrError(FileName, Obj->getStringTableForSymtab(*PltSymTable));
}
}
template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
return GotSec->sh_addr + 0x7ff0;
}
template <class ELFT>
const typename MipsGOTParser<ELFT>::Entry *
MipsGOTParser<ELFT>::getGotLazyResolver() const {
return LocalNum > 0 ? &GotEntries[0] : nullptr;
}
template <class ELFT>
const typename MipsGOTParser<ELFT>::Entry *
MipsGOTParser<ELFT>::getGotModulePointer() const {
if (LocalNum < 2)
return nullptr;
const Entry &E = GotEntries[1];
if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
return nullptr;
return &E;
}
template <class ELFT>
typename MipsGOTParser<ELFT>::Entries
MipsGOTParser<ELFT>::getLocalEntries() const {
size_t Skip = getGotModulePointer() ? 2 : 1;
if (LocalNum - Skip <= 0)
return Entries();
return GotEntries.slice(Skip, LocalNum - Skip);
}
template <class ELFT>
typename MipsGOTParser<ELFT>::Entries
MipsGOTParser<ELFT>::getGlobalEntries() const {
if (GlobalNum == 0)
return Entries();
return GotEntries.slice(LocalNum, GlobalNum);
}
template <class ELFT>
typename MipsGOTParser<ELFT>::Entries
MipsGOTParser<ELFT>::getOtherEntries() const {
size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
if (OtherNum == 0)
return Entries();
return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
}
template <class ELFT>
uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
return GotSec->sh_addr + Offset;
}
template <class ELFT>
int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
return Offset - 0x7ff0;
}
template <class ELFT>
const typename MipsGOTParser<ELFT>::Elf_Sym *
MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
int64_t Offset = std::distance(GotEntries.data(), E);
return &GotDynSyms[Offset - LocalNum];
}
template <class ELFT>
const typename MipsGOTParser<ELFT>::Entry *
MipsGOTParser<ELFT>::getPltLazyResolver() const {
return PltEntries.empty() ? nullptr : &PltEntries[0];
}
template <class ELFT>
const typename MipsGOTParser<ELFT>::Entry *
MipsGOTParser<ELFT>::getPltModulePointer() const {
return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
}
template <class ELFT>
typename MipsGOTParser<ELFT>::Entries
MipsGOTParser<ELFT>::getPltEntries() const {
if (PltEntries.size() <= 2)
return Entries();
return PltEntries.slice(2, PltEntries.size() - 2);
}
template <class ELFT>
uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
return PltSec->sh_addr + Offset;
}
template <class ELFT>
const typename MipsGOTParser<ELFT>::Elf_Sym *
MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
int64_t Offset = std::distance(getPltEntries().data(), E);
if (PltRelSec->sh_type == ELF::SHT_REL) {
Elf_Rel_Range Rels = unwrapOrError(FileName, Obj->rels(PltRelSec));
return unwrapOrError(FileName,
Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
} else {
Elf_Rela_Range Rels = unwrapOrError(FileName, Obj->relas(PltRelSec));
return unwrapOrError(FileName,
Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
}
}
static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
{"None", Mips::AFL_EXT_NONE},
{"Broadcom SB-1", Mips::AFL_EXT_SB1},
{"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
{"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
{"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
{"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
{"LSI R4010", Mips::AFL_EXT_4010},
{"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
{"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
{"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
{"MIPS R4650", Mips::AFL_EXT_4650},
{"MIPS R5900", Mips::AFL_EXT_5900},
{"MIPS R10000", Mips::AFL_EXT_10000},
{"NEC VR4100", Mips::AFL_EXT_4100},
{"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
{"NEC VR4120", Mips::AFL_EXT_4120},
{"NEC VR5400", Mips::AFL_EXT_5400},
{"NEC VR5500", Mips::AFL_EXT_5500},
{"RMI Xlr", Mips::AFL_EXT_XLR},
{"Toshiba R3900", Mips::AFL_EXT_3900}
};
static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
{"DSP", Mips::AFL_ASE_DSP},
{"DSPR2", Mips::AFL_ASE_DSPR2},
{"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
{"MCU", Mips::AFL_ASE_MCU},
{"MDMX", Mips::AFL_ASE_MDMX},
{"MIPS-3D", Mips::AFL_ASE_MIPS3D},
{"MT", Mips::AFL_ASE_MT},
{"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
{"VZ", Mips::AFL_ASE_VIRT},
{"MSA", Mips::AFL_ASE_MSA},
{"MIPS16", Mips::AFL_ASE_MIPS16},
{"microMIPS", Mips::AFL_ASE_MICROMIPS},
{"XPA", Mips::AFL_ASE_XPA},
{"CRC", Mips::AFL_ASE_CRC},
{"GINV", Mips::AFL_ASE_GINV},
};
static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
{"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
{"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
{"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
{"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
{"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
{"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
{"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
{"Hard float compat (32-bit CPU, 64-bit FPU)",
Mips::Val_GNU_MIPS_ABI_FP_64A}
};
static const EnumEntry<unsigned> ElfMipsFlags1[] {
{"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
};
static int getMipsRegisterSize(uint8_t Flag) {
switch (Flag) {
case Mips::AFL_REG_NONE:
return 0;
case Mips::AFL_REG_32:
return 32;
case Mips::AFL_REG_64:
return 64;
case Mips::AFL_REG_128:
return 128;
default:
return -1;
}
}
template <class ELFT>
static void printMipsReginfoData(ScopedPrinter &W,
const Elf_Mips_RegInfo<ELFT> &Reginfo) {
W.printHex("GP", Reginfo.ri_gp_value);
W.printHex("General Mask", Reginfo.ri_gprmask);
W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
}
template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
const ELFFile<ELFT> *Obj = ObjF->getELFFile();
const Elf_Shdr *Shdr = findSectionByName(*Obj, ObjF->getFileName(), ".reginfo");
if (!Shdr) {
W.startLine() << "There is no .reginfo section in the file.\n";
return;
}
ArrayRef<uint8_t> Sec =
unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
if (Sec.size() != sizeof(Elf_Mips_RegInfo<ELFT>)) {
W.startLine() << "The .reginfo section has a wrong size.\n";
return;
}
DictScope GS(W, "MIPS RegInfo");
auto *Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(Sec.data());
printMipsReginfoData(W, *Reginfo);
}
template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
const ELFFile<ELFT> *Obj = ObjF->getELFFile();
const Elf_Shdr *Shdr =
findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.options");
if (!Shdr) {
W.startLine() << "There is no .MIPS.options section in the file.\n";
return;
}
DictScope GS(W, "MIPS Options");
ArrayRef<uint8_t> Sec =
unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
while (!Sec.empty()) {
if (Sec.size() < sizeof(Elf_Mips_Options<ELFT>)) {
W.startLine() << "The .MIPS.options section has a wrong size.\n";
return;
}
auto *O = reinterpret_cast<const Elf_Mips_Options<ELFT> *>(Sec.data());
DictScope GS(W, getElfMipsOptionsOdkType(O->kind));
switch (O->kind) {
case ODK_REGINFO:
printMipsReginfoData(W, O->getRegInfo());
break;
default:
W.startLine() << "Unsupported MIPS options tag.\n";
break;
}
Sec = Sec.slice(O->size);
}
}
template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
const ELFFile<ELFT> *Obj = ObjF->getELFFile();
const Elf_Shdr *StackMapSection = nullptr;
for (const auto &Sec : unwrapOrError(ObjF->getFileName(), Obj->sections())) {
StringRef Name =
unwrapOrError(ObjF->getFileName(), Obj->getSectionName(&Sec));
if (Name == ".llvm_stackmaps") {
StackMapSection = &Sec;
break;
}
}
if (!StackMapSection)
return;
ArrayRef<uint8_t> StackMapContentsArray = unwrapOrError(
ObjF->getFileName(), Obj->getSectionContents(StackMapSection));
prettyPrintStackMap(
W, StackMapParser<ELFT::TargetEndianness>(StackMapContentsArray));
}
template <class ELFT> void ELFDumper<ELFT>::printGroupSections() {
ELFDumperStyle->printGroupSections(ObjF->getELFFile());
}
template <class ELFT> void ELFDumper<ELFT>::printAddrsig() {
ELFDumperStyle->printAddrsig(ObjF->getELFFile());
}
static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
StringRef Str2) {
OS.PadToColumn(2u);
OS << Str1;
OS.PadToColumn(37u);
OS << Str2 << "\n";
OS.flush();
}
template <class ELFT>
static std::string getSectionHeadersNumString(const ELFFile<ELFT> *Obj,
StringRef FileName) {
const typename ELFT::Ehdr *ElfHeader = Obj->getHeader();
if (ElfHeader->e_shnum != 0)
return to_string(ElfHeader->e_shnum);
ArrayRef<typename ELFT::Shdr> Arr = unwrapOrError(FileName, Obj->sections());
if (Arr.empty())
return "0";
return "0 (" + to_string(Arr[0].sh_size) + ")";
}
template <class ELFT>
static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> *Obj,
StringRef FileName) {
const typename ELFT::Ehdr *ElfHeader = Obj->getHeader();
if (ElfHeader->e_shstrndx != SHN_XINDEX)
return to_string(ElfHeader->e_shstrndx);
ArrayRef<typename ELFT::Shdr> Arr = unwrapOrError(FileName, Obj->sections());
if (Arr.empty())
return "65535 (corrupt: out of range)";
return to_string(ElfHeader->e_shstrndx) + " (" + to_string(Arr[0].sh_link) +
")";
}
template <class ELFT> void GNUStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
const Elf_Ehdr *e = Obj->getHeader();
OS << "ELF Header:\n";
OS << " Magic: ";
std::string Str;
for (int i = 0; i < ELF::EI_NIDENT; i++)
OS << format(" %02x", static_cast<int>(e->e_ident[i]));
OS << "\n";
Str = printEnum(e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
printFields(OS, "Class:", Str);
Str = printEnum(e->e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
printFields(OS, "Data:", Str);
OS.PadToColumn(2u);
OS << "Version:";
OS.PadToColumn(37u);
OS << to_hexString(e->e_ident[ELF::EI_VERSION]);
if (e->e_version == ELF::EV_CURRENT)
OS << " (current)";
OS << "\n";
Str = printEnum(e->e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
printFields(OS, "OS/ABI:", Str);
Str = "0x" + to_hexString(e->e_ident[ELF::EI_ABIVERSION]);
printFields(OS, "ABI Version:", Str);
Str = printEnum(e->e_type, makeArrayRef(ElfObjectFileType));
printFields(OS, "Type:", Str);
Str = printEnum(e->e_machine, makeArrayRef(ElfMachineType));
printFields(OS, "Machine:", Str);
Str = "0x" + to_hexString(e->e_version);
printFields(OS, "Version:", Str);
Str = "0x" + to_hexString(e->e_entry);
printFields(OS, "Entry point address:", Str);
Str = to_string(e->e_phoff) + " (bytes into file)";
printFields(OS, "Start of program headers:", Str);
Str = to_string(e->e_shoff) + " (bytes into file)";
printFields(OS, "Start of section headers:", Str);
std::string ElfFlags;
if (e->e_machine == EM_MIPS)
ElfFlags =
printFlags(e->e_flags, makeArrayRef(ElfHeaderMipsFlags),
unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
unsigned(ELF::EF_MIPS_MACH));
else if (e->e_machine == EM_RISCV)
ElfFlags = printFlags(e->e_flags, makeArrayRef(ElfHeaderRISCVFlags));
Str = "0x" + to_hexString(e->e_flags);
if (!ElfFlags.empty())
Str = Str + ", " + ElfFlags;
printFields(OS, "Flags:", Str);
Str = to_string(e->e_ehsize) + " (bytes)";
printFields(OS, "Size of this header:", Str);
Str = to_string(e->e_phentsize) + " (bytes)";
printFields(OS, "Size of program headers:", Str);
Str = to_string(e->e_phnum);
printFields(OS, "Number of program headers:", Str);
Str = to_string(e->e_shentsize) + " (bytes)";
printFields(OS, "Size of section headers:", Str);
Str = getSectionHeadersNumString(Obj, this->FileName);
printFields(OS, "Number of section headers:", Str);
Str = getSectionHeaderTableIndexString(Obj, this->FileName);
printFields(OS, "Section header string table index:", Str);
}
namespace {
struct GroupMember {
StringRef Name;
uint64_t Index;
};
struct GroupSection {
StringRef Name;
std::string Signature;
uint64_t ShName;
uint64_t Index;
uint32_t Link;
uint32_t Info;
uint32_t Type;
std::vector<GroupMember> Members;
};
template <class ELFT>
std::vector<GroupSection> getGroups(const ELFFile<ELFT> *Obj,
StringRef FileName) {
using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym;
using Elf_Word = typename ELFT::Word;
std::vector<GroupSection> Ret;
uint64_t I = 0;
for (const Elf_Shdr &Sec : unwrapOrError(FileName, Obj->sections())) {
++I;
if (Sec.sh_type != ELF::SHT_GROUP)
continue;
const Elf_Shdr *Symtab =
unwrapOrError(FileName, Obj->getSection(Sec.sh_link));
StringRef StrTable =
unwrapOrError(FileName, Obj->getStringTableForSymtab(*Symtab));
const Elf_Sym *Sym = unwrapOrError(
FileName, Obj->template getEntry<Elf_Sym>(Symtab, Sec.sh_info));
auto Data = unwrapOrError(
FileName, Obj->template getSectionContentsAsArray<Elf_Word>(&Sec));
StringRef Name = unwrapOrError(FileName, Obj->getSectionName(&Sec));
StringRef Signature = StrTable.data() + Sym->st_name;
Ret.push_back({Name,
maybeDemangle(Signature),
Sec.sh_name,
I - 1,
Sec.sh_link,
Sec.sh_info,
Data[0],
{}});
std::vector<GroupMember> &GM = Ret.back().Members;
for (uint32_t Ndx : Data.slice(1)) {
auto Sec = unwrapOrError(FileName, Obj->getSection(Ndx));
const StringRef Name = unwrapOrError(FileName, Obj->getSectionName(Sec));
GM.push_back({Name, Ndx});
}
}
return Ret;
}
DenseMap<uint64_t, const GroupSection *>
mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
DenseMap<uint64_t, const GroupSection *> Ret;
for (const GroupSection &G : Groups)
for (const GroupMember &GM : G.Members)
Ret.insert({GM.Index, &G});
return Ret;
}
} // namespace
template <class ELFT> void GNUStyle<ELFT>::printGroupSections(const ELFO *Obj) {
std::vector<GroupSection> V = getGroups<ELFT>(Obj, this->FileName);
DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
for (const GroupSection &G : V) {
OS << "\n"
<< getGroupType(G.Type) << " group section ["
<< format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
<< "] contains " << G.Members.size() << " sections:\n"
<< " [Index] Name\n";
for (const GroupMember &GM : G.Members) {
const GroupSection *MainGroup = Map[GM.Index];
if (MainGroup != &G) {
OS.flush();
errs() << "Error: section [" << format_decimal(GM.Index, 5)
<< "] in group section [" << format_decimal(G.Index, 5)
<< "] already in group section ["
<< format_decimal(MainGroup->Index, 5) << "]";
errs().flush();
continue;
}
OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n";
}
}
if (V.empty())
OS << "There are no section groups in this file.\n";
}
template <class ELFT>
void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
const Elf_Rela &R, bool IsRela) {
const Elf_Sym *Sym =
unwrapOrError(this->FileName, Obj->getRelocationSymbol(&R, SymTab));
std::string TargetName;
if (Sym && Sym->getType() == ELF::STT_SECTION) {
const Elf_Shdr *Sec = unwrapOrError(
this->FileName,
Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
TargetName = unwrapOrError(this->FileName, Obj->getSectionName(Sec));
} else if (Sym) {
StringRef StrTable =
unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*SymTab));
TargetName = this->dumper()->getFullSymbolName(
Sym, StrTable, SymTab->sh_type == SHT_DYNSYM /* IsDynamic */);
}
printRelocation(Obj, Sym, TargetName, R, IsRela);
}
template <class ELFT>
void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Sym *Sym,
StringRef SymbolName, const Elf_Rela &R,
bool IsRela) {
// First two fields are bit width dependent. The rest of them are fixed width.
unsigned Bias = ELFT::Is64Bits ? 8 : 0;
Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
unsigned Width = ELFT::Is64Bits ? 16 : 8;
Fields[0].Str = to_string(format_hex_no_prefix(R.r_offset, Width));
Fields[1].Str = to_string(format_hex_no_prefix(R.r_info, Width));
SmallString<32> RelocName;
Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName);
Fields[2].Str = RelocName.c_str();
if (Sym && (!SymbolName.empty() || Sym->getValue() != 0))
Fields[3].Str = to_string(format_hex_no_prefix(Sym->getValue(), Width));
Fields[4].Str = SymbolName;
for (const Field &F : Fields)
printField(F);
std::string Addend;
if (IsRela) {
int64_t RelAddend = R.r_addend;
if (!SymbolName.empty()) {
if (R.r_addend < 0) {
Addend = " - ";
RelAddend = std::abs(RelAddend);
} else
Addend = " + ";
}
Addend += to_hexString(RelAddend, false);
}
OS << Addend << "\n";
}
template <class ELFT> void GNUStyle<ELFT>::printRelocHeader(unsigned SType) {
bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
if (ELFT::Is64Bits)
OS << " ";
else
OS << " ";
if (IsRelr && opts::RawRelr)
OS << "Data ";
else
OS << "Offset";
if (ELFT::Is64Bits)
OS << " Info Type"
<< " Symbol's Value Symbol's Name";
else
OS << " Info Type Sym. Value Symbol's Name";
if (IsRela)
OS << " + Addend";
OS << "\n";
}
template <class ELFT> void GNUStyle<ELFT>::printRelocations(const ELFO *Obj) {
bool HasRelocSections = false;
for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA &&
Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL &&
Sec.sh_type != ELF::SHT_ANDROID_RELA &&
Sec.sh_type != ELF::SHT_ANDROID_RELR)
continue;
HasRelocSections = true;
StringRef Name = unwrapOrError(this->FileName, Obj->getSectionName(&Sec));
unsigned Entries = Sec.getEntityCount();
std::vector<Elf_Rela> AndroidRelas;
if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
Sec.sh_type == ELF::SHT_ANDROID_RELA) {
// Android's packed relocation section needs to be unpacked first
// to get the actual number of entries.
AndroidRelas = unwrapOrError(this->FileName, Obj->android_relas(&Sec));
Entries = AndroidRelas.size();
}
std::vector<Elf_Rela> RelrRelas;
if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
// .relr.dyn relative relocation section needs to be unpacked first
// to get the actual number of entries.
Elf_Relr_Range Relrs = unwrapOrError(this->FileName, Obj->relrs(&Sec));
RelrRelas = unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
Entries = RelrRelas.size();
}
uintX_t Offset = Sec.sh_offset;
OS << "\nRelocation section '" << Name << "' at offset 0x"
<< to_hexString(Offset, false) << " contains " << Entries
<< " entries:\n";
printRelocHeader(Sec.sh_type);
const Elf_Shdr *SymTab =
unwrapOrError(this->FileName, Obj->getSection(Sec.sh_link));
switch (Sec.sh_type) {
case ELF::SHT_REL:
for (const auto &R : unwrapOrError(this->FileName, Obj->rels(&Sec))) {
Elf_Rela Rela;
Rela.r_offset = R.r_offset;
Rela.r_info = R.r_info;
Rela.r_addend = 0;
printRelocation(Obj, SymTab, Rela, false);
}
break;
case ELF::SHT_RELA:
for (const auto &R : unwrapOrError(this->FileName, Obj->relas(&Sec)))
printRelocation(Obj, SymTab, R, true);
break;
case ELF::SHT_RELR:
case ELF::SHT_ANDROID_RELR:
if (opts::RawRelr)
for (const auto &R : unwrapOrError(this->FileName, Obj->relrs(&Sec)))
OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8))
<< "\n";
else
for (const auto &R : RelrRelas)
printRelocation(Obj, SymTab, R, false);
break;
case ELF::SHT_ANDROID_REL:
case ELF::SHT_ANDROID_RELA:
for (const auto &R : AndroidRelas)
printRelocation(Obj, SymTab, R, Sec.sh_type == ELF::SHT_ANDROID_RELA);
break;
}
}
if (!HasRelocSections)
OS << "\nThere are no relocations in this file.\n";
}
// Print the offset of a particular section from anyone of the ranges:
// [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
// If 'Type' does not fall within any of those ranges, then a string is
// returned as '<unknown>' followed by the type value.
static std::string getSectionTypeOffsetString(unsigned Type) {
if (Type >= SHT_LOOS && Type <= SHT_HIOS)
return "LOOS+0x" + to_hexString(Type - SHT_LOOS);
else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC);
else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER);
return "0x" + to_hexString(Type) + ": <unknown>";
}
static std::string getSectionTypeString(unsigned Arch, unsigned Type) {
using namespace ELF;
switch (Arch) {
case EM_ARM:
switch (Type) {
case SHT_ARM_EXIDX:
return "ARM_EXIDX";
case SHT_ARM_PREEMPTMAP:
return "ARM_PREEMPTMAP";
case SHT_ARM_ATTRIBUTES:
return "ARM_ATTRIBUTES";
case SHT_ARM_DEBUGOVERLAY:
return "ARM_DEBUGOVERLAY";
case SHT_ARM_OVERLAYSECTION:
return "ARM_OVERLAYSECTION";
}
break;
case EM_X86_64:
switch (Type) {
case SHT_X86_64_UNWIND:
return "X86_64_UNWIND";
}
break;
case EM_MIPS:
case EM_MIPS_RS3_LE:
switch (Type) {
case SHT_MIPS_REGINFO:
return "MIPS_REGINFO";
case SHT_MIPS_OPTIONS:
return "MIPS_OPTIONS";
case SHT_MIPS_DWARF:
return "MIPS_DWARF";
case SHT_MIPS_ABIFLAGS:
return "MIPS_ABIFLAGS";
}
break;
}
switch (Type) {
case SHT_NULL:
return "NULL";
case SHT_PROGBITS:
return "PROGBITS";
case SHT_SYMTAB:
return "SYMTAB";
case SHT_STRTAB:
return "STRTAB";
case SHT_RELA:
return "RELA";
case SHT_HASH:
return "HASH";
case SHT_DYNAMIC:
return "DYNAMIC";
case SHT_NOTE:
return "NOTE";
case SHT_NOBITS:
return "NOBITS";
case SHT_REL:
return "REL";
case SHT_SHLIB:
return "SHLIB";
case SHT_DYNSYM:
return "DYNSYM";
case SHT_INIT_ARRAY:
return "INIT_ARRAY";
case SHT_FINI_ARRAY:
return "FINI_ARRAY";
case SHT_PREINIT_ARRAY:
return "PREINIT_ARRAY";
case SHT_GROUP:
return "GROUP";
case SHT_SYMTAB_SHNDX:
return "SYMTAB SECTION INDICES";
case SHT_ANDROID_REL:
return "ANDROID_REL";
case SHT_ANDROID_RELA:
return "ANDROID_RELA";
case SHT_RELR:
case SHT_ANDROID_RELR:
return "RELR";
case SHT_LLVM_ODRTAB:
return "LLVM_ODRTAB";
case SHT_LLVM_LINKER_OPTIONS:
return "LLVM_LINKER_OPTIONS";
case SHT_LLVM_CALL_GRAPH_PROFILE:
return "LLVM_CALL_GRAPH_PROFILE";
case SHT_LLVM_ADDRSIG:
return "LLVM_ADDRSIG";
case SHT_LLVM_DEPENDENT_LIBRARIES:
return "LLVM_DEPENDENT_LIBRARIES";
case SHT_LLVM_SYMPART:
return "LLVM_SYMPART";
case SHT_LLVM_PART_EHDR:
return "LLVM_PART_EHDR";
case SHT_LLVM_PART_PHDR:
return "LLVM_PART_PHDR";
// FIXME: Parse processor specific GNU attributes
case SHT_GNU_ATTRIBUTES:
return "ATTRIBUTES";
case SHT_GNU_HASH:
return "GNU_HASH";
case SHT_GNU_verdef:
return "VERDEF";
case SHT_GNU_verneed:
return "VERNEED";
case SHT_GNU_versym:
return "VERSYM";
default:
return getSectionTypeOffsetString(Type);
}
return "";
}
template <class ELFT>
void GNUStyle<ELFT>::printSectionHeaders(const ELFO *Obj) {
unsigned Bias = ELFT::Is64Bits ? 0 : 8;
ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
OS << "There are " << to_string(Sections.size())
<< " section headers, starting at offset "
<< "0x" << to_hexString(Obj->getHeader()->e_shoff, false) << ":\n\n";
OS << "Section Headers:\n";
Field Fields[11] = {
{"[Nr]", 2}, {"Name", 7}, {"Type", 25},
{"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias},
{"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
{"Inf", 82 - Bias}, {"Al", 86 - Bias}};
for (auto &F : Fields)
printField(F);
OS << "\n";
const ELFObjectFile<ELFT> *ElfObj = this->dumper()->getElfObject();
size_t SectionIndex = 0;
for (const Elf_Shdr &Sec : Sections) {
Fields[0].Str = to_string(SectionIndex);
Fields[1].Str = unwrapOrError<StringRef>(
ElfObj->getFileName(), Obj->getSectionName(&Sec, this->WarningHandler));
Fields[2].Str =
getSectionTypeString(Obj->getHeader()->e_machine, Sec.sh_type);
Fields[3].Str =
to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
Fields[7].Str = getGNUFlags(Sec.sh_flags);
Fields[8].Str = to_string(Sec.sh_link);
Fields[9].Str = to_string(Sec.sh_info);
Fields[10].Str = to_string(Sec.sh_addralign);
OS.PadToColumn(Fields[0].Column);
OS << "[" << right_justify(Fields[0].Str, 2) << "]";
for (int i = 1; i < 7; i++)
printField(Fields[i]);
OS.PadToColumn(Fields[7].Column);
OS << right_justify(Fields[7].Str, 3);
OS.PadToColumn(Fields[8].Column);
OS << right_justify(Fields[8].Str, 2);
OS.PadToColumn(Fields[9].Column);
OS << right_justify(Fields[9].Str, 3);
OS.PadToColumn(Fields[10].Column);
OS << right_justify(Fields[10].Str, 2);
OS << "\n";
++SectionIndex;
}
OS << "Key to Flags:\n"
<< " W (write), A (alloc), X (execute), M (merge), S (strings), l "
"(large)\n"
<< " I (info), L (link order), G (group), T (TLS), E (exclude),\
x (unknown)\n"
<< " O (extra OS processing required) o (OS specific),\
p (processor specific)\n";
}
template <class ELFT>
void GNUStyle<ELFT>::printSymtabMessage(const ELFO *Obj, StringRef Name,
size_t Entries,
bool NonVisibilityBitsUsed) {
if (!Name.empty())
OS << "\nSymbol table '" << Name << "' contains " << Entries
<< " entries:\n";
else
OS << "\n Symbol table for image:\n";
if (ELFT::Is64Bits)
OS << " Num: Value Size Type Bind Vis";
else
OS << " Num: Value Size Type Bind Vis";
if (NonVisibilityBitsUsed)
OS << " ";
OS << " Ndx Name\n";
}
template <class ELFT>
std::string GNUStyle<ELFT>::getSymbolSectionNdx(const ELFO *Obj,
const Elf_Sym *Symbol,
const Elf_Sym *FirstSym) {
unsigned SectionIndex = Symbol->st_shndx;
switch (SectionIndex) {
case ELF::SHN_UNDEF:
return "UND";
case ELF::SHN_ABS:
return "ABS";
case ELF::SHN_COMMON:
return "COM";
case ELF::SHN_XINDEX: {
Expected<uint32_t> IndexOrErr = object::getExtendedSymbolTableIndex<ELFT>(
Symbol, FirstSym, this->dumper()->getShndxTable());
if (!IndexOrErr) {
assert(Symbol->st_shndx == SHN_XINDEX &&
"getSymbolSectionIndex should only fail due to an invalid "
"SHT_SYMTAB_SHNDX table/reference");
this->reportUniqueWarning(IndexOrErr.takeError());
return "RSV[0xffff]";
}
return to_string(format_decimal(*IndexOrErr, 3));
}
default:
// Find if:
// Processor specific
if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
return std::string("PRC[0x") +
to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
// OS specific
if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
return std::string("OS[0x") +
to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
// Architecture reserved:
if (SectionIndex >= ELF::SHN_LORESERVE &&
SectionIndex <= ELF::SHN_HIRESERVE)
return std::string("RSV[0x") +
to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
// A normal section with an index
return to_string(format_decimal(SectionIndex, 3));
}
}
template <class ELFT>
void GNUStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
const Elf_Sym *FirstSym, StringRef StrTable,
bool IsDynamic, bool NonVisibilityBitsUsed) {
static int Idx = 0;
static bool Dynamic = true;
// If this function was called with a different value from IsDynamic
// from last call, happens when we move from dynamic to static symbol
// table, "Num" field should be reset.
if (!Dynamic != !IsDynamic) {
Idx = 0;
Dynamic = false;
}
unsigned Bias = ELFT::Is64Bits ? 8 : 0;
Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias,
31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
Fields[0].Str = to_string(format_decimal(Idx++, 6)) + ":";
Fields[1].Str = to_string(
format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
Fields[2].Str = to_string(format_decimal(Symbol->st_size, 5));
unsigned char SymbolType = Symbol->getType();
if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
Fields[3].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
else
Fields[3].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
Fields[4].Str =
printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
Fields[5].Str =
printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities));
if (Symbol->st_other & ~0x3)
Fields[5].Str +=
" [<other: " + to_string(format_hex(Symbol->st_other, 2)) + ">]";
Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
Fields[6].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym);
Fields[7].Str =
this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
for (auto &Entry : Fields)
printField(Entry);
OS << "\n";
}
template <class ELFT>
void GNUStyle<ELFT>::printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym,
uint32_t Sym, StringRef StrTable,
uint32_t Bucket) {
unsigned Bias = ELFT::Is64Bits ? 8 : 0;
Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias,
34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
Fields[0].Str = to_string(format_decimal(Sym, 5));
Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
const auto Symbol = FirstSym + Sym;
Fields[2].Str = to_string(
format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
unsigned char SymbolType = Symbol->getType();
if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
Fields[4].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
else
Fields[4].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
Fields[5].Str =
printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
Fields[6].Str =
printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities));
Fields[7].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym);
Fields[8].Str = this->dumper()->getFullSymbolName(Symbol, StrTable, true);
for (auto &Entry : Fields)
printField(Entry);
OS << "\n";
}
template <class ELFT>
void GNUStyle<ELFT>::printSymbols(const ELFO *Obj, bool PrintSymbols,
bool PrintDynamicSymbols) {
if (!PrintSymbols && !PrintDynamicSymbols)
return;
// GNU readelf prints both the .dynsym and .symtab with --symbols.
this->dumper()->printSymbolsHelper(true);
if (PrintSymbols)
this->dumper()->printSymbolsHelper(false);
}
template <class ELFT> void GNUStyle<ELFT>::printHashSymbols(const ELFO *Obj) {
if (this->dumper()->getDynamicStringTable().empty())
return;
auto StringTable = this->dumper()->getDynamicStringTable();
auto DynSyms = this->dumper()->dynamic_symbols();
// Try printing .hash
if (auto SysVHash = this->dumper()->getHashTable()) {
OS << "\n Symbol table of .hash for image:\n";
if (ELFT::Is64Bits)
OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
else
OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
OS << "\n";
auto Buckets = SysVHash->buckets();
auto Chains = SysVHash->chains();
for (uint32_t Buc = 0; Buc < SysVHash->nbucket; Buc++) {
if (Buckets[Buc] == ELF::STN_UNDEF)
continue;
std::vector<bool> Visited(SysVHash->nchain);
for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash->nchain; Ch = Chains[Ch]) {
if (Ch == ELF::STN_UNDEF)
break;
if (Visited[Ch]) {
reportWarning(
createError(".hash section is invalid: bucket " + Twine(Ch) +
": a cycle was detected in the linked chain"),
this->FileName);
break;
}
printHashedSymbol(Obj, &DynSyms[0], Ch, StringTable, Buc);
Visited[Ch] = true;
}
}
}
// Try printing .gnu.hash
if (auto GnuHash = this->dumper()->getGnuHashTable()) {
OS << "\n Symbol table of .gnu.hash for image:\n";
if (ELFT::Is64Bits)
OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
else
OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
OS << "\n";
auto Buckets = GnuHash->buckets();
for (uint32_t Buc = 0; Buc < GnuHash->nbuckets; Buc++) {
if (Buckets[Buc] == ELF::STN_UNDEF)
continue;
uint32_t Index = Buckets[Buc];
uint32_t GnuHashable = Index - GnuHash->symndx;
// Print whole chain
while (true) {
printHashedSymbol(Obj, &DynSyms[0], Index++, StringTable, Buc);
// Chain ends at symbol with stopper bit
if ((GnuHash->values(DynSyms.size())[GnuHashable++] & 1) == 1)
break;
}
}
}
}
static inline std::string printPhdrFlags(unsigned Flag) {
std::string Str;
Str = (Flag & PF_R) ? "R" : " ";
Str += (Flag & PF_W) ? "W" : " ";
Str += (Flag & PF_X) ? "E" : " ";
return Str;
}
// SHF_TLS sections are only in PT_TLS, PT_LOAD or PT_GNU_RELRO
// PT_TLS must only have SHF_TLS sections
template <class ELFT>
bool GNUStyle<ELFT>::checkTLSSections(const Elf_Phdr &Phdr,
const Elf_Shdr &Sec) {
return (((Sec.sh_flags & ELF::SHF_TLS) &&
((Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
(Phdr.p_type == ELF::PT_GNU_RELRO))) ||
(!(Sec.sh_flags & ELF::SHF_TLS) && Phdr.p_type != ELF::PT_TLS));
}
// Non-SHT_NOBITS must have its offset inside the segment
// Only non-zero section can be at end of segment
template <class ELFT>
bool GNUStyle<ELFT>::checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
if (Sec.sh_type == ELF::SHT_NOBITS)
return true;
bool IsSpecial =
(Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
// .tbss is special, it only has memory in PT_TLS and has NOBITS properties
auto SectionSize =
(IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
if (Sec.sh_offset >= Phdr.p_offset)
return ((Sec.sh_offset + SectionSize <= Phdr.p_filesz + Phdr.p_offset)
/*only non-zero sized sections at end*/
&& (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz));
return false;
}
// SHF_ALLOC must have VMA inside segment
// Only non-zero section can be at end of segment
template <class ELFT>
bool GNUStyle<ELFT>::checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
if (!(Sec.sh_flags & ELF::SHF_ALLOC))
return true;
bool IsSpecial =
(Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
// .tbss is special, it only has memory in PT_TLS and has NOBITS properties
auto SectionSize =
(IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
if (Sec.sh_addr >= Phdr.p_vaddr)
return ((Sec.sh_addr + SectionSize <= Phdr.p_vaddr + Phdr.p_memsz) &&
(Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz));
return false;
}
// No section with zero size must be at start or end of PT_DYNAMIC
template <class ELFT>
bool GNUStyle<ELFT>::checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
if (Phdr.p_type != ELF::PT_DYNAMIC || Sec.sh_size != 0 || Phdr.p_memsz == 0)
return true;
// Is section within the phdr both based on offset and VMA ?
return ((Sec.sh_type == ELF::SHT_NOBITS) ||
(Sec.sh_offset > Phdr.p_offset &&
Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz)) &&
(!(Sec.sh_flags & ELF::SHF_ALLOC) ||
(Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz));
}
template <class ELFT>
void GNUStyle<ELFT>::printProgramHeaders(
const ELFO *Obj, bool PrintProgramHeaders,
cl::boolOrDefault PrintSectionMapping) {
if (PrintProgramHeaders)
printProgramHeaders(Obj);
// Display the section mapping along with the program headers, unless
// -section-mapping is explicitly set to false.
if (PrintSectionMapping != cl::BOU_FALSE)
printSectionMapping(Obj);
}
template <class ELFT>
void GNUStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
unsigned Bias = ELFT::Is64Bits ? 8 : 0;
const Elf_Ehdr *Header = Obj->getHeader();
Field Fields[8] = {2, 17, 26, 37 + Bias,
48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
OS << "\nElf file type is "
<< printEnum(Header->e_type, makeArrayRef(ElfObjectFileType)) << "\n"
<< "Entry point " << format_hex(Header->e_entry, 3) << "\n"
<< "There are " << Header->e_phnum << " program headers,"
<< " starting at offset " << Header->e_phoff << "\n\n"
<< "Program Headers:\n";
if (ELFT::Is64Bits)
OS << " Type Offset VirtAddr PhysAddr "
<< " FileSiz MemSiz Flg Align\n";
else
OS << " Type Offset VirtAddr PhysAddr FileSiz "
<< "MemSiz Flg Align\n";
unsigned Width = ELFT::Is64Bits ? 18 : 10;
unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
for (const auto &Phdr :
unwrapOrError(this->FileName, Obj->program_headers())) {
Fields[0].Str = getElfPtType(Header->e_machine, Phdr.p_type);
Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
Fields[6].Str = printPhdrFlags(Phdr.p_flags);
Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
for (auto Field : Fields)
printField(Field);
if (Phdr.p_type == ELF::PT_INTERP) {
OS << "\n [Requesting program interpreter: ";
OS << reinterpret_cast<const char *>(Obj->base()) + Phdr.p_offset << "]";
}
OS << "\n";
}
}
template <class ELFT>
void GNUStyle<ELFT>::printSectionMapping(const ELFO *Obj) {
OS << "\n Section to Segment mapping:\n Segment Sections...\n";
DenseSet<const Elf_Shdr *> BelongsToSegment;
int Phnum = 0;
for (const Elf_Phdr &Phdr :
unwrapOrError(this->FileName, Obj->program_headers())) {
std::string Sections;
OS << format(" %2.2d ", Phnum++);
for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
// Check if each section is in a segment and then print mapping.
// readelf additionally makes sure it does not print zero sized sections
// at end of segments and for PT_DYNAMIC both start and end of section
// .tbss must only be shown in PT_TLS section.
bool TbssInNonTLS = (Sec.sh_type == ELF::SHT_NOBITS) &&
((Sec.sh_flags & ELF::SHF_TLS) != 0) &&
Phdr.p_type != ELF::PT_TLS;
if (!TbssInNonTLS && checkTLSSections(Phdr, Sec) &&
checkoffsets(Phdr, Sec) && checkVMA(Phdr, Sec) &&
checkPTDynamic(Phdr, Sec) && (Sec.sh_type != ELF::SHT_NULL)) {
Sections +=
unwrapOrError(this->FileName, Obj->getSectionName(&Sec)).str() +
" ";
BelongsToSegment.insert(&Sec);
}
}
OS << Sections << "\n";
OS.flush();
}
// Display sections that do not belong to a segment.
std::string Sections;
for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
Sections +=
unwrapOrError(this->FileName, Obj->getSectionName(&Sec)).str() + ' ';
}
if (!Sections.empty()) {
OS << " None " << Sections << '\n';
OS.flush();
}
}
namespace {
template <class ELFT> struct RelSymbol {
const typename ELFT::Sym *Sym;
std::string Name;
};
template <class ELFT>
RelSymbol<ELFT> getSymbolForReloc(const ELFFile<ELFT> *Obj, StringRef FileName,
const ELFDumper<ELFT> *Dumper,
const typename ELFT::Rela &Reloc) {
uint32_t SymIndex = Reloc.getSymbol(Obj->isMips64EL());
const typename ELFT::Sym *Sym = Dumper->dynamic_symbols().begin() + SymIndex;
Expected<StringRef> ErrOrName = Sym->getName(Dumper->getDynamicStringTable());
std::string Name;
if (ErrOrName) {
Name = maybeDemangle(*ErrOrName);
} else {
reportWarning(
createError("unable to get name of the dynamic symbol with index " +
Twine(SymIndex) + ": " + toString(ErrOrName.takeError())),
FileName);
Name = "<corrupt>";
}
return {Sym, std::move(Name)};
}
} // namespace
template <class ELFT>
void GNUStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela R,
bool IsRela) {
RelSymbol<ELFT> S = getSymbolForReloc(Obj, this->FileName, this->dumper(), R);
printRelocation(Obj, S.Sym, S.Name, R, IsRela);
}
template <class ELFT> void GNUStyle<ELFT>::printDynamic(const ELFO *Obj) {
Elf_Dyn_Range Table = this->dumper()->dynamic_table();
if (Table.empty())
return;
const DynRegionInfo &DynamicTableRegion =
this->dumper()->getDynamicTableRegion();
OS << "Dynamic section at offset "
<< format_hex(reinterpret_cast<const uint8_t *>(DynamicTableRegion.Addr) -
Obj->base(),
1)
<< " contains " << Table.size() << " entries:\n";
bool Is64 = ELFT::Is64Bits;
if (Is64)
OS << " Tag Type Name/Value\n";
else
OS << " Tag Type Name/Value\n";
for (auto Entry : Table) {
uintX_t Tag = Entry.getTag();
std::string TypeString = std::string("(") +
getTypeString(Obj->getHeader()->e_machine, Tag) +
")";
OS << " " << format_hex(Tag, Is64 ? 18 : 10)
<< format(" %-20s ", TypeString.c_str());
this->dumper()->printDynamicEntry(OS, Tag, Entry.getVal());
OS << "\n";
}
}
template <class ELFT>
void GNUStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion();
const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
if (DynRelaRegion.Size > 0) {
OS << "\n'RELA' relocation section at offset "
<< format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion.Addr) -
Obj->base(),
1)
<< " contains " << DynRelaRegion.Size << " bytes:\n";
printRelocHeader(ELF::SHT_RELA);
for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
printDynamicRelocation(Obj, Rela, true);
}
if (DynRelRegion.Size > 0) {
OS << "\n'REL' relocation section at offset "
<< format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion.Addr) -
Obj->base(),
1)
<< " contains " << DynRelRegion.Size << " bytes:\n";
printRelocHeader(ELF::SHT_REL);
for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
Elf_Rela Rela;
Rela.r_offset = Rel.r_offset;
Rela.r_info = Rel.r_info;
Rela.r_addend = 0;
printDynamicRelocation(Obj, Rela, false);
}
}
if (DynRelrRegion.Size > 0) {
OS << "\n'RELR' relocation section at offset "
<< format_hex(reinterpret_cast<const uint8_t *>(DynRelrRegion.Addr) -
Obj->base(),
1)
<< " contains " << DynRelrRegion.Size << " bytes:\n";
printRelocHeader(ELF::SHT_REL);
Elf_Relr_Range Relrs = this->dumper()->dyn_relrs();
std::vector<Elf_Rela> RelrRelas =
unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
for (const Elf_Rela &Rela : RelrRelas) {
printDynamicRelocation(Obj, Rela, false);
}
}
if (DynPLTRelRegion.Size) {
OS << "\n'PLT' relocation section at offset "
<< format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion.Addr) -
Obj->base(),
1)
<< " contains " << DynPLTRelRegion.Size << " bytes:\n";
}
if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
printRelocHeader(ELF::SHT_RELA);
for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
printDynamicRelocation(Obj, Rela, true);
} else {
printRelocHeader(ELF::SHT_REL);
for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
Elf_Rela Rela;
Rela.r_offset = Rel.r_offset;
Rela.r_info = Rel.r_info;
Rela.r_addend = 0;
printDynamicRelocation(Obj, Rela, false);
}
}
}
template <class ELFT>
static void printGNUVersionSectionProlog(formatted_raw_ostream &OS,
const Twine &Name, unsigned EntriesNum,
const ELFFile<ELFT> *Obj,
const typename ELFT::Shdr *Sec,
StringRef FileName) {
StringRef SecName = unwrapOrError(FileName, Obj->getSectionName(Sec));
OS << Name << " section '" << SecName << "' "
<< "contains " << EntriesNum << " entries:\n";
const typename ELFT::Shdr *SymTab =
unwrapOrError(FileName, Obj->getSection(Sec->sh_link));
StringRef SymTabName = unwrapOrError(FileName, Obj->getSectionName(SymTab));
OS << " Addr: " << format_hex_no_prefix(Sec->sh_addr, 16)
<< " Offset: " << format_hex(Sec->sh_offset, 8)
<< " Link: " << Sec->sh_link << " (" << SymTabName << ")\n";
}
template <class ELFT>
void GNUStyle<ELFT>::printVersionSymbolSection(const ELFFile<ELFT> *Obj,
const Elf_Shdr *Sec) {
if (!Sec)
return;
unsigned Entries = Sec->sh_size / sizeof(Elf_Versym);
printGNUVersionSectionProlog(OS, "Version symbols", Entries, Obj, Sec,
this->FileName);
const uint8_t *VersymBuf =
reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset);
const ELFDumper<ELFT> *Dumper = this->dumper();
StringRef StrTable = Dumper->getDynamicStringTable();
// readelf prints 4 entries per line.
for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
OS << " " << format_hex_no_prefix(VersymRow, 3) << ":";
for (uint64_t VersymIndex = 0;
(VersymIndex < 4) && (VersymIndex + VersymRow) < Entries;
++VersymIndex) {
const Elf_Versym *Versym =
reinterpret_cast<const Elf_Versym *>(VersymBuf);
switch (Versym->vs_index) {
case 0:
OS << " 0 (*local*) ";
break;
case 1:
OS << " 1 (*global*) ";
break;
default:
OS << format("%4x%c", Versym->vs_index & VERSYM_VERSION,
Versym->vs_index & VERSYM_HIDDEN ? 'h' : ' ');
bool IsDefault = true;
std::string VersionName = Dumper->getSymbolVersionByIndex(
StrTable, Versym->vs_index, IsDefault);
if (!VersionName.empty())
VersionName = "(" + VersionName + ")";
else
VersionName = "(*invalid*)";
OS << left_justify(VersionName, 13);
}
VersymBuf += sizeof(Elf_Versym);
}
OS << '\n';
}
OS << '\n';
}
static std::string versionFlagToString(unsigned Flags) {
if (Flags == 0)
return "none";
std::string Ret;
auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
if (!(Flags & Flag))
return;
if (!Ret.empty())
Ret += " | ";
Ret += Name;
Flags &= ~Flag;
};
AddFlag(VER_FLG_BASE, "BASE");
AddFlag(VER_FLG_WEAK, "WEAK");
AddFlag(VER_FLG_INFO, "INFO");
AddFlag(~0, "<unknown>");
return Ret;
}
template <class ELFT>
void GNUStyle<ELFT>::printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
const Elf_Shdr *Sec) {
if (!Sec)
return;
unsigned VerDefsNum = Sec->sh_info;
printGNUVersionSectionProlog(OS, "Version definition", VerDefsNum, Obj, Sec,
this->FileName);
const Elf_Shdr *StrTabSec =
unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link));
StringRef StringTable(
reinterpret_cast<const char *>(Obj->base() + StrTabSec->sh_offset),
(size_t)StrTabSec->sh_size);
const uint8_t *VerdefBuf =
unwrapOrError(this->FileName, Obj->getSectionContents(Sec)).data();
const uint8_t *Begin = VerdefBuf;
while (VerDefsNum--) {
const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(VerdefBuf);
OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u",
VerdefBuf - Begin, (unsigned)Verdef->vd_version,
versionFlagToString(Verdef->vd_flags).c_str(),
(unsigned)Verdef->vd_ndx, (unsigned)Verdef->vd_cnt);
const uint8_t *VerdauxBuf = VerdefBuf + Verdef->vd_aux;
const Elf_Verdaux *Verdaux =
reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf);
OS << format(" Name: %s\n",
StringTable.drop_front(Verdaux->vda_name).data());
for (unsigned I = 1; I < Verdef->vd_cnt; ++I) {
VerdauxBuf += Verdaux->vda_next;
Verdaux = reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf);
OS << format(" 0x%04x: Parent %u: %s\n", VerdauxBuf - Begin, I,
StringTable.drop_front(Verdaux->vda_name).data());
}
VerdefBuf += Verdef->vd_next;
}
OS << '\n';
}
template <class ELFT>
void GNUStyle<ELFT>::printVersionDependencySection(const ELFFile<ELFT> *Obj,
const Elf_Shdr *Sec) {
if (!Sec)
return;
unsigned VerneedNum = Sec->sh_info;
printGNUVersionSectionProlog(OS, "Version needs", VerneedNum, Obj, Sec,
this->FileName);
ArrayRef<uint8_t> SecData =
unwrapOrError(this->FileName, Obj->getSectionContents(Sec));
const Elf_Shdr *StrTabSec =
unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link));
StringRef StringTable = {
reinterpret_cast<const char *>(Obj->base() + StrTabSec->sh_offset),
(size_t)StrTabSec->sh_size};
const uint8_t *VerneedBuf = SecData.data();
for (unsigned I = 0; I < VerneedNum; ++I) {
const Elf_Verneed *Verneed =
reinterpret_cast<const Elf_Verneed *>(VerneedBuf);
StringRef File = StringTable.size() > Verneed->vn_file
? StringTable.drop_front(Verneed->vn_file)
: "<invalid>";
OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n",
reinterpret_cast<const uint8_t *>(Verneed) - SecData.begin(),
(unsigned)Verneed->vn_version, File.data(),
(unsigned)Verneed->vn_cnt);
const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux;
for (unsigned J = 0; J < Verneed->vn_cnt; ++J) {
const Elf_Vernaux *Vernaux =
reinterpret_cast<const Elf_Vernaux *>(VernauxBuf);
StringRef Name = StringTable.size() > Vernaux->vna_name
? StringTable.drop_front(Vernaux->vna_name)
: "<invalid>";
OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n",
reinterpret_cast<const uint8_t *>(Vernaux) - SecData.begin(),
Name.data(), versionFlagToString(Vernaux->vna_flags).c_str(),
(unsigned)Vernaux->vna_other);
VernauxBuf += Vernaux->vna_next;
}
VerneedBuf += Verneed->vn_next;
}
OS << '\n';
}
// Hash histogram shows statistics of how efficient the hash was for the
// dynamic symbol table. The table shows number of hash buckets for different
// lengths of chains as absolute number and percentage of the total buckets.
// Additionally cumulative coverage of symbols for each set of buckets.
template <class ELFT>
void GNUStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
// Print histogram for .hash section
if (const Elf_Hash *HashTable = this->dumper()->getHashTable()) {
size_t NBucket = HashTable->nbucket;
size_t NChain = HashTable->nchain;
ArrayRef<Elf_Word> Buckets = HashTable->buckets();
ArrayRef<Elf_Word> Chains = HashTable->chains();
size_t TotalSyms = 0;
// If hash table is correct, we have at least chains with 0 length
size_t MaxChain = 1;
size_t CumulativeNonZero = 0;
if (NChain == 0 || NBucket == 0)
return;
std::vector<size_t> ChainLen(NBucket, 0);
// Go over all buckets and and note chain lengths of each bucket (total
// unique chain lengths).
for (size_t B = 0; B < NBucket; B++) {
std::vector<bool> Visited(NChain);
for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
if (C == ELF::STN_UNDEF)
break;
if (Visited[C]) {
reportWarning(
createError(".hash section is invalid: bucket " + Twine(C) +
": a cycle was detected in the linked chain"),
this->FileName);
break;
}
Visited[C] = true;
if (MaxChain <= ++ChainLen[B])
MaxChain++;
}
TotalSyms += ChainLen[B];
}
if (!TotalSyms)
return;
std::vector<size_t> Count(MaxChain, 0) ;
// Count how long is the chain for each bucket
for (size_t B = 0; B < NBucket; B++)
++Count[ChainLen[B]];
// Print Number of buckets with each chain lengths and their cumulative
// coverage of the symbols
OS << "Histogram for bucket list length (total of " << NBucket
<< " buckets)\n"
<< " Length Number % of total Coverage\n";
for (size_t I = 0; I < MaxChain; I++) {
CumulativeNonZero += Count[I] * I;
OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
(Count[I] * 100.0) / NBucket,
(CumulativeNonZero * 100.0) / TotalSyms);
}
}
// Print histogram for .gnu.hash section
if (const Elf_GnuHash *GnuHashTable = this->dumper()->getGnuHashTable()) {
size_t NBucket = GnuHashTable->nbuckets;
ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
unsigned NumSyms = this->dumper()->dynamic_symbols().size();
if (!NumSyms)
return;
ArrayRef<Elf_Word> Chains = GnuHashTable->values(NumSyms);
size_t Symndx = GnuHashTable->symndx;
size_t TotalSyms = 0;
size_t MaxChain = 1;
size_t CumulativeNonZero = 0;
if (Chains.empty() || NBucket == 0)
return;
std::vector<size_t> ChainLen(NBucket, 0);
for (size_t B = 0; B < NBucket; B++) {
if (!Buckets[B])
continue;
size_t Len = 1;
for (size_t C = Buckets[B] - Symndx;
C < Chains.size() && (Chains[C] & 1) == 0; C++)
if (MaxChain < ++Len)
MaxChain++;
ChainLen[B] = Len;
TotalSyms += Len;
}
MaxChain++;
if (!TotalSyms)
return;
std::vector<size_t> Count(MaxChain, 0) ;
for (size_t B = 0; B < NBucket; B++)
++Count[ChainLen[B]];
// Print Number of buckets with each chain lengths and their cumulative
// coverage of the symbols
OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
<< " buckets)\n"
<< " Length Number % of total Coverage\n";
for (size_t I = 0; I <MaxChain; I++) {
CumulativeNonZero += Count[I] * I;
OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
(Count[I] * 100.0) / NBucket,
(CumulativeNonZero * 100.0) / TotalSyms);
}
}
}
template <class ELFT>
void GNUStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) {
OS << "GNUStyle::printCGProfile not implemented\n";
}
template <class ELFT>
void GNUStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) {
reportError(createError("--addrsig: not implemented"), this->FileName);
}
static StringRef getGenericNoteTypeName(const uint32_t NT) {
static const struct {
uint32_t ID;
const char *Name;
} Notes[] = {
{ELF::NT_VERSION, "NT_VERSION (version)"},
{ELF::NT_ARCH, "NT_ARCH (architecture)"},
{ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
{ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
};
for (const auto &Note : Notes)
if (Note.ID == NT)
return Note.Name;
return "";
}
static StringRef getCoreNoteTypeName(const uint32_t NT) {
static const struct {
uint32_t ID;
const char *Name;
} Notes[] = {
{ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
{ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
{ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
{ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
{ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
{ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
{ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
{ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
{ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
{ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
{ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
{ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
{ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
{ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
{ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
{ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
{ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
{ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
{ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
{ELF::NT_PPC_TM_CFPR,
"NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
{ELF::NT_PPC_TM_CVMX,
"NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
{ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
{ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
{ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
{ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
{ELF::NT_PPC_TM_CDSCR,
"NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
{ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
{ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
{ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
{ELF::NT_S390_HIGH_GPRS,
"NT_S390_HIGH_GPRS (s390 upper register halves)"},
{ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
{ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
{ELF::NT_S390_TODPREG,
"NT_S390_TODPREG (s390 TOD programmable register)"},
{ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
{ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
{ELF::NT_S390_LAST_BREAK,
"NT_S390_LAST_BREAK (s390 last breaking event address)"},
{ELF::NT_S390_SYSTEM_CALL,
"NT_S390_SYSTEM_CALL (s390 system call restart data)"},
{ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
{ELF::NT_S390_VXRS_LOW,
"NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
{ELF::NT_S390_VXRS_HIGH,
"NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
{ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
{ELF::NT_S390_GS_BC,
"NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
{ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
{ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
{ELF::NT_ARM_HW_BREAK,
"NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
{ELF::NT_ARM_HW_WATCH,
"NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
{ELF::NT_FILE, "NT_FILE (mapped files)"},
{ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
{ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
};
for (const auto &Note : Notes)
if (Note.ID == NT)
return Note.Name;
return "";
}
static std::string getGNUNoteTypeName(const uint32_t NT) {
static const struct {
uint32_t ID;
const char *Name;
} Notes[] = {
{ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
{ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
{ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
{ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
{ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
};
for (const auto &Note : Notes)
if (Note.ID == NT)
return std::string(Note.Name);
std::string string;
raw_string_ostream OS(string);
OS << format("Unknown note type (0x%08x)", NT);
return OS.str();
}
static std::string getFreeBSDNoteTypeName(const uint32_t NT) {
static const struct {
uint32_t ID;
const char *Name;
} Notes[] = {
{ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
{ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
{ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
{ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
{ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
{ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
{ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
{ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
{ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
"NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
{ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
};
for (const auto &Note : Notes)
if (Note.ID == NT)
return std::string(Note.Name);
std::string string;
raw_string_ostream OS(string);
OS << format("Unknown note type (0x%08x)", NT);
return OS.str();
}
static std::string getAMDNoteTypeName(const uint32_t NT) {
static const struct {
uint32_t ID;
const char *Name;
} Notes[] = {{ELF::NT_AMD_AMDGPU_HSA_METADATA,
"NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"},
{ELF::NT_AMD_AMDGPU_ISA, "NT_AMD_AMDGPU_ISA (ISA Version)"},
{ELF::NT_AMD_AMDGPU_PAL_METADATA,
"NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"}};
for (const auto &Note : Notes)
if (Note.ID == NT)
return std::string(Note.Name);
std::string string;
raw_string_ostream OS(string);
OS << format("Unknown note type (0x%08x)", NT);
return OS.str();
}
static std::string getAMDGPUNoteTypeName(const uint32_t NT) {
if (NT == ELF::NT_AMDGPU_METADATA)
return std::string("NT_AMDGPU_METADATA (AMDGPU Metadata)");
std::string string;
raw_string_ostream OS(string);
OS << format("Unknown note type (0x%08x)", NT);
return OS.str();
}
template <typename ELFT>
static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
ArrayRef<uint8_t> Data) {
std::string str;
raw_string_ostream OS(str);
uint32_t PrData;
auto DumpBit = [&](uint32_t Flag, StringRef Name) {
if (PrData & Flag) {
PrData &= ~Flag;
OS << Name;
if (PrData)
OS << ", ";
}
};
switch (Type) {
default:
OS << format("<application-specific type 0x%x>", Type);
return OS.str();
case GNU_PROPERTY_STACK_SIZE: {
OS << "stack size: ";
if (DataSize == sizeof(typename ELFT::uint))
OS << formatv("{0:x}",
(uint64_t)(*(const typename ELFT::Addr *)Data.data()));
else
OS << format("<corrupt length: 0x%x>", DataSize);
return OS.str();
}
case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
OS << "no copy on protected";
if (DataSize)
OS << format(" <corrupt length: 0x%x>", DataSize);
return OS.str();
case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
case GNU_PROPERTY_X86_FEATURE_1_AND:
OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
: "x86 feature: ");
if (DataSize != 4) {
OS << format("<corrupt length: 0x%x>", DataSize);
return OS.str();
}
PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
if (PrData == 0) {
OS << "<None>";
return OS.str();
}
if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
} else {
DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
}
if (PrData)
OS << format("<unknown flags: 0x%x>", PrData);
return OS.str();
case GNU_PROPERTY_X86_ISA_1_NEEDED:
case GNU_PROPERTY_X86_ISA_1_USED:
OS << "x86 ISA "
<< (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
if (DataSize != 4) {
OS << format("<corrupt length: 0x%x>", DataSize);
return OS.str();
}
PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
if (PrData == 0) {
OS << "<None>";
return OS.str();
}
DumpBit(GNU_PROPERTY_X86_ISA_1_CMOV, "CMOV");
DumpBit(GNU_PROPERTY_X86_ISA_1_SSE, "SSE");
DumpBit(GNU_PROPERTY_X86_ISA_1_SSE2, "SSE2");
DumpBit(GNU_PROPERTY_X86_ISA_1_SSE3, "SSE3");
DumpBit(GNU_PROPERTY_X86_ISA_1_SSSE3, "SSSE3");
DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_1, "SSE4_1");
DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_2, "SSE4_2");
DumpBit(GNU_PROPERTY_X86_ISA_1_AVX, "AVX");
DumpBit(GNU_PROPERTY_X86_ISA_1_AVX2, "AVX2");
DumpBit(GNU_PROPERTY_X86_ISA_1_FMA, "FMA");
DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512F, "AVX512F");
DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512CD, "AVX512CD");
DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512ER, "AVX512ER");
DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512PF, "AVX512PF");
DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512VL, "AVX512VL");
DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512DQ, "AVX512DQ");
DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512BW, "AVX512BW");
DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS, "AVX512_4FMAPS");
DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW, "AVX512_4VNNIW");
DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_BITALG, "AVX512_BITALG");
DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_IFMA, "AVX512_IFMA");
DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI, "AVX512_VBMI");
DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2, "AVX512_VBMI2");
DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VNNI, "AVX512_VNNI");
if (PrData)
OS << format("<unknown flags: 0x%x>", PrData);
return OS.str();
break;
case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
case GNU_PROPERTY_X86_FEATURE_2_USED:
OS << "x86 feature "
<< (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
if (DataSize != 4) {
OS << format("<corrupt length: 0x%x>", DataSize);
return OS.str();
}
PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
if (PrData == 0) {
OS << "<None>";
return OS.str();
}
DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
if (PrData)
OS << format("<unknown flags: 0x%x>", PrData);
return OS.str();
}
}
template <typename ELFT>
static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
using Elf_Word = typename ELFT::Word;
SmallVector<std::string, 4> Properties;
while (Arr.size() >= 8) {
uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
Arr = Arr.drop_front(8);
// Take padding size into account if present.
uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
std::string str;
raw_string_ostream OS(str);
if (Arr.size() < PaddedSize) {
OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
Properties.push_back(OS.str());
break;
}
Properties.push_back(
getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
Arr = Arr.drop_front(PaddedSize);
}
if (!Arr.empty())
Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
return Properties;
}
struct GNUAbiTag {
std::string OSName;
std::string ABI;
bool IsValid;
};
template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
typedef typename ELFT::Word Elf_Word;
ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
reinterpret_cast<const Elf_Word *>(Desc.end()));
if (Words.size() < 4)
return {"", "", /*IsValid=*/false};
static const char *OSNames[] = {
"Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
};
StringRef OSName = "Unknown";
if (Words[0] < array_lengthof(OSNames))
OSName = OSNames[Words[0]];
uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
std::string str;
raw_string_ostream ABI(str);
ABI << Major << "." << Minor << "." << Patch;
return {OSName, ABI.str(), /*IsValid=*/true};
}
static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
std::string str;
raw_string_ostream OS(str);
for (const auto &B : Desc)
OS << format_hex_no_prefix(B, 2);
return OS.str();
}
static StringRef getGNUGoldVersion(ArrayRef<uint8_t> Desc) {
return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
}
template <typename ELFT>
static void printGNUNote(raw_ostream &OS, uint32_t NoteType,
ArrayRef<uint8_t> Desc) {
switch (NoteType) {
default:
return;
case ELF::NT_GNU_ABI_TAG: {
const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
if (!AbiTag.IsValid)
OS << " <corrupt GNU_ABI_TAG>";
else
OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
break;
}
case ELF::NT_GNU_BUILD_ID: {
OS << " Build ID: " << getGNUBuildId(Desc);
break;
}
case ELF::NT_GNU_GOLD_VERSION:
OS << " Version: " << getGNUGoldVersion(Desc);
break;
case ELF::NT_GNU_PROPERTY_TYPE_0:
OS << " Properties:";
for (const auto &Property : getGNUPropertyList<ELFT>(Desc))
OS << " " << Property << "\n";
break;
}
OS << '\n';
}
struct AMDNote {
std::string Type;
std::string Value;
};
template <typename ELFT>
static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
switch (NoteType) {
default:
return {"", ""};
case ELF::NT_AMD_AMDGPU_HSA_METADATA:
return {
"HSA Metadata",
std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
case ELF::NT_AMD_AMDGPU_ISA:
return {
"ISA Version",
std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
}
}
struct AMDGPUNote {
std::string Type;
std::string Value;
};
template <typename ELFT>
static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
switch (NoteType) {
default:
return {"", ""};
case ELF::NT_AMDGPU_METADATA: {
auto MsgPackString =
StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
msgpack::Document MsgPackDoc;
if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
if (!Verifier.verify(MsgPackDoc.getRoot()))
return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
std::string HSAMetadataString;
raw_string_ostream StrOS(HSAMetadataString);
MsgPackDoc.toYAML(StrOS);
return {"AMDGPU Metadata", StrOS.str()};
}
}
}
struct CoreFileMapping {
uint64_t Start, End, Offset;
StringRef Filename;
};
struct CoreNote {
uint64_t PageSize;
std::vector<CoreFileMapping> Mappings;
};
static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
// Expected format of the NT_FILE note description:
// 1. # of file mappings (call it N)
// 2. Page size
// 3. N (start, end, offset) triples
// 4. N packed filenames (null delimited)
// Each field is an Elf_Addr, except for filenames which are char* strings.
CoreNote Ret;
const int Bytes = Desc.getAddressSize();
if (!Desc.isValidOffsetForAddress(2))
return createStringError(object_error::parse_failed,
"malformed note: header too short");
if (Desc.getData().back() != 0)
return createStringError(object_error::parse_failed,
"malformed note: not NUL terminated");
uint64_t DescOffset = 0;
uint64_t FileCount = Desc.getAddress(&DescOffset);
Ret.PageSize = Desc.getAddress(&DescOffset);
if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
return createStringError(object_error::parse_failed,
"malformed note: too short for number of files");
uint64_t FilenamesOffset = 0;
DataExtractor Filenames(
Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
Desc.isLittleEndian(), Desc.getAddressSize());
Ret.Mappings.resize(FileCount);
for (CoreFileMapping &Mapping : Ret.Mappings) {
if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
return createStringError(object_error::parse_failed,
"malformed note: too few filenames");
Mapping.Start = Desc.getAddress(&DescOffset);
Mapping.End = Desc.getAddress(&DescOffset);
Mapping.Offset = Desc.getAddress(&DescOffset);
Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
}
return Ret;
}
template <typename ELFT>
static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
// Length of "0x<address>" string.
const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n';
OS << " " << right_justify("Start", FieldWidth) << " "
<< right_justify("End", FieldWidth) << " "
<< right_justify("Page Offset", FieldWidth) << '\n';
for (const CoreFileMapping &Mapping : Note.Mappings) {
OS << " " << format_hex(Mapping.Start, FieldWidth) << " "
<< format_hex(Mapping.End, FieldWidth) << " "
<< format_hex(Mapping.Offset, FieldWidth) << "\n "
<< Mapping.Filename << '\n';
}
}
template <class ELFT>
void GNUStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
auto PrintHeader = [&](const typename ELFT::Off Offset,
const typename ELFT::Addr Size) {
OS << "Displaying notes found at file offset " << format_hex(Offset, 10)
<< " with length " << format_hex(Size, 10) << ":\n"
<< " Owner Data size \tDescription\n";
};
auto ProcessNote = [&](const Elf_Note &Note) {
StringRef Name = Note.getName();
ArrayRef<uint8_t> Descriptor = Note.getDesc();
Elf_Word Type = Note.getType();
// Print the note owner/type.
OS << " " << left_justify(Name, 20) << ' '
<< format_hex(Descriptor.size(), 10) << '\t';
if (Name == "GNU") {
OS << getGNUNoteTypeName(Type) << '\n';
} else if (Name == "FreeBSD") {
OS << getFreeBSDNoteTypeName(Type) << '\n';
} else if (Name == "AMD") {
OS << getAMDNoteTypeName(Type) << '\n';
} else if (Name == "AMDGPU") {
OS << getAMDGPUNoteTypeName(Type) << '\n';
} else {
StringRef NoteType = Obj->getHeader()->e_type == ELF::ET_CORE
? getCoreNoteTypeName(Type)
: getGenericNoteTypeName(Type);
if (!NoteType.empty())
OS << NoteType << '\n';
else
OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
}
// Print the description, or fallback to printing raw bytes for unknown
// owners.
if (Name == "GNU") {
printGNUNote<ELFT>(OS, Type, Descriptor);
} else if (Name == "AMD") {
const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
if (!N.Type.empty())
OS << " " << N.Type << ":\n " << N.Value << '\n';
} else if (Name == "AMDGPU") {
const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
if (!N.Type.empty())
OS << " " << N.Type << ":\n " << N.Value << '\n';
} else if (Name == "CORE") {
if (Type == ELF::NT_FILE) {
DataExtractor DescExtractor(Descriptor,
ELFT::TargetEndianness == support::little,
sizeof(Elf_Addr));
Expected<CoreNote> Note = readCoreNote(DescExtractor);
if (Note)
printCoreNote<ELFT>(OS, *Note);
else
reportWarning(Note.takeError(), this->FileName);
}
} else if (!Descriptor.empty()) {
OS << " description data:";
for (uint8_t B : Descriptor)
OS << " " << format("%02x", B);
OS << '\n';
}
};
ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
if (Obj->getHeader()->e_type != ELF::ET_CORE && !Sections.empty()) {
for (const auto &S : Sections) {
if (S.sh_type != SHT_NOTE)
continue;
PrintHeader(S.sh_offset, S.sh_size);
Error Err = Error::success();
for (const auto &Note : Obj->notes(S, Err))
ProcessNote(Note);
if (Err)
reportError(std::move(Err), this->FileName);
}
} else {
for (const auto &P :
unwrapOrError(this->FileName, Obj->program_headers())) {
if (P.p_type != PT_NOTE)
continue;
PrintHeader(P.p_offset, P.p_filesz);
Error Err = Error::success();
for (const auto &Note : Obj->notes(P, Err))
ProcessNote(Note);
if (Err)
reportError(std::move(Err), this->FileName);
}
}
}
template <class ELFT>
void GNUStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
OS << "printELFLinkerOptions not implemented!\n";
}
// Used for printing section names in places where possible errors can be
// ignored.
static StringRef getSectionName(const SectionRef &Sec) {
Expected<StringRef> NameOrErr = Sec.getName();
if (NameOrErr)
return *NameOrErr;
consumeError(NameOrErr.takeError());
return "<?>";
}
// Used for printing symbol names in places where possible errors can be
// ignored.
static std::string getSymbolName(const ELFSymbolRef &Sym) {
Expected<StringRef> NameOrErr = Sym.getName();
if (NameOrErr)
return maybeDemangle(*NameOrErr);
consumeError(NameOrErr.takeError());
return "<?>";
}
template <class ELFT>
void DumpStyle<ELFT>::printFunctionStackSize(
const ELFObjectFile<ELFT> *Obj, uint64_t SymValue, SectionRef FunctionSec,
const StringRef SectionName, DataExtractor Data, uint64_t *Offset) {
// This function ignores potentially erroneous input, unless it is directly
// related to stack size reporting.
SymbolRef FuncSym;
for (const ELFSymbolRef &Symbol : Obj->symbols()) {
Expected<uint64_t> SymAddrOrErr = Symbol.getAddress();
if (!SymAddrOrErr) {
consumeError(SymAddrOrErr.takeError());
continue;
}
if (Symbol.getELFType() == ELF::STT_FUNC && *SymAddrOrErr == SymValue) {
// Check if the symbol is in the right section.
if (FunctionSec.containsSymbol(Symbol)) {
FuncSym = Symbol;
break;
}
}
}
std::string FuncName = "?";
// A valid SymbolRef has a non-null object file pointer.
if (FuncSym.BasicSymbolRef::getObject())
FuncName = getSymbolName(FuncSym);
else
reportWarning(
createError("could not identify function symbol for stack size entry"),
Obj->getFileName());
// Extract the size. The expectation is that Offset is pointing to the right
// place, i.e. past the function address.
uint64_t PrevOffset = *Offset;
uint64_t StackSize = Data.getULEB128(Offset);
// getULEB128() does not advance Offset if it is not able to extract a valid
// integer.
if (*Offset == PrevOffset)
reportError(
createStringError(object_error::parse_failed,
"could not extract a valid stack size in section %s",
SectionName.data()),
Obj->getFileName());
printStackSizeEntry(StackSize, FuncName);
}
template <class ELFT>
void GNUStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) {
OS.PadToColumn(2);
OS << format_decimal(Size, 11);
OS.PadToColumn(18);
OS << FuncName << "\n";
}
template <class ELFT>
void DumpStyle<ELFT>::printStackSize(const ELFObjectFile<ELFT> *Obj,
RelocationRef Reloc,
SectionRef FunctionSec,
const StringRef &StackSizeSectionName,
const RelocationResolver &Resolver,
DataExtractor Data) {
// This function ignores potentially erroneous input, unless it is directly
// related to stack size reporting.
object::symbol_iterator RelocSym = Reloc.getSymbol();
uint64_t RelocSymValue = 0;
StringRef FileStr = Obj->getFileName();
if (RelocSym != Obj->symbol_end()) {
// Ensure that the relocation symbol is in the function section, i.e. the
// section where the functions whose stack sizes we are reporting are
// located.
auto SectionOrErr = RelocSym->getSection();
if (!SectionOrErr) {
reportWarning(
createError("cannot identify the section for relocation symbol '" +
getSymbolName(*RelocSym) + "'"),
FileStr);
consumeError(SectionOrErr.takeError());
} else if (*SectionOrErr != FunctionSec) {
reportWarning(createError("relocation symbol '" +
getSymbolName(*RelocSym) +
"' is not in the expected section"),
FileStr);
// Pretend that the symbol is in the correct section and report its
// stack size anyway.
FunctionSec = **SectionOrErr;
}
Expected<uint64_t> RelocSymValueOrErr = RelocSym->getValue();
if (RelocSymValueOrErr)
RelocSymValue = *RelocSymValueOrErr;
else
consumeError(RelocSymValueOrErr.takeError());
}
uint64_t Offset = Reloc.getOffset();
if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1))
reportError(
createStringError(object_error::parse_failed,
"found invalid relocation offset into section %s "
"while trying to extract a stack size entry",
StackSizeSectionName.data()),
FileStr);
uint64_t Addend = Data.getAddress(&Offset);
uint64_t SymValue = Resolver(Reloc, RelocSymValue, Addend);
this->printFunctionStackSize(Obj, SymValue, FunctionSec, StackSizeSectionName,
Data, &Offset);
}
template <class ELFT>
void DumpStyle<ELFT>::printNonRelocatableStackSizes(
const ELFObjectFile<ELFT> *Obj, std::function<void()> PrintHeader) {
// This function ignores potentially erroneous input, unless it is directly
// related to stack size reporting.
const ELFFile<ELFT> *EF = Obj->getELFFile();
StringRef FileStr = Obj->getFileName();
for (const SectionRef &Sec : Obj->sections()) {
StringRef SectionName = getSectionName(Sec);
if (SectionName != ".stack_sizes")
continue;
PrintHeader();
const Elf_Shdr *ElfSec = Obj->getSection(Sec.getRawDataRefImpl());
ArrayRef<uint8_t> Contents =
unwrapOrError(this->FileName, EF->getSectionContents(ElfSec));
DataExtractor Data(Contents, Obj->isLittleEndian(), sizeof(Elf_Addr));
// A .stack_sizes section header's sh_link field is supposed to point
// to the section that contains the functions whose stack sizes are
// described in it.
const Elf_Shdr *FunctionELFSec =
unwrapOrError(this->FileName, EF->getSection(ElfSec->sh_link));
uint64_t Offset = 0;
while (Offset < Contents.size()) {
// The function address is followed by a ULEB representing the stack
// size. Check for an extra byte before we try to process the entry.
if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
reportError(
createStringError(
object_error::parse_failed,
"section %s ended while trying to extract a stack size entry",
SectionName.data()),
FileStr);
}
uint64_t SymValue = Data.getAddress(&Offset);
printFunctionStackSize(Obj, SymValue, Obj->toSectionRef(FunctionELFSec),
SectionName, Data, &Offset);
}
}
}
template <class ELFT>
void DumpStyle<ELFT>::printRelocatableStackSizes(
const ELFObjectFile<ELFT> *Obj, std::function<void()> PrintHeader) {
const ELFFile<ELFT> *EF = Obj->getELFFile();
// Build a map between stack size sections and their corresponding relocation
// sections.
llvm::MapVector<SectionRef, SectionRef> StackSizeRelocMap;
const SectionRef NullSection{};
for (const SectionRef &Sec : Obj->sections()) {
StringRef SectionName;
if (Expected<StringRef> NameOrErr = Sec.getName())
SectionName = *NameOrErr;
else
consumeError(NameOrErr.takeError());
// A stack size section that we haven't encountered yet is mapped to the
// null section until we find its corresponding relocation section.
if (SectionName == ".stack_sizes")
if (StackSizeRelocMap.count(Sec) == 0) {
StackSizeRelocMap[Sec] = NullSection;
continue;
}
// Check relocation sections if they are relocating contents of a
// stack sizes section.
const Elf_Shdr *ElfSec = Obj->getSection(Sec.getRawDataRefImpl());
uint32_t SectionType = ElfSec->sh_type;
if (SectionType != ELF::SHT_RELA && SectionType != ELF::SHT_REL)
continue;
Expected<section_iterator> RelSecOrErr = Sec.getRelocatedSection();
if (!RelSecOrErr)
reportError(createStringError(object_error::parse_failed,
"%s: failed to get a relocated section: %s",
SectionName.data(),
toString(RelSecOrErr.takeError()).c_str()),
Obj->getFileName());
const Elf_Shdr *ContentsSec =
Obj->getSection((*RelSecOrErr)->getRawDataRefImpl());
Expected<StringRef> ContentsSectionNameOrErr =
EF->getSectionName(ContentsSec);
if (!ContentsSectionNameOrErr) {
consumeError(ContentsSectionNameOrErr.takeError());
continue;
}
if (*ContentsSectionNameOrErr != ".stack_sizes")
continue;
// Insert a mapping from the stack sizes section to its relocation section.
StackSizeRelocMap[Obj->toSectionRef(ContentsSec)] = Sec;
}
for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
PrintHeader();
const SectionRef &StackSizesSec = StackSizeMapEntry.first;
const SectionRef &RelocSec = StackSizeMapEntry.second;
// Warn about stack size sections without a relocation section.
StringRef StackSizeSectionName = getSectionName(StackSizesSec);
if (RelocSec == NullSection) {
reportWarning(createError("section " + StackSizeSectionName +
" does not have a corresponding "
"relocation section"),
Obj->getFileName());
continue;
}
// A .stack_sizes section header's sh_link field is supposed to point
// to the section that contains the functions whose stack sizes are
// described in it.
const Elf_Shdr *StackSizesELFSec =
Obj->getSection(StackSizesSec.getRawDataRefImpl());
const SectionRef FunctionSec = Obj->toSectionRef(unwrapOrError(
this->FileName, EF->getSection(StackSizesELFSec->sh_link)));
bool (*IsSupportedFn)(uint64_t);
RelocationResolver Resolver;
std::tie(IsSupportedFn, Resolver) = getRelocationResolver(*Obj);
auto Contents = unwrapOrError(this->FileName, StackSizesSec.getContents());
DataExtractor Data(Contents, Obj->isLittleEndian(), sizeof(Elf_Addr));
for (const RelocationRef &Reloc : RelocSec.relocations()) {
if (!IsSupportedFn || !IsSupportedFn(Reloc.getType()))
reportError(createStringError(
object_error::parse_failed,
"unsupported relocation type in section %s: %s",
getSectionName(RelocSec).data(),
EF->getRelocationTypeName(Reloc.getType()).data()),
Obj->getFileName());
this->printStackSize(Obj, Reloc, FunctionSec, StackSizeSectionName,
Resolver, Data);
}
}
}
template <class ELFT>
void GNUStyle<ELFT>::printStackSizes(const ELFObjectFile<ELFT> *Obj) {
bool HeaderHasBeenPrinted = false;
auto PrintHeader = [&]() {
if (HeaderHasBeenPrinted)
return;
OS << "\nStack Sizes:\n";
OS.PadToColumn(9);
OS << "Size";
OS.PadToColumn(18);
OS << "Function\n";
HeaderHasBeenPrinted = true;
};
// For non-relocatable objects, look directly for sections whose name starts
// with .stack_sizes and process the contents.
if (Obj->isRelocatableObject())
this->printRelocatableStackSizes(Obj, PrintHeader);
else
this->printNonRelocatableStackSizes(Obj, PrintHeader);
}
template <class ELFT>
void GNUStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
size_t Bias = ELFT::Is64Bits ? 8 : 0;
auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
OS.PadToColumn(2);
OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
OS.PadToColumn(11 + Bias);
OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
OS.PadToColumn(22 + Bias);
OS << format_hex_no_prefix(*E, 8 + Bias);
OS.PadToColumn(31 + 2 * Bias);
OS << Purpose << "\n";
};
OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
OS << " Canonical gp value: "
<< format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
OS << " Reserved entries:\n";
if (ELFT::Is64Bits)
OS << " Address Access Initial Purpose\n";
else
OS << " Address Access Initial Purpose\n";
PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
if (Parser.getGotModulePointer())
PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
if (!Parser.getLocalEntries().empty()) {
OS << "\n";
OS << " Local entries:\n";
if (ELFT::Is64Bits)
OS << " Address Access Initial\n";
else
OS << " Address Access Initial\n";
for (auto &E : Parser.getLocalEntries())
PrintEntry(&E, "");
}
if (Parser.IsStatic)
return;
if (!Parser.getGlobalEntries().empty()) {
OS << "\n";
OS << " Global entries:\n";
if (ELFT::Is64Bits)
OS << " Address Access Initial Sym.Val."
<< " Type Ndx Name\n";
else
OS << " Address Access Initial Sym.Val. Type Ndx Name\n";
for (auto &E : Parser.getGlobalEntries()) {
const Elf_Sym *Sym = Parser.getGotSym(&E);
std::string SymName = this->dumper()->getFullSymbolName(
Sym, this->dumper()->getDynamicStringTable(), false);
OS.PadToColumn(2);
OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
OS.PadToColumn(11 + Bias);
OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
OS.PadToColumn(22 + Bias);
OS << to_string(format_hex_no_prefix(E, 8 + Bias));
OS.PadToColumn(31 + 2 * Bias);
OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
OS.PadToColumn(40 + 3 * Bias);
OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
OS.PadToColumn(48 + 3 * Bias);
OS << getSymbolSectionNdx(Parser.Obj, Sym,
this->dumper()->dynamic_symbols().begin());
OS.PadToColumn(52 + 3 * Bias);
OS << SymName << "\n";
}
}
if (!Parser.getOtherEntries().empty())
OS << "\n Number of TLS and multi-GOT entries "
<< Parser.getOtherEntries().size() << "\n";
}
template <class ELFT>
void GNUStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
size_t Bias = ELFT::Is64Bits ? 8 : 0;
auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
OS.PadToColumn(2);
OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
OS.PadToColumn(11 + Bias);
OS << format_hex_no_prefix(*E, 8 + Bias);
OS.PadToColumn(20 + 2 * Bias);
OS << Purpose << "\n";
};
OS << "PLT GOT:\n\n";
OS << " Reserved entries:\n";
OS << " Address Initial Purpose\n";
PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
if (Parser.getPltModulePointer())
PrintEntry(Parser.getPltModulePointer(), "Module pointer");
if (!Parser.getPltEntries().empty()) {
OS << "\n";
OS << " Entries:\n";
OS << " Address Initial Sym.Val. Type Ndx Name\n";
for (auto &E : Parser.getPltEntries()) {
const Elf_Sym *Sym = Parser.getPltSym(&E);
std::string SymName = this->dumper()->getFullSymbolName(
Sym, this->dumper()->getDynamicStringTable(), false);
OS.PadToColumn(2);
OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
OS.PadToColumn(11 + Bias);
OS << to_string(format_hex_no_prefix(E, 8 + Bias));
OS.PadToColumn(20 + 2 * Bias);
OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
OS.PadToColumn(29 + 3 * Bias);
OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
OS.PadToColumn(37 + 3 * Bias);
OS << getSymbolSectionNdx(Parser.Obj, Sym,
this->dumper()->dynamic_symbols().begin());
OS.PadToColumn(41 + 3 * Bias);
OS << SymName << "\n";
}
}
}
template <class ELFT>
void GNUStyle<ELFT>::printMipsABIFlags(const ELFObjectFile<ELFT> *ObjF) {
const ELFFile<ELFT> *Obj = ObjF->getELFFile();
const Elf_Shdr *Shdr =
findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.abiflags");
if (!Shdr)
return;
ArrayRef<uint8_t> Sec =
unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
reportError(createError(".MIPS.abiflags section has a wrong size"),
ObjF->getFileName());
auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data());
OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
OS << "ISA: MIPS" << int(Flags->isa_level);
if (Flags->isa_rev > 1)
OS << "r" << int(Flags->isa_rev);
OS << "\n";
OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
OS << "FP ABI: " << printEnum(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType))
<< "\n";
OS << "ISA Extension: "
<< printEnum(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n";
if (Flags->ases == 0)
OS << "ASEs: None\n";
else
// FIXME: Print each flag on a separate line.
OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags))
<< "\n";
OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
OS << "\n";
}
template <class ELFT> void LLVMStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
const Elf_Ehdr *E = Obj->getHeader();
{
DictScope D(W, "ElfHeader");
{
DictScope D(W, "Ident");
W.printBinary("Magic", makeArrayRef(E->e_ident).slice(ELF::EI_MAG0, 4));
W.printEnum("Class", E->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
W.printEnum("DataEncoding", E->e_ident[ELF::EI_DATA],
makeArrayRef(ElfDataEncoding));
W.printNumber("FileVersion", E->e_ident[ELF::EI_VERSION]);
auto OSABI = makeArrayRef(ElfOSABI);
if (E->e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
E->e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
switch (E->e_machine) {
case ELF::EM_AMDGPU:
OSABI = makeArrayRef(AMDGPUElfOSABI);
break;
case ELF::EM_ARM:
OSABI = makeArrayRef(ARMElfOSABI);
break;
case ELF::EM_TI_C6000:
OSABI = makeArrayRef(C6000ElfOSABI);
break;
}
}
W.printEnum("OS/ABI", E->e_ident[ELF::EI_OSABI], OSABI);
W.printNumber("ABIVersion", E->e_ident[ELF::EI_ABIVERSION]);
W.printBinary("Unused", makeArrayRef(E->e_ident).slice(ELF::EI_PAD));
}
W.printEnum("Type", E->e_type, makeArrayRef(ElfObjectFileType));
W.printEnum("Machine", E->e_machine, makeArrayRef(ElfMachineType));
W.printNumber("Version", E->e_version);
W.printHex("Entry", E->e_entry);
W.printHex("ProgramHeaderOffset", E->e_phoff);
W.printHex("SectionHeaderOffset", E->e_shoff);
if (E->e_machine == EM_MIPS)
W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderMipsFlags),
unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
unsigned(ELF::EF_MIPS_MACH));
else if (E->e_machine == EM_AMDGPU)
W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderAMDGPUFlags),
unsigned(ELF::EF_AMDGPU_MACH));
else if (E->e_machine == EM_RISCV)
W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderRISCVFlags));
else
W.printFlags("Flags", E->e_flags);
W.printNumber("HeaderSize", E->e_ehsize);
W.printNumber("ProgramHeaderEntrySize", E->e_phentsize);
W.printNumber("ProgramHeaderCount", E->e_phnum);
W.printNumber("SectionHeaderEntrySize", E->e_shentsize);
W.printString("SectionHeaderCount",
getSectionHeadersNumString(Obj, this->FileName));
W.printString("StringTableSectionIndex",
getSectionHeaderTableIndexString(Obj, this->FileName));
}
}
template <class ELFT>
void LLVMStyle<ELFT>::printGroupSections(const ELFO *Obj) {
DictScope Lists(W, "Groups");
std::vector<GroupSection> V = getGroups<ELFT>(Obj, this->FileName);
DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
for (const GroupSection &G : V) {
DictScope D(W, "Group");
W.printNumber("Name", G.Name, G.ShName);
W.printNumber("Index", G.Index);
W.printNumber("Link", G.Link);
W.printNumber("Info", G.Info);
W.printHex("Type", getGroupType(G.Type), G.Type);
W.startLine() << "Signature: " << G.Signature << "\n";
ListScope L(W, "Section(s) in group");
for (const GroupMember &GM : G.Members) {
const GroupSection *MainGroup = Map[GM.Index];
if (MainGroup != &G) {
W.flush();
errs() << "Error: " << GM.Name << " (" << GM.Index
<< ") in a group " + G.Name + " (" << G.Index
<< ") is already in a group " + MainGroup->Name + " ("
<< MainGroup->Index << ")\n";
errs().flush();
continue;
}
W.startLine() << GM.Name << " (" << GM.Index << ")\n";
}
}
if (V.empty())
W.startLine() << "There are no group sections in the file.\n";
}
template <class ELFT> void LLVMStyle<ELFT>::printRelocations(const ELFO *Obj) {
ListScope D(W, "Relocations");
int SectionNumber = -1;
for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
++SectionNumber;
if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA &&
Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL &&
Sec.sh_type != ELF::SHT_ANDROID_RELA &&
Sec.sh_type != ELF::SHT_ANDROID_RELR)
continue;
StringRef Name = unwrapOrError(this->FileName, Obj->getSectionName(&Sec));
W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
W.indent();
printRelocations(&Sec, Obj);
W.unindent();
W.startLine() << "}\n";
}
}
template <class ELFT>
void LLVMStyle<ELFT>::printRelocations(const Elf_Shdr *Sec, const ELFO *Obj) {
const Elf_Shdr *SymTab =
unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link));
switch (Sec->sh_type) {
case ELF::SHT_REL:
for (const Elf_Rel &R : unwrapOrError(this->FileName, Obj->rels(Sec))) {
Elf_Rela Rela;
Rela.r_offset = R.r_offset;
Rela.r_info = R.r_info;
Rela.r_addend = 0;
printRelocation(Obj, Rela, SymTab);
}
break;
case ELF::SHT_RELA:
for (const Elf_Rela &R : unwrapOrError(this->FileName, Obj->relas(Sec)))
printRelocation(Obj, R, SymTab);
break;
case ELF::SHT_RELR:
case ELF::SHT_ANDROID_RELR: {
Elf_Relr_Range Relrs = unwrapOrError(this->FileName, Obj->relrs(Sec));
if (opts::RawRelr) {
for (const Elf_Relr &R : Relrs)
W.startLine() << W.hex(R) << "\n";
} else {
std::vector<Elf_Rela> RelrRelas =
unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
for (const Elf_Rela &R : RelrRelas)
printRelocation(Obj, R, SymTab);
}
break;
}
case ELF::SHT_ANDROID_REL:
case ELF::SHT_ANDROID_RELA:
for (const Elf_Rela &R :
unwrapOrError(this->FileName, Obj->android_relas(Sec)))
printRelocation(Obj, R, SymTab);
break;
}
}
template <class ELFT>
void LLVMStyle<ELFT>::printRelocation(const ELFO *Obj, Elf_Rela Rel,
const Elf_Shdr *SymTab) {
SmallString<32> RelocName;
Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
std::string TargetName;
const Elf_Sym *Sym =
unwrapOrError(this->FileName, Obj->getRelocationSymbol(&Rel, SymTab));
if (Sym && Sym->getType() == ELF::STT_SECTION) {
const Elf_Shdr *Sec = unwrapOrError(
this->FileName,
Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
TargetName = unwrapOrError(this->FileName, Obj->getSectionName(Sec));
} else if (Sym) {
StringRef StrTable =
unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*SymTab));
TargetName = this->dumper()->getFullSymbolName(
Sym, StrTable, SymTab->sh_type == SHT_DYNSYM /* IsDynamic */);
}
if (opts::ExpandRelocs) {
DictScope Group(W, "Relocation");
W.printHex("Offset", Rel.r_offset);
W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
W.printNumber("Symbol", !TargetName.empty() ? TargetName : "-",
Rel.getSymbol(Obj->isMips64EL()));
W.printHex("Addend", Rel.r_addend);
} else {
raw_ostream &OS = W.startLine();
OS << W.hex(Rel.r_offset) << " " << RelocName << " "
<< (!TargetName.empty() ? TargetName : "-") << " " << W.hex(Rel.r_addend)
<< "\n";
}
}
template <class ELFT>
void LLVMStyle<ELFT>::printSectionHeaders(const ELFO *Obj) {
ListScope SectionsD(W, "Sections");
int SectionIndex = -1;
ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
const ELFObjectFile<ELFT> *ElfObj = this->dumper()->getElfObject();
for (const Elf_Shdr &Sec : Sections) {
StringRef Name = unwrapOrError(
ElfObj->getFileName(), Obj->getSectionName(&Sec, this->WarningHandler));
DictScope SectionD(W, "Section");
W.printNumber("Index", ++SectionIndex);
W.printNumber("Name", Name, Sec.sh_name);
W.printHex(
"Type",
object::getELFSectionTypeName(Obj->getHeader()->e_machine, Sec.sh_type),
Sec.sh_type);
std::vector<EnumEntry<unsigned>> SectionFlags(std::begin(ElfSectionFlags),
std::end(ElfSectionFlags));
switch (Obj->getHeader()->e_machine) {
case EM_ARM:
SectionFlags.insert(SectionFlags.end(), std::begin(ElfARMSectionFlags),
std::end(ElfARMSectionFlags));
break;
case EM_HEXAGON:
SectionFlags.insert(SectionFlags.end(),
std::begin(ElfHexagonSectionFlags),
std::end(ElfHexagonSectionFlags));
break;
case EM_MIPS:
SectionFlags.insert(SectionFlags.end(), std::begin(ElfMipsSectionFlags),
std::end(ElfMipsSectionFlags));
break;
case EM_X86_64:
SectionFlags.insert(SectionFlags.end(), std::begin(ElfX86_64SectionFlags),
std::end(ElfX86_64SectionFlags));
break;
case EM_XCORE:
SectionFlags.insert(SectionFlags.end(), std::begin(ElfXCoreSectionFlags),
std::end(ElfXCoreSectionFlags));
break;
default:
// Nothing to do.
break;
}
W.printFlags("Flags", Sec.sh_flags, makeArrayRef(SectionFlags));
W.printHex("Address", Sec.sh_addr);
W.printHex("Offset", Sec.sh_offset);
W.printNumber("Size", Sec.sh_size);
W.printNumber("Link", Sec.sh_link);
W.printNumber("Info", Sec.sh_info);
W.printNumber("AddressAlignment", Sec.sh_addralign);
W.printNumber("EntrySize", Sec.sh_entsize);
if (opts::SectionRelocations) {
ListScope D(W, "Relocations");
printRelocations(&Sec, Obj);
}
if (opts::SectionSymbols) {
ListScope D(W, "Symbols");
const Elf_Shdr *Symtab = this->dumper()->getDotSymtabSec();
StringRef StrTable =
unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*Symtab));
for (const Elf_Sym &Sym :
unwrapOrError(this->FileName, Obj->symbols(Symtab))) {
const Elf_Shdr *SymSec = unwrapOrError(
this->FileName,
Obj->getSection(&Sym, Symtab, this->dumper()->getShndxTable()));
if (SymSec == &Sec)
printSymbol(
Obj, &Sym,
unwrapOrError(this->FileName, Obj->symbols(Symtab)).begin(),
StrTable, false, false);
}
}
if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
ArrayRef<uint8_t> Data =
unwrapOrError(this->FileName, Obj->getSectionContents(&Sec));
W.printBinaryBlock(
"SectionData",
StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
}
}
}
template <class ELFT>
void LLVMStyle<ELFT>::printSymbolSection(const Elf_Sym *Symbol,
const Elf_Sym *First) {
Expected<unsigned> SectionIndex =
this->dumper()->getSymbolSectionIndex(Symbol, First);
if (!SectionIndex) {
assert(Symbol->st_shndx == SHN_XINDEX &&
"getSymbolSectionIndex should only fail due to an invalid "
"SHT_SYMTAB_SHNDX table/reference");
this->reportUniqueWarning(SectionIndex.takeError());
W.printHex("Section", "Reserved", SHN_XINDEX);
return;
}
Expected<StringRef> SectionName =
this->dumper()->getSymbolSectionName(Symbol, *SectionIndex);
if (!SectionName) {
this->reportUniqueWarning(SectionName.takeError());
W.printHex("Section", "<?>", *SectionIndex);
} else {
W.printHex("Section", *SectionName, *SectionIndex);
}
}
template <class ELFT>
void LLVMStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
const Elf_Sym *First, StringRef StrTable,
bool IsDynamic,
bool /*NonVisibilityBitsUsed*/) {
std::string FullSymbolName =
this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
unsigned char SymbolType = Symbol->getType();
DictScope D(W, "Symbol");
W.printNumber("Name", FullSymbolName, Symbol->st_name);
W.printHex("Value", Symbol->st_value);
W.printNumber("Size", Symbol->st_size);
W.printEnum("Binding", Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
else
W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
if (Symbol->st_other == 0)
// Usually st_other flag is zero. Do not pollute the output
// by flags enumeration in that case.
W.printNumber("Other", 0);
else {
std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
std::end(ElfSymOtherFlags));
if (Obj->getHeader()->e_machine == EM_MIPS) {
// Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
// flag overlapped with other ST_MIPS_xxx flags. So consider both
// cases separately.
if ((Symbol->st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
SymOtherFlags.insert(SymOtherFlags.end(),
std::begin(ElfMips16SymOtherFlags),
std::end(ElfMips16SymOtherFlags));
else
SymOtherFlags.insert(SymOtherFlags.end(),
std::begin(ElfMipsSymOtherFlags),
std::end(ElfMipsSymOtherFlags));
}
W.printFlags("Other", Symbol->st_other, makeArrayRef(SymOtherFlags), 0x3u);
}
printSymbolSection(Symbol, First);
}
template <class ELFT>
void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj, bool PrintSymbols,
bool PrintDynamicSymbols) {
if (PrintSymbols)
printSymbols(Obj);
if (PrintDynamicSymbols)
printDynamicSymbols(Obj);
}
template <class ELFT> void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj) {
ListScope Group(W, "Symbols");
this->dumper()->printSymbolsHelper(false);
}
template <class ELFT>
void LLVMStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) {
ListScope Group(W, "DynamicSymbols");
this->dumper()->printSymbolsHelper(true);
}
template <class ELFT> void LLVMStyle<ELFT>::printDynamic(const ELFFile<ELFT> *Obj) {
Elf_Dyn_Range Table = this->dumper()->dynamic_table();
if (Table.empty())
return;
raw_ostream &OS = W.getOStream();
W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
bool Is64 = ELFT::Is64Bits;
if (Is64)
W.startLine() << " Tag Type Name/Value\n";
else
W.startLine() << " Tag Type Name/Value\n";
for (auto Entry : Table) {
uintX_t Tag = Entry.getTag();
W.startLine() << " " << format_hex(Tag, Is64 ? 18 : 10, true) << " "
<< format("%-21s",
getTypeString(Obj->getHeader()->e_machine, Tag));
this->dumper()->printDynamicEntry(OS, Tag, Entry.getVal());
OS << "\n";
}
W.startLine() << "]\n";
}
template <class ELFT>
void LLVMStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion();
const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
if (DynRelRegion.Size && DynRelaRegion.Size)
report_fatal_error("There are both REL and RELA dynamic relocations");
W.startLine() << "Dynamic Relocations {\n";
W.indent();
if (DynRelaRegion.Size > 0)
for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
printDynamicRelocation(Obj, Rela);
else
for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
Elf_Rela Rela;
Rela.r_offset = Rel.r_offset;
Rela.r_info = Rel.r_info;
Rela.r_addend = 0;
printDynamicRelocation(Obj, Rela);
}
if (DynRelrRegion.Size > 0) {
Elf_Relr_Range Relrs = this->dumper()->dyn_relrs();
std::vector<Elf_Rela> RelrRelas =
unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
for (const Elf_Rela &Rela : RelrRelas)
printDynamicRelocation(Obj, Rela);
}
if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela))
for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
printDynamicRelocation(Obj, Rela);
else
for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
Elf_Rela Rela;
Rela.r_offset = Rel.r_offset;
Rela.r_info = Rel.r_info;
Rela.r_addend = 0;
printDynamicRelocation(Obj, Rela);
}
W.unindent();
W.startLine() << "}\n";
}
template <class ELFT>
void LLVMStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel) {
SmallString<32> RelocName;
Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
std::string SymbolName =
getSymbolForReloc(Obj, this->FileName, this->dumper(), Rel).Name;
if (opts::ExpandRelocs) {
DictScope Group(W, "Relocation");
W.printHex("Offset", Rel.r_offset);
W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
W.printString("Symbol", !SymbolName.empty() ? SymbolName : "-");
W.printHex("Addend", Rel.r_addend);
} else {
raw_ostream &OS = W.startLine();
OS << W.hex(Rel.r_offset) << " " << RelocName << " "
<< (!SymbolName.empty() ? SymbolName : "-") << " " << W.hex(Rel.r_addend)
<< "\n";
}
}
template <class ELFT>
void LLVMStyle<ELFT>::printProgramHeaders(
const ELFO *Obj, bool PrintProgramHeaders,
cl::boolOrDefault PrintSectionMapping) {
if (PrintProgramHeaders)
printProgramHeaders(Obj);
if (PrintSectionMapping == cl::BOU_TRUE)
printSectionMapping(Obj);
}
template <class ELFT>
void LLVMStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
ListScope L(W, "ProgramHeaders");
for (const Elf_Phdr &Phdr :
unwrapOrError(this->FileName, Obj->program_headers())) {
DictScope P(W, "ProgramHeader");
W.printHex("Type",
getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type),
Phdr.p_type);
W.printHex("Offset", Phdr.p_offset);
W.printHex("VirtualAddress", Phdr.p_vaddr);
W.printHex("PhysicalAddress", Phdr.p_paddr);
W.printNumber("FileSize", Phdr.p_filesz);
W.printNumber("MemSize", Phdr.p_memsz);
W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
W.printNumber("Alignment", Phdr.p_align);
}
}
template <class ELFT>
void LLVMStyle<ELFT>::printVersionSymbolSection(const ELFFile<ELFT> *Obj,
const Elf_Shdr *Sec) {
ListScope SS(W, "VersionSymbols");
if (!Sec)
return;
const uint8_t *VersymBuf =
reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset);
const ELFDumper<ELFT> *Dumper = this->dumper();
StringRef StrTable = Dumper->getDynamicStringTable();
// Same number of entries in the dynamic symbol table (DT_SYMTAB).
for (const Elf_Sym &Sym : Dumper->dynamic_symbols()) {
DictScope S(W, "Symbol");
const Elf_Versym *Versym = reinterpret_cast<const Elf_Versym *>(VersymBuf);
std::string FullSymbolName =
Dumper->getFullSymbolName(&Sym, StrTable, true /* IsDynamic */);
W.printNumber("Version", Versym->vs_index & VERSYM_VERSION);
W.printString("Name", FullSymbolName);
VersymBuf += sizeof(Elf_Versym);
}
}
template <class ELFT>
void LLVMStyle<ELFT>::printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
const Elf_Shdr *Sec) {
ListScope SD(W, "VersionDefinitions");
if (!Sec)
return;
const uint8_t *SecStartAddress =
reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset);
const uint8_t *SecEndAddress = SecStartAddress + Sec->sh_size;
const uint8_t *VerdefBuf = SecStartAddress;
const Elf_Shdr *StrTab =
unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link));
unsigned VerDefsNum = Sec->sh_info;
while (VerDefsNum--) {
if (VerdefBuf + sizeof(Elf_Verdef) > SecEndAddress)
// FIXME: report_fatal_error is not a good way to report error. We should
// emit a parsing error here and below.
report_fatal_error("invalid offset in the section");
const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(VerdefBuf);
DictScope Def(W, "Definition");
W.printNumber("Version", Verdef->vd_version);
W.printEnum("Flags", Verdef->vd_flags, makeArrayRef(SymVersionFlags));
W.printNumber("Index", Verdef->vd_ndx);
W.printNumber("Hash", Verdef->vd_hash);
W.printString("Name", StringRef(reinterpret_cast<const char *>(
Obj->base() + StrTab->sh_offset +
Verdef->getAux()->vda_name)));
if (!Verdef->vd_cnt)
report_fatal_error("at least one definition string must exist");
if (Verdef->vd_cnt > 2)
report_fatal_error("more than one predecessor is not expected");
if (Verdef->vd_cnt == 2) {
const uint8_t *VerdauxBuf =
VerdefBuf + Verdef->vd_aux + Verdef->getAux()->vda_next;
const Elf_Verdaux *Verdaux =
reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf);
W.printString("Predecessor",
StringRef(reinterpret_cast<const char *>(
Obj->base() + StrTab->sh_offset + Verdaux->vda_name)));
}
VerdefBuf += Verdef->vd_next;
}
}
template <class ELFT>
void LLVMStyle<ELFT>::printVersionDependencySection(const ELFFile<ELFT> *Obj,
const Elf_Shdr *Sec) {
ListScope SD(W, "VersionRequirements");
if (!Sec)
return;
const uint8_t *SecData =
reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset);
const Elf_Shdr *StrTabSec =
unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link));
StringRef StringTable = {
reinterpret_cast<const char *>(Obj->base() + StrTabSec->sh_offset),
(size_t)StrTabSec->sh_size};
const uint8_t *VerneedBuf = SecData;
unsigned VerneedNum = Sec->sh_info;
for (unsigned I = 0; I < VerneedNum; ++I) {
const Elf_Verneed *Verneed =
reinterpret_cast<const Elf_Verneed *>(VerneedBuf);
DictScope Entry(W, "Dependency");
W.printNumber("Version", Verneed->vn_version);
W.printNumber("Count", Verneed->vn_cnt);
StringRef FileName = StringTable.size() > Verneed->vn_file
? StringTable.drop_front(Verneed->vn_file)
: "<invalid>";
W.printString("FileName", FileName.data());
const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux;
ListScope L(W, "Entries");
for (unsigned J = 0; J < Verneed->vn_cnt; ++J) {
const Elf_Vernaux *Vernaux =
reinterpret_cast<const Elf_Vernaux *>(VernauxBuf);
DictScope Entry(W, "Entry");
W.printNumber("Hash", Vernaux->vna_hash);
W.printEnum("Flags", Vernaux->vna_flags, makeArrayRef(SymVersionFlags));
W.printNumber("Index", Vernaux->vna_other);
StringRef Name = StringTable.size() > Vernaux->vna_name
? StringTable.drop_front(Vernaux->vna_name)
: "<invalid>";
W.printString("Name", Name.data());
VernauxBuf += Vernaux->vna_next;
}
VerneedBuf += Verneed->vn_next;
}
}
template <class ELFT>
void LLVMStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
W.startLine() << "Hash Histogram not implemented!\n";
}
template <class ELFT>
void LLVMStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) {
ListScope L(W, "CGProfile");
if (!this->dumper()->getDotCGProfileSec())
return;
auto CGProfile = unwrapOrError(
this->FileName, Obj->template getSectionContentsAsArray<Elf_CGProfile>(
this->dumper()->getDotCGProfileSec()));
for (const Elf_CGProfile &CGPE : CGProfile) {
DictScope D(W, "CGProfileEntry");
W.printNumber(
"From",
unwrapOrError(this->FileName,
this->dumper()->getStaticSymbolName(CGPE.cgp_from)),
CGPE.cgp_from);
W.printNumber(
"To",
unwrapOrError(this->FileName,
this->dumper()->getStaticSymbolName(CGPE.cgp_to)),
CGPE.cgp_to);
W.printNumber("Weight", CGPE.cgp_weight);
}
}
static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
std::vector<uint64_t> Ret;
const uint8_t *Cur = Data.begin();
const uint8_t *End = Data.end();
while (Cur != End) {
unsigned Size;
const char *Err;
Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
if (Err)
return createError(Err);
Cur += Size;
}
return Ret;
}
template <class ELFT>
void LLVMStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) {
ListScope L(W, "Addrsig");
if (!this->dumper()->getDotAddrsigSec())
return;
ArrayRef<uint8_t> Contents = unwrapOrError(
this->FileName,
Obj->getSectionContents(this->dumper()->getDotAddrsigSec()));
Expected<std::vector<uint64_t>> V = toULEB128Array(Contents);
if (!V) {
reportWarning(V.takeError(), this->FileName);
return;
}
for (uint64_t Sym : *V) {
Expected<std::string> NameOrErr = this->dumper()->getStaticSymbolName(Sym);
if (NameOrErr) {
W.printNumber("Sym", *NameOrErr, Sym);
continue;
}
reportWarning(NameOrErr.takeError(), this->FileName);
W.printNumber("Sym", "<?>", Sym);
}
}
template <typename ELFT>
static void printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
ScopedPrinter &W) {
switch (NoteType) {
default:
return;
case ELF::NT_GNU_ABI_TAG: {
const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
if (!AbiTag.IsValid) {
W.printString("ABI", "<corrupt GNU_ABI_TAG>");
} else {
W.printString("OS", AbiTag.OSName);
W.printString("ABI", AbiTag.ABI);
}
break;
}
case ELF::NT_GNU_BUILD_ID: {
W.printString("Build ID", getGNUBuildId(Desc));
break;
}
case ELF::NT_GNU_GOLD_VERSION:
W.printString("Version", getGNUGoldVersion(Desc));
break;
case ELF::NT_GNU_PROPERTY_TYPE_0:
ListScope D(W, "Property");
for (const auto &Property : getGNUPropertyList<ELFT>(Desc))
W.printString(Property);
break;
}
}
static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
W.printNumber("Page Size", Note.PageSize);
for (const CoreFileMapping &Mapping : Note.Mappings) {
ListScope D(W, "Mapping");
W.printHex("Start", Mapping.Start);
W.printHex("End", Mapping.End);
W.printHex("Offset", Mapping.Offset);
W.printString("Filename", Mapping.Filename);
}
}
template <class ELFT>
void LLVMStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
ListScope L(W, "Notes");
auto PrintHeader = [&](const typename ELFT::Off Offset,
const typename ELFT::Addr Size) {
W.printHex("Offset", Offset);
W.printHex("Size", Size);
};
auto ProcessNote = [&](const Elf_Note &Note) {
DictScope D2(W, "Note");
StringRef Name = Note.getName();
ArrayRef<uint8_t> Descriptor = Note.getDesc();
Elf_Word Type = Note.getType();
// Print the note owner/type.
W.printString("Owner", Name);
W.printHex("Data size", Descriptor.size());
if (Name == "GNU") {
W.printString("Type", getGNUNoteTypeName(Type));
} else if (Name == "FreeBSD") {
W.printString("Type", getFreeBSDNoteTypeName(Type));
} else if (Name == "AMD") {
W.printString("Type", getAMDNoteTypeName(Type));
} else if (Name == "AMDGPU") {
W.printString("Type", getAMDGPUNoteTypeName(Type));
} else {
StringRef NoteType = Obj->getHeader()->e_type == ELF::ET_CORE
? getCoreNoteTypeName(Type)
: getGenericNoteTypeName(Type);
if (!NoteType.empty())
W.printString("Type", NoteType);
else
W.printString("Type",
"Unknown (" + to_string(format_hex(Type, 10)) + ")");
}
// Print the description, or fallback to printing raw bytes for unknown
// owners.
if (Name == "GNU") {
printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W);
} else if (Name == "AMD") {
const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
if (!N.Type.empty())
W.printString(N.Type, N.Value);
} else if (Name == "AMDGPU") {
const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
if (!N.Type.empty())
W.printString(N.Type, N.Value);
} else if (Name == "CORE") {
if (Type == ELF::NT_FILE) {
DataExtractor DescExtractor(Descriptor,
ELFT::TargetEndianness == support::little,
sizeof(Elf_Addr));
Expected<CoreNote> Note = readCoreNote(DescExtractor);
if (Note)
printCoreNoteLLVMStyle(*Note, W);
else
reportWarning(Note.takeError(), this->FileName);
}
} else if (!Descriptor.empty()) {
W.printBinaryBlock("Description data", Descriptor);
}
};
ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
if (Obj->getHeader()->e_type != ELF::ET_CORE && !Sections.empty()) {
for (const auto &S : Sections) {
if (S.sh_type != SHT_NOTE)
continue;
DictScope D(W, "NoteSection");
PrintHeader(S.sh_offset, S.sh_size);
Error Err = Error::success();
for (const auto &Note : Obj->notes(S, Err))
ProcessNote(Note);
if (Err)
reportError(std::move(Err), this->FileName);
}
} else {
for (const auto &P :
unwrapOrError(this->FileName, Obj->program_headers())) {
if (P.p_type != PT_NOTE)
continue;
DictScope D(W, "NoteSection");
PrintHeader(P.p_offset, P.p_filesz);
Error Err = Error::success();
for (const auto &Note : Obj->notes(P, Err))
ProcessNote(Note);
if (Err)
reportError(std::move(Err), this->FileName);
}
}
}
template <class ELFT>
void LLVMStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
ListScope L(W, "LinkerOptions");
for (const Elf_Shdr &Shdr : unwrapOrError(this->FileName, Obj->sections())) {
if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
continue;
ArrayRef<uint8_t> Contents =
unwrapOrError(this->FileName, Obj->getSectionContents(&Shdr));
for (const uint8_t *P = Contents.begin(), *E = Contents.end(); P < E; ) {
StringRef Key = StringRef(reinterpret_cast<const char *>(P));
StringRef Value =
StringRef(reinterpret_cast<const char *>(P) + Key.size() + 1);
W.printString(Key, Value);
P = P + Key.size() + Value.size() + 2;
}
}
}
template <class ELFT>
void LLVMStyle<ELFT>::printStackSizes(const ELFObjectFile<ELFT> *Obj) {
ListScope L(W, "StackSizes");
if (Obj->isRelocatableObject())
this->printRelocatableStackSizes(Obj, []() {});
else
this->printNonRelocatableStackSizes(Obj, []() {});
}
template <class ELFT>
void LLVMStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) {
DictScope D(W, "Entry");
W.printString("Function", FuncName);
W.printHex("Size", Size);
}
template <class ELFT>
void LLVMStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
auto PrintEntry = [&](const Elf_Addr *E) {
W.printHex("Address", Parser.getGotAddress(E));
W.printNumber("Access", Parser.getGotOffset(E));
W.printHex("Initial", *E);
};
DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
W.printHex("Canonical gp value", Parser.getGp());
{
ListScope RS(W, "Reserved entries");
{
DictScope D(W, "Entry");
PrintEntry(Parser.getGotLazyResolver());
W.printString("Purpose", StringRef("Lazy resolver"));
}
if (Parser.getGotModulePointer()) {
DictScope D(W, "Entry");
PrintEntry(Parser.getGotModulePointer());
W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
}
}
{
ListScope LS(W, "Local entries");
for (auto &E : Parser.getLocalEntries()) {
DictScope D(W, "Entry");
PrintEntry(&E);
}
}
if (Parser.IsStatic)
return;
{
ListScope GS(W, "Global entries");
for (auto &E : Parser.getGlobalEntries()) {
DictScope D(W, "Entry");
PrintEntry(&E);
const Elf_Sym *Sym = Parser.getGotSym(&E);
W.printHex("Value", Sym->st_value);
W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
printSymbolSection(Sym, this->dumper()->dynamic_symbols().begin());
std::string SymName = this->dumper()->getFullSymbolName(
Sym, this->dumper()->getDynamicStringTable(), true);
W.printNumber("Name", SymName, Sym->st_name);
}
}
W.printNumber("Number of TLS and multi-GOT entries",
uint64_t(Parser.getOtherEntries().size()));
}
template <class ELFT>
void LLVMStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
auto PrintEntry = [&](const Elf_Addr *E) {
W.printHex("Address", Parser.getPltAddress(E));
W.printHex("Initial", *E);
};
DictScope GS(W, "PLT GOT");
{
ListScope RS(W, "Reserved entries");
{
DictScope D(W, "Entry");
PrintEntry(Parser.getPltLazyResolver());
W.printString("Purpose", StringRef("PLT lazy resolver"));
}
if (auto E = Parser.getPltModulePointer()) {
DictScope D(W, "Entry");
PrintEntry(E);
W.printString("Purpose", StringRef("Module pointer"));
}
}
{
ListScope LS(W, "Entries");
for (auto &E : Parser.getPltEntries()) {
DictScope D(W, "Entry");
PrintEntry(&E);
const Elf_Sym *Sym = Parser.getPltSym(&E);
W.printHex("Value", Sym->st_value);
W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
printSymbolSection(Sym, this->dumper()->dynamic_symbols().begin());
std::string SymName =
this->dumper()->getFullSymbolName(Sym, Parser.getPltStrTable(), true);
W.printNumber("Name", SymName, Sym->st_name);
}
}
}
template <class ELFT>
void LLVMStyle<ELFT>::printMipsABIFlags(const ELFObjectFile<ELFT> *ObjF) {
const ELFFile<ELFT> *Obj = ObjF->getELFFile();
const Elf_Shdr *Shdr =
findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.abiflags");
if (!Shdr) {
W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
return;
}
ArrayRef<uint8_t> Sec =
unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) {
W.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
return;
}
auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data());
raw_ostream &OS = W.getOStream();
DictScope GS(W, "MIPS ABI Flags");
W.printNumber("Version", Flags->version);
W.startLine() << "ISA: ";
if (Flags->isa_rev <= 1)
OS << format("MIPS%u", Flags->isa_level);
else
OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
OS << "\n";
W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
W.printHex("Flags 2", Flags->flags2);
}