llvm-project/clang/lib/ASTMatchers/Dynamic/Marshallers.h

761 lines
29 KiB
C++

//===--- Marshallers.h - Generic matcher function marshallers ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Functions templates and classes to wrap matcher construct functions.
///
/// A collection of template function and classes that provide a generic
/// marshalling layer on top of matcher construct functions.
/// These are used by the registry to export all marshaller constructors with
/// the same generic interface.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_LIB_ASTMATCHERS_DYNAMIC_MARSHALLERS_H
#define LLVM_CLANG_LIB_ASTMATCHERS_DYNAMIC_MARSHALLERS_H
#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/ASTMatchers/Dynamic/Diagnostics.h"
#include "clang/ASTMatchers/Dynamic/VariantValue.h"
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/STLExtras.h"
#include <string>
namespace clang {
namespace ast_matchers {
namespace dynamic {
namespace internal {
/// \brief Helper template class to just from argument type to the right is/get
/// functions in VariantValue.
/// Used to verify and extract the matcher arguments below.
template <class T> struct ArgTypeTraits;
template <class T> struct ArgTypeTraits<const T &> : public ArgTypeTraits<T> {
};
template <> struct ArgTypeTraits<std::string> {
static bool is(const VariantValue &Value) { return Value.isString(); }
static const std::string &get(const VariantValue &Value) {
return Value.getString();
}
static ArgKind getKind() {
return ArgKind(ArgKind::AK_String);
}
};
template <>
struct ArgTypeTraits<StringRef> : public ArgTypeTraits<std::string> {
};
template <class T> struct ArgTypeTraits<ast_matchers::internal::Matcher<T> > {
static bool is(const VariantValue &Value) {
return Value.isMatcher() && Value.getMatcher().hasTypedMatcher<T>();
}
static ast_matchers::internal::Matcher<T> get(const VariantValue &Value) {
return Value.getMatcher().getTypedMatcher<T>();
}
static ArgKind getKind() {
return ArgKind(ast_type_traits::ASTNodeKind::getFromNodeKind<T>());
}
};
template <> struct ArgTypeTraits<bool> {
static bool is(const VariantValue &Value) { return Value.isBoolean(); }
static bool get(const VariantValue &Value) {
return Value.getBoolean();
}
static ArgKind getKind() {
return ArgKind(ArgKind::AK_Boolean);
}
};
template <> struct ArgTypeTraits<double> {
static bool is(const VariantValue &Value) { return Value.isDouble(); }
static double get(const VariantValue &Value) {
return Value.getDouble();
}
static ArgKind getKind() {
return ArgKind(ArgKind::AK_Double);
}
};
template <> struct ArgTypeTraits<unsigned> {
static bool is(const VariantValue &Value) { return Value.isUnsigned(); }
static unsigned get(const VariantValue &Value) {
return Value.getUnsigned();
}
static ArgKind getKind() {
return ArgKind(ArgKind::AK_Unsigned);
}
};
template <> struct ArgTypeTraits<attr::Kind> {
private:
static attr::Kind getAttrKind(llvm::StringRef AttrKind) {
return llvm::StringSwitch<attr::Kind>(AttrKind)
#define ATTR(X) .Case("attr::" #X, attr:: X)
#include "clang/Basic/AttrList.inc"
.Default(attr::Kind(-1));
}
public:
static bool is(const VariantValue &Value) {
return Value.isString() &&
getAttrKind(Value.getString()) != attr::Kind(-1);
}
static attr::Kind get(const VariantValue &Value) {
return getAttrKind(Value.getString());
}
static ArgKind getKind() {
return ArgKind(ArgKind::AK_String);
}
};
template <> struct ArgTypeTraits<clang::CastKind> {
private:
static clang::CastKind getCastKind(llvm::StringRef AttrKind) {
return llvm::StringSwitch<clang::CastKind>(AttrKind)
#define CAST_OPERATION(Name) .Case( #Name, CK_##Name)
#include "clang/AST/OperationKinds.def"
.Default(CK_Invalid);
}
public:
static bool is(const VariantValue &Value) {
return Value.isString() &&
getCastKind(Value.getString()) != CK_Invalid;
}
static clang::CastKind get(const VariantValue &Value) {
return getCastKind(Value.getString());
}
static ArgKind getKind() {
return ArgKind(ArgKind::AK_String);
}
};
/// \brief Matcher descriptor interface.
///
/// Provides a \c create() method that constructs the matcher from the provided
/// arguments, and various other methods for type introspection.
class MatcherDescriptor {
public:
virtual ~MatcherDescriptor() {}
virtual VariantMatcher create(SourceRange NameRange,
ArrayRef<ParserValue> Args,
Diagnostics *Error) const = 0;
/// Returns whether the matcher is variadic. Variadic matchers can take any
/// number of arguments, but they must be of the same type.
virtual bool isVariadic() const = 0;
/// Returns the number of arguments accepted by the matcher if not variadic.
virtual unsigned getNumArgs() const = 0;
/// Given that the matcher is being converted to type \p ThisKind, append the
/// set of argument types accepted for argument \p ArgNo to \p ArgKinds.
// FIXME: We should provide the ability to constrain the output of this
// function based on the types of other matcher arguments.
virtual void getArgKinds(ast_type_traits::ASTNodeKind ThisKind, unsigned ArgNo,
std::vector<ArgKind> &ArgKinds) const = 0;
/// Returns whether this matcher is convertible to the given type. If it is
/// so convertible, store in *Specificity a value corresponding to the
/// "specificity" of the converted matcher to the given context, and in
/// *LeastDerivedKind the least derived matcher kind which would result in the
/// same matcher overload. Zero specificity indicates that this conversion
/// would produce a trivial matcher that will either always or never match.
/// Such matchers are excluded from code completion results.
virtual bool isConvertibleTo(
ast_type_traits::ASTNodeKind Kind, unsigned *Specificity = nullptr,
ast_type_traits::ASTNodeKind *LeastDerivedKind = nullptr) const = 0;
/// Returns whether the matcher will, given a matcher of any type T, yield a
/// matcher of type T.
virtual bool isPolymorphic() const { return false; }
};
inline bool isRetKindConvertibleTo(
ArrayRef<ast_type_traits::ASTNodeKind> RetKinds,
ast_type_traits::ASTNodeKind Kind, unsigned *Specificity,
ast_type_traits::ASTNodeKind *LeastDerivedKind) {
for (const ast_type_traits::ASTNodeKind &NodeKind : RetKinds) {
if (ArgKind(NodeKind).isConvertibleTo(Kind, Specificity)) {
if (LeastDerivedKind)
*LeastDerivedKind = NodeKind;
return true;
}
}
return false;
}
/// \brief Simple callback implementation. Marshaller and function are provided.
///
/// This class wraps a function of arbitrary signature and a marshaller
/// function into a MatcherDescriptor.
/// The marshaller is in charge of taking the VariantValue arguments, checking
/// their types, unpacking them and calling the underlying function.
class FixedArgCountMatcherDescriptor : public MatcherDescriptor {
public:
typedef VariantMatcher (*MarshallerType)(void (*Func)(),
StringRef MatcherName,
SourceRange NameRange,
ArrayRef<ParserValue> Args,
Diagnostics *Error);
/// \param Marshaller Function to unpack the arguments and call \c Func
/// \param Func Matcher construct function. This is the function that
/// compile-time matcher expressions would use to create the matcher.
/// \param RetKinds The list of matcher types to which the matcher is
/// convertible.
/// \param ArgKinds The types of the arguments this matcher takes.
FixedArgCountMatcherDescriptor(
MarshallerType Marshaller, void (*Func)(), StringRef MatcherName,
ArrayRef<ast_type_traits::ASTNodeKind> RetKinds,
ArrayRef<ArgKind> ArgKinds)
: Marshaller(Marshaller), Func(Func), MatcherName(MatcherName),
RetKinds(RetKinds.begin(), RetKinds.end()),
ArgKinds(ArgKinds.begin(), ArgKinds.end()) {}
VariantMatcher create(SourceRange NameRange,
ArrayRef<ParserValue> Args,
Diagnostics *Error) const override {
return Marshaller(Func, MatcherName, NameRange, Args, Error);
}
bool isVariadic() const override { return false; }
unsigned getNumArgs() const override { return ArgKinds.size(); }
void getArgKinds(ast_type_traits::ASTNodeKind ThisKind, unsigned ArgNo,
std::vector<ArgKind> &Kinds) const override {
Kinds.push_back(ArgKinds[ArgNo]);
}
bool isConvertibleTo(
ast_type_traits::ASTNodeKind Kind, unsigned *Specificity,
ast_type_traits::ASTNodeKind *LeastDerivedKind) const override {
return isRetKindConvertibleTo(RetKinds, Kind, Specificity,
LeastDerivedKind);
}
private:
const MarshallerType Marshaller;
void (* const Func)();
const std::string MatcherName;
const std::vector<ast_type_traits::ASTNodeKind> RetKinds;
const std::vector<ArgKind> ArgKinds;
};
/// \brief Helper methods to extract and merge all possible typed matchers
/// out of the polymorphic object.
template <class PolyMatcher>
static void mergePolyMatchers(const PolyMatcher &Poly,
std::vector<DynTypedMatcher> &Out,
ast_matchers::internal::EmptyTypeList) {}
template <class PolyMatcher, class TypeList>
static void mergePolyMatchers(const PolyMatcher &Poly,
std::vector<DynTypedMatcher> &Out, TypeList) {
Out.push_back(ast_matchers::internal::Matcher<typename TypeList::head>(Poly));
mergePolyMatchers(Poly, Out, typename TypeList::tail());
}
/// \brief Convert the return values of the functions into a VariantMatcher.
///
/// There are 2 cases right now: The return value is a Matcher<T> or is a
/// polymorphic matcher. For the former, we just construct the VariantMatcher.
/// For the latter, we instantiate all the possible Matcher<T> of the poly
/// matcher.
static VariantMatcher outvalueToVariantMatcher(const DynTypedMatcher &Matcher) {
return VariantMatcher::SingleMatcher(Matcher);
}
template <typename T>
static VariantMatcher outvalueToVariantMatcher(const T &PolyMatcher,
typename T::ReturnTypes * =
nullptr) {
std::vector<DynTypedMatcher> Matchers;
mergePolyMatchers(PolyMatcher, Matchers, typename T::ReturnTypes());
VariantMatcher Out = VariantMatcher::PolymorphicMatcher(std::move(Matchers));
return Out;
}
template <typename T>
inline void buildReturnTypeVectorFromTypeList(
std::vector<ast_type_traits::ASTNodeKind> &RetTypes) {
RetTypes.push_back(
ast_type_traits::ASTNodeKind::getFromNodeKind<typename T::head>());
buildReturnTypeVectorFromTypeList<typename T::tail>(RetTypes);
}
template <>
inline void
buildReturnTypeVectorFromTypeList<ast_matchers::internal::EmptyTypeList>(
std::vector<ast_type_traits::ASTNodeKind> &RetTypes) {}
template <typename T>
struct BuildReturnTypeVector {
static void build(std::vector<ast_type_traits::ASTNodeKind> &RetTypes) {
buildReturnTypeVectorFromTypeList<typename T::ReturnTypes>(RetTypes);
}
};
template <typename T>
struct BuildReturnTypeVector<ast_matchers::internal::Matcher<T> > {
static void build(std::vector<ast_type_traits::ASTNodeKind> &RetTypes) {
RetTypes.push_back(ast_type_traits::ASTNodeKind::getFromNodeKind<T>());
}
};
template <typename T>
struct BuildReturnTypeVector<ast_matchers::internal::BindableMatcher<T> > {
static void build(std::vector<ast_type_traits::ASTNodeKind> &RetTypes) {
RetTypes.push_back(ast_type_traits::ASTNodeKind::getFromNodeKind<T>());
}
};
/// \brief Variadic marshaller function.
template <typename ResultT, typename ArgT,
ResultT (*Func)(ArrayRef<const ArgT *>)>
VariantMatcher
variadicMatcherDescriptor(StringRef MatcherName, SourceRange NameRange,
ArrayRef<ParserValue> Args, Diagnostics *Error) {
ArgT **InnerArgs = new ArgT *[Args.size()]();
bool HasError = false;
for (size_t i = 0, e = Args.size(); i != e; ++i) {
typedef ArgTypeTraits<ArgT> ArgTraits;
const ParserValue &Arg = Args[i];
const VariantValue &Value = Arg.Value;
if (!ArgTraits::is(Value)) {
Error->addError(Arg.Range, Error->ET_RegistryWrongArgType)
<< (i + 1) << ArgTraits::getKind().asString() << Value.getTypeAsString();
HasError = true;
break;
}
InnerArgs[i] = new ArgT(ArgTraits::get(Value));
}
VariantMatcher Out;
if (!HasError) {
Out = outvalueToVariantMatcher(Func(llvm::makeArrayRef(InnerArgs,
Args.size())));
}
for (size_t i = 0, e = Args.size(); i != e; ++i) {
delete InnerArgs[i];
}
delete[] InnerArgs;
return Out;
}
/// \brief Matcher descriptor for variadic functions.
///
/// This class simply wraps a VariadicFunction with the right signature to export
/// it as a MatcherDescriptor.
/// This allows us to have one implementation of the interface for as many free
/// functions as we want, reducing the number of symbols and size of the
/// object file.
class VariadicFuncMatcherDescriptor : public MatcherDescriptor {
public:
typedef VariantMatcher (*RunFunc)(StringRef MatcherName,
SourceRange NameRange,
ArrayRef<ParserValue> Args,
Diagnostics *Error);
template <typename ResultT, typename ArgT,
ResultT (*F)(ArrayRef<const ArgT *>)>
VariadicFuncMatcherDescriptor(
ast_matchers::internal::VariadicFunction<ResultT, ArgT, F> Func,
StringRef MatcherName)
: Func(&variadicMatcherDescriptor<ResultT, ArgT, F>),
MatcherName(MatcherName.str()),
ArgsKind(ArgTypeTraits<ArgT>::getKind()) {
BuildReturnTypeVector<ResultT>::build(RetKinds);
}
VariantMatcher create(SourceRange NameRange,
ArrayRef<ParserValue> Args,
Diagnostics *Error) const override {
return Func(MatcherName, NameRange, Args, Error);
}
bool isVariadic() const override { return true; }
unsigned getNumArgs() const override { return 0; }
void getArgKinds(ast_type_traits::ASTNodeKind ThisKind, unsigned ArgNo,
std::vector<ArgKind> &Kinds) const override {
Kinds.push_back(ArgsKind);
}
bool isConvertibleTo(
ast_type_traits::ASTNodeKind Kind, unsigned *Specificity,
ast_type_traits::ASTNodeKind *LeastDerivedKind) const override {
return isRetKindConvertibleTo(RetKinds, Kind, Specificity,
LeastDerivedKind);
}
private:
const RunFunc Func;
const std::string MatcherName;
std::vector<ast_type_traits::ASTNodeKind> RetKinds;
const ArgKind ArgsKind;
};
/// \brief Return CK_Trivial when appropriate for VariadicDynCastAllOfMatchers.
class DynCastAllOfMatcherDescriptor : public VariadicFuncMatcherDescriptor {
public:
template <typename BaseT, typename DerivedT>
DynCastAllOfMatcherDescriptor(
ast_matchers::internal::VariadicDynCastAllOfMatcher<BaseT, DerivedT> Func,
StringRef MatcherName)
: VariadicFuncMatcherDescriptor(Func, MatcherName),
DerivedKind(ast_type_traits::ASTNodeKind::getFromNodeKind<DerivedT>()) {
}
bool
isConvertibleTo(ast_type_traits::ASTNodeKind Kind, unsigned *Specificity,
ast_type_traits::ASTNodeKind *LeastDerivedKind) const override {
// If Kind is not a base of DerivedKind, either DerivedKind is a base of
// Kind (in which case the match will always succeed) or Kind and
// DerivedKind are unrelated (in which case it will always fail), so set
// Specificity to 0.
if (VariadicFuncMatcherDescriptor::isConvertibleTo(Kind, Specificity,
LeastDerivedKind)) {
if (Kind.isSame(DerivedKind) || !Kind.isBaseOf(DerivedKind)) {
if (Specificity)
*Specificity = 0;
}
return true;
} else {
return false;
}
}
private:
const ast_type_traits::ASTNodeKind DerivedKind;
};
/// \brief Helper macros to check the arguments on all marshaller functions.
#define CHECK_ARG_COUNT(count) \
if (Args.size() != count) { \
Error->addError(NameRange, Error->ET_RegistryWrongArgCount) \
<< count << Args.size(); \
return VariantMatcher(); \
}
#define CHECK_ARG_TYPE(index, type) \
if (!ArgTypeTraits<type>::is(Args[index].Value)) { \
Error->addError(Args[index].Range, Error->ET_RegistryWrongArgType) \
<< (index + 1) << ArgTypeTraits<type>::getKind().asString() \
<< Args[index].Value.getTypeAsString(); \
return VariantMatcher(); \
}
/// \brief 0-arg marshaller function.
template <typename ReturnType>
static VariantMatcher matcherMarshall0(void (*Func)(), StringRef MatcherName,
SourceRange NameRange,
ArrayRef<ParserValue> Args,
Diagnostics *Error) {
typedef ReturnType (*FuncType)();
CHECK_ARG_COUNT(0);
return outvalueToVariantMatcher(reinterpret_cast<FuncType>(Func)());
}
/// \brief 1-arg marshaller function.
template <typename ReturnType, typename ArgType1>
static VariantMatcher matcherMarshall1(void (*Func)(), StringRef MatcherName,
SourceRange NameRange,
ArrayRef<ParserValue> Args,
Diagnostics *Error) {
typedef ReturnType (*FuncType)(ArgType1);
CHECK_ARG_COUNT(1);
CHECK_ARG_TYPE(0, ArgType1);
return outvalueToVariantMatcher(reinterpret_cast<FuncType>(Func)(
ArgTypeTraits<ArgType1>::get(Args[0].Value)));
}
/// \brief 2-arg marshaller function.
template <typename ReturnType, typename ArgType1, typename ArgType2>
static VariantMatcher matcherMarshall2(void (*Func)(), StringRef MatcherName,
SourceRange NameRange,
ArrayRef<ParserValue> Args,
Diagnostics *Error) {
typedef ReturnType (*FuncType)(ArgType1, ArgType2);
CHECK_ARG_COUNT(2);
CHECK_ARG_TYPE(0, ArgType1);
CHECK_ARG_TYPE(1, ArgType2);
return outvalueToVariantMatcher(reinterpret_cast<FuncType>(Func)(
ArgTypeTraits<ArgType1>::get(Args[0].Value),
ArgTypeTraits<ArgType2>::get(Args[1].Value)));
}
#undef CHECK_ARG_COUNT
#undef CHECK_ARG_TYPE
/// \brief Helper class used to collect all the possible overloads of an
/// argument adaptative matcher function.
template <template <typename ToArg, typename FromArg> class ArgumentAdapterT,
typename FromTypes, typename ToTypes>
class AdaptativeOverloadCollector {
public:
AdaptativeOverloadCollector(
StringRef Name, std::vector<std::unique_ptr<MatcherDescriptor>> &Out)
: Name(Name), Out(Out) {
collect(FromTypes());
}
private:
typedef ast_matchers::internal::ArgumentAdaptingMatcherFunc<
ArgumentAdapterT, FromTypes, ToTypes> AdaptativeFunc;
/// \brief End case for the recursion
static void collect(ast_matchers::internal::EmptyTypeList) {}
/// \brief Recursive case. Get the overload for the head of the list, and
/// recurse to the tail.
template <typename FromTypeList>
inline void collect(FromTypeList);
StringRef Name;
std::vector<std::unique_ptr<MatcherDescriptor>> &Out;
};
/// \brief MatcherDescriptor that wraps multiple "overloads" of the same
/// matcher.
///
/// It will try every overload and generate appropriate errors for when none or
/// more than one overloads match the arguments.
class OverloadedMatcherDescriptor : public MatcherDescriptor {
public:
OverloadedMatcherDescriptor(
MutableArrayRef<std::unique_ptr<MatcherDescriptor>> Callbacks)
: Overloads(std::make_move_iterator(Callbacks.begin()),
std::make_move_iterator(Callbacks.end())) {}
~OverloadedMatcherDescriptor() override {}
VariantMatcher create(SourceRange NameRange,
ArrayRef<ParserValue> Args,
Diagnostics *Error) const override {
std::vector<VariantMatcher> Constructed;
Diagnostics::OverloadContext Ctx(Error);
for (const auto &O : Overloads) {
VariantMatcher SubMatcher = O->create(NameRange, Args, Error);
if (!SubMatcher.isNull()) {
Constructed.push_back(SubMatcher);
}
}
if (Constructed.empty()) return VariantMatcher(); // No overload matched.
// We ignore the errors if any matcher succeeded.
Ctx.revertErrors();
if (Constructed.size() > 1) {
// More than one constructed. It is ambiguous.
Error->addError(NameRange, Error->ET_RegistryAmbiguousOverload);
return VariantMatcher();
}
return Constructed[0];
}
bool isVariadic() const override {
bool Overload0Variadic = Overloads[0]->isVariadic();
#ifndef NDEBUG
for (const auto &O : Overloads) {
assert(Overload0Variadic == O->isVariadic());
}
#endif
return Overload0Variadic;
}
unsigned getNumArgs() const override {
unsigned Overload0NumArgs = Overloads[0]->getNumArgs();
#ifndef NDEBUG
for (const auto &O : Overloads) {
assert(Overload0NumArgs == O->getNumArgs());
}
#endif
return Overload0NumArgs;
}
void getArgKinds(ast_type_traits::ASTNodeKind ThisKind, unsigned ArgNo,
std::vector<ArgKind> &Kinds) const override {
for (const auto &O : Overloads) {
if (O->isConvertibleTo(ThisKind))
O->getArgKinds(ThisKind, ArgNo, Kinds);
}
}
bool isConvertibleTo(
ast_type_traits::ASTNodeKind Kind, unsigned *Specificity,
ast_type_traits::ASTNodeKind *LeastDerivedKind) const override {
for (const auto &O : Overloads) {
if (O->isConvertibleTo(Kind, Specificity, LeastDerivedKind))
return true;
}
return false;
}
private:
std::vector<std::unique_ptr<MatcherDescriptor>> Overloads;
};
/// \brief Variadic operator marshaller function.
class VariadicOperatorMatcherDescriptor : public MatcherDescriptor {
public:
typedef DynTypedMatcher::VariadicOperator VarOp;
VariadicOperatorMatcherDescriptor(unsigned MinCount, unsigned MaxCount,
VarOp Op, StringRef MatcherName)
: MinCount(MinCount), MaxCount(MaxCount), Op(Op),
MatcherName(MatcherName) {}
VariantMatcher create(SourceRange NameRange,
ArrayRef<ParserValue> Args,
Diagnostics *Error) const override {
if (Args.size() < MinCount || MaxCount < Args.size()) {
const std::string MaxStr =
(MaxCount == UINT_MAX ? "" : Twine(MaxCount)).str();
Error->addError(NameRange, Error->ET_RegistryWrongArgCount)
<< ("(" + Twine(MinCount) + ", " + MaxStr + ")") << Args.size();
return VariantMatcher();
}
std::vector<VariantMatcher> InnerArgs;
for (size_t i = 0, e = Args.size(); i != e; ++i) {
const ParserValue &Arg = Args[i];
const VariantValue &Value = Arg.Value;
if (!Value.isMatcher()) {
Error->addError(Arg.Range, Error->ET_RegistryWrongArgType)
<< (i + 1) << "Matcher<>" << Value.getTypeAsString();
return VariantMatcher();
}
InnerArgs.push_back(Value.getMatcher());
}
return VariantMatcher::VariadicOperatorMatcher(Op, std::move(InnerArgs));
}
bool isVariadic() const override { return true; }
unsigned getNumArgs() const override { return 0; }
void getArgKinds(ast_type_traits::ASTNodeKind ThisKind, unsigned ArgNo,
std::vector<ArgKind> &Kinds) const override {
Kinds.push_back(ThisKind);
}
bool isConvertibleTo(ast_type_traits::ASTNodeKind Kind, unsigned *Specificity,
ast_type_traits::ASTNodeKind *LeastDerivedKind) const override {
if (Specificity)
*Specificity = 1;
if (LeastDerivedKind)
*LeastDerivedKind = Kind;
return true;
}
bool isPolymorphic() const override { return true; }
private:
const unsigned MinCount;
const unsigned MaxCount;
const VarOp Op;
const StringRef MatcherName;
};
/// Helper functions to select the appropriate marshaller functions.
/// They detect the number of arguments, arguments types and return type.
/// \brief 0-arg overload
template <typename ReturnType>
std::unique_ptr<MatcherDescriptor>
makeMatcherAutoMarshall(ReturnType (*Func)(), StringRef MatcherName) {
std::vector<ast_type_traits::ASTNodeKind> RetTypes;
BuildReturnTypeVector<ReturnType>::build(RetTypes);
return llvm::make_unique<FixedArgCountMatcherDescriptor>(
matcherMarshall0<ReturnType>, reinterpret_cast<void (*)()>(Func),
MatcherName, RetTypes, None);
}
/// \brief 1-arg overload
template <typename ReturnType, typename ArgType1>
std::unique_ptr<MatcherDescriptor>
makeMatcherAutoMarshall(ReturnType (*Func)(ArgType1), StringRef MatcherName) {
std::vector<ast_type_traits::ASTNodeKind> RetTypes;
BuildReturnTypeVector<ReturnType>::build(RetTypes);
ArgKind AK = ArgTypeTraits<ArgType1>::getKind();
return llvm::make_unique<FixedArgCountMatcherDescriptor>(
matcherMarshall1<ReturnType, ArgType1>,
reinterpret_cast<void (*)()>(Func), MatcherName, RetTypes, AK);
}
/// \brief 2-arg overload
template <typename ReturnType, typename ArgType1, typename ArgType2>
std::unique_ptr<MatcherDescriptor>
makeMatcherAutoMarshall(ReturnType (*Func)(ArgType1, ArgType2),
StringRef MatcherName) {
std::vector<ast_type_traits::ASTNodeKind> RetTypes;
BuildReturnTypeVector<ReturnType>::build(RetTypes);
ArgKind AKs[] = { ArgTypeTraits<ArgType1>::getKind(),
ArgTypeTraits<ArgType2>::getKind() };
return llvm::make_unique<FixedArgCountMatcherDescriptor>(
matcherMarshall2<ReturnType, ArgType1, ArgType2>,
reinterpret_cast<void (*)()>(Func), MatcherName, RetTypes, AKs);
}
/// \brief Variadic overload.
template <typename ResultT, typename ArgT,
ResultT (*Func)(ArrayRef<const ArgT *>)>
std::unique_ptr<MatcherDescriptor> makeMatcherAutoMarshall(
ast_matchers::internal::VariadicFunction<ResultT, ArgT, Func> VarFunc,
StringRef MatcherName) {
return llvm::make_unique<VariadicFuncMatcherDescriptor>(VarFunc, MatcherName);
}
/// \brief Overload for VariadicDynCastAllOfMatchers.
///
/// Not strictly necessary, but DynCastAllOfMatcherDescriptor gives us better
/// completion results for that type of matcher.
template <typename BaseT, typename DerivedT>
std::unique_ptr<MatcherDescriptor> makeMatcherAutoMarshall(
ast_matchers::internal::VariadicDynCastAllOfMatcher<BaseT, DerivedT>
VarFunc,
StringRef MatcherName) {
return llvm::make_unique<DynCastAllOfMatcherDescriptor>(VarFunc, MatcherName);
}
/// \brief Argument adaptative overload.
template <template <typename ToArg, typename FromArg> class ArgumentAdapterT,
typename FromTypes, typename ToTypes>
std::unique_ptr<MatcherDescriptor> makeMatcherAutoMarshall(
ast_matchers::internal::ArgumentAdaptingMatcherFunc<ArgumentAdapterT,
FromTypes, ToTypes>,
StringRef MatcherName) {
std::vector<std::unique_ptr<MatcherDescriptor>> Overloads;
AdaptativeOverloadCollector<ArgumentAdapterT, FromTypes, ToTypes>(MatcherName,
Overloads);
return llvm::make_unique<OverloadedMatcherDescriptor>(Overloads);
}
template <template <typename ToArg, typename FromArg> class ArgumentAdapterT,
typename FromTypes, typename ToTypes>
template <typename FromTypeList>
inline void AdaptativeOverloadCollector<ArgumentAdapterT, FromTypes,
ToTypes>::collect(FromTypeList) {
Out.push_back(makeMatcherAutoMarshall(
&AdaptativeFunc::template create<typename FromTypeList::head>, Name));
collect(typename FromTypeList::tail());
}
/// \brief Variadic operator overload.
template <unsigned MinCount, unsigned MaxCount>
std::unique_ptr<MatcherDescriptor> makeMatcherAutoMarshall(
ast_matchers::internal::VariadicOperatorMatcherFunc<MinCount, MaxCount>
Func,
StringRef MatcherName) {
return llvm::make_unique<VariadicOperatorMatcherDescriptor>(
MinCount, MaxCount, Func.Op, MatcherName);
}
} // namespace internal
} // namespace dynamic
} // namespace ast_matchers
} // namespace clang
#endif // LLVM_CLANG_AST_MATCHERS_DYNAMIC_MARSHALLERS_H