forked from OSchip/llvm-project
249 lines
10 KiB
C++
249 lines
10 KiB
C++
//===- StdExpandDivs.cpp - Code to prepare Std for lowring Divs 0to LLVM -===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file Std transformations to expand Divs operation to help for the
|
|
// lowering to LLVM. Currently implemented tranformations are Ceil and Floor
|
|
// for Signed Integers.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/Dialect/StandardOps/Transforms/Passes.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
|
|
/// Converts `atomic_rmw` that cannot be lowered to a simple atomic op with
|
|
/// AtomicRMWOpLowering pattern, e.g. with "minf" or "maxf" attributes, to
|
|
/// `generic_atomic_rmw` with the expanded code.
|
|
///
|
|
/// %x = atomic_rmw "maxf" %fval, %F[%i] : (f32, memref<10xf32>) -> f32
|
|
///
|
|
/// will be lowered to
|
|
///
|
|
/// %x = std.generic_atomic_rmw %F[%i] : memref<10xf32> {
|
|
/// ^bb0(%current: f32):
|
|
/// %cmp = cmpf "ogt", %current, %fval : f32
|
|
/// %new_value = select %cmp, %current, %fval : f32
|
|
/// atomic_yield %new_value : f32
|
|
/// }
|
|
struct AtomicRMWOpConverter : public OpRewritePattern<AtomicRMWOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AtomicRMWOp op,
|
|
PatternRewriter &rewriter) const final {
|
|
CmpFPredicate predicate;
|
|
switch (op.kind()) {
|
|
case AtomicRMWKind::maxf:
|
|
predicate = CmpFPredicate::OGT;
|
|
break;
|
|
case AtomicRMWKind::minf:
|
|
predicate = CmpFPredicate::OLT;
|
|
break;
|
|
default:
|
|
return failure();
|
|
}
|
|
|
|
auto loc = op.getLoc();
|
|
auto genericOp =
|
|
rewriter.create<GenericAtomicRMWOp>(loc, op.memref(), op.indices());
|
|
OpBuilder bodyBuilder =
|
|
OpBuilder::atBlockEnd(genericOp.getBody(), rewriter.getListener());
|
|
|
|
Value lhs = genericOp.getCurrentValue();
|
|
Value rhs = op.value();
|
|
Value cmp = bodyBuilder.create<CmpFOp>(loc, predicate, lhs, rhs);
|
|
Value select = bodyBuilder.create<SelectOp>(loc, cmp, lhs, rhs);
|
|
bodyBuilder.create<AtomicYieldOp>(loc, select);
|
|
|
|
rewriter.replaceOp(op, genericOp.getResult());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Converts `memref_reshape` that has a target shape of a statically-known
|
|
/// size to `memref_reinterpret_cast`.
|
|
struct MemRefReshapeOpConverter : public OpRewritePattern<MemRefReshapeOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(MemRefReshapeOp op,
|
|
PatternRewriter &rewriter) const final {
|
|
auto shapeType = op.shape().getType().cast<MemRefType>();
|
|
if (!shapeType.hasStaticShape())
|
|
return failure();
|
|
|
|
int64_t rank = shapeType.cast<MemRefType>().getDimSize(0);
|
|
SmallVector<Value, 4> sizes, strides;
|
|
sizes.resize(rank);
|
|
strides.resize(rank);
|
|
|
|
Location loc = op.getLoc();
|
|
Value stride = rewriter.create<ConstantIndexOp>(loc, 1);
|
|
for (int i = rank - 1; i >= 0; --i) {
|
|
Value index = rewriter.create<ConstantIndexOp>(loc, i);
|
|
Value size = rewriter.create<LoadOp>(loc, op.shape(), index);
|
|
if (!size.getType().isa<IndexType>())
|
|
size = rewriter.create<IndexCastOp>(loc, size, rewriter.getIndexType());
|
|
sizes[i] = size;
|
|
strides[i] = stride;
|
|
if (i > 0)
|
|
stride = rewriter.create<MulIOp>(loc, stride, size);
|
|
}
|
|
SmallVector<int64_t, 2> staticSizes(rank, ShapedType::kDynamicSize);
|
|
SmallVector<int64_t, 2> staticStrides(rank,
|
|
ShapedType::kDynamicStrideOrOffset);
|
|
rewriter.replaceOpWithNewOp<MemRefReinterpretCastOp>(
|
|
op, op.getType(), op.source(), /*staticOffset = */ 0, staticSizes,
|
|
staticStrides, /*offset=*/llvm::None, sizes, strides);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Expands SignedCeilDivIOP (n, m) into
|
|
/// 1) x = (m > 0) ? -1 : 1
|
|
/// 2) (n*m>0) ? ((n+x) / m) + 1 : - (-n / m)
|
|
struct SignedCeilDivIOpConverter : public OpRewritePattern<SignedCeilDivIOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(SignedCeilDivIOp op,
|
|
PatternRewriter &rewriter) const final {
|
|
Location loc = op.getLoc();
|
|
SignedCeilDivIOp signedCeilDivIOp = cast<SignedCeilDivIOp>(op);
|
|
Type type = signedCeilDivIOp.getType();
|
|
Value a = signedCeilDivIOp.lhs();
|
|
Value b = signedCeilDivIOp.rhs();
|
|
Value plusOne =
|
|
rewriter.create<ConstantOp>(loc, rewriter.getIntegerAttr(type, 1));
|
|
Value zero =
|
|
rewriter.create<ConstantOp>(loc, rewriter.getIntegerAttr(type, 0));
|
|
Value minusOne =
|
|
rewriter.create<ConstantOp>(loc, rewriter.getIntegerAttr(type, -1));
|
|
// Compute x = (b>0) ? -1 : 1.
|
|
Value compare = rewriter.create<CmpIOp>(loc, CmpIPredicate::sgt, b, zero);
|
|
Value x = rewriter.create<SelectOp>(loc, compare, minusOne, plusOne);
|
|
// Compute positive res: 1 + ((x+a)/b).
|
|
Value xPlusA = rewriter.create<AddIOp>(loc, x, a);
|
|
Value xPlusADivB = rewriter.create<SignedDivIOp>(loc, xPlusA, b);
|
|
Value posRes = rewriter.create<AddIOp>(loc, plusOne, xPlusADivB);
|
|
// Compute negative res: - ((-a)/b).
|
|
Value minusA = rewriter.create<SubIOp>(loc, zero, a);
|
|
Value minusADivB = rewriter.create<SignedDivIOp>(loc, minusA, b);
|
|
Value negRes = rewriter.create<SubIOp>(loc, zero, minusADivB);
|
|
// Result is (a*b>0) ? pos result : neg result.
|
|
// Note, we want to avoid using a*b because of possible overflow.
|
|
// The case that matters are a>0, a==0, a<0, b>0 and b<0. We do
|
|
// not particuliarly care if a*b<0 is true or false when b is zero
|
|
// as this will result in an illegal divide. So `a*b<0` can be reformulated
|
|
// as `(a<0 && b<0) || (a>0 && b>0)' or `(a<0 && b<0) || (a>0 && b>=0)'.
|
|
// We pick the first expression here.
|
|
Value aNeg = rewriter.create<CmpIOp>(loc, CmpIPredicate::slt, a, zero);
|
|
Value aPos = rewriter.create<CmpIOp>(loc, CmpIPredicate::sgt, a, zero);
|
|
Value bNeg = rewriter.create<CmpIOp>(loc, CmpIPredicate::slt, b, zero);
|
|
Value bPos = rewriter.create<CmpIOp>(loc, CmpIPredicate::sgt, b, zero);
|
|
Value firstTerm = rewriter.create<AndOp>(loc, aNeg, bNeg);
|
|
Value secondTerm = rewriter.create<AndOp>(loc, aPos, bPos);
|
|
Value compareRes = rewriter.create<OrOp>(loc, firstTerm, secondTerm);
|
|
Value res = rewriter.create<SelectOp>(loc, compareRes, posRes, negRes);
|
|
// Perform substitution and return success.
|
|
rewriter.replaceOp(op, {res});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Expands SignedFloorDivIOP (n, m) into
|
|
/// 1) x = (m<0) ? 1 : -1
|
|
/// 2) return (n*m<0) ? - ((-n+x) / m) -1 : n / m
|
|
struct SignedFloorDivIOpConverter : public OpRewritePattern<SignedFloorDivIOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(SignedFloorDivIOp op,
|
|
PatternRewriter &rewriter) const final {
|
|
Location loc = op.getLoc();
|
|
SignedFloorDivIOp signedFloorDivIOp = cast<SignedFloorDivIOp>(op);
|
|
Type type = signedFloorDivIOp.getType();
|
|
Value a = signedFloorDivIOp.lhs();
|
|
Value b = signedFloorDivIOp.rhs();
|
|
Value plusOne =
|
|
rewriter.create<ConstantOp>(loc, rewriter.getIntegerAttr(type, 1));
|
|
Value zero =
|
|
rewriter.create<ConstantOp>(loc, rewriter.getIntegerAttr(type, 0));
|
|
Value minusOne =
|
|
rewriter.create<ConstantOp>(loc, rewriter.getIntegerAttr(type, -1));
|
|
// Compute x = (b<0) ? 1 : -1.
|
|
Value compare = rewriter.create<CmpIOp>(loc, CmpIPredicate::slt, b, zero);
|
|
Value x = rewriter.create<SelectOp>(loc, compare, plusOne, minusOne);
|
|
// Compute negative res: -1 - ((x-a)/b).
|
|
Value xMinusA = rewriter.create<SubIOp>(loc, x, a);
|
|
Value xMinusADivB = rewriter.create<SignedDivIOp>(loc, xMinusA, b);
|
|
Value negRes = rewriter.create<SubIOp>(loc, minusOne, xMinusADivB);
|
|
// Compute positive res: a/b.
|
|
Value posRes = rewriter.create<SignedDivIOp>(loc, a, b);
|
|
// Result is (a*b<0) ? negative result : positive result.
|
|
// Note, we want to avoid using a*b because of possible overflow.
|
|
// The case that matters are a>0, a==0, a<0, b>0 and b<0. We do
|
|
// not particuliarly care if a*b<0 is true or false when b is zero
|
|
// as this will result in an illegal divide. So `a*b<0` can be reformulated
|
|
// as `(a>0 && b<0) || (a>0 && b<0)' or `(a>0 && b<0) || (a>0 && b<=0)'.
|
|
// We pick the first expression here.
|
|
Value aNeg = rewriter.create<CmpIOp>(loc, CmpIPredicate::slt, a, zero);
|
|
Value aPos = rewriter.create<CmpIOp>(loc, CmpIPredicate::sgt, a, zero);
|
|
Value bNeg = rewriter.create<CmpIOp>(loc, CmpIPredicate::slt, b, zero);
|
|
Value bPos = rewriter.create<CmpIOp>(loc, CmpIPredicate::sgt, b, zero);
|
|
Value firstTerm = rewriter.create<AndOp>(loc, aNeg, bPos);
|
|
Value secondTerm = rewriter.create<AndOp>(loc, aPos, bNeg);
|
|
Value compareRes = rewriter.create<OrOp>(loc, firstTerm, secondTerm);
|
|
Value res = rewriter.create<SelectOp>(loc, compareRes, negRes, posRes);
|
|
// Perform substitution and return success.
|
|
rewriter.replaceOp(op, {res});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct StdExpandOpsPass : public StdExpandOpsBase<StdExpandOpsPass> {
|
|
void runOnFunction() override {
|
|
MLIRContext &ctx = getContext();
|
|
|
|
OwningRewritePatternList patterns;
|
|
populateStdExpandOpsPatterns(&ctx, patterns);
|
|
|
|
ConversionTarget target(getContext());
|
|
|
|
target.addLegalDialect<StandardOpsDialect>();
|
|
target.addDynamicallyLegalOp<AtomicRMWOp>([](AtomicRMWOp op) {
|
|
return op.kind() != AtomicRMWKind::maxf &&
|
|
op.kind() != AtomicRMWKind::minf;
|
|
});
|
|
target.addDynamicallyLegalOp<MemRefReshapeOp>([](MemRefReshapeOp op) {
|
|
return !op.shape().getType().cast<MemRefType>().hasStaticShape();
|
|
});
|
|
target.addIllegalOp<SignedCeilDivIOp>();
|
|
target.addIllegalOp<SignedFloorDivIOp>();
|
|
if (failed(
|
|
applyPartialConversion(getFunction(), target, std::move(patterns))))
|
|
signalPassFailure();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void mlir::populateStdExpandOpsPatterns(MLIRContext *context,
|
|
OwningRewritePatternList &patterns) {
|
|
patterns.insert<AtomicRMWOpConverter, MemRefReshapeOpConverter,
|
|
SignedCeilDivIOpConverter, SignedFloorDivIOpConverter>(
|
|
context);
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createStdExpandOpsPass() {
|
|
return std::make_unique<StdExpandOpsPass>();
|
|
}
|