Go to file
Petar Avramovic 914ce66413 [MIPS GlobalISel] MSA vector generic and builtin fadd, fsub, fmul, fdiv
Select vector G_FADD, G_FSUB, G_FMUL and G_FDIV for MIPS32 with MSA. We
have to set bank for vector operands to fprb and selectImpl will do the
rest. __builtin_msa_fadd_<format>, __builtin_msa_fsub_<format>,
__builtin_msa_fmul_<format> and __builtin_msa_fdiv_<format> will be
transformed into G_FADD, G_FSUB, G_FMUL and G_FDIV in legalizeIntrinsic
respectively and selected in the same way.

Differential Revision: https://reviews.llvm.org/D69340
2019-10-24 10:15:07 +02:00
clang Improve Clang's getting involved document and make it more inclusive in wording. 2019-10-23 16:11:24 -07:00
clang-tools-extra [clangd] abort if shutdown takes more than a minute. 2019-10-23 17:52:59 +02:00
compiler-rt [Sanitizers] Add support for RISC-V 64-bit 2019-10-23 14:12:52 +01:00
debuginfo-tests Make nrvo-string test more robust. 2019-06-27 20:38:37 +00:00
libc [libc] Do not add unittests if LLVM_INCLUDE_TESTS is OFF. 2019-10-15 17:42:28 +00:00
libclc travis: Add LLVM 9 build 2019-09-27 05:58:15 +00:00
libcxx [libcxx][NFC] Strip trailing whitespace, fix typo. 2019-10-23 11:49:43 -07:00
libcxxabi P1152R4: Fix deprecation warnings in libc++ testsuite and in uses of is_invocable that would internally conjure up a deprecated function type. 2019-10-19 00:06:00 +00:00
libunwind [libunwind][Android] Fix findUnwindSections for ARM EHABI Bionic 2019-10-18 19:59:22 +00:00
lld typo fix test commit 2019-10-22 21:32:11 +00:00
lldb [lldb] Add nodebug attribute to import-std-module/sysroot test 2019-10-23 09:26:57 -07:00
llgo IR: Support parsing numeric block ids, and emit them in textual output. 2019-03-22 18:27:13 +00:00
llvm [MIPS GlobalISel] MSA vector generic and builtin fadd, fsub, fmul, fdiv 2019-10-24 10:15:07 +02:00
openmp [libomptarget][nfc] Make interface.h target independent 2019-10-15 17:15:26 +00:00
parallel-libs Fix typos throughout the license files that somehow I and my reviewers 2019-01-21 09:52:34 +00:00
polly Fix Polly 2019-10-21 15:48:42 +00:00
pstl [pstl] Allow customizing whether per-TU insulation is provided 2019-08-13 12:49:00 +00:00
.arcconfig Update monorepo .arcconfig with new project callsign. 2019-01-31 14:34:59 +00:00
.clang-format Add .clang-tidy and .clang-format files to the toplevel of the 2019-01-29 16:43:16 +00:00
.clang-tidy Disable tidy checks with too many hits 2019-02-01 11:20:13 +00:00
.git-blame-ignore-revs Add LLDB reformatting to .git-blame-ignore-revs 2019-09-04 09:31:55 +00:00
.gitignore Add a newline at the end of the file 2019-09-04 06:33:46 +00:00
README.md Add beginning of LLVM's GettingStarted to GitHub readme 2019-10-23 18:03:37 -07:00

README.md

The LLVM Compiler Infrastructure

This directory and its subdirectories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and runtime environments.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective C, and Objective C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example workflow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related subprojects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM subprojects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full pathname of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • Run your build tool of choice!

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate build targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use make -j NNN (NNN is the number of parallel jobs, use e.g. number of CPUs you have.)

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.