llvm-project/clang/lib/StaticAnalyzer/Core/PathDiagnostic.cpp

1182 lines
40 KiB
C++

//===--- PathDiagnostic.cpp - Path-Specific Diagnostic Handling -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PathDiagnostic-related interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ParentMap.h"
#include "clang/AST/StmtCXX.h"
#include "clang/Basic/SourceManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace ento;
bool PathDiagnosticMacroPiece::containsEvent() const {
for (PathPieces::const_iterator I = subPieces.begin(), E = subPieces.end();
I!=E; ++I) {
if (isa<PathDiagnosticEventPiece>(*I))
return true;
if (PathDiagnosticMacroPiece *MP = dyn_cast<PathDiagnosticMacroPiece>(*I))
if (MP->containsEvent())
return true;
}
return false;
}
static StringRef StripTrailingDots(StringRef s) {
for (StringRef::size_type i = s.size(); i != 0; --i)
if (s[i - 1] != '.')
return s.substr(0, i);
return "";
}
PathDiagnosticPiece::PathDiagnosticPiece(StringRef s,
Kind k, DisplayHint hint)
: str(StripTrailingDots(s)), kind(k), Hint(hint),
LastInMainSourceFile(false) {}
PathDiagnosticPiece::PathDiagnosticPiece(Kind k, DisplayHint hint)
: kind(k), Hint(hint), LastInMainSourceFile(false) {}
PathDiagnosticPiece::~PathDiagnosticPiece() {}
PathDiagnosticEventPiece::~PathDiagnosticEventPiece() {}
PathDiagnosticCallPiece::~PathDiagnosticCallPiece() {}
PathDiagnosticControlFlowPiece::~PathDiagnosticControlFlowPiece() {}
PathDiagnosticMacroPiece::~PathDiagnosticMacroPiece() {}
PathPieces::~PathPieces() {}
void PathPieces::flattenTo(PathPieces &Primary, PathPieces &Current,
bool ShouldFlattenMacros) const {
for (PathPieces::const_iterator I = begin(), E = end(); I != E; ++I) {
PathDiagnosticPiece *Piece = I->get();
switch (Piece->getKind()) {
case PathDiagnosticPiece::Call: {
PathDiagnosticCallPiece *Call = cast<PathDiagnosticCallPiece>(Piece);
IntrusiveRefCntPtr<PathDiagnosticEventPiece> CallEnter =
Call->getCallEnterEvent();
if (CallEnter)
Current.push_back(CallEnter);
Call->path.flattenTo(Primary, Primary, ShouldFlattenMacros);
IntrusiveRefCntPtr<PathDiagnosticEventPiece> callExit =
Call->getCallExitEvent();
if (callExit)
Current.push_back(callExit);
break;
}
case PathDiagnosticPiece::Macro: {
PathDiagnosticMacroPiece *Macro = cast<PathDiagnosticMacroPiece>(Piece);
if (ShouldFlattenMacros) {
Macro->subPieces.flattenTo(Primary, Primary, ShouldFlattenMacros);
} else {
Current.push_back(Piece);
PathPieces NewPath;
Macro->subPieces.flattenTo(Primary, NewPath, ShouldFlattenMacros);
// FIXME: This probably shouldn't mutate the original path piece.
Macro->subPieces = NewPath;
}
break;
}
case PathDiagnosticPiece::Event:
case PathDiagnosticPiece::ControlFlow:
Current.push_back(Piece);
break;
}
}
}
PathDiagnostic::~PathDiagnostic() {}
PathDiagnostic::PathDiagnostic(StringRef CheckName, const Decl *declWithIssue,
StringRef bugtype, StringRef verboseDesc,
StringRef shortDesc, StringRef category,
PathDiagnosticLocation LocationToUnique,
const Decl *DeclToUnique)
: CheckName(CheckName),
DeclWithIssue(declWithIssue),
BugType(StripTrailingDots(bugtype)),
VerboseDesc(StripTrailingDots(verboseDesc)),
ShortDesc(StripTrailingDots(shortDesc)),
Category(StripTrailingDots(category)),
UniqueingLoc(LocationToUnique),
UniqueingDecl(DeclToUnique),
path(pathImpl) {}
static PathDiagnosticCallPiece *
getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP,
const SourceManager &SMgr) {
SourceLocation CallLoc = CP->callEnter.asLocation();
// If the call is within a macro, don't do anything (for now).
if (CallLoc.isMacroID())
return nullptr;
assert(SMgr.isInMainFile(CallLoc) &&
"The call piece should be in the main file.");
// Check if CP represents a path through a function outside of the main file.
if (!SMgr.isInMainFile(CP->callEnterWithin.asLocation()))
return CP;
const PathPieces &Path = CP->path;
if (Path.empty())
return nullptr;
// Check if the last piece in the callee path is a call to a function outside
// of the main file.
if (PathDiagnosticCallPiece *CPInner =
dyn_cast<PathDiagnosticCallPiece>(Path.back())) {
return getFirstStackedCallToHeaderFile(CPInner, SMgr);
}
// Otherwise, the last piece is in the main file.
return nullptr;
}
void PathDiagnostic::resetDiagnosticLocationToMainFile() {
if (path.empty())
return;
PathDiagnosticPiece *LastP = path.back().get();
assert(LastP);
const SourceManager &SMgr = LastP->getLocation().getManager();
// We only need to check if the report ends inside headers, if the last piece
// is a call piece.
if (PathDiagnosticCallPiece *CP = dyn_cast<PathDiagnosticCallPiece>(LastP)) {
CP = getFirstStackedCallToHeaderFile(CP, SMgr);
if (CP) {
// Mark the piece.
CP->setAsLastInMainSourceFile();
// Update the path diagnostic message.
const NamedDecl *ND = dyn_cast<NamedDecl>(CP->getCallee());
if (ND) {
SmallString<200> buf;
llvm::raw_svector_ostream os(buf);
os << " (within a call to '" << ND->getDeclName() << "')";
appendToDesc(os.str());
}
// Reset the report containing declaration and location.
DeclWithIssue = CP->getCaller();
Loc = CP->getLocation();
return;
}
}
}
void PathDiagnosticConsumer::anchor() { }
PathDiagnosticConsumer::~PathDiagnosticConsumer() {
// Delete the contents of the FoldingSet if it isn't empty already.
for (llvm::FoldingSet<PathDiagnostic>::iterator it =
Diags.begin(), et = Diags.end() ; it != et ; ++it) {
delete &*it;
}
}
void PathDiagnosticConsumer::HandlePathDiagnostic(
std::unique_ptr<PathDiagnostic> D) {
if (!D || D->path.empty())
return;
// We need to flatten the locations (convert Stmt* to locations) because
// the referenced statements may be freed by the time the diagnostics
// are emitted.
D->flattenLocations();
// If the PathDiagnosticConsumer does not support diagnostics that
// cross file boundaries, prune out such diagnostics now.
if (!supportsCrossFileDiagnostics()) {
// Verify that the entire path is from the same FileID.
FileID FID;
const SourceManager &SMgr = D->path.front()->getLocation().getManager();
SmallVector<const PathPieces *, 5> WorkList;
WorkList.push_back(&D->path);
while (!WorkList.empty()) {
const PathPieces &path = *WorkList.pop_back_val();
for (PathPieces::const_iterator I = path.begin(), E = path.end(); I != E;
++I) {
const PathDiagnosticPiece *piece = I->get();
FullSourceLoc L = piece->getLocation().asLocation().getExpansionLoc();
if (FID.isInvalid()) {
FID = SMgr.getFileID(L);
} else if (SMgr.getFileID(L) != FID)
return; // FIXME: Emit a warning?
// Check the source ranges.
ArrayRef<SourceRange> Ranges = piece->getRanges();
for (ArrayRef<SourceRange>::iterator I = Ranges.begin(),
E = Ranges.end(); I != E; ++I) {
SourceLocation L = SMgr.getExpansionLoc(I->getBegin());
if (!L.isFileID() || SMgr.getFileID(L) != FID)
return; // FIXME: Emit a warning?
L = SMgr.getExpansionLoc(I->getEnd());
if (!L.isFileID() || SMgr.getFileID(L) != FID)
return; // FIXME: Emit a warning?
}
if (const PathDiagnosticCallPiece *call =
dyn_cast<PathDiagnosticCallPiece>(piece)) {
WorkList.push_back(&call->path);
}
else if (const PathDiagnosticMacroPiece *macro =
dyn_cast<PathDiagnosticMacroPiece>(piece)) {
WorkList.push_back(&macro->subPieces);
}
}
}
if (FID.isInvalid())
return; // FIXME: Emit a warning?
}
// Profile the node to see if we already have something matching it
llvm::FoldingSetNodeID profile;
D->Profile(profile);
void *InsertPos = nullptr;
if (PathDiagnostic *orig = Diags.FindNodeOrInsertPos(profile, InsertPos)) {
// Keep the PathDiagnostic with the shorter path.
// Note, the enclosing routine is called in deterministic order, so the
// results will be consistent between runs (no reason to break ties if the
// size is the same).
const unsigned orig_size = orig->full_size();
const unsigned new_size = D->full_size();
if (orig_size <= new_size)
return;
assert(orig != D.get());
Diags.RemoveNode(orig);
delete orig;
}
Diags.InsertNode(D.release());
}
static Optional<bool> comparePath(const PathPieces &X, const PathPieces &Y);
static Optional<bool>
compareControlFlow(const PathDiagnosticControlFlowPiece &X,
const PathDiagnosticControlFlowPiece &Y) {
FullSourceLoc XSL = X.getStartLocation().asLocation();
FullSourceLoc YSL = Y.getStartLocation().asLocation();
if (XSL != YSL)
return XSL.isBeforeInTranslationUnitThan(YSL);
FullSourceLoc XEL = X.getEndLocation().asLocation();
FullSourceLoc YEL = Y.getEndLocation().asLocation();
if (XEL != YEL)
return XEL.isBeforeInTranslationUnitThan(YEL);
return None;
}
static Optional<bool> compareMacro(const PathDiagnosticMacroPiece &X,
const PathDiagnosticMacroPiece &Y) {
return comparePath(X.subPieces, Y.subPieces);
}
static Optional<bool> compareCall(const PathDiagnosticCallPiece &X,
const PathDiagnosticCallPiece &Y) {
FullSourceLoc X_CEL = X.callEnter.asLocation();
FullSourceLoc Y_CEL = Y.callEnter.asLocation();
if (X_CEL != Y_CEL)
return X_CEL.isBeforeInTranslationUnitThan(Y_CEL);
FullSourceLoc X_CEWL = X.callEnterWithin.asLocation();
FullSourceLoc Y_CEWL = Y.callEnterWithin.asLocation();
if (X_CEWL != Y_CEWL)
return X_CEWL.isBeforeInTranslationUnitThan(Y_CEWL);
FullSourceLoc X_CRL = X.callReturn.asLocation();
FullSourceLoc Y_CRL = Y.callReturn.asLocation();
if (X_CRL != Y_CRL)
return X_CRL.isBeforeInTranslationUnitThan(Y_CRL);
return comparePath(X.path, Y.path);
}
static Optional<bool> comparePiece(const PathDiagnosticPiece &X,
const PathDiagnosticPiece &Y) {
if (X.getKind() != Y.getKind())
return X.getKind() < Y.getKind();
FullSourceLoc XL = X.getLocation().asLocation();
FullSourceLoc YL = Y.getLocation().asLocation();
if (XL != YL)
return XL.isBeforeInTranslationUnitThan(YL);
if (X.getString() != Y.getString())
return X.getString() < Y.getString();
if (X.getRanges().size() != Y.getRanges().size())
return X.getRanges().size() < Y.getRanges().size();
const SourceManager &SM = XL.getManager();
for (unsigned i = 0, n = X.getRanges().size(); i < n; ++i) {
SourceRange XR = X.getRanges()[i];
SourceRange YR = Y.getRanges()[i];
if (XR != YR) {
if (XR.getBegin() != YR.getBegin())
return SM.isBeforeInTranslationUnit(XR.getBegin(), YR.getBegin());
return SM.isBeforeInTranslationUnit(XR.getEnd(), YR.getEnd());
}
}
switch (X.getKind()) {
case clang::ento::PathDiagnosticPiece::ControlFlow:
return compareControlFlow(cast<PathDiagnosticControlFlowPiece>(X),
cast<PathDiagnosticControlFlowPiece>(Y));
case clang::ento::PathDiagnosticPiece::Event:
return None;
case clang::ento::PathDiagnosticPiece::Macro:
return compareMacro(cast<PathDiagnosticMacroPiece>(X),
cast<PathDiagnosticMacroPiece>(Y));
case clang::ento::PathDiagnosticPiece::Call:
return compareCall(cast<PathDiagnosticCallPiece>(X),
cast<PathDiagnosticCallPiece>(Y));
}
llvm_unreachable("all cases handled");
}
static Optional<bool> comparePath(const PathPieces &X, const PathPieces &Y) {
if (X.size() != Y.size())
return X.size() < Y.size();
PathPieces::const_iterator X_I = X.begin(), X_end = X.end();
PathPieces::const_iterator Y_I = Y.begin(), Y_end = Y.end();
for ( ; X_I != X_end && Y_I != Y_end; ++X_I, ++Y_I) {
Optional<bool> b = comparePiece(**X_I, **Y_I);
if (b.hasValue())
return b.getValue();
}
return None;
}
static bool compare(const PathDiagnostic &X, const PathDiagnostic &Y) {
FullSourceLoc XL = X.getLocation().asLocation();
FullSourceLoc YL = Y.getLocation().asLocation();
if (XL != YL)
return XL.isBeforeInTranslationUnitThan(YL);
if (X.getBugType() != Y.getBugType())
return X.getBugType() < Y.getBugType();
if (X.getCategory() != Y.getCategory())
return X.getCategory() < Y.getCategory();
if (X.getVerboseDescription() != Y.getVerboseDescription())
return X.getVerboseDescription() < Y.getVerboseDescription();
if (X.getShortDescription() != Y.getShortDescription())
return X.getShortDescription() < Y.getShortDescription();
if (X.getDeclWithIssue() != Y.getDeclWithIssue()) {
const Decl *XD = X.getDeclWithIssue();
if (!XD)
return true;
const Decl *YD = Y.getDeclWithIssue();
if (!YD)
return false;
SourceLocation XDL = XD->getLocation();
SourceLocation YDL = YD->getLocation();
if (XDL != YDL) {
const SourceManager &SM = XL.getManager();
return SM.isBeforeInTranslationUnit(XDL, YDL);
}
}
PathDiagnostic::meta_iterator XI = X.meta_begin(), XE = X.meta_end();
PathDiagnostic::meta_iterator YI = Y.meta_begin(), YE = Y.meta_end();
if (XE - XI != YE - YI)
return (XE - XI) < (YE - YI);
for ( ; XI != XE ; ++XI, ++YI) {
if (*XI != *YI)
return (*XI) < (*YI);
}
Optional<bool> b = comparePath(X.path, Y.path);
assert(b.hasValue());
return b.getValue();
}
void PathDiagnosticConsumer::FlushDiagnostics(
PathDiagnosticConsumer::FilesMade *Files) {
if (flushed)
return;
flushed = true;
std::vector<const PathDiagnostic *> BatchDiags;
for (llvm::FoldingSet<PathDiagnostic>::iterator it = Diags.begin(),
et = Diags.end(); it != et; ++it) {
const PathDiagnostic *D = &*it;
BatchDiags.push_back(D);
}
// Sort the diagnostics so that they are always emitted in a deterministic
// order.
if (!BatchDiags.empty())
std::sort(BatchDiags.begin(), BatchDiags.end(),
[](const PathDiagnostic *X, const PathDiagnostic *Y) {
return X != Y && compare(*X, *Y);
});
FlushDiagnosticsImpl(BatchDiags, Files);
// Delete the flushed diagnostics.
for (std::vector<const PathDiagnostic *>::iterator it = BatchDiags.begin(),
et = BatchDiags.end(); it != et; ++it) {
const PathDiagnostic *D = *it;
delete D;
}
// Clear out the FoldingSet.
Diags.clear();
}
PathDiagnosticConsumer::FilesMade::~FilesMade() {
for (PDFileEntry &Entry : *this)
Entry.~PDFileEntry();
}
void PathDiagnosticConsumer::FilesMade::addDiagnostic(const PathDiagnostic &PD,
StringRef ConsumerName,
StringRef FileName) {
llvm::FoldingSetNodeID NodeID;
NodeID.Add(PD);
void *InsertPos;
PDFileEntry *Entry = FindNodeOrInsertPos(NodeID, InsertPos);
if (!Entry) {
Entry = Alloc.Allocate<PDFileEntry>();
Entry = new (Entry) PDFileEntry(NodeID);
InsertNode(Entry, InsertPos);
}
// Allocate persistent storage for the file name.
char *FileName_cstr = (char*) Alloc.Allocate(FileName.size(), 1);
memcpy(FileName_cstr, FileName.data(), FileName.size());
Entry->files.push_back(std::make_pair(ConsumerName,
StringRef(FileName_cstr,
FileName.size())));
}
PathDiagnosticConsumer::PDFileEntry::ConsumerFiles *
PathDiagnosticConsumer::FilesMade::getFiles(const PathDiagnostic &PD) {
llvm::FoldingSetNodeID NodeID;
NodeID.Add(PD);
void *InsertPos;
PDFileEntry *Entry = FindNodeOrInsertPos(NodeID, InsertPos);
if (!Entry)
return nullptr;
return &Entry->files;
}
//===----------------------------------------------------------------------===//
// PathDiagnosticLocation methods.
//===----------------------------------------------------------------------===//
static SourceLocation getValidSourceLocation(const Stmt* S,
LocationOrAnalysisDeclContext LAC,
bool UseEnd = false) {
SourceLocation L = UseEnd ? S->getLocEnd() : S->getLocStart();
assert(!LAC.isNull() && "A valid LocationContext or AnalysisDeclContext should "
"be passed to PathDiagnosticLocation upon creation.");
// S might be a temporary statement that does not have a location in the
// source code, so find an enclosing statement and use its location.
if (!L.isValid()) {
AnalysisDeclContext *ADC;
if (LAC.is<const LocationContext*>())
ADC = LAC.get<const LocationContext*>()->getAnalysisDeclContext();
else
ADC = LAC.get<AnalysisDeclContext*>();
ParentMap &PM = ADC->getParentMap();
const Stmt *Parent = S;
do {
Parent = PM.getParent(Parent);
// In rare cases, we have implicit top-level expressions,
// such as arguments for implicit member initializers.
// In this case, fall back to the start of the body (even if we were
// asked for the statement end location).
if (!Parent) {
const Stmt *Body = ADC->getBody();
if (Body)
L = Body->getLocStart();
else
L = ADC->getDecl()->getLocEnd();
break;
}
L = UseEnd ? Parent->getLocEnd() : Parent->getLocStart();
} while (!L.isValid());
}
return L;
}
static PathDiagnosticLocation
getLocationForCaller(const StackFrameContext *SFC,
const LocationContext *CallerCtx,
const SourceManager &SM) {
const CFGBlock &Block = *SFC->getCallSiteBlock();
CFGElement Source = Block[SFC->getIndex()];
switch (Source.getKind()) {
case CFGElement::Statement:
return PathDiagnosticLocation(Source.castAs<CFGStmt>().getStmt(),
SM, CallerCtx);
case CFGElement::Initializer: {
const CFGInitializer &Init = Source.castAs<CFGInitializer>();
return PathDiagnosticLocation(Init.getInitializer()->getInit(),
SM, CallerCtx);
}
case CFGElement::AutomaticObjectDtor: {
const CFGAutomaticObjDtor &Dtor = Source.castAs<CFGAutomaticObjDtor>();
return PathDiagnosticLocation::createEnd(Dtor.getTriggerStmt(),
SM, CallerCtx);
}
case CFGElement::DeleteDtor: {
const CFGDeleteDtor &Dtor = Source.castAs<CFGDeleteDtor>();
return PathDiagnosticLocation(Dtor.getDeleteExpr(), SM, CallerCtx);
}
case CFGElement::BaseDtor:
case CFGElement::MemberDtor: {
const AnalysisDeclContext *CallerInfo = CallerCtx->getAnalysisDeclContext();
if (const Stmt *CallerBody = CallerInfo->getBody())
return PathDiagnosticLocation::createEnd(CallerBody, SM, CallerCtx);
return PathDiagnosticLocation::create(CallerInfo->getDecl(), SM);
}
case CFGElement::TemporaryDtor:
case CFGElement::NewAllocator:
llvm_unreachable("not yet implemented!");
}
llvm_unreachable("Unknown CFGElement kind");
}
PathDiagnosticLocation
PathDiagnosticLocation::createBegin(const Decl *D,
const SourceManager &SM) {
return PathDiagnosticLocation(D->getLocStart(), SM, SingleLocK);
}
PathDiagnosticLocation
PathDiagnosticLocation::createBegin(const Stmt *S,
const SourceManager &SM,
LocationOrAnalysisDeclContext LAC) {
return PathDiagnosticLocation(getValidSourceLocation(S, LAC),
SM, SingleLocK);
}
PathDiagnosticLocation
PathDiagnosticLocation::createEnd(const Stmt *S,
const SourceManager &SM,
LocationOrAnalysisDeclContext LAC) {
if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S))
return createEndBrace(CS, SM);
return PathDiagnosticLocation(getValidSourceLocation(S, LAC, /*End=*/true),
SM, SingleLocK);
}
PathDiagnosticLocation
PathDiagnosticLocation::createOperatorLoc(const BinaryOperator *BO,
const SourceManager &SM) {
return PathDiagnosticLocation(BO->getOperatorLoc(), SM, SingleLocK);
}
PathDiagnosticLocation
PathDiagnosticLocation::createConditionalColonLoc(
const ConditionalOperator *CO,
const SourceManager &SM) {
return PathDiagnosticLocation(CO->getColonLoc(), SM, SingleLocK);
}
PathDiagnosticLocation
PathDiagnosticLocation::createMemberLoc(const MemberExpr *ME,
const SourceManager &SM) {
return PathDiagnosticLocation(ME->getMemberLoc(), SM, SingleLocK);
}
PathDiagnosticLocation
PathDiagnosticLocation::createBeginBrace(const CompoundStmt *CS,
const SourceManager &SM) {
SourceLocation L = CS->getLBracLoc();
return PathDiagnosticLocation(L, SM, SingleLocK);
}
PathDiagnosticLocation
PathDiagnosticLocation::createEndBrace(const CompoundStmt *CS,
const SourceManager &SM) {
SourceLocation L = CS->getRBracLoc();
return PathDiagnosticLocation(L, SM, SingleLocK);
}
PathDiagnosticLocation
PathDiagnosticLocation::createDeclBegin(const LocationContext *LC,
const SourceManager &SM) {
// FIXME: Should handle CXXTryStmt if analyser starts supporting C++.
if (const CompoundStmt *CS =
dyn_cast_or_null<CompoundStmt>(LC->getDecl()->getBody()))
if (!CS->body_empty()) {
SourceLocation Loc = (*CS->body_begin())->getLocStart();
return PathDiagnosticLocation(Loc, SM, SingleLocK);
}
return PathDiagnosticLocation();
}
PathDiagnosticLocation
PathDiagnosticLocation::createDeclEnd(const LocationContext *LC,
const SourceManager &SM) {
SourceLocation L = LC->getDecl()->getBodyRBrace();
return PathDiagnosticLocation(L, SM, SingleLocK);
}
PathDiagnosticLocation
PathDiagnosticLocation::create(const ProgramPoint& P,
const SourceManager &SMng) {
const Stmt* S = nullptr;
if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
const CFGBlock *BSrc = BE->getSrc();
S = BSrc->getTerminatorCondition();
} else if (Optional<StmtPoint> SP = P.getAs<StmtPoint>()) {
S = SP->getStmt();
if (P.getAs<PostStmtPurgeDeadSymbols>())
return PathDiagnosticLocation::createEnd(S, SMng, P.getLocationContext());
} else if (Optional<PostInitializer> PIP = P.getAs<PostInitializer>()) {
return PathDiagnosticLocation(PIP->getInitializer()->getSourceLocation(),
SMng);
} else if (Optional<PostImplicitCall> PIE = P.getAs<PostImplicitCall>()) {
return PathDiagnosticLocation(PIE->getLocation(), SMng);
} else if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
return getLocationForCaller(CE->getCalleeContext(),
CE->getLocationContext(),
SMng);
} else if (Optional<CallExitEnd> CEE = P.getAs<CallExitEnd>()) {
return getLocationForCaller(CEE->getCalleeContext(),
CEE->getLocationContext(),
SMng);
} else {
llvm_unreachable("Unexpected ProgramPoint");
}
return PathDiagnosticLocation(S, SMng, P.getLocationContext());
}
const Stmt *PathDiagnosticLocation::getStmt(const ExplodedNode *N) {
ProgramPoint P = N->getLocation();
if (Optional<StmtPoint> SP = P.getAs<StmtPoint>())
return SP->getStmt();
if (Optional<BlockEdge> BE = P.getAs<BlockEdge>())
return BE->getSrc()->getTerminator();
if (Optional<CallEnter> CE = P.getAs<CallEnter>())
return CE->getCallExpr();
if (Optional<CallExitEnd> CEE = P.getAs<CallExitEnd>())
return CEE->getCalleeContext()->getCallSite();
if (Optional<PostInitializer> PIPP = P.getAs<PostInitializer>())
return PIPP->getInitializer()->getInit();
return nullptr;
}
const Stmt *PathDiagnosticLocation::getNextStmt(const ExplodedNode *N) {
for (N = N->getFirstSucc(); N; N = N->getFirstSucc()) {
if (const Stmt *S = getStmt(N)) {
// Check if the statement is '?' or '&&'/'||'. These are "merges",
// not actual statement points.
switch (S->getStmtClass()) {
case Stmt::ChooseExprClass:
case Stmt::BinaryConditionalOperatorClass:
case Stmt::ConditionalOperatorClass:
continue;
case Stmt::BinaryOperatorClass: {
BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
if (Op == BO_LAnd || Op == BO_LOr)
continue;
break;
}
default:
break;
}
// We found the statement, so return it.
return S;
}
}
return nullptr;
}
PathDiagnosticLocation
PathDiagnosticLocation::createEndOfPath(const ExplodedNode *N,
const SourceManager &SM) {
assert(N && "Cannot create a location with a null node.");
const Stmt *S = getStmt(N);
if (!S) {
// If this is an implicit call, return the implicit call point location.
if (Optional<PreImplicitCall> PIE = N->getLocationAs<PreImplicitCall>())
return PathDiagnosticLocation(PIE->getLocation(), SM);
S = getNextStmt(N);
}
if (S) {
ProgramPoint P = N->getLocation();
const LocationContext *LC = N->getLocationContext();
// For member expressions, return the location of the '.' or '->'.
if (const MemberExpr *ME = dyn_cast<MemberExpr>(S))
return PathDiagnosticLocation::createMemberLoc(ME, SM);
// For binary operators, return the location of the operator.
if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S))
return PathDiagnosticLocation::createOperatorLoc(B, SM);
if (P.getAs<PostStmtPurgeDeadSymbols>())
return PathDiagnosticLocation::createEnd(S, SM, LC);
if (S->getLocStart().isValid())
return PathDiagnosticLocation(S, SM, LC);
return PathDiagnosticLocation(getValidSourceLocation(S, LC), SM);
}
return createDeclEnd(N->getLocationContext(), SM);
}
PathDiagnosticLocation PathDiagnosticLocation::createSingleLocation(
const PathDiagnosticLocation &PDL) {
FullSourceLoc L = PDL.asLocation();
return PathDiagnosticLocation(L, L.getManager(), SingleLocK);
}
FullSourceLoc
PathDiagnosticLocation::genLocation(SourceLocation L,
LocationOrAnalysisDeclContext LAC) const {
assert(isValid());
// Note that we want a 'switch' here so that the compiler can warn us in
// case we add more cases.
switch (K) {
case SingleLocK:
case RangeK:
break;
case StmtK:
// Defensive checking.
if (!S)
break;
return FullSourceLoc(getValidSourceLocation(S, LAC),
const_cast<SourceManager&>(*SM));
case DeclK:
// Defensive checking.
if (!D)
break;
return FullSourceLoc(D->getLocation(), const_cast<SourceManager&>(*SM));
}
return FullSourceLoc(L, const_cast<SourceManager&>(*SM));
}
PathDiagnosticRange
PathDiagnosticLocation::genRange(LocationOrAnalysisDeclContext LAC) const {
assert(isValid());
// Note that we want a 'switch' here so that the compiler can warn us in
// case we add more cases.
switch (K) {
case SingleLocK:
return PathDiagnosticRange(SourceRange(Loc,Loc), true);
case RangeK:
break;
case StmtK: {
const Stmt *S = asStmt();
switch (S->getStmtClass()) {
default:
break;
case Stmt::DeclStmtClass: {
const DeclStmt *DS = cast<DeclStmt>(S);
if (DS->isSingleDecl()) {
// Should always be the case, but we'll be defensive.
return SourceRange(DS->getLocStart(),
DS->getSingleDecl()->getLocation());
}
break;
}
// FIXME: Provide better range information for different
// terminators.
case Stmt::IfStmtClass:
case Stmt::WhileStmtClass:
case Stmt::DoStmtClass:
case Stmt::ForStmtClass:
case Stmt::ChooseExprClass:
case Stmt::IndirectGotoStmtClass:
case Stmt::SwitchStmtClass:
case Stmt::BinaryConditionalOperatorClass:
case Stmt::ConditionalOperatorClass:
case Stmt::ObjCForCollectionStmtClass: {
SourceLocation L = getValidSourceLocation(S, LAC);
return SourceRange(L, L);
}
}
SourceRange R = S->getSourceRange();
if (R.isValid())
return R;
break;
}
case DeclK:
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
return MD->getSourceRange();
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
if (Stmt *Body = FD->getBody())
return Body->getSourceRange();
}
else {
SourceLocation L = D->getLocation();
return PathDiagnosticRange(SourceRange(L, L), true);
}
}
return SourceRange(Loc,Loc);
}
void PathDiagnosticLocation::flatten() {
if (K == StmtK) {
K = RangeK;
S = nullptr;
D = nullptr;
}
else if (K == DeclK) {
K = SingleLocK;
S = nullptr;
D = nullptr;
}
}
//===----------------------------------------------------------------------===//
// Manipulation of PathDiagnosticCallPieces.
//===----------------------------------------------------------------------===//
PathDiagnosticCallPiece *
PathDiagnosticCallPiece::construct(const ExplodedNode *N,
const CallExitEnd &CE,
const SourceManager &SM) {
const Decl *caller = CE.getLocationContext()->getDecl();
PathDiagnosticLocation pos = getLocationForCaller(CE.getCalleeContext(),
CE.getLocationContext(),
SM);
return new PathDiagnosticCallPiece(caller, pos);
}
PathDiagnosticCallPiece *
PathDiagnosticCallPiece::construct(PathPieces &path,
const Decl *caller) {
PathDiagnosticCallPiece *C = new PathDiagnosticCallPiece(path, caller);
path.clear();
path.push_front(C);
return C;
}
void PathDiagnosticCallPiece::setCallee(const CallEnter &CE,
const SourceManager &SM) {
const StackFrameContext *CalleeCtx = CE.getCalleeContext();
Callee = CalleeCtx->getDecl();
callEnterWithin = PathDiagnosticLocation::createBegin(Callee, SM);
callEnter = getLocationForCaller(CalleeCtx, CE.getLocationContext(), SM);
}
static inline void describeClass(raw_ostream &Out, const CXXRecordDecl *D,
StringRef Prefix = StringRef()) {
if (!D->getIdentifier())
return;
Out << Prefix << '\'' << *D << '\'';
}
static bool describeCodeDecl(raw_ostream &Out, const Decl *D,
bool ExtendedDescription,
StringRef Prefix = StringRef()) {
if (!D)
return false;
if (isa<BlockDecl>(D)) {
if (ExtendedDescription)
Out << Prefix << "anonymous block";
return ExtendedDescription;
}
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
Out << Prefix;
if (ExtendedDescription && !MD->isUserProvided()) {
if (MD->isExplicitlyDefaulted())
Out << "defaulted ";
else
Out << "implicit ";
}
if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(MD)) {
if (CD->isDefaultConstructor())
Out << "default ";
else if (CD->isCopyConstructor())
Out << "copy ";
else if (CD->isMoveConstructor())
Out << "move ";
Out << "constructor";
describeClass(Out, MD->getParent(), " for ");
} else if (isa<CXXDestructorDecl>(MD)) {
if (!MD->isUserProvided()) {
Out << "destructor";
describeClass(Out, MD->getParent(), " for ");
} else {
// Use ~Foo for explicitly-written destructors.
Out << "'" << *MD << "'";
}
} else if (MD->isCopyAssignmentOperator()) {
Out << "copy assignment operator";
describeClass(Out, MD->getParent(), " for ");
} else if (MD->isMoveAssignmentOperator()) {
Out << "move assignment operator";
describeClass(Out, MD->getParent(), " for ");
} else {
if (MD->getParent()->getIdentifier())
Out << "'" << *MD->getParent() << "::" << *MD << "'";
else
Out << "'" << *MD << "'";
}
return true;
}
Out << Prefix << '\'' << cast<NamedDecl>(*D) << '\'';
return true;
}
IntrusiveRefCntPtr<PathDiagnosticEventPiece>
PathDiagnosticCallPiece::getCallEnterEvent() const {
if (!Callee)
return nullptr;
SmallString<256> buf;
llvm::raw_svector_ostream Out(buf);
Out << "Calling ";
describeCodeDecl(Out, Callee, /*ExtendedDescription=*/true);
assert(callEnter.asLocation().isValid());
return new PathDiagnosticEventPiece(callEnter, Out.str());
}
IntrusiveRefCntPtr<PathDiagnosticEventPiece>
PathDiagnosticCallPiece::getCallEnterWithinCallerEvent() const {
if (!callEnterWithin.asLocation().isValid())
return nullptr;
if (Callee->isImplicit() || !Callee->hasBody())
return nullptr;
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee))
if (MD->isDefaulted())
return nullptr;
SmallString<256> buf;
llvm::raw_svector_ostream Out(buf);
Out << "Entered call";
describeCodeDecl(Out, Caller, /*ExtendedDescription=*/false, " from ");
return new PathDiagnosticEventPiece(callEnterWithin, Out.str());
}
IntrusiveRefCntPtr<PathDiagnosticEventPiece>
PathDiagnosticCallPiece::getCallExitEvent() const {
if (NoExit)
return nullptr;
SmallString<256> buf;
llvm::raw_svector_ostream Out(buf);
if (!CallStackMessage.empty()) {
Out << CallStackMessage;
} else {
bool DidDescribe = describeCodeDecl(Out, Callee,
/*ExtendedDescription=*/false,
"Returning from ");
if (!DidDescribe)
Out << "Returning to caller";
}
assert(callReturn.asLocation().isValid());
return new PathDiagnosticEventPiece(callReturn, Out.str());
}
static void compute_path_size(const PathPieces &pieces, unsigned &size) {
for (PathPieces::const_iterator it = pieces.begin(),
et = pieces.end(); it != et; ++it) {
const PathDiagnosticPiece *piece = it->get();
if (const PathDiagnosticCallPiece *cp =
dyn_cast<PathDiagnosticCallPiece>(piece)) {
compute_path_size(cp->path, size);
}
else
++size;
}
}
unsigned PathDiagnostic::full_size() {
unsigned size = 0;
compute_path_size(path, size);
return size;
}
//===----------------------------------------------------------------------===//
// FoldingSet profiling methods.
//===----------------------------------------------------------------------===//
void PathDiagnosticLocation::Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(Range.getBegin().getRawEncoding());
ID.AddInteger(Range.getEnd().getRawEncoding());
ID.AddInteger(Loc.getRawEncoding());
return;
}
void PathDiagnosticPiece::Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger((unsigned) getKind());
ID.AddString(str);
// FIXME: Add profiling support for code hints.
ID.AddInteger((unsigned) getDisplayHint());
ArrayRef<SourceRange> Ranges = getRanges();
for (ArrayRef<SourceRange>::iterator I = Ranges.begin(), E = Ranges.end();
I != E; ++I) {
ID.AddInteger(I->getBegin().getRawEncoding());
ID.AddInteger(I->getEnd().getRawEncoding());
}
}
void PathDiagnosticCallPiece::Profile(llvm::FoldingSetNodeID &ID) const {
PathDiagnosticPiece::Profile(ID);
for (PathPieces::const_iterator it = path.begin(),
et = path.end(); it != et; ++it) {
ID.Add(**it);
}
}
void PathDiagnosticSpotPiece::Profile(llvm::FoldingSetNodeID &ID) const {
PathDiagnosticPiece::Profile(ID);
ID.Add(Pos);
}
void PathDiagnosticControlFlowPiece::Profile(llvm::FoldingSetNodeID &ID) const {
PathDiagnosticPiece::Profile(ID);
for (const_iterator I = begin(), E = end(); I != E; ++I)
ID.Add(*I);
}
void PathDiagnosticMacroPiece::Profile(llvm::FoldingSetNodeID &ID) const {
PathDiagnosticSpotPiece::Profile(ID);
for (PathPieces::const_iterator I = subPieces.begin(), E = subPieces.end();
I != E; ++I)
ID.Add(**I);
}
void PathDiagnostic::Profile(llvm::FoldingSetNodeID &ID) const {
ID.Add(getLocation());
ID.AddString(BugType);
ID.AddString(VerboseDesc);
ID.AddString(Category);
}
void PathDiagnostic::FullProfile(llvm::FoldingSetNodeID &ID) const {
Profile(ID);
for (PathPieces::const_iterator I = path.begin(), E = path.end(); I != E; ++I)
ID.Add(**I);
for (meta_iterator I = meta_begin(), E = meta_end(); I != E; ++I)
ID.AddString(*I);
}
StackHintGenerator::~StackHintGenerator() {}
std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){
ProgramPoint P = N->getLocation();
CallExitEnd CExit = P.castAs<CallExitEnd>();
// FIXME: Use CallEvent to abstract this over all calls.
const Stmt *CallSite = CExit.getCalleeContext()->getCallSite();
const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite);
if (!CE)
return "";
if (!N)
return getMessageForSymbolNotFound();
// Check if one of the parameters are set to the interesting symbol.
ProgramStateRef State = N->getState();
const LocationContext *LCtx = N->getLocationContext();
unsigned ArgIndex = 0;
for (CallExpr::const_arg_iterator I = CE->arg_begin(),
E = CE->arg_end(); I != E; ++I, ++ArgIndex){
SVal SV = State->getSVal(*I, LCtx);
// Check if the variable corresponding to the symbol is passed by value.
SymbolRef AS = SV.getAsLocSymbol();
if (AS == Sym) {
return getMessageForArg(*I, ArgIndex);
}
// Check if the parameter is a pointer to the symbol.
if (Optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) {
SVal PSV = State->getSVal(Reg->getRegion());
SymbolRef AS = PSV.getAsLocSymbol();
if (AS == Sym) {
return getMessageForArg(*I, ArgIndex);
}
}
}
// Check if we are returning the interesting symbol.
SVal SV = State->getSVal(CE, LCtx);
SymbolRef RetSym = SV.getAsLocSymbol();
if (RetSym == Sym) {
return getMessageForReturn(CE);
}
return getMessageForSymbolNotFound();
}
std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE,
unsigned ArgIndex) {
// Printed parameters start at 1, not 0.
++ArgIndex;
SmallString<200> buf;
llvm::raw_svector_ostream os(buf);
os << Msg << " via " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex)
<< " parameter";
return os.str();
}