llvm-project/polly/lib/External/isl/isl_map_simplify.c

3527 lines
93 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright 2008-2009 Katholieke Universiteit Leuven
* Copyright 2012-2013 Ecole Normale Superieure
* Copyright 2014 INRIA Rocquencourt
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, K.U.Leuven, Departement
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
* and Ecole Normale Superieure, 45 rue dUlm, 75230 Paris, France
* and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
* B.P. 105 - 78153 Le Chesnay, France
*/
#include <strings.h>
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include "isl_equalities.h"
#include <isl/map.h>
#include <isl_seq.h>
#include "isl_tab.h"
#include <isl_space_private.h>
#include <isl_mat_private.h>
#include <isl_vec_private.h>
static void swap_equality(struct isl_basic_map *bmap, int a, int b)
{
isl_int *t = bmap->eq[a];
bmap->eq[a] = bmap->eq[b];
bmap->eq[b] = t;
}
static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
{
if (a != b) {
isl_int *t = bmap->ineq[a];
bmap->ineq[a] = bmap->ineq[b];
bmap->ineq[b] = t;
}
}
static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
{
isl_seq_cpy(c, c + n, rem);
isl_seq_clr(c + rem, n);
}
/* Drop n dimensions starting at first.
*
* In principle, this frees up some extra variables as the number
* of columns remains constant, but we would have to extend
* the div array too as the number of rows in this array is assumed
* to be equal to extra.
*/
struct isl_basic_set *isl_basic_set_drop_dims(
struct isl_basic_set *bset, unsigned first, unsigned n)
{
int i;
if (!bset)
goto error;
isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
if (n == 0 && !isl_space_get_tuple_name(bset->dim, isl_dim_set))
return bset;
bset = isl_basic_set_cow(bset);
if (!bset)
return NULL;
for (i = 0; i < bset->n_eq; ++i)
constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
(bset->dim->n_out-first-n)+bset->extra);
for (i = 0; i < bset->n_ineq; ++i)
constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
(bset->dim->n_out-first-n)+bset->extra);
for (i = 0; i < bset->n_div; ++i)
constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
(bset->dim->n_out-first-n)+bset->extra);
bset->dim = isl_space_drop_outputs(bset->dim, first, n);
if (!bset->dim)
goto error;
ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
bset = isl_basic_set_simplify(bset);
return isl_basic_set_finalize(bset);
error:
isl_basic_set_free(bset);
return NULL;
}
struct isl_set *isl_set_drop_dims(
struct isl_set *set, unsigned first, unsigned n)
{
int i;
if (!set)
goto error;
isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
if (n == 0 && !isl_space_get_tuple_name(set->dim, isl_dim_set))
return set;
set = isl_set_cow(set);
if (!set)
goto error;
set->dim = isl_space_drop_outputs(set->dim, first, n);
if (!set->dim)
goto error;
for (i = 0; i < set->n; ++i) {
set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
if (!set->p[i])
goto error;
}
ISL_F_CLR(set, ISL_SET_NORMALIZED);
return set;
error:
isl_set_free(set);
return NULL;
}
/* Move "n" divs starting at "first" to the end of the list of divs.
*/
static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
unsigned first, unsigned n)
{
isl_int **div;
int i;
if (first + n == bmap->n_div)
return bmap;
div = isl_alloc_array(bmap->ctx, isl_int *, n);
if (!div)
goto error;
for (i = 0; i < n; ++i)
div[i] = bmap->div[first + i];
for (i = 0; i < bmap->n_div - first - n; ++i)
bmap->div[first + i] = bmap->div[first + n + i];
for (i = 0; i < n; ++i)
bmap->div[bmap->n_div - n + i] = div[i];
free(div);
return bmap;
error:
isl_basic_map_free(bmap);
return NULL;
}
/* Drop "n" dimensions of type "type" starting at "first".
*
* In principle, this frees up some extra variables as the number
* of columns remains constant, but we would have to extend
* the div array too as the number of rows in this array is assumed
* to be equal to extra.
*/
struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
enum isl_dim_type type, unsigned first, unsigned n)
{
int i;
unsigned dim;
unsigned offset;
unsigned left;
if (!bmap)
goto error;
dim = isl_basic_map_dim(bmap, type);
isl_assert(bmap->ctx, first + n <= dim, goto error);
if (n == 0 && !isl_space_is_named_or_nested(bmap->dim, type))
return bmap;
bmap = isl_basic_map_cow(bmap);
if (!bmap)
return NULL;
offset = isl_basic_map_offset(bmap, type) + first;
left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
for (i = 0; i < bmap->n_eq; ++i)
constraint_drop_vars(bmap->eq[i]+offset, n, left);
for (i = 0; i < bmap->n_ineq; ++i)
constraint_drop_vars(bmap->ineq[i]+offset, n, left);
for (i = 0; i < bmap->n_div; ++i)
constraint_drop_vars(bmap->div[i]+1+offset, n, left);
if (type == isl_dim_div) {
bmap = move_divs_last(bmap, first, n);
if (!bmap)
goto error;
isl_basic_map_free_div(bmap, n);
} else
bmap->dim = isl_space_drop_dims(bmap->dim, type, first, n);
if (!bmap->dim)
goto error;
ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
bmap = isl_basic_map_simplify(bmap);
return isl_basic_map_finalize(bmap);
error:
isl_basic_map_free(bmap);
return NULL;
}
__isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
enum isl_dim_type type, unsigned first, unsigned n)
{
return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset,
type, first, n);
}
struct isl_basic_map *isl_basic_map_drop_inputs(
struct isl_basic_map *bmap, unsigned first, unsigned n)
{
return isl_basic_map_drop(bmap, isl_dim_in, first, n);
}
struct isl_map *isl_map_drop(struct isl_map *map,
enum isl_dim_type type, unsigned first, unsigned n)
{
int i;
if (!map)
goto error;
isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
if (n == 0 && !isl_space_get_tuple_name(map->dim, type))
return map;
map = isl_map_cow(map);
if (!map)
goto error;
map->dim = isl_space_drop_dims(map->dim, type, first, n);
if (!map->dim)
goto error;
for (i = 0; i < map->n; ++i) {
map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
if (!map->p[i])
goto error;
}
ISL_F_CLR(map, ISL_MAP_NORMALIZED);
return map;
error:
isl_map_free(map);
return NULL;
}
struct isl_set *isl_set_drop(struct isl_set *set,
enum isl_dim_type type, unsigned first, unsigned n)
{
return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
}
struct isl_map *isl_map_drop_inputs(
struct isl_map *map, unsigned first, unsigned n)
{
return isl_map_drop(map, isl_dim_in, first, n);
}
/*
* We don't cow, as the div is assumed to be redundant.
*/
static struct isl_basic_map *isl_basic_map_drop_div(
struct isl_basic_map *bmap, unsigned div)
{
int i;
unsigned pos;
if (!bmap)
goto error;
pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
isl_assert(bmap->ctx, div < bmap->n_div, goto error);
for (i = 0; i < bmap->n_eq; ++i)
constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
for (i = 0; i < bmap->n_ineq; ++i) {
if (!isl_int_is_zero(bmap->ineq[i][pos])) {
isl_basic_map_drop_inequality(bmap, i);
--i;
continue;
}
constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
}
for (i = 0; i < bmap->n_div; ++i)
constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
if (div != bmap->n_div - 1) {
int j;
isl_int *t = bmap->div[div];
for (j = div; j < bmap->n_div - 1; ++j)
bmap->div[j] = bmap->div[j+1];
bmap->div[bmap->n_div - 1] = t;
}
ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
isl_basic_map_free_div(bmap, 1);
return bmap;
error:
isl_basic_map_free(bmap);
return NULL;
}
struct isl_basic_map *isl_basic_map_normalize_constraints(
struct isl_basic_map *bmap)
{
int i;
isl_int gcd;
unsigned total = isl_basic_map_total_dim(bmap);
if (!bmap)
return NULL;
isl_int_init(gcd);
for (i = bmap->n_eq - 1; i >= 0; --i) {
isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
if (isl_int_is_zero(gcd)) {
if (!isl_int_is_zero(bmap->eq[i][0])) {
bmap = isl_basic_map_set_to_empty(bmap);
break;
}
isl_basic_map_drop_equality(bmap, i);
continue;
}
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
if (isl_int_is_one(gcd))
continue;
if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
bmap = isl_basic_map_set_to_empty(bmap);
break;
}
isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
}
for (i = bmap->n_ineq - 1; i >= 0; --i) {
isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
if (isl_int_is_zero(gcd)) {
if (isl_int_is_neg(bmap->ineq[i][0])) {
bmap = isl_basic_map_set_to_empty(bmap);
break;
}
isl_basic_map_drop_inequality(bmap, i);
continue;
}
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
if (isl_int_is_one(gcd))
continue;
isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
}
isl_int_clear(gcd);
return bmap;
}
struct isl_basic_set *isl_basic_set_normalize_constraints(
struct isl_basic_set *bset)
{
return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
(struct isl_basic_map *)bset);
}
/* Remove any common factor in numerator and denominator of the div expression,
* not taking into account the constant term.
* That is, if the div is of the form
*
* floor((a + m f(x))/(m d))
*
* then replace it by
*
* floor((floor(a/m) + f(x))/d)
*
* The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
* and can therefore not influence the result of the floor.
*/
static void normalize_div_expression(__isl_keep isl_basic_map *bmap, int div)
{
unsigned total = isl_basic_map_total_dim(bmap);
isl_ctx *ctx = bmap->ctx;
if (isl_int_is_zero(bmap->div[div][0]))
return;
isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
if (isl_int_is_one(ctx->normalize_gcd))
return;
isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
ctx->normalize_gcd);
isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
ctx->normalize_gcd);
isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
ctx->normalize_gcd, total);
}
/* Remove any common factor in numerator and denominator of a div expression,
* not taking into account the constant term.
* That is, look for any div of the form
*
* floor((a + m f(x))/(m d))
*
* and replace it by
*
* floor((floor(a/m) + f(x))/d)
*
* The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
* and can therefore not influence the result of the floor.
*/
static __isl_give isl_basic_map *normalize_div_expressions(
__isl_take isl_basic_map *bmap)
{
int i;
if (!bmap)
return NULL;
if (bmap->n_div == 0)
return bmap;
for (i = 0; i < bmap->n_div; ++i)
normalize_div_expression(bmap, i);
return bmap;
}
/* Assumes divs have been ordered if keep_divs is set.
*/
static void eliminate_var_using_equality(struct isl_basic_map *bmap,
unsigned pos, isl_int *eq, int keep_divs, int *progress)
{
unsigned total;
unsigned space_total;
int k;
int last_div;
total = isl_basic_map_total_dim(bmap);
space_total = isl_space_dim(bmap->dim, isl_dim_all);
last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
for (k = 0; k < bmap->n_eq; ++k) {
if (bmap->eq[k] == eq)
continue;
if (isl_int_is_zero(bmap->eq[k][1+pos]))
continue;
if (progress)
*progress = 1;
isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
}
for (k = 0; k < bmap->n_ineq; ++k) {
if (isl_int_is_zero(bmap->ineq[k][1+pos]))
continue;
if (progress)
*progress = 1;
isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
}
for (k = 0; k < bmap->n_div; ++k) {
if (isl_int_is_zero(bmap->div[k][0]))
continue;
if (isl_int_is_zero(bmap->div[k][1+1+pos]))
continue;
if (progress)
*progress = 1;
/* We need to be careful about circular definitions,
* so for now we just remove the definition of div k
* if the equality contains any divs.
* If keep_divs is set, then the divs have been ordered
* and we can keep the definition as long as the result
* is still ordered.
*/
if (last_div == -1 || (keep_divs && last_div < k)) {
isl_seq_elim(bmap->div[k]+1, eq,
1+pos, 1+total, &bmap->div[k][0]);
normalize_div_expression(bmap, k);
} else
isl_seq_clr(bmap->div[k], 1 + total);
ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
}
}
/* Assumes divs have been ordered if keep_divs is set.
*/
static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
unsigned div, int keep_divs)
{
unsigned pos = isl_space_dim(bmap->dim, isl_dim_all) + div;
eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
isl_basic_map_drop_div(bmap, div);
}
/* Check if elimination of div "div" using equality "eq" would not
* result in a div depending on a later div.
*/
static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
unsigned div)
{
int k;
int last_div;
unsigned space_total = isl_space_dim(bmap->dim, isl_dim_all);
unsigned pos = space_total + div;
last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
if (last_div < 0 || last_div <= div)
return 1;
for (k = 0; k <= last_div; ++k) {
if (isl_int_is_zero(bmap->div[k][0]))
return 1;
if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
return 0;
}
return 1;
}
/* Elimininate divs based on equalities
*/
static struct isl_basic_map *eliminate_divs_eq(
struct isl_basic_map *bmap, int *progress)
{
int d;
int i;
int modified = 0;
unsigned off;
bmap = isl_basic_map_order_divs(bmap);
if (!bmap)
return NULL;
off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
for (d = bmap->n_div - 1; d >= 0 ; --d) {
for (i = 0; i < bmap->n_eq; ++i) {
if (!isl_int_is_one(bmap->eq[i][off + d]) &&
!isl_int_is_negone(bmap->eq[i][off + d]))
continue;
if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
continue;
modified = 1;
*progress = 1;
eliminate_div(bmap, bmap->eq[i], d, 1);
isl_basic_map_drop_equality(bmap, i);
break;
}
}
if (modified)
return eliminate_divs_eq(bmap, progress);
return bmap;
}
/* Elimininate divs based on inequalities
*/
static struct isl_basic_map *eliminate_divs_ineq(
struct isl_basic_map *bmap, int *progress)
{
int d;
int i;
unsigned off;
struct isl_ctx *ctx;
if (!bmap)
return NULL;
ctx = bmap->ctx;
off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
for (d = bmap->n_div - 1; d >= 0 ; --d) {
for (i = 0; i < bmap->n_eq; ++i)
if (!isl_int_is_zero(bmap->eq[i][off + d]))
break;
if (i < bmap->n_eq)
continue;
for (i = 0; i < bmap->n_ineq; ++i)
if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
break;
if (i < bmap->n_ineq)
continue;
*progress = 1;
bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
break;
bmap = isl_basic_map_drop_div(bmap, d);
if (!bmap)
break;
}
return bmap;
}
struct isl_basic_map *isl_basic_map_gauss(
struct isl_basic_map *bmap, int *progress)
{
int k;
int done;
int last_var;
unsigned total_var;
unsigned total;
bmap = isl_basic_map_order_divs(bmap);
if (!bmap)
return NULL;
total = isl_basic_map_total_dim(bmap);
total_var = total - bmap->n_div;
last_var = total - 1;
for (done = 0; done < bmap->n_eq; ++done) {
for (; last_var >= 0; --last_var) {
for (k = done; k < bmap->n_eq; ++k)
if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
break;
if (k < bmap->n_eq)
break;
}
if (last_var < 0)
break;
if (k != done)
swap_equality(bmap, k, done);
if (isl_int_is_neg(bmap->eq[done][1+last_var]))
isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
progress);
if (last_var >= total_var &&
isl_int_is_zero(bmap->div[last_var - total_var][0])) {
unsigned div = last_var - total_var;
isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
isl_int_set_si(bmap->div[div][1+1+last_var], 0);
isl_int_set(bmap->div[div][0],
bmap->eq[done][1+last_var]);
if (progress)
*progress = 1;
ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
}
}
if (done == bmap->n_eq)
return bmap;
for (k = done; k < bmap->n_eq; ++k) {
if (isl_int_is_zero(bmap->eq[k][0]))
continue;
return isl_basic_map_set_to_empty(bmap);
}
isl_basic_map_free_equality(bmap, bmap->n_eq-done);
return bmap;
}
struct isl_basic_set *isl_basic_set_gauss(
struct isl_basic_set *bset, int *progress)
{
return (struct isl_basic_set*)isl_basic_map_gauss(
(struct isl_basic_map *)bset, progress);
}
static unsigned int round_up(unsigned int v)
{
int old_v = v;
while (v) {
old_v = v;
v ^= v & -v;
}
return old_v << 1;
}
static int hash_index(isl_int ***index, unsigned int size, int bits,
struct isl_basic_map *bmap, int k)
{
int h;
unsigned total = isl_basic_map_total_dim(bmap);
uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
for (h = hash; index[h]; h = (h+1) % size)
if (&bmap->ineq[k] != index[h] &&
isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
break;
return h;
}
static int set_hash_index(isl_int ***index, unsigned int size, int bits,
struct isl_basic_set *bset, int k)
{
return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
}
/* If we can eliminate more than one div, then we need to make
* sure we do it from last div to first div, in order not to
* change the position of the other divs that still need to
* be removed.
*/
static struct isl_basic_map *remove_duplicate_divs(
struct isl_basic_map *bmap, int *progress)
{
unsigned int size;
int *index;
int *elim_for;
int k, l, h;
int bits;
struct isl_blk eq;
unsigned total_var;
unsigned total;
struct isl_ctx *ctx;
bmap = isl_basic_map_order_divs(bmap);
if (!bmap || bmap->n_div <= 1)
return bmap;
total_var = isl_space_dim(bmap->dim, isl_dim_all);
total = total_var + bmap->n_div;
ctx = bmap->ctx;
for (k = bmap->n_div - 1; k >= 0; --k)
if (!isl_int_is_zero(bmap->div[k][0]))
break;
if (k <= 0)
return bmap;
size = round_up(4 * bmap->n_div / 3 - 1);
if (size == 0)
return bmap;
elim_for = isl_calloc_array(ctx, int, bmap->n_div);
bits = ffs(size) - 1;
index = isl_calloc_array(ctx, int, size);
if (!elim_for || !index)
goto out;
eq = isl_blk_alloc(ctx, 1+total);
if (isl_blk_is_error(eq))
goto out;
isl_seq_clr(eq.data, 1+total);
index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
for (--k; k >= 0; --k) {
uint32_t hash;
if (isl_int_is_zero(bmap->div[k][0]))
continue;
hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
for (h = hash; index[h]; h = (h+1) % size)
if (isl_seq_eq(bmap->div[k],
bmap->div[index[h]-1], 2+total))
break;
if (index[h]) {
*progress = 1;
l = index[h] - 1;
elim_for[l] = k + 1;
}
index[h] = k+1;
}
for (l = bmap->n_div - 1; l >= 0; --l) {
if (!elim_for[l])
continue;
k = elim_for[l] - 1;
isl_int_set_si(eq.data[1+total_var+k], -1);
isl_int_set_si(eq.data[1+total_var+l], 1);
eliminate_div(bmap, eq.data, l, 1);
isl_int_set_si(eq.data[1+total_var+k], 0);
isl_int_set_si(eq.data[1+total_var+l], 0);
}
isl_blk_free(ctx, eq);
out:
free(index);
free(elim_for);
return bmap;
}
static int n_pure_div_eq(struct isl_basic_map *bmap)
{
int i, j;
unsigned total;
total = isl_space_dim(bmap->dim, isl_dim_all);
for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
--j;
if (j < 0)
break;
if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
return 0;
}
return i;
}
/* Normalize divs that appear in equalities.
*
* In particular, we assume that bmap contains some equalities
* of the form
*
* a x = m * e_i
*
* and we want to replace the set of e_i by a minimal set and
* such that the new e_i have a canonical representation in terms
* of the vector x.
* If any of the equalities involves more than one divs, then
* we currently simply bail out.
*
* Let us first additionally assume that all equalities involve
* a div. The equalities then express modulo constraints on the
* remaining variables and we can use "parameter compression"
* to find a minimal set of constraints. The result is a transformation
*
* x = T(x') = x_0 + G x'
*
* with G a lower-triangular matrix with all elements below the diagonal
* non-negative and smaller than the diagonal element on the same row.
* We first normalize x_0 by making the same property hold in the affine
* T matrix.
* The rows i of G with a 1 on the diagonal do not impose any modulo
* constraint and simply express x_i = x'_i.
* For each of the remaining rows i, we introduce a div and a corresponding
* equality. In particular
*
* g_ii e_j = x_i - g_i(x')
*
* where each x'_k is replaced either by x_k (if g_kk = 1) or the
* corresponding div (if g_kk != 1).
*
* If there are any equalities not involving any div, then we
* first apply a variable compression on the variables x:
*
* x = C x'' x'' = C_2 x
*
* and perform the above parameter compression on A C instead of on A.
* The resulting compression is then of the form
*
* x'' = T(x') = x_0 + G x'
*
* and in constructing the new divs and the corresponding equalities,
* we have to replace each x'', i.e., the x'_k with (g_kk = 1),
* by the corresponding row from C_2.
*/
static struct isl_basic_map *normalize_divs(
struct isl_basic_map *bmap, int *progress)
{
int i, j, k;
int total;
int div_eq;
struct isl_mat *B;
struct isl_vec *d;
struct isl_mat *T = NULL;
struct isl_mat *C = NULL;
struct isl_mat *C2 = NULL;
isl_int v;
int *pos;
int dropped, needed;
if (!bmap)
return NULL;
if (bmap->n_div == 0)
return bmap;
if (bmap->n_eq == 0)
return bmap;
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
return bmap;
total = isl_space_dim(bmap->dim, isl_dim_all);
div_eq = n_pure_div_eq(bmap);
if (div_eq == 0)
return bmap;
if (div_eq < bmap->n_eq) {
B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
bmap->n_eq - div_eq, 0, 1 + total);
C = isl_mat_variable_compression(B, &C2);
if (!C || !C2)
goto error;
if (C->n_col == 0) {
bmap = isl_basic_map_set_to_empty(bmap);
isl_mat_free(C);
isl_mat_free(C2);
goto done;
}
}
d = isl_vec_alloc(bmap->ctx, div_eq);
if (!d)
goto error;
for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
--j;
isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
}
B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
if (C) {
B = isl_mat_product(B, C);
C = NULL;
}
T = isl_mat_parameter_compression(B, d);
if (!T)
goto error;
if (T->n_col == 0) {
bmap = isl_basic_map_set_to_empty(bmap);
isl_mat_free(C2);
isl_mat_free(T);
goto done;
}
isl_int_init(v);
for (i = 0; i < T->n_row - 1; ++i) {
isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
if (isl_int_is_zero(v))
continue;
isl_mat_col_submul(T, 0, v, 1 + i);
}
isl_int_clear(v);
pos = isl_alloc_array(bmap->ctx, int, T->n_row);
if (!pos)
goto error;
/* We have to be careful because dropping equalities may reorder them */
dropped = 0;
for (j = bmap->n_div - 1; j >= 0; --j) {
for (i = 0; i < bmap->n_eq; ++i)
if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
break;
if (i < bmap->n_eq) {
bmap = isl_basic_map_drop_div(bmap, j);
isl_basic_map_drop_equality(bmap, i);
++dropped;
}
}
pos[0] = 0;
needed = 0;
for (i = 1; i < T->n_row; ++i) {
if (isl_int_is_one(T->row[i][i]))
pos[i] = i;
else
needed++;
}
if (needed > dropped) {
bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
needed, needed, 0);
if (!bmap)
goto error;
}
for (i = 1; i < T->n_row; ++i) {
if (isl_int_is_one(T->row[i][i]))
continue;
k = isl_basic_map_alloc_div(bmap);
pos[i] = 1 + total + k;
isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
isl_int_set(bmap->div[k][0], T->row[i][i]);
if (C2)
isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
else
isl_int_set_si(bmap->div[k][1 + i], 1);
for (j = 0; j < i; ++j) {
if (isl_int_is_zero(T->row[i][j]))
continue;
if (pos[j] < T->n_row && C2)
isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
C2->row[pos[j]], 1 + total);
else
isl_int_neg(bmap->div[k][1 + pos[j]],
T->row[i][j]);
}
j = isl_basic_map_alloc_equality(bmap);
isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
}
free(pos);
isl_mat_free(C2);
isl_mat_free(T);
if (progress)
*progress = 1;
done:
ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
return bmap;
error:
isl_mat_free(C);
isl_mat_free(C2);
isl_mat_free(T);
return bmap;
}
static struct isl_basic_map *set_div_from_lower_bound(
struct isl_basic_map *bmap, int div, int ineq)
{
unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
isl_int_set_si(bmap->div[div][1 + total + div], 0);
return bmap;
}
/* Check whether it is ok to define a div based on an inequality.
* To avoid the introduction of circular definitions of divs, we
* do not allow such a definition if the resulting expression would refer to
* any other undefined divs or if any known div is defined in
* terms of the unknown div.
*/
static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
int div, int ineq)
{
int j;
unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
/* Not defined in terms of unknown divs */
for (j = 0; j < bmap->n_div; ++j) {
if (div == j)
continue;
if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
continue;
if (isl_int_is_zero(bmap->div[j][0]))
return 0;
}
/* No other div defined in terms of this one => avoid loops */
for (j = 0; j < bmap->n_div; ++j) {
if (div == j)
continue;
if (isl_int_is_zero(bmap->div[j][0]))
continue;
if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
return 0;
}
return 1;
}
/* Would an expression for div "div" based on inequality "ineq" of "bmap"
* be a better expression than the current one?
*
* If we do not have any expression yet, then any expression would be better.
* Otherwise we check if the last variable involved in the inequality
* (disregarding the div that it would define) is in an earlier position
* than the last variable involved in the current div expression.
*/
static int better_div_constraint(__isl_keep isl_basic_map *bmap,
int div, int ineq)
{
unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
int last_div;
int last_ineq;
if (isl_int_is_zero(bmap->div[div][0]))
return 1;
if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
bmap->n_div - (div + 1)) >= 0)
return 0;
last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
total + bmap->n_div);
return last_ineq < last_div;
}
/* Given two constraints "k" and "l" that are opposite to each other,
* except for the constant term, check if we can use them
* to obtain an expression for one of the hitherto unknown divs or
* a "better" expression for a div for which we already have an expression.
* "sum" is the sum of the constant terms of the constraints.
* If this sum is strictly smaller than the coefficient of one
* of the divs, then this pair can be used define the div.
* To avoid the introduction of circular definitions of divs, we
* do not use the pair if the resulting expression would refer to
* any other undefined divs or if any known div is defined in
* terms of the unknown div.
*/
static struct isl_basic_map *check_for_div_constraints(
struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
{
int i;
unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
for (i = 0; i < bmap->n_div; ++i) {
if (isl_int_is_zero(bmap->ineq[k][total + i]))
continue;
if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
continue;
if (!better_div_constraint(bmap, i, k))
continue;
if (!ok_to_set_div_from_bound(bmap, i, k))
break;
if (isl_int_is_pos(bmap->ineq[k][total + i]))
bmap = set_div_from_lower_bound(bmap, i, k);
else
bmap = set_div_from_lower_bound(bmap, i, l);
if (progress)
*progress = 1;
break;
}
return bmap;
}
__isl_give isl_basic_map *isl_basic_map_remove_duplicate_constraints(
__isl_take isl_basic_map *bmap, int *progress, int detect_divs)
{
unsigned int size;
isl_int ***index;
int k, l, h;
int bits;
unsigned total = isl_basic_map_total_dim(bmap);
isl_int sum;
isl_ctx *ctx;
if (!bmap || bmap->n_ineq <= 1)
return bmap;
size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
if (size == 0)
return bmap;
bits = ffs(size) - 1;
ctx = isl_basic_map_get_ctx(bmap);
index = isl_calloc_array(ctx, isl_int **, size);
if (!index)
return bmap;
index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
for (k = 1; k < bmap->n_ineq; ++k) {
h = hash_index(index, size, bits, bmap, k);
if (!index[h]) {
index[h] = &bmap->ineq[k];
continue;
}
if (progress)
*progress = 1;
l = index[h] - &bmap->ineq[0];
if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
swap_inequality(bmap, k, l);
isl_basic_map_drop_inequality(bmap, k);
--k;
}
isl_int_init(sum);
for (k = 0; k < bmap->n_ineq-1; ++k) {
isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
h = hash_index(index, size, bits, bmap, k);
isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
if (!index[h])
continue;
l = index[h] - &bmap->ineq[0];
isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
if (isl_int_is_pos(sum)) {
if (detect_divs)
bmap = check_for_div_constraints(bmap, k, l,
sum, progress);
continue;
}
if (isl_int_is_zero(sum)) {
/* We need to break out of the loop after these
* changes since the contents of the hash
* will no longer be valid.
* Plus, we probably we want to regauss first.
*/
if (progress)
*progress = 1;
isl_basic_map_drop_inequality(bmap, l);
isl_basic_map_inequality_to_equality(bmap, k);
} else
bmap = isl_basic_map_set_to_empty(bmap);
break;
}
isl_int_clear(sum);
free(index);
return bmap;
}
/* Detect all pairs of inequalities that form an equality.
*
* isl_basic_map_remove_duplicate_constraints detects at most one such pair.
* Call it repeatedly while it is making progress.
*/
__isl_give isl_basic_map *isl_basic_map_detect_inequality_pairs(
__isl_take isl_basic_map *bmap, int *progress)
{
int duplicate;
do {
duplicate = 0;
bmap = isl_basic_map_remove_duplicate_constraints(bmap,
&duplicate, 0);
if (progress && duplicate)
*progress = 1;
} while (duplicate);
return bmap;
}
/* Eliminate knowns divs from constraints where they appear with
* a (positive or negative) unit coefficient.
*
* That is, replace
*
* floor(e/m) + f >= 0
*
* by
*
* e + m f >= 0
*
* and
*
* -floor(e/m) + f >= 0
*
* by
*
* -e + m f + m - 1 >= 0
*
* The first conversion is valid because floor(e/m) >= -f is equivalent
* to e/m >= -f because -f is an integral expression.
* The second conversion follows from the fact that
*
* -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
*
*
* Note that one of the div constraints may have been eliminated
* due to being redundant with respect to the constraint that is
* being modified by this function. The modified constraint may
* no longer imply this div constraint, so we add it back to make
* sure we do not lose any information.
*
* We skip integral divs, i.e., those with denominator 1, as we would
* risk eliminating the div from the div constraints. We do not need
* to handle those divs here anyway since the div constraints will turn
* out to form an equality and this equality can then be use to eliminate
* the div from all constraints.
*/
static __isl_give isl_basic_map *eliminate_unit_divs(
__isl_take isl_basic_map *bmap, int *progress)
{
int i, j;
isl_ctx *ctx;
unsigned total;
if (!bmap)
return NULL;
ctx = isl_basic_map_get_ctx(bmap);
total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
for (i = 0; i < bmap->n_div; ++i) {
if (isl_int_is_zero(bmap->div[i][0]))
continue;
if (isl_int_is_one(bmap->div[i][0]))
continue;
for (j = 0; j < bmap->n_ineq; ++j) {
int s;
if (!isl_int_is_one(bmap->ineq[j][total + i]) &&
!isl_int_is_negone(bmap->ineq[j][total + i]))
continue;
*progress = 1;
s = isl_int_sgn(bmap->ineq[j][total + i]);
isl_int_set_si(bmap->ineq[j][total + i], 0);
if (s < 0)
isl_seq_combine(bmap->ineq[j],
ctx->negone, bmap->div[i] + 1,
bmap->div[i][0], bmap->ineq[j],
total + bmap->n_div);
else
isl_seq_combine(bmap->ineq[j],
ctx->one, bmap->div[i] + 1,
bmap->div[i][0], bmap->ineq[j],
total + bmap->n_div);
if (s < 0) {
isl_int_add(bmap->ineq[j][0],
bmap->ineq[j][0], bmap->div[i][0]);
isl_int_sub_ui(bmap->ineq[j][0],
bmap->ineq[j][0], 1);
}
bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
if (isl_basic_map_add_div_constraint(bmap, i, s) < 0)
return isl_basic_map_free(bmap);
}
}
return bmap;
}
struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
{
int progress = 1;
if (!bmap)
return NULL;
while (progress) {
progress = 0;
if (!bmap)
break;
if (isl_basic_map_plain_is_empty(bmap))
break;
bmap = isl_basic_map_normalize_constraints(bmap);
bmap = normalize_div_expressions(bmap);
bmap = remove_duplicate_divs(bmap, &progress);
bmap = eliminate_unit_divs(bmap, &progress);
bmap = eliminate_divs_eq(bmap, &progress);
bmap = eliminate_divs_ineq(bmap, &progress);
bmap = isl_basic_map_gauss(bmap, &progress);
/* requires equalities in normal form */
bmap = normalize_divs(bmap, &progress);
bmap = isl_basic_map_remove_duplicate_constraints(bmap,
&progress, 1);
if (bmap && progress)
ISL_F_CLR(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
}
return bmap;
}
struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
{
return (struct isl_basic_set *)
isl_basic_map_simplify((struct isl_basic_map *)bset);
}
int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
isl_int *constraint, unsigned div)
{
unsigned pos;
if (!bmap)
return -1;
pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
int neg;
isl_int_sub(bmap->div[div][1],
bmap->div[div][1], bmap->div[div][0]);
isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
isl_int_add(bmap->div[div][1],
bmap->div[div][1], bmap->div[div][0]);
if (!neg)
return 0;
if (isl_seq_first_non_zero(constraint+pos+1,
bmap->n_div-div-1) != -1)
return 0;
} else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
return 0;
if (isl_seq_first_non_zero(constraint+pos+1,
bmap->n_div-div-1) != -1)
return 0;
} else
return 0;
return 1;
}
int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset,
isl_int *constraint, unsigned div)
{
return isl_basic_map_is_div_constraint(bset, constraint, div);
}
/* If the only constraints a div d=floor(f/m)
* appears in are its two defining constraints
*
* f - m d >=0
* -(f - (m - 1)) + m d >= 0
*
* then it can safely be removed.
*/
static int div_is_redundant(struct isl_basic_map *bmap, int div)
{
int i;
unsigned pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
for (i = 0; i < bmap->n_eq; ++i)
if (!isl_int_is_zero(bmap->eq[i][pos]))
return 0;
for (i = 0; i < bmap->n_ineq; ++i) {
if (isl_int_is_zero(bmap->ineq[i][pos]))
continue;
if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div))
return 0;
}
for (i = 0; i < bmap->n_div; ++i) {
if (isl_int_is_zero(bmap->div[i][0]))
continue;
if (!isl_int_is_zero(bmap->div[i][1+pos]))
return 0;
}
return 1;
}
/*
* Remove divs that don't occur in any of the constraints or other divs.
* These can arise when dropping constraints from a basic map or
* when the divs of a basic map have been temporarily aligned
* with the divs of another basic map.
*/
static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
{
int i;
if (!bmap)
return NULL;
for (i = bmap->n_div-1; i >= 0; --i) {
if (!div_is_redundant(bmap, i))
continue;
bmap = isl_basic_map_drop_div(bmap, i);
}
return bmap;
}
struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
{
bmap = remove_redundant_divs(bmap);
if (!bmap)
return NULL;
ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
return bmap;
}
struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
{
return (struct isl_basic_set *)
isl_basic_map_finalize((struct isl_basic_map *)bset);
}
struct isl_set *isl_set_finalize(struct isl_set *set)
{
int i;
if (!set)
return NULL;
for (i = 0; i < set->n; ++i) {
set->p[i] = isl_basic_set_finalize(set->p[i]);
if (!set->p[i])
goto error;
}
return set;
error:
isl_set_free(set);
return NULL;
}
struct isl_map *isl_map_finalize(struct isl_map *map)
{
int i;
if (!map)
return NULL;
for (i = 0; i < map->n; ++i) {
map->p[i] = isl_basic_map_finalize(map->p[i]);
if (!map->p[i])
goto error;
}
ISL_F_CLR(map, ISL_MAP_NORMALIZED);
return map;
error:
isl_map_free(map);
return NULL;
}
/* Remove definition of any div that is defined in terms of the given variable.
* The div itself is not removed. Functions such as
* eliminate_divs_ineq depend on the other divs remaining in place.
*/
static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
int pos)
{
int i;
if (!bmap)
return NULL;
for (i = 0; i < bmap->n_div; ++i) {
if (isl_int_is_zero(bmap->div[i][0]))
continue;
if (isl_int_is_zero(bmap->div[i][1+1+pos]))
continue;
isl_int_set_si(bmap->div[i][0], 0);
}
return bmap;
}
/* Eliminate the specified variables from the constraints using
* Fourier-Motzkin. The variables themselves are not removed.
*/
struct isl_basic_map *isl_basic_map_eliminate_vars(
struct isl_basic_map *bmap, unsigned pos, unsigned n)
{
int d;
int i, j, k;
unsigned total;
int need_gauss = 0;
if (n == 0)
return bmap;
if (!bmap)
return NULL;
total = isl_basic_map_total_dim(bmap);
bmap = isl_basic_map_cow(bmap);
for (d = pos + n - 1; d >= 0 && d >= pos; --d)
bmap = remove_dependent_vars(bmap, d);
if (!bmap)
return NULL;
for (d = pos + n - 1;
d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
int n_lower, n_upper;
if (!bmap)
return NULL;
for (i = 0; i < bmap->n_eq; ++i) {
if (isl_int_is_zero(bmap->eq[i][1+d]))
continue;
eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
isl_basic_map_drop_equality(bmap, i);
need_gauss = 1;
break;
}
if (i < bmap->n_eq)
continue;
n_lower = 0;
n_upper = 0;
for (i = 0; i < bmap->n_ineq; ++i) {
if (isl_int_is_pos(bmap->ineq[i][1+d]))
n_lower++;
else if (isl_int_is_neg(bmap->ineq[i][1+d]))
n_upper++;
}
bmap = isl_basic_map_extend_constraints(bmap,
0, n_lower * n_upper);
if (!bmap)
goto error;
for (i = bmap->n_ineq - 1; i >= 0; --i) {
int last;
if (isl_int_is_zero(bmap->ineq[i][1+d]))
continue;
last = -1;
for (j = 0; j < i; ++j) {
if (isl_int_is_zero(bmap->ineq[j][1+d]))
continue;
last = j;
if (isl_int_sgn(bmap->ineq[i][1+d]) ==
isl_int_sgn(bmap->ineq[j][1+d]))
continue;
k = isl_basic_map_alloc_inequality(bmap);
if (k < 0)
goto error;
isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1+total);
isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1+d, 1+total, NULL);
}
isl_basic_map_drop_inequality(bmap, i);
i = last + 1;
}
if (n_lower > 0 && n_upper > 0) {
bmap = isl_basic_map_normalize_constraints(bmap);
bmap = isl_basic_map_remove_duplicate_constraints(bmap,
NULL, 0);
bmap = isl_basic_map_gauss(bmap, NULL);
bmap = isl_basic_map_remove_redundancies(bmap);
need_gauss = 0;
if (!bmap)
goto error;
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
break;
}
}
ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
if (need_gauss)
bmap = isl_basic_map_gauss(bmap, NULL);
return bmap;
error:
isl_basic_map_free(bmap);
return NULL;
}
struct isl_basic_set *isl_basic_set_eliminate_vars(
struct isl_basic_set *bset, unsigned pos, unsigned n)
{
return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
(struct isl_basic_map *)bset, pos, n);
}
/* Eliminate the specified n dimensions starting at first from the
* constraints, without removing the dimensions from the space.
* If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
* Otherwise, they are projected out and the original space is restored.
*/
__isl_give isl_basic_map *isl_basic_map_eliminate(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type, unsigned first, unsigned n)
{
isl_space *space;
if (!bmap)
return NULL;
if (n == 0)
return bmap;
if (first + n > isl_basic_map_dim(bmap, type) || first + n < first)
isl_die(bmap->ctx, isl_error_invalid,
"index out of bounds", goto error);
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
first += isl_basic_map_offset(bmap, type) - 1;
bmap = isl_basic_map_eliminate_vars(bmap, first, n);
return isl_basic_map_finalize(bmap);
}
space = isl_basic_map_get_space(bmap);
bmap = isl_basic_map_project_out(bmap, type, first, n);
bmap = isl_basic_map_insert_dims(bmap, type, first, n);
bmap = isl_basic_map_reset_space(bmap, space);
return bmap;
error:
isl_basic_map_free(bmap);
return NULL;
}
__isl_give isl_basic_set *isl_basic_set_eliminate(
__isl_take isl_basic_set *bset,
enum isl_dim_type type, unsigned first, unsigned n)
{
return isl_basic_map_eliminate(bset, type, first, n);
}
/* Don't assume equalities are in order, because align_divs
* may have changed the order of the divs.
*/
static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
{
int d, i;
unsigned total;
total = isl_space_dim(bmap->dim, isl_dim_all);
for (d = 0; d < total; ++d)
elim[d] = -1;
for (i = 0; i < bmap->n_eq; ++i) {
for (d = total - 1; d >= 0; --d) {
if (isl_int_is_zero(bmap->eq[i][1+d]))
continue;
elim[d] = i;
break;
}
}
}
static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
{
compute_elimination_index((struct isl_basic_map *)bset, elim);
}
static int reduced_using_equalities(isl_int *dst, isl_int *src,
struct isl_basic_map *bmap, int *elim)
{
int d;
int copied = 0;
unsigned total;
total = isl_space_dim(bmap->dim, isl_dim_all);
for (d = total - 1; d >= 0; --d) {
if (isl_int_is_zero(src[1+d]))
continue;
if (elim[d] == -1)
continue;
if (!copied) {
isl_seq_cpy(dst, src, 1 + total);
copied = 1;
}
isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
}
return copied;
}
static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
struct isl_basic_set *bset, int *elim)
{
return reduced_using_equalities(dst, src,
(struct isl_basic_map *)bset, elim);
}
static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
struct isl_basic_set *bset, struct isl_basic_set *context)
{
int i;
int *elim;
if (!bset || !context)
goto error;
if (context->n_eq == 0) {
isl_basic_set_free(context);
return bset;
}
bset = isl_basic_set_cow(bset);
if (!bset)
goto error;
elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
if (!elim)
goto error;
set_compute_elimination_index(context, elim);
for (i = 0; i < bset->n_eq; ++i)
set_reduced_using_equalities(bset->eq[i], bset->eq[i],
context, elim);
for (i = 0; i < bset->n_ineq; ++i)
set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
context, elim);
isl_basic_set_free(context);
free(elim);
bset = isl_basic_set_simplify(bset);
bset = isl_basic_set_finalize(bset);
return bset;
error:
isl_basic_set_free(bset);
isl_basic_set_free(context);
return NULL;
}
static struct isl_basic_set *remove_shifted_constraints(
struct isl_basic_set *bset, struct isl_basic_set *context)
{
unsigned int size;
isl_int ***index;
int bits;
int k, h, l;
isl_ctx *ctx;
if (!bset)
return NULL;
size = round_up(4 * (context->n_ineq+1) / 3 - 1);
if (size == 0)
return bset;
bits = ffs(size) - 1;
ctx = isl_basic_set_get_ctx(bset);
index = isl_calloc_array(ctx, isl_int **, size);
if (!index)
return bset;
for (k = 0; k < context->n_ineq; ++k) {
h = set_hash_index(index, size, bits, context, k);
index[h] = &context->ineq[k];
}
for (k = 0; k < bset->n_ineq; ++k) {
h = set_hash_index(index, size, bits, bset, k);
if (!index[h])
continue;
l = index[h] - &context->ineq[0];
if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
continue;
bset = isl_basic_set_cow(bset);
if (!bset)
goto error;
isl_basic_set_drop_inequality(bset, k);
--k;
}
free(index);
return bset;
error:
free(index);
return bset;
}
/* Remove constraints from "bmap" that are identical to constraints
* in "context" or that are more relaxed (greater constant term).
*
* We perform the test for shifted copies on the pure constraints
* in remove_shifted_constraints.
*/
static __isl_give isl_basic_map *isl_basic_map_remove_shifted_constraints(
__isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
{
isl_basic_set *bset, *bset_context;
if (!bmap || !context)
goto error;
if (bmap->n_ineq == 0 || context->n_ineq == 0) {
isl_basic_map_free(context);
return bmap;
}
context = isl_basic_map_align_divs(context, bmap);
bmap = isl_basic_map_align_divs(bmap, context);
bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
bset_context = isl_basic_map_underlying_set(context);
bset = remove_shifted_constraints(bset, bset_context);
isl_basic_set_free(bset_context);
bmap = isl_basic_map_overlying_set(bset, bmap);
return bmap;
error:
isl_basic_map_free(bmap);
isl_basic_map_free(context);
return NULL;
}
/* Does the (linear part of a) constraint "c" involve any of the "len"
* "relevant" dimensions?
*/
static int is_related(isl_int *c, int len, int *relevant)
{
int i;
for (i = 0; i < len; ++i) {
if (!relevant[i])
continue;
if (!isl_int_is_zero(c[i]))
return 1;
}
return 0;
}
/* Drop constraints from "bset" that do not involve any of
* the dimensions marked "relevant".
*/
static __isl_give isl_basic_set *drop_unrelated_constraints(
__isl_take isl_basic_set *bset, int *relevant)
{
int i, dim;
dim = isl_basic_set_dim(bset, isl_dim_set);
for (i = 0; i < dim; ++i)
if (!relevant[i])
break;
if (i >= dim)
return bset;
for (i = bset->n_eq - 1; i >= 0; --i)
if (!is_related(bset->eq[i] + 1, dim, relevant))
isl_basic_set_drop_equality(bset, i);
for (i = bset->n_ineq - 1; i >= 0; --i)
if (!is_related(bset->ineq[i] + 1, dim, relevant))
isl_basic_set_drop_inequality(bset, i);
return bset;
}
/* Update the groups in "group" based on the (linear part of a) constraint "c".
*
* In particular, for any variable involved in the constraint,
* find the actual group id from before and replace the group
* of the corresponding variable by the minimal group of all
* the variables involved in the constraint considered so far
* (if this minimum is smaller) or replace the minimum by this group
* (if the minimum is larger).
*
* At the end, all the variables in "c" will (indirectly) point
* to the minimal of the groups that they referred to originally.
*/
static void update_groups(int dim, int *group, isl_int *c)
{
int j;
int min = dim;
for (j = 0; j < dim; ++j) {
if (isl_int_is_zero(c[j]))
continue;
while (group[j] >= 0 && group[group[j]] != group[j])
group[j] = group[group[j]];
if (group[j] == min)
continue;
if (group[j] < min) {
if (min >= 0 && min < dim)
group[min] = group[j];
min = group[j];
} else
group[group[j]] = min;
}
}
/* Drop constraints from "context" that are irrelevant for computing
* the gist of "bset".
*
* In particular, drop constraints in variables that are not related
* to any of the variables involved in the constraints of "bset"
* in the sense that there is no sequence of constraints that connects them.
*
* We construct groups of variables that collect variables that
* (indirectly) appear in some common constraint of "context".
* Each group is identified by the first variable in the group,
* except for the special group of variables that appear in "bset"
* (or are related to those variables), which is identified by -1.
* If group[i] is equal to i (or -1), then the group of i is i (or -1),
* otherwise the group of i is the group of group[i].
*
* We first initialize the -1 group with the variables that appear in "bset".
* Then we initialize groups for the remaining variables.
* Then we iterate over the constraints of "context" and update the
* group of the variables in the constraint by the smallest group.
* Finally, we resolve indirect references to groups by running over
* the variables.
*
* After computing the groups, we drop constraints that do not involve
* any variables in the -1 group.
*/
static __isl_give isl_basic_set *drop_irrelevant_constraints(
__isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
{
isl_ctx *ctx;
int *group;
int dim;
int i, j;
int last;
if (!context || !bset)
return isl_basic_set_free(context);
dim = isl_basic_set_dim(bset, isl_dim_set);
ctx = isl_basic_set_get_ctx(bset);
group = isl_calloc_array(ctx, int, dim);
if (!group)
goto error;
for (i = 0; i < dim; ++i) {
for (j = 0; j < bset->n_eq; ++j)
if (!isl_int_is_zero(bset->eq[j][1 + i]))
break;
if (j < bset->n_eq) {
group[i] = -1;
continue;
}
for (j = 0; j < bset->n_ineq; ++j)
if (!isl_int_is_zero(bset->ineq[j][1 + i]))
break;
if (j < bset->n_ineq)
group[i] = -1;
}
last = -1;
for (i = 0; i < dim; ++i)
if (group[i] >= 0)
last = group[i] = i;
if (last < 0) {
free(group);
return context;
}
for (i = 0; i < context->n_eq; ++i)
update_groups(dim, group, context->eq[i] + 1);
for (i = 0; i < context->n_ineq; ++i)
update_groups(dim, group, context->ineq[i] + 1);
for (i = 0; i < dim; ++i)
if (group[i] >= 0)
group[i] = group[group[i]];
for (i = 0; i < dim; ++i)
group[i] = group[i] == -1;
context = drop_unrelated_constraints(context, group);
free(group);
return context;
error:
free(group);
return isl_basic_set_free(context);
}
/* Remove all information from bset that is redundant in the context
* of context. Both bset and context are assumed to be full-dimensional.
*
* We first remove the inequalities from "bset"
* that are obviously redundant with respect to some inequality in "context".
* Then we remove those constraints from "context" that have become
* irrelevant for computing the gist of "bset".
* Note that this removal of constraints cannot be replaced by
* a factorization because factors in "bset" may still be connected
* to each other through constraints in "context".
*
* If there are any inequalities left, we construct a tableau for
* the context and then add the inequalities of "bset".
* Before adding these inequalities, we freeze all constraints such that
* they won't be considered redundant in terms of the constraints of "bset".
* Then we detect all redundant constraints (among the
* constraints that weren't frozen), first by checking for redundancy in the
* the tableau and then by checking if replacing a constraint by its negation
* would lead to an empty set. This last step is fairly expensive
* and could be optimized by more reuse of the tableau.
* Finally, we update bset according to the results.
*/
static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
__isl_take isl_basic_set *context)
{
int i, k;
isl_basic_set *combined = NULL;
struct isl_tab *tab = NULL;
unsigned context_ineq;
unsigned total;
if (!bset || !context)
goto error;
if (isl_basic_set_is_universe(bset)) {
isl_basic_set_free(context);
return bset;
}
if (isl_basic_set_is_universe(context)) {
isl_basic_set_free(context);
return bset;
}
bset = remove_shifted_constraints(bset, context);
if (!bset)
goto error;
if (bset->n_ineq == 0)
goto done;
context = drop_irrelevant_constraints(context, bset);
if (!context)
goto error;
if (isl_basic_set_is_universe(context)) {
isl_basic_set_free(context);
return bset;
}
context_ineq = context->n_ineq;
combined = isl_basic_set_cow(isl_basic_set_copy(context));
combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
tab = isl_tab_from_basic_set(combined, 0);
for (i = 0; i < context_ineq; ++i)
if (isl_tab_freeze_constraint(tab, i) < 0)
goto error;
if (isl_tab_extend_cons(tab, bset->n_ineq) < 0)
goto error;
for (i = 0; i < bset->n_ineq; ++i)
if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
goto error;
bset = isl_basic_set_add_constraints(combined, bset, 0);
combined = NULL;
if (!bset)
goto error;
if (isl_tab_detect_redundant(tab) < 0)
goto error;
total = isl_basic_set_total_dim(bset);
for (i = context_ineq; i < bset->n_ineq; ++i) {
int is_empty;
if (tab->con[i].is_redundant)
continue;
tab->con[i].is_redundant = 1;
combined = isl_basic_set_dup(bset);
combined = isl_basic_set_update_from_tab(combined, tab);
combined = isl_basic_set_extend_constraints(combined, 0, 1);
k = isl_basic_set_alloc_inequality(combined);
if (k < 0)
goto error;
isl_seq_neg(combined->ineq[k], bset->ineq[i], 1 + total);
isl_int_sub_ui(combined->ineq[k][0], combined->ineq[k][0], 1);
is_empty = isl_basic_set_is_empty(combined);
if (is_empty < 0)
goto error;
isl_basic_set_free(combined);
combined = NULL;
if (!is_empty)
tab->con[i].is_redundant = 0;
}
for (i = 0; i < context_ineq; ++i)
tab->con[i].is_redundant = 1;
bset = isl_basic_set_update_from_tab(bset, tab);
if (bset) {
ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
}
isl_tab_free(tab);
done:
bset = isl_basic_set_simplify(bset);
bset = isl_basic_set_finalize(bset);
isl_basic_set_free(context);
return bset;
error:
isl_tab_free(tab);
isl_basic_set_free(combined);
isl_basic_set_free(context);
isl_basic_set_free(bset);
return NULL;
}
/* Remove all information from bset that is redundant in the context
* of context. In particular, equalities that are linear combinations
* of those in context are removed. Then the inequalities that are
* redundant in the context of the equalities and inequalities of
* context are removed.
*
* First of all, we drop those constraints from "context"
* that are irrelevant for computing the gist of "bset".
* Alternatively, we could factorize the intersection of "context" and "bset".
*
* We first compute the integer affine hull of the intersection,
* compute the gist inside this affine hull and then add back
* those equalities that are not implied by the context.
*
* If two constraints are mutually redundant, then uset_gist_full
* will remove the second of those constraints. We therefore first
* sort the constraints so that constraints not involving existentially
* quantified variables are given precedence over those that do.
* We have to perform this sorting before the variable compression,
* because that may effect the order of the variables.
*/
static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
__isl_take isl_basic_set *context)
{
isl_mat *eq;
isl_mat *T, *T2;
isl_basic_set *aff;
isl_basic_set *aff_context;
unsigned total;
if (!bset || !context)
goto error;
context = drop_irrelevant_constraints(context, bset);
aff = isl_basic_set_copy(bset);
aff = isl_basic_set_intersect(aff, isl_basic_set_copy(context));
aff = isl_basic_set_affine_hull(aff);
if (!aff)
goto error;
if (isl_basic_set_plain_is_empty(aff)) {
isl_basic_set_free(bset);
isl_basic_set_free(context);
return aff;
}
bset = isl_basic_set_sort_constraints(bset);
if (aff->n_eq == 0) {
isl_basic_set_free(aff);
return uset_gist_full(bset, context);
}
total = isl_basic_set_total_dim(bset);
eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
eq = isl_mat_cow(eq);
T = isl_mat_variable_compression(eq, &T2);
if (T && T->n_col == 0) {
isl_mat_free(T);
isl_mat_free(T2);
isl_basic_set_free(context);
isl_basic_set_free(aff);
return isl_basic_set_set_to_empty(bset);
}
aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
bset = isl_basic_set_preimage(bset, isl_mat_copy(T));
context = isl_basic_set_preimage(context, T);
bset = uset_gist_full(bset, context);
bset = isl_basic_set_preimage(bset, T2);
bset = isl_basic_set_intersect(bset, aff);
bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
if (bset) {
ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
}
return bset;
error:
isl_basic_set_free(bset);
isl_basic_set_free(context);
return NULL;
}
/* Normalize the divs in "bmap" in the context of the equalities in "context".
* We simply add the equalities in context to bmap and then do a regular
* div normalizations. Better results can be obtained by normalizing
* only the divs in bmap than do not also appear in context.
* We need to be careful to reduce the divs using the equalities
* so that later calls to isl_basic_map_overlying_set wouldn't introduce
* spurious constraints.
*/
static struct isl_basic_map *normalize_divs_in_context(
struct isl_basic_map *bmap, struct isl_basic_map *context)
{
int i;
unsigned total_context;
int div_eq;
div_eq = n_pure_div_eq(bmap);
if (div_eq == 0)
return bmap;
bmap = isl_basic_map_cow(bmap);
if (context->n_div > 0)
bmap = isl_basic_map_align_divs(bmap, context);
total_context = isl_basic_map_total_dim(context);
bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
for (i = 0; i < context->n_eq; ++i) {
int k;
k = isl_basic_map_alloc_equality(bmap);
if (k < 0)
return isl_basic_map_free(bmap);
isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
isl_seq_clr(bmap->eq[k] + 1 + total_context,
isl_basic_map_total_dim(bmap) - total_context);
}
bmap = isl_basic_map_gauss(bmap, NULL);
bmap = normalize_divs(bmap, NULL);
bmap = isl_basic_map_gauss(bmap, NULL);
return bmap;
}
/* Return a basic map that has the same intersection with "context" as "bmap"
* and that is as "simple" as possible.
*
* The core computation is performed on the pure constraints.
* When we add back the meaning of the integer divisions, we need
* to (re)introduce the div constraints. If we happen to have
* discovered that some of these integer divisions are equal to
* some affine combination of other variables, then these div
* constraints may end up getting simplified in terms of the equalities,
* resulting in extra inequalities on the other variables that
* may have been removed already or that may not even have been
* part of the input. We try and remove those constraints of
* this form that are most obviously redundant with respect to
* the context. We also remove those div constraints that are
* redundant with respect to the other constraints in the result.
*/
struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
struct isl_basic_map *context)
{
isl_basic_set *bset, *eq;
isl_basic_map *eq_bmap;
unsigned n_div, n_eq, n_ineq;
if (!bmap || !context)
goto error;
if (isl_basic_map_is_universe(bmap)) {
isl_basic_map_free(context);
return bmap;
}
if (isl_basic_map_plain_is_empty(context)) {
isl_space *space = isl_basic_map_get_space(bmap);
isl_basic_map_free(bmap);
isl_basic_map_free(context);
return isl_basic_map_universe(space);
}
if (isl_basic_map_plain_is_empty(bmap)) {
isl_basic_map_free(context);
return bmap;
}
bmap = isl_basic_map_remove_redundancies(bmap);
context = isl_basic_map_remove_redundancies(context);
if (!context)
goto error;
if (context->n_eq)
bmap = normalize_divs_in_context(bmap, context);
context = isl_basic_map_align_divs(context, bmap);
bmap = isl_basic_map_align_divs(bmap, context);
n_div = isl_basic_map_dim(bmap, isl_dim_div);
bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
isl_basic_map_underlying_set(isl_basic_map_copy(context)));
if (!bset || bset->n_eq == 0 || n_div == 0 ||
isl_basic_set_plain_is_empty(bset)) {
isl_basic_map_free(context);
return isl_basic_map_overlying_set(bset, bmap);
}
n_eq = bset->n_eq;
n_ineq = bset->n_ineq;
eq = isl_basic_set_copy(bset);
eq = isl_basic_set_cow(eq);
if (isl_basic_set_free_inequality(eq, n_ineq) < 0)
eq = isl_basic_set_free(eq);
if (isl_basic_set_free_equality(bset, n_eq) < 0)
bset = isl_basic_set_free(bset);
eq_bmap = isl_basic_map_overlying_set(eq, isl_basic_map_copy(bmap));
eq_bmap = isl_basic_map_remove_shifted_constraints(eq_bmap, context);
bmap = isl_basic_map_overlying_set(bset, bmap);
bmap = isl_basic_map_intersect(bmap, eq_bmap);
bmap = isl_basic_map_remove_redundancies(bmap);
return bmap;
error:
isl_basic_map_free(bmap);
isl_basic_map_free(context);
return NULL;
}
/*
* Assumes context has no implicit divs.
*/
__isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
__isl_take isl_basic_map *context)
{
int i;
if (!map || !context)
goto error;
if (isl_basic_map_plain_is_empty(context)) {
isl_space *space = isl_map_get_space(map);
isl_map_free(map);
isl_basic_map_free(context);
return isl_map_universe(space);
}
context = isl_basic_map_remove_redundancies(context);
map = isl_map_cow(map);
if (!map || !context)
goto error;
isl_assert(map->ctx, isl_space_is_equal(map->dim, context->dim), goto error);
map = isl_map_compute_divs(map);
if (!map)
goto error;
for (i = map->n - 1; i >= 0; --i) {
map->p[i] = isl_basic_map_gist(map->p[i],
isl_basic_map_copy(context));
if (!map->p[i])
goto error;
if (isl_basic_map_plain_is_empty(map->p[i])) {
isl_basic_map_free(map->p[i]);
if (i != map->n - 1)
map->p[i] = map->p[map->n - 1];
map->n--;
}
}
isl_basic_map_free(context);
ISL_F_CLR(map, ISL_MAP_NORMALIZED);
return map;
error:
isl_map_free(map);
isl_basic_map_free(context);
return NULL;
}
/* Return a map that has the same intersection with "context" as "map"
* and that is as "simple" as possible.
*
* If "map" is already the universe, then we cannot make it any simpler.
* Similarly, if "context" is the universe, then we cannot exploit it
* to simplify "map"
* If "map" and "context" are identical to each other, then we can
* return the corresponding universe.
*
* If none of these cases apply, we have to work a bit harder.
* During this computation, we make use of a single disjunct context,
* so if the original context consists of more than one disjunct
* then we need to approximate the context by a single disjunct set.
* Simply taking the simple hull may drop constraints that are
* only implicitly available in each disjunct. We therefore also
* look for constraints among those defining "map" that are valid
* for the context. These can then be used to simplify away
* the corresponding constraints in "map".
*/
static __isl_give isl_map *map_gist(__isl_take isl_map *map,
__isl_take isl_map *context)
{
int equal;
int is_universe;
isl_basic_map *hull;
is_universe = isl_map_plain_is_universe(map);
if (is_universe >= 0 && !is_universe)
is_universe = isl_map_plain_is_universe(context);
if (is_universe < 0)
goto error;
if (is_universe) {
isl_map_free(context);
return map;
}
equal = isl_map_plain_is_equal(map, context);
if (equal < 0)
goto error;
if (equal) {
isl_map *res = isl_map_universe(isl_map_get_space(map));
isl_map_free(map);
isl_map_free(context);
return res;
}
context = isl_map_compute_divs(context);
if (!context)
goto error;
if (isl_map_n_basic_map(context) == 1) {
hull = isl_map_simple_hull(context);
} else {
isl_ctx *ctx;
isl_map_list *list;
ctx = isl_map_get_ctx(map);
list = isl_map_list_alloc(ctx, 2);
list = isl_map_list_add(list, isl_map_copy(context));
list = isl_map_list_add(list, isl_map_copy(map));
hull = isl_map_unshifted_simple_hull_from_map_list(context,
list);
}
return isl_map_gist_basic_map(map, hull);
error:
isl_map_free(map);
isl_map_free(context);
return NULL;
}
__isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
__isl_take isl_map *context)
{
return isl_map_align_params_map_map_and(map, context, &map_gist);
}
struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
struct isl_basic_set *context)
{
return (struct isl_basic_set *)isl_basic_map_gist(
(struct isl_basic_map *)bset, (struct isl_basic_map *)context);
}
__isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
__isl_take isl_basic_set *context)
{
return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set,
(struct isl_basic_map *)context);
}
__isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
__isl_take isl_basic_set *context)
{
isl_space *space = isl_set_get_space(set);
isl_basic_set *dom_context = isl_basic_set_universe(space);
dom_context = isl_basic_set_intersect_params(dom_context, context);
return isl_set_gist_basic_set(set, dom_context);
}
__isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
__isl_take isl_set *context)
{
return (struct isl_set *)isl_map_gist((struct isl_map *)set,
(struct isl_map *)context);
}
/* Compute the gist of "bmap" with respect to the constraints "context"
* on the domain.
*/
__isl_give isl_basic_map *isl_basic_map_gist_domain(
__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *context)
{
isl_space *space = isl_basic_map_get_space(bmap);
isl_basic_map *bmap_context = isl_basic_map_universe(space);
bmap_context = isl_basic_map_intersect_domain(bmap_context, context);
return isl_basic_map_gist(bmap, bmap_context);
}
__isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
__isl_take isl_set *context)
{
isl_map *map_context = isl_map_universe(isl_map_get_space(map));
map_context = isl_map_intersect_domain(map_context, context);
return isl_map_gist(map, map_context);
}
__isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
__isl_take isl_set *context)
{
isl_map *map_context = isl_map_universe(isl_map_get_space(map));
map_context = isl_map_intersect_range(map_context, context);
return isl_map_gist(map, map_context);
}
__isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
__isl_take isl_set *context)
{
isl_map *map_context = isl_map_universe(isl_map_get_space(map));
map_context = isl_map_intersect_params(map_context, context);
return isl_map_gist(map, map_context);
}
__isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
__isl_take isl_set *context)
{
return isl_map_gist_params(set, context);
}
/* Quick check to see if two basic maps are disjoint.
* In particular, we reduce the equalities and inequalities of
* one basic map in the context of the equalities of the other
* basic map and check if we get a contradiction.
*/
int isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
__isl_keep isl_basic_map *bmap2)
{
struct isl_vec *v = NULL;
int *elim = NULL;
unsigned total;
int i;
if (!bmap1 || !bmap2)
return -1;
isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim),
return -1);
if (bmap1->n_div || bmap2->n_div)
return 0;
if (!bmap1->n_eq && !bmap2->n_eq)
return 0;
total = isl_space_dim(bmap1->dim, isl_dim_all);
if (total == 0)
return 0;
v = isl_vec_alloc(bmap1->ctx, 1 + total);
if (!v)
goto error;
elim = isl_alloc_array(bmap1->ctx, int, total);
if (!elim)
goto error;
compute_elimination_index(bmap1, elim);
for (i = 0; i < bmap2->n_eq; ++i) {
int reduced;
reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
bmap1, elim);
if (reduced && !isl_int_is_zero(v->block.data[0]) &&
isl_seq_first_non_zero(v->block.data + 1, total) == -1)
goto disjoint;
}
for (i = 0; i < bmap2->n_ineq; ++i) {
int reduced;
reduced = reduced_using_equalities(v->block.data,
bmap2->ineq[i], bmap1, elim);
if (reduced && isl_int_is_neg(v->block.data[0]) &&
isl_seq_first_non_zero(v->block.data + 1, total) == -1)
goto disjoint;
}
compute_elimination_index(bmap2, elim);
for (i = 0; i < bmap1->n_ineq; ++i) {
int reduced;
reduced = reduced_using_equalities(v->block.data,
bmap1->ineq[i], bmap2, elim);
if (reduced && isl_int_is_neg(v->block.data[0]) &&
isl_seq_first_non_zero(v->block.data + 1, total) == -1)
goto disjoint;
}
isl_vec_free(v);
free(elim);
return 0;
disjoint:
isl_vec_free(v);
free(elim);
return 1;
error:
isl_vec_free(v);
free(elim);
return -1;
}
int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
__isl_keep isl_basic_set *bset2)
{
return isl_basic_map_plain_is_disjoint((struct isl_basic_map *)bset1,
(struct isl_basic_map *)bset2);
}
/* Are "map1" and "map2" obviously disjoint?
*
* If one of them is empty or if they live in different spaces (ignoring
* parameters), then they are clearly disjoint.
*
* If they have different parameters, then we skip any further tests.
*
* If they are obviously equal, but not obviously empty, then we will
* not be able to detect if they are disjoint.
*
* Otherwise we check if each basic map in "map1" is obviously disjoint
* from each basic map in "map2".
*/
int isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
__isl_keep isl_map *map2)
{
int i, j;
int disjoint;
int intersect;
int match;
if (!map1 || !map2)
return -1;
disjoint = isl_map_plain_is_empty(map1);
if (disjoint < 0 || disjoint)
return disjoint;
disjoint = isl_map_plain_is_empty(map2);
if (disjoint < 0 || disjoint)
return disjoint;
match = isl_space_tuple_is_equal(map1->dim, isl_dim_in,
map2->dim, isl_dim_in);
if (match < 0 || !match)
return match < 0 ? -1 : 1;
match = isl_space_tuple_is_equal(map1->dim, isl_dim_out,
map2->dim, isl_dim_out);
if (match < 0 || !match)
return match < 0 ? -1 : 1;
match = isl_space_match(map1->dim, isl_dim_param,
map2->dim, isl_dim_param);
if (match < 0 || !match)
return match < 0 ? -1 : 0;
intersect = isl_map_plain_is_equal(map1, map2);
if (intersect < 0 || intersect)
return intersect < 0 ? -1 : 0;
for (i = 0; i < map1->n; ++i) {
for (j = 0; j < map2->n; ++j) {
int d = isl_basic_map_plain_is_disjoint(map1->p[i],
map2->p[j]);
if (d != 1)
return d;
}
}
return 1;
}
/* Are "map1" and "map2" disjoint?
*
* They are disjoint if they are "obviously disjoint" or if one of them
* is empty. Otherwise, they are not disjoint if one of them is universal.
* If none of these cases apply, we compute the intersection and see if
* the result is empty.
*/
int isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
{
int disjoint;
int intersect;
isl_map *test;
disjoint = isl_map_plain_is_disjoint(map1, map2);
if (disjoint < 0 || disjoint)
return disjoint;
disjoint = isl_map_is_empty(map1);
if (disjoint < 0 || disjoint)
return disjoint;
disjoint = isl_map_is_empty(map2);
if (disjoint < 0 || disjoint)
return disjoint;
intersect = isl_map_plain_is_universe(map1);
if (intersect < 0 || intersect)
return intersect < 0 ? -1 : 0;
intersect = isl_map_plain_is_universe(map2);
if (intersect < 0 || intersect)
return intersect < 0 ? -1 : 0;
test = isl_map_intersect(isl_map_copy(map1), isl_map_copy(map2));
disjoint = isl_map_is_empty(test);
isl_map_free(test);
return disjoint;
}
/* Are "bmap1" and "bmap2" disjoint?
*
* They are disjoint if they are "obviously disjoint" or if one of them
* is empty. Otherwise, they are not disjoint if one of them is universal.
* If none of these cases apply, we compute the intersection and see if
* the result is empty.
*/
int isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1,
__isl_keep isl_basic_map *bmap2)
{
int disjoint;
int intersect;
isl_basic_map *test;
disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2);
if (disjoint < 0 || disjoint)
return disjoint;
disjoint = isl_basic_map_is_empty(bmap1);
if (disjoint < 0 || disjoint)
return disjoint;
disjoint = isl_basic_map_is_empty(bmap2);
if (disjoint < 0 || disjoint)
return disjoint;
intersect = isl_basic_map_is_universe(bmap1);
if (intersect < 0 || intersect)
return intersect < 0 ? -1 : 0;
intersect = isl_basic_map_is_universe(bmap2);
if (intersect < 0 || intersect)
return intersect < 0 ? -1 : 0;
test = isl_basic_map_intersect(isl_basic_map_copy(bmap1),
isl_basic_map_copy(bmap2));
disjoint = isl_basic_map_is_empty(test);
isl_basic_map_free(test);
return disjoint;
}
/* Are "bset1" and "bset2" disjoint?
*/
int isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1,
__isl_keep isl_basic_set *bset2)
{
return isl_basic_map_is_disjoint(bset1, bset2);
}
int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
__isl_keep isl_set *set2)
{
return isl_map_plain_is_disjoint((struct isl_map *)set1,
(struct isl_map *)set2);
}
/* Are "set1" and "set2" disjoint?
*/
int isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
{
return isl_map_is_disjoint(set1, set2);
}
int isl_set_fast_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
{
return isl_set_plain_is_disjoint(set1, set2);
}
/* Check if we can combine a given div with lower bound l and upper
* bound u with some other div and if so return that other div.
* Otherwise return -1.
*
* We first check that
* - the bounds are opposites of each other (except for the constant
* term)
* - the bounds do not reference any other div
* - no div is defined in terms of this div
*
* Let m be the size of the range allowed on the div by the bounds.
* That is, the bounds are of the form
*
* e <= a <= e + m - 1
*
* with e some expression in the other variables.
* We look for another div b such that no third div is defined in terms
* of this second div b and such that in any constraint that contains
* a (except for the given lower and upper bound), also contains b
* with a coefficient that is m times that of b.
* That is, all constraints (execpt for the lower and upper bound)
* are of the form
*
* e + f (a + m b) >= 0
*
* If so, we return b so that "a + m b" can be replaced by
* a single div "c = a + m b".
*/
static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
unsigned div, unsigned l, unsigned u)
{
int i, j;
unsigned dim;
int coalesce = -1;
if (bmap->n_div <= 1)
return -1;
dim = isl_space_dim(bmap->dim, isl_dim_all);
if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
return -1;
if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
bmap->n_div - div - 1) != -1)
return -1;
if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
dim + bmap->n_div))
return -1;
for (i = 0; i < bmap->n_div; ++i) {
if (isl_int_is_zero(bmap->div[i][0]))
continue;
if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
return -1;
}
isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
if (isl_int_is_neg(bmap->ineq[l][0])) {
isl_int_sub(bmap->ineq[l][0],
bmap->ineq[l][0], bmap->ineq[u][0]);
bmap = isl_basic_map_copy(bmap);
bmap = isl_basic_map_set_to_empty(bmap);
isl_basic_map_free(bmap);
return -1;
}
isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
for (i = 0; i < bmap->n_div; ++i) {
if (i == div)
continue;
if (!pairs[i])
continue;
for (j = 0; j < bmap->n_div; ++j) {
if (isl_int_is_zero(bmap->div[j][0]))
continue;
if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
break;
}
if (j < bmap->n_div)
continue;
for (j = 0; j < bmap->n_ineq; ++j) {
int valid;
if (j == l || j == u)
continue;
if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
continue;
if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
break;
isl_int_mul(bmap->ineq[j][1 + dim + div],
bmap->ineq[j][1 + dim + div],
bmap->ineq[l][0]);
valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
bmap->ineq[j][1 + dim + i]);
isl_int_divexact(bmap->ineq[j][1 + dim + div],
bmap->ineq[j][1 + dim + div],
bmap->ineq[l][0]);
if (!valid)
break;
}
if (j < bmap->n_ineq)
continue;
coalesce = i;
break;
}
isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
return coalesce;
}
/* Given a lower and an upper bound on div i, construct an inequality
* that when nonnegative ensures that this pair of bounds always allows
* for an integer value of the given div.
* The lower bound is inequality l, while the upper bound is inequality u.
* The constructed inequality is stored in ineq.
* g, fl, fu are temporary scalars.
*
* Let the upper bound be
*
* -n_u a + e_u >= 0
*
* and the lower bound
*
* n_l a + e_l >= 0
*
* Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
* We have
*
* - f_u e_l <= f_u f_l g a <= f_l e_u
*
* Since all variables are integer valued, this is equivalent to
*
* - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
*
* If this interval is at least f_u f_l g, then it contains at least
* one integer value for a.
* That is, the test constraint is
*
* f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
*/
static void construct_test_ineq(struct isl_basic_map *bmap, int i,
int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
{
unsigned dim;
dim = isl_space_dim(bmap->dim, isl_dim_all);
isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
isl_int_neg(fu, fu);
isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
1 + dim + bmap->n_div);
isl_int_add(ineq[0], ineq[0], fl);
isl_int_add(ineq[0], ineq[0], fu);
isl_int_sub_ui(ineq[0], ineq[0], 1);
isl_int_mul(g, g, fl);
isl_int_mul(g, g, fu);
isl_int_sub(ineq[0], ineq[0], g);
}
/* Remove more kinds of divs that are not strictly needed.
* In particular, if all pairs of lower and upper bounds on a div
* are such that they allow at least one integer value of the div,
* the we can eliminate the div using Fourier-Motzkin without
* introducing any spurious solutions.
*/
static struct isl_basic_map *drop_more_redundant_divs(
struct isl_basic_map *bmap, int *pairs, int n)
{
struct isl_tab *tab = NULL;
struct isl_vec *vec = NULL;
unsigned dim;
int remove = -1;
isl_int g, fl, fu;
isl_int_init(g);
isl_int_init(fl);
isl_int_init(fu);
if (!bmap)
goto error;
dim = isl_space_dim(bmap->dim, isl_dim_all);
vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
if (!vec)
goto error;
tab = isl_tab_from_basic_map(bmap, 0);
while (n > 0) {
int i, l, u;
int best = -1;
enum isl_lp_result res;
for (i = 0; i < bmap->n_div; ++i) {
if (!pairs[i])
continue;
if (best >= 0 && pairs[best] <= pairs[i])
continue;
best = i;
}
i = best;
for (l = 0; l < bmap->n_ineq; ++l) {
if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
continue;
for (u = 0; u < bmap->n_ineq; ++u) {
if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
continue;
construct_test_ineq(bmap, i, l, u,
vec->el, g, fl, fu);
res = isl_tab_min(tab, vec->el,
bmap->ctx->one, &g, NULL, 0);
if (res == isl_lp_error)
goto error;
if (res == isl_lp_empty) {
bmap = isl_basic_map_set_to_empty(bmap);
break;
}
if (res != isl_lp_ok || isl_int_is_neg(g))
break;
}
if (u < bmap->n_ineq)
break;
}
if (l == bmap->n_ineq) {
remove = i;
break;
}
pairs[i] = 0;
--n;
}
isl_tab_free(tab);
isl_vec_free(vec);
isl_int_clear(g);
isl_int_clear(fl);
isl_int_clear(fu);
free(pairs);
if (remove < 0)
return bmap;
bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
return isl_basic_map_drop_redundant_divs(bmap);
error:
free(pairs);
isl_basic_map_free(bmap);
isl_tab_free(tab);
isl_vec_free(vec);
isl_int_clear(g);
isl_int_clear(fl);
isl_int_clear(fu);
return NULL;
}
/* Given a pair of divs div1 and div2 such that, expect for the lower bound l
* and the upper bound u, div1 always occurs together with div2 in the form
* (div1 + m div2), where m is the constant range on the variable div1
* allowed by l and u, replace the pair div1 and div2 by a single
* div that is equal to div1 + m div2.
*
* The new div will appear in the location that contains div2.
* We need to modify all constraints that contain
* div2 = (div - div1) / m
* (If a constraint does not contain div2, it will also not contain div1.)
* If the constraint also contains div1, then we know they appear
* as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
* i.e., the coefficient of div is f.
*
* Otherwise, we first need to introduce div1 into the constraint.
* Let the l be
*
* div1 + f >=0
*
* and u
*
* -div1 + f' >= 0
*
* A lower bound on div2
*
* n div2 + t >= 0
*
* can be replaced by
*
* (n * (m div 2 + div1) + m t + n f)/g >= 0
*
* with g = gcd(m,n).
* An upper bound
*
* -n div2 + t >= 0
*
* can be replaced by
*
* (-n * (m div2 + div1) + m t + n f')/g >= 0
*
* These constraint are those that we would obtain from eliminating
* div1 using Fourier-Motzkin.
*
* After all constraints have been modified, we drop the lower and upper
* bound and then drop div1.
*/
static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
unsigned div1, unsigned div2, unsigned l, unsigned u)
{
isl_int a;
isl_int b;
isl_int m;
unsigned dim, total;
int i;
dim = isl_space_dim(bmap->dim, isl_dim_all);
total = 1 + dim + bmap->n_div;
isl_int_init(a);
isl_int_init(b);
isl_int_init(m);
isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
isl_int_add_ui(m, m, 1);
for (i = 0; i < bmap->n_ineq; ++i) {
if (i == l || i == u)
continue;
if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
continue;
if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
isl_int_divexact(a, m, b);
isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
if (isl_int_is_pos(b)) {
isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
b, bmap->ineq[l], total);
} else {
isl_int_neg(b, b);
isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
b, bmap->ineq[u], total);
}
}
isl_int_set(bmap->ineq[i][1 + dim + div2],
bmap->ineq[i][1 + dim + div1]);
isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
}
isl_int_clear(a);
isl_int_clear(b);
isl_int_clear(m);
if (l > u) {
isl_basic_map_drop_inequality(bmap, l);
isl_basic_map_drop_inequality(bmap, u);
} else {
isl_basic_map_drop_inequality(bmap, u);
isl_basic_map_drop_inequality(bmap, l);
}
bmap = isl_basic_map_drop_div(bmap, div1);
return bmap;
}
/* First check if we can coalesce any pair of divs and
* then continue with dropping more redundant divs.
*
* We loop over all pairs of lower and upper bounds on a div
* with coefficient 1 and -1, respectively, check if there
* is any other div "c" with which we can coalesce the div
* and if so, perform the coalescing.
*/
static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
struct isl_basic_map *bmap, int *pairs, int n)
{
int i, l, u;
unsigned dim;
dim = isl_space_dim(bmap->dim, isl_dim_all);
for (i = 0; i < bmap->n_div; ++i) {
if (!pairs[i])
continue;
for (l = 0; l < bmap->n_ineq; ++l) {
if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
continue;
for (u = 0; u < bmap->n_ineq; ++u) {
int c;
if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
continue;
c = div_find_coalesce(bmap, pairs, i, l, u);
if (c < 0)
continue;
free(pairs);
bmap = coalesce_divs(bmap, i, c, l, u);
return isl_basic_map_drop_redundant_divs(bmap);
}
}
}
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
return bmap;
return drop_more_redundant_divs(bmap, pairs, n);
}
/* Remove divs that are not strictly needed.
* In particular, if a div only occurs positively (or negatively)
* in constraints, then it can simply be dropped.
* Also, if a div occurs in only two constraints and if moreover
* those two constraints are opposite to each other, except for the constant
* term and if the sum of the constant terms is such that for any value
* of the other values, there is always at least one integer value of the
* div, i.e., if one plus this sum is greater than or equal to
* the (absolute value) of the coefficent of the div in the constraints,
* then we can also simply drop the div.
*
* We skip divs that appear in equalities or in the definition of other divs.
* Divs that appear in the definition of other divs usually occur in at least
* 4 constraints, but the constraints may have been simplified.
*
* If any divs are left after these simple checks then we move on
* to more complicated cases in drop_more_redundant_divs.
*/
struct isl_basic_map *isl_basic_map_drop_redundant_divs(
struct isl_basic_map *bmap)
{
int i, j;
unsigned off;
int *pairs = NULL;
int n = 0;
if (!bmap)
goto error;
if (bmap->n_div == 0)
return bmap;
off = isl_space_dim(bmap->dim, isl_dim_all);
pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
if (!pairs)
goto error;
for (i = 0; i < bmap->n_div; ++i) {
int pos, neg;
int last_pos, last_neg;
int redundant;
int defined;
defined = !isl_int_is_zero(bmap->div[i][0]);
for (j = i; j < bmap->n_div; ++j)
if (!isl_int_is_zero(bmap->div[j][1 + 1 + off + i]))
break;
if (j < bmap->n_div)
continue;
for (j = 0; j < bmap->n_eq; ++j)
if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
break;
if (j < bmap->n_eq)
continue;
++n;
pos = neg = 0;
for (j = 0; j < bmap->n_ineq; ++j) {
if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
last_pos = j;
++pos;
}
if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
last_neg = j;
++neg;
}
}
pairs[i] = pos * neg;
if (pairs[i] == 0) {
for (j = bmap->n_ineq - 1; j >= 0; --j)
if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
isl_basic_map_drop_inequality(bmap, j);
bmap = isl_basic_map_drop_div(bmap, i);
free(pairs);
return isl_basic_map_drop_redundant_divs(bmap);
}
if (pairs[i] != 1)
continue;
if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
bmap->ineq[last_neg] + 1,
off + bmap->n_div))
continue;
isl_int_add(bmap->ineq[last_pos][0],
bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
isl_int_add_ui(bmap->ineq[last_pos][0],
bmap->ineq[last_pos][0], 1);
redundant = isl_int_ge(bmap->ineq[last_pos][0],
bmap->ineq[last_pos][1+off+i]);
isl_int_sub_ui(bmap->ineq[last_pos][0],
bmap->ineq[last_pos][0], 1);
isl_int_sub(bmap->ineq[last_pos][0],
bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
if (!redundant) {
if (defined ||
!ok_to_set_div_from_bound(bmap, i, last_pos)) {
pairs[i] = 0;
--n;
continue;
}
bmap = set_div_from_lower_bound(bmap, i, last_pos);
bmap = isl_basic_map_simplify(bmap);
free(pairs);
return isl_basic_map_drop_redundant_divs(bmap);
}
if (last_pos > last_neg) {
isl_basic_map_drop_inequality(bmap, last_pos);
isl_basic_map_drop_inequality(bmap, last_neg);
} else {
isl_basic_map_drop_inequality(bmap, last_neg);
isl_basic_map_drop_inequality(bmap, last_pos);
}
bmap = isl_basic_map_drop_div(bmap, i);
free(pairs);
return isl_basic_map_drop_redundant_divs(bmap);
}
if (n > 0)
return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
free(pairs);
return bmap;
error:
free(pairs);
isl_basic_map_free(bmap);
return NULL;
}
struct isl_basic_set *isl_basic_set_drop_redundant_divs(
struct isl_basic_set *bset)
{
return (struct isl_basic_set *)
isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
}
struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
{
int i;
if (!map)
return NULL;
for (i = 0; i < map->n; ++i) {
map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
if (!map->p[i])
goto error;
}
ISL_F_CLR(map, ISL_MAP_NORMALIZED);
return map;
error:
isl_map_free(map);
return NULL;
}
struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
{
return (struct isl_set *)
isl_map_drop_redundant_divs((struct isl_map *)set);
}
/* Does "bmap" satisfy any equality that involves more than 2 variables
* and/or has coefficients different from -1 and 1?
*/
static int has_multiple_var_equality(__isl_keep isl_basic_map *bmap)
{
int i;
unsigned total;
total = isl_basic_map_dim(bmap, isl_dim_all);
for (i = 0; i < bmap->n_eq; ++i) {
int j, k;
j = isl_seq_first_non_zero(bmap->eq[i] + 1, total);
if (j < 0)
continue;
if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
!isl_int_is_negone(bmap->eq[i][1 + j]))
return 1;
j += 1;
k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
if (k < 0)
continue;
j += k;
if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
!isl_int_is_negone(bmap->eq[i][1 + j]))
return 1;
j += 1;
k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
if (k >= 0)
return 1;
}
return 0;
}
/* Remove any common factor g from the constraint coefficients in "v".
* The constant term is stored in the first position and is replaced
* by floor(c/g). If any common factor is removed and if this results
* in a tightening of the constraint, then set *tightened.
*/
static __isl_give isl_vec *normalize_constraint(__isl_take isl_vec *v,
int *tightened)
{
isl_ctx *ctx;
if (!v)
return NULL;
ctx = isl_vec_get_ctx(v);
isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
if (isl_int_is_zero(ctx->normalize_gcd))
return v;
if (isl_int_is_one(ctx->normalize_gcd))
return v;
v = isl_vec_cow(v);
if (!v)
return NULL;
if (tightened && !isl_int_is_divisible_by(v->el[0], ctx->normalize_gcd))
*tightened = 1;
isl_int_fdiv_q(v->el[0], v->el[0], ctx->normalize_gcd);
isl_seq_scale_down(v->el + 1, v->el + 1, ctx->normalize_gcd,
v->size - 1);
return v;
}
/* If "bmap" is an integer set that satisfies any equality involving
* more than 2 variables and/or has coefficients different from -1 and 1,
* then use variable compression to reduce the coefficients by removing
* any (hidden) common factor.
* In particular, apply the variable compression to each constraint,
* factor out any common factor in the non-constant coefficients and
* then apply the inverse of the compression.
* At the end, we mark the basic map as having reduced constants.
* If this flag is still set on the next invocation of this function,
* then we skip the computation.
*
* Removing a common factor may result in a tightening of some of
* the constraints. If this happens, then we may end up with two
* opposite inequalities that can be replaced by an equality.
* We therefore call isl_basic_map_detect_inequality_pairs,
* which checks for such pairs of inequalities as well as eliminate_divs_eq
* if such a pair was found.
*/
__isl_give isl_basic_map *isl_basic_map_reduce_coefficients(
__isl_take isl_basic_map *bmap)
{
unsigned total;
isl_ctx *ctx;
isl_vec *v;
isl_mat *eq, *T, *T2;
int i;
int tightened;
if (!bmap)
return NULL;
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS))
return bmap;
if (isl_basic_map_is_rational(bmap))
return bmap;
if (bmap->n_eq == 0)
return bmap;
if (!has_multiple_var_equality(bmap))
return bmap;
total = isl_basic_map_dim(bmap, isl_dim_all);
ctx = isl_basic_map_get_ctx(bmap);
v = isl_vec_alloc(ctx, 1 + total);
if (!v)
return isl_basic_map_free(bmap);
eq = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
T = isl_mat_variable_compression(eq, &T2);
if (!T || !T2)
goto error;
if (T->n_col == 0) {
isl_mat_free(T);
isl_mat_free(T2);
isl_vec_free(v);
return isl_basic_map_set_to_empty(bmap);
}
tightened = 0;
for (i = 0; i < bmap->n_ineq; ++i) {
isl_seq_cpy(v->el, bmap->ineq[i], 1 + total);
v = isl_vec_mat_product(v, isl_mat_copy(T));
v = normalize_constraint(v, &tightened);
v = isl_vec_mat_product(v, isl_mat_copy(T2));
if (!v)
goto error;
isl_seq_cpy(bmap->ineq[i], v->el, 1 + total);
}
isl_mat_free(T);
isl_mat_free(T2);
isl_vec_free(v);
ISL_F_SET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
if (tightened) {
int progress = 0;
bmap = isl_basic_map_detect_inequality_pairs(bmap, &progress);
if (progress)
bmap = eliminate_divs_eq(bmap, &progress);
}
return bmap;
error:
isl_mat_free(T);
isl_mat_free(T2);
isl_vec_free(v);
return isl_basic_map_free(bmap);
}
/* Shift the integer division at position "div" of "bmap" by "shift".
*
* That is, if the integer division has the form
*
* floor(f(x)/d)
*
* then replace it by
*
* floor((f(x) + shift * d)/d) - shift
*/
__isl_give isl_basic_map *isl_basic_map_shift_div(
__isl_take isl_basic_map *bmap, int div, isl_int shift)
{
int i;
unsigned total;
if (!bmap)
return NULL;
total = isl_basic_map_dim(bmap, isl_dim_all);
total -= isl_basic_map_dim(bmap, isl_dim_div);
isl_int_addmul(bmap->div[div][1], shift, bmap->div[div][0]);
for (i = 0; i < bmap->n_eq; ++i) {
if (isl_int_is_zero(bmap->eq[i][1 + total + div]))
continue;
isl_int_submul(bmap->eq[i][0],
shift, bmap->eq[i][1 + total + div]);
}
for (i = 0; i < bmap->n_ineq; ++i) {
if (isl_int_is_zero(bmap->ineq[i][1 + total + div]))
continue;
isl_int_submul(bmap->ineq[i][0],
shift, bmap->ineq[i][1 + total + div]);
}
for (i = 0; i < bmap->n_div; ++i) {
if (isl_int_is_zero(bmap->div[i][0]))
continue;
if (isl_int_is_zero(bmap->div[i][1 + 1 + total + div]))
continue;
isl_int_submul(bmap->div[i][1],
shift, bmap->div[i][1 + 1 + total + div]);
}
return bmap;
}