forked from OSchip/llvm-project
2668 lines
80 KiB
C
2668 lines
80 KiB
C
/*
|
||
* Copyright 2008-2009 Katholieke Universiteit Leuven
|
||
* Copyright 2010 INRIA Saclay
|
||
* Copyright 2012-2013 Ecole Normale Superieure
|
||
* Copyright 2014 INRIA Rocquencourt
|
||
*
|
||
* Use of this software is governed by the MIT license
|
||
*
|
||
* Written by Sven Verdoolaege, K.U.Leuven, Departement
|
||
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
|
||
* and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
|
||
* ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
|
||
* and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
|
||
* and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
|
||
* B.P. 105 - 78153 Le Chesnay, France
|
||
*/
|
||
|
||
#include "isl_map_private.h"
|
||
#include <isl_seq.h>
|
||
#include <isl/options.h>
|
||
#include "isl_tab.h"
|
||
#include <isl_mat_private.h>
|
||
#include <isl_local_space_private.h>
|
||
#include <isl_vec_private.h>
|
||
#include <isl_aff_private.h>
|
||
|
||
#define STATUS_ERROR -1
|
||
#define STATUS_REDUNDANT 1
|
||
#define STATUS_VALID 2
|
||
#define STATUS_SEPARATE 3
|
||
#define STATUS_CUT 4
|
||
#define STATUS_ADJ_EQ 5
|
||
#define STATUS_ADJ_INEQ 6
|
||
|
||
static int status_in(isl_int *ineq, struct isl_tab *tab)
|
||
{
|
||
enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
|
||
switch (type) {
|
||
default:
|
||
case isl_ineq_error: return STATUS_ERROR;
|
||
case isl_ineq_redundant: return STATUS_VALID;
|
||
case isl_ineq_separate: return STATUS_SEPARATE;
|
||
case isl_ineq_cut: return STATUS_CUT;
|
||
case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
|
||
case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
|
||
}
|
||
}
|
||
|
||
/* Compute the position of the equalities of basic map "bmap_i"
|
||
* with respect to the basic map represented by "tab_j".
|
||
* The resulting array has twice as many entries as the number
|
||
* of equalities corresponding to the two inequalties to which
|
||
* each equality corresponds.
|
||
*/
|
||
static int *eq_status_in(__isl_keep isl_basic_map *bmap_i,
|
||
struct isl_tab *tab_j)
|
||
{
|
||
int k, l;
|
||
int *eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq);
|
||
unsigned dim;
|
||
|
||
if (!eq)
|
||
return NULL;
|
||
|
||
dim = isl_basic_map_total_dim(bmap_i);
|
||
for (k = 0; k < bmap_i->n_eq; ++k) {
|
||
for (l = 0; l < 2; ++l) {
|
||
isl_seq_neg(bmap_i->eq[k], bmap_i->eq[k], 1+dim);
|
||
eq[2 * k + l] = status_in(bmap_i->eq[k], tab_j);
|
||
if (eq[2 * k + l] == STATUS_ERROR)
|
||
goto error;
|
||
}
|
||
if (eq[2 * k] == STATUS_SEPARATE ||
|
||
eq[2 * k + 1] == STATUS_SEPARATE)
|
||
break;
|
||
}
|
||
|
||
return eq;
|
||
error:
|
||
free(eq);
|
||
return NULL;
|
||
}
|
||
|
||
/* Compute the position of the inequalities of basic map "bmap_i"
|
||
* (also represented by "tab_i", if not NULL) with respect to the basic map
|
||
* represented by "tab_j".
|
||
*/
|
||
static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i,
|
||
struct isl_tab *tab_i, struct isl_tab *tab_j)
|
||
{
|
||
int k;
|
||
unsigned n_eq = bmap_i->n_eq;
|
||
int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq);
|
||
|
||
if (!ineq)
|
||
return NULL;
|
||
|
||
for (k = 0; k < bmap_i->n_ineq; ++k) {
|
||
if (tab_i && isl_tab_is_redundant(tab_i, n_eq + k)) {
|
||
ineq[k] = STATUS_REDUNDANT;
|
||
continue;
|
||
}
|
||
ineq[k] = status_in(bmap_i->ineq[k], tab_j);
|
||
if (ineq[k] == STATUS_ERROR)
|
||
goto error;
|
||
if (ineq[k] == STATUS_SEPARATE)
|
||
break;
|
||
}
|
||
|
||
return ineq;
|
||
error:
|
||
free(ineq);
|
||
return NULL;
|
||
}
|
||
|
||
static int any(int *con, unsigned len, int status)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < len ; ++i)
|
||
if (con[i] == status)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
static int count(int *con, unsigned len, int status)
|
||
{
|
||
int i;
|
||
int c = 0;
|
||
|
||
for (i = 0; i < len ; ++i)
|
||
if (con[i] == status)
|
||
c++;
|
||
return c;
|
||
}
|
||
|
||
static int all(int *con, unsigned len, int status)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < len ; ++i) {
|
||
if (con[i] == STATUS_REDUNDANT)
|
||
continue;
|
||
if (con[i] != status)
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Internal information associated to a basic map in a map
|
||
* that is to be coalesced by isl_map_coalesce.
|
||
*
|
||
* "bmap" is the basic map itself (or NULL if "removed" is set)
|
||
* "tab" is the corresponding tableau (or NULL if "removed" is set)
|
||
* "hull_hash" identifies the affine space in which "bmap" lives.
|
||
* "removed" is set if this basic map has been removed from the map
|
||
* "simplify" is set if this basic map may have some unknown integer
|
||
* divisions that were not present in the input basic maps. The basic
|
||
* map should then be simplified such that we may be able to find
|
||
* a definition among the constraints.
|
||
*
|
||
* "eq" and "ineq" are only set if we are currently trying to coalesce
|
||
* this basic map with another basic map, in which case they represent
|
||
* the position of the inequalities of this basic map with respect to
|
||
* the other basic map. The number of elements in the "eq" array
|
||
* is twice the number of equalities in the "bmap", corresponding
|
||
* to the two inequalities that make up each equality.
|
||
*/
|
||
struct isl_coalesce_info {
|
||
isl_basic_map *bmap;
|
||
struct isl_tab *tab;
|
||
uint32_t hull_hash;
|
||
int removed;
|
||
int simplify;
|
||
int *eq;
|
||
int *ineq;
|
||
};
|
||
|
||
/* Compute the hash of the (apparent) affine hull of info->bmap (with
|
||
* the existentially quantified variables removed) and store it
|
||
* in info->hash.
|
||
*/
|
||
static int coalesce_info_set_hull_hash(struct isl_coalesce_info *info)
|
||
{
|
||
isl_basic_map *hull;
|
||
unsigned n_div;
|
||
|
||
hull = isl_basic_map_copy(info->bmap);
|
||
hull = isl_basic_map_plain_affine_hull(hull);
|
||
n_div = isl_basic_map_dim(hull, isl_dim_div);
|
||
hull = isl_basic_map_drop_constraints_involving_dims(hull,
|
||
isl_dim_div, 0, n_div);
|
||
info->hull_hash = isl_basic_map_get_hash(hull);
|
||
isl_basic_map_free(hull);
|
||
|
||
return hull ? 0 : -1;
|
||
}
|
||
|
||
/* Free all the allocated memory in an array
|
||
* of "n" isl_coalesce_info elements.
|
||
*/
|
||
static void clear_coalesce_info(int n, struct isl_coalesce_info *info)
|
||
{
|
||
int i;
|
||
|
||
if (!info)
|
||
return;
|
||
|
||
for (i = 0; i < n; ++i) {
|
||
isl_basic_map_free(info[i].bmap);
|
||
isl_tab_free(info[i].tab);
|
||
}
|
||
|
||
free(info);
|
||
}
|
||
|
||
/* Drop the basic map represented by "info".
|
||
* That is, clear the memory associated to the entry and
|
||
* mark it as having been removed.
|
||
*/
|
||
static void drop(struct isl_coalesce_info *info)
|
||
{
|
||
info->bmap = isl_basic_map_free(info->bmap);
|
||
isl_tab_free(info->tab);
|
||
info->tab = NULL;
|
||
info->removed = 1;
|
||
}
|
||
|
||
/* Exchange the information in "info1" with that in "info2".
|
||
*/
|
||
static void exchange(struct isl_coalesce_info *info1,
|
||
struct isl_coalesce_info *info2)
|
||
{
|
||
struct isl_coalesce_info info;
|
||
|
||
info = *info1;
|
||
*info1 = *info2;
|
||
*info2 = info;
|
||
}
|
||
|
||
/* This type represents the kind of change that has been performed
|
||
* while trying to coalesce two basic maps.
|
||
*
|
||
* isl_change_none: nothing was changed
|
||
* isl_change_drop_first: the first basic map was removed
|
||
* isl_change_drop_second: the second basic map was removed
|
||
* isl_change_fuse: the two basic maps were replaced by a new basic map.
|
||
*/
|
||
enum isl_change {
|
||
isl_change_error = -1,
|
||
isl_change_none = 0,
|
||
isl_change_drop_first,
|
||
isl_change_drop_second,
|
||
isl_change_fuse,
|
||
};
|
||
|
||
/* Update "change" based on an interchange of the first and the second
|
||
* basic map. That is, interchange isl_change_drop_first and
|
||
* isl_change_drop_second.
|
||
*/
|
||
static enum isl_change invert_change(enum isl_change change)
|
||
{
|
||
switch (change) {
|
||
case isl_change_error:
|
||
return isl_change_error;
|
||
case isl_change_none:
|
||
return isl_change_none;
|
||
case isl_change_drop_first:
|
||
return isl_change_drop_second;
|
||
case isl_change_drop_second:
|
||
return isl_change_drop_first;
|
||
case isl_change_fuse:
|
||
return isl_change_fuse;
|
||
}
|
||
}
|
||
|
||
/* Add the valid constraints of the basic map represented by "info"
|
||
* to "bmap". "len" is the size of the constraints.
|
||
* If only one of the pair of inequalities that make up an equality
|
||
* is valid, then add that inequality.
|
||
*/
|
||
static __isl_give isl_basic_map *add_valid_constraints(
|
||
__isl_take isl_basic_map *bmap, struct isl_coalesce_info *info,
|
||
unsigned len)
|
||
{
|
||
int k, l;
|
||
|
||
if (!bmap)
|
||
return NULL;
|
||
|
||
for (k = 0; k < info->bmap->n_eq; ++k) {
|
||
if (info->eq[2 * k] == STATUS_VALID &&
|
||
info->eq[2 * k + 1] == STATUS_VALID) {
|
||
l = isl_basic_map_alloc_equality(bmap);
|
||
if (l < 0)
|
||
return isl_basic_map_free(bmap);
|
||
isl_seq_cpy(bmap->eq[l], info->bmap->eq[k], len);
|
||
} else if (info->eq[2 * k] == STATUS_VALID) {
|
||
l = isl_basic_map_alloc_inequality(bmap);
|
||
if (l < 0)
|
||
return isl_basic_map_free(bmap);
|
||
isl_seq_neg(bmap->ineq[l], info->bmap->eq[k], len);
|
||
} else if (info->eq[2 * k + 1] == STATUS_VALID) {
|
||
l = isl_basic_map_alloc_inequality(bmap);
|
||
if (l < 0)
|
||
return isl_basic_map_free(bmap);
|
||
isl_seq_cpy(bmap->ineq[l], info->bmap->eq[k], len);
|
||
}
|
||
}
|
||
|
||
for (k = 0; k < info->bmap->n_ineq; ++k) {
|
||
if (info->ineq[k] != STATUS_VALID)
|
||
continue;
|
||
l = isl_basic_map_alloc_inequality(bmap);
|
||
if (l < 0)
|
||
return isl_basic_map_free(bmap);
|
||
isl_seq_cpy(bmap->ineq[l], info->bmap->ineq[k], len);
|
||
}
|
||
|
||
return bmap;
|
||
}
|
||
|
||
/* Is "bmap" defined by a number of (non-redundant) constraints that
|
||
* is greater than the number of constraints of basic maps i and j combined?
|
||
* Equalities are counted as two inequalities.
|
||
*/
|
||
static int number_of_constraints_increases(int i, int j,
|
||
struct isl_coalesce_info *info,
|
||
__isl_keep isl_basic_map *bmap, struct isl_tab *tab)
|
||
{
|
||
int k, n_old, n_new;
|
||
|
||
n_old = 2 * info[i].bmap->n_eq + info[i].bmap->n_ineq;
|
||
n_old += 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq;
|
||
|
||
n_new = 2 * bmap->n_eq;
|
||
for (k = 0; k < bmap->n_ineq; ++k)
|
||
if (!isl_tab_is_redundant(tab, bmap->n_eq + k))
|
||
++n_new;
|
||
|
||
return n_new > n_old;
|
||
}
|
||
|
||
/* Replace the pair of basic maps i and j by the basic map bounded
|
||
* by the valid constraints in both basic maps and the constraints
|
||
* in extra (if not NULL).
|
||
* Place the fused basic map in the position that is the smallest of i and j.
|
||
*
|
||
* If "detect_equalities" is set, then look for equalities encoded
|
||
* as pairs of inequalities.
|
||
* If "check_number" is set, then the original basic maps are only
|
||
* replaced if the total number of constraints does not increase.
|
||
* While the number of integer divisions in the two basic maps
|
||
* is assumed to be the same, the actual definitions may be different.
|
||
* We only copy the definition from one of the basic map if it is
|
||
* the same as that of the other basic map. Otherwise, we mark
|
||
* the integer division as unknown and schedule for the basic map
|
||
* to be simplified in an attempt to recover the integer division definition.
|
||
*/
|
||
static enum isl_change fuse(int i, int j, struct isl_coalesce_info *info,
|
||
__isl_keep isl_mat *extra, int detect_equalities, int check_number)
|
||
{
|
||
int k, l;
|
||
struct isl_basic_map *fused = NULL;
|
||
struct isl_tab *fused_tab = NULL;
|
||
unsigned total = isl_basic_map_total_dim(info[i].bmap);
|
||
unsigned extra_rows = extra ? extra->n_row : 0;
|
||
unsigned n_eq, n_ineq;
|
||
|
||
if (j < i)
|
||
return fuse(j, i, info, extra, detect_equalities, check_number);
|
||
|
||
n_eq = info[i].bmap->n_eq + info[j].bmap->n_eq;
|
||
n_ineq = info[i].bmap->n_ineq + info[j].bmap->n_ineq;
|
||
fused = isl_basic_map_alloc_space(isl_space_copy(info[i].bmap->dim),
|
||
info[i].bmap->n_div, n_eq, n_eq + n_ineq + extra_rows);
|
||
fused = add_valid_constraints(fused, &info[i], 1 + total);
|
||
fused = add_valid_constraints(fused, &info[j], 1 + total);
|
||
if (!fused)
|
||
goto error;
|
||
|
||
for (k = 0; k < info[i].bmap->n_div; ++k) {
|
||
int l = isl_basic_map_alloc_div(fused);
|
||
if (l < 0)
|
||
goto error;
|
||
if (isl_seq_eq(info[i].bmap->div[k], info[j].bmap->div[k],
|
||
1 + 1 + total)) {
|
||
isl_seq_cpy(fused->div[l], info[i].bmap->div[k],
|
||
1 + 1 + total);
|
||
} else {
|
||
isl_int_set_si(fused->div[l][0], 0);
|
||
info[i].simplify = 1;
|
||
}
|
||
}
|
||
|
||
for (k = 0; k < extra_rows; ++k) {
|
||
l = isl_basic_map_alloc_inequality(fused);
|
||
if (l < 0)
|
||
goto error;
|
||
isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
|
||
}
|
||
|
||
if (detect_equalities)
|
||
fused = isl_basic_map_detect_inequality_pairs(fused, NULL);
|
||
fused = isl_basic_map_gauss(fused, NULL);
|
||
ISL_F_SET(fused, ISL_BASIC_MAP_FINAL);
|
||
if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) &&
|
||
ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
|
||
ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
|
||
|
||
fused_tab = isl_tab_from_basic_map(fused, 0);
|
||
if (isl_tab_detect_redundant(fused_tab) < 0)
|
||
goto error;
|
||
|
||
if (check_number &&
|
||
number_of_constraints_increases(i, j, info, fused, fused_tab)) {
|
||
isl_tab_free(fused_tab);
|
||
isl_basic_map_free(fused);
|
||
return isl_change_none;
|
||
}
|
||
|
||
info[i].simplify |= info[j].simplify;
|
||
isl_basic_map_free(info[i].bmap);
|
||
info[i].bmap = fused;
|
||
isl_tab_free(info[i].tab);
|
||
info[i].tab = fused_tab;
|
||
drop(&info[j]);
|
||
|
||
return isl_change_fuse;
|
||
error:
|
||
isl_tab_free(fused_tab);
|
||
isl_basic_map_free(fused);
|
||
return isl_change_error;
|
||
}
|
||
|
||
/* Given a pair of basic maps i and j such that all constraints are either
|
||
* "valid" or "cut", check if the facets corresponding to the "cut"
|
||
* constraints of i lie entirely within basic map j.
|
||
* If so, replace the pair by the basic map consisting of the valid
|
||
* constraints in both basic maps.
|
||
* Checking whether the facet lies entirely within basic map j
|
||
* is performed by checking whether the constraints of basic map j
|
||
* are valid for the facet. These tests are performed on a rational
|
||
* tableau to avoid the theoretical possibility that a constraint
|
||
* that was considered to be a cut constraint for the entire basic map i
|
||
* happens to be considered to be a valid constraint for the facet,
|
||
* even though it cuts off the same rational points.
|
||
*
|
||
* To see that we are not introducing any extra points, call the
|
||
* two basic maps A and B and the resulting map U and let x
|
||
* be an element of U \setminus ( A \cup B ).
|
||
* A line connecting x with an element of A \cup B meets a facet F
|
||
* of either A or B. Assume it is a facet of B and let c_1 be
|
||
* the corresponding facet constraint. We have c_1(x) < 0 and
|
||
* so c_1 is a cut constraint. This implies that there is some
|
||
* (possibly rational) point x' satisfying the constraints of A
|
||
* and the opposite of c_1 as otherwise c_1 would have been marked
|
||
* valid for A. The line connecting x and x' meets a facet of A
|
||
* in a (possibly rational) point that also violates c_1, but this
|
||
* is impossible since all cut constraints of B are valid for all
|
||
* cut facets of A.
|
||
* In case F is a facet of A rather than B, then we can apply the
|
||
* above reasoning to find a facet of B separating x from A \cup B first.
|
||
*/
|
||
static enum isl_change check_facets(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
int k, l;
|
||
struct isl_tab_undo *snap, *snap2;
|
||
unsigned n_eq = info[i].bmap->n_eq;
|
||
|
||
snap = isl_tab_snap(info[i].tab);
|
||
if (isl_tab_mark_rational(info[i].tab) < 0)
|
||
return isl_change_error;
|
||
snap2 = isl_tab_snap(info[i].tab);
|
||
|
||
for (k = 0; k < info[i].bmap->n_ineq; ++k) {
|
||
if (info[i].ineq[k] != STATUS_CUT)
|
||
continue;
|
||
if (isl_tab_select_facet(info[i].tab, n_eq + k) < 0)
|
||
return isl_change_error;
|
||
for (l = 0; l < info[j].bmap->n_ineq; ++l) {
|
||
int stat;
|
||
if (info[j].ineq[l] != STATUS_CUT)
|
||
continue;
|
||
stat = status_in(info[j].bmap->ineq[l], info[i].tab);
|
||
if (stat != STATUS_VALID)
|
||
break;
|
||
}
|
||
if (isl_tab_rollback(info[i].tab, snap2) < 0)
|
||
return isl_change_error;
|
||
if (l < info[j].bmap->n_ineq)
|
||
break;
|
||
}
|
||
|
||
if (k < info[i].bmap->n_ineq) {
|
||
if (isl_tab_rollback(info[i].tab, snap) < 0)
|
||
return isl_change_error;
|
||
return isl_change_none;
|
||
}
|
||
return fuse(i, j, info, NULL, 0, 0);
|
||
}
|
||
|
||
/* Check if info->bmap contains the basic map represented
|
||
* by the tableau "tab".
|
||
* For each equality, we check both the constraint itself
|
||
* (as an inequality) and its negation. Make sure the
|
||
* equality is returned to its original state before returning.
|
||
*/
|
||
static int contains(struct isl_coalesce_info *info, struct isl_tab *tab)
|
||
{
|
||
int k;
|
||
unsigned dim;
|
||
isl_basic_map *bmap = info->bmap;
|
||
|
||
dim = isl_basic_map_total_dim(bmap);
|
||
for (k = 0; k < bmap->n_eq; ++k) {
|
||
int stat;
|
||
isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
|
||
stat = status_in(bmap->eq[k], tab);
|
||
isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
|
||
if (stat != STATUS_VALID)
|
||
return 0;
|
||
stat = status_in(bmap->eq[k], tab);
|
||
if (stat != STATUS_VALID)
|
||
return 0;
|
||
}
|
||
|
||
for (k = 0; k < bmap->n_ineq; ++k) {
|
||
int stat;
|
||
if (info->ineq[k] == STATUS_REDUNDANT)
|
||
continue;
|
||
stat = status_in(bmap->ineq[k], tab);
|
||
if (stat != STATUS_VALID)
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Basic map "i" has an inequality (say "k") that is adjacent
|
||
* to some inequality of basic map "j". All the other inequalities
|
||
* are valid for "j".
|
||
* Check if basic map "j" forms an extension of basic map "i".
|
||
*
|
||
* Note that this function is only called if some of the equalities or
|
||
* inequalities of basic map "j" do cut basic map "i". The function is
|
||
* correct even if there are no such cut constraints, but in that case
|
||
* the additional checks performed by this function are overkill.
|
||
*
|
||
* In particular, we replace constraint k, say f >= 0, by constraint
|
||
* f <= -1, add the inequalities of "j" that are valid for "i"
|
||
* and check if the result is a subset of basic map "j".
|
||
* If so, then we know that this result is exactly equal to basic map "j"
|
||
* since all its constraints are valid for basic map "j".
|
||
* By combining the valid constraints of "i" (all equalities and all
|
||
* inequalities except "k") and the valid constraints of "j" we therefore
|
||
* obtain a basic map that is equal to their union.
|
||
* In this case, there is no need to perform a rollback of the tableau
|
||
* since it is going to be destroyed in fuse().
|
||
*
|
||
*
|
||
* |\__ |\__
|
||
* | \__ | \__
|
||
* | \_ => | \__
|
||
* |_______| _ |_________\
|
||
*
|
||
*
|
||
* |\ |\
|
||
* | \ | \
|
||
* | \ | \
|
||
* | | | \
|
||
* | ||\ => | \
|
||
* | || \ | \
|
||
* | || | | |
|
||
* |__||_/ |_____/
|
||
*/
|
||
static enum isl_change is_adj_ineq_extension(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
int k;
|
||
struct isl_tab_undo *snap;
|
||
unsigned n_eq = info[i].bmap->n_eq;
|
||
unsigned total = isl_basic_map_total_dim(info[i].bmap);
|
||
int r;
|
||
|
||
if (isl_tab_extend_cons(info[i].tab, 1 + info[j].bmap->n_ineq) < 0)
|
||
return isl_change_error;
|
||
|
||
for (k = 0; k < info[i].bmap->n_ineq; ++k)
|
||
if (info[i].ineq[k] == STATUS_ADJ_INEQ)
|
||
break;
|
||
if (k >= info[i].bmap->n_ineq)
|
||
isl_die(isl_basic_map_get_ctx(info[i].bmap), isl_error_internal,
|
||
"info[i].ineq should have exactly one STATUS_ADJ_INEQ",
|
||
return isl_change_error);
|
||
|
||
snap = isl_tab_snap(info[i].tab);
|
||
|
||
if (isl_tab_unrestrict(info[i].tab, n_eq + k) < 0)
|
||
return isl_change_error;
|
||
|
||
isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
|
||
isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
|
||
r = isl_tab_add_ineq(info[i].tab, info[i].bmap->ineq[k]);
|
||
isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
|
||
isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
|
||
if (r < 0)
|
||
return isl_change_error;
|
||
|
||
for (k = 0; k < info[j].bmap->n_ineq; ++k) {
|
||
if (info[j].ineq[k] != STATUS_VALID)
|
||
continue;
|
||
if (isl_tab_add_ineq(info[i].tab, info[j].bmap->ineq[k]) < 0)
|
||
return isl_change_error;
|
||
}
|
||
|
||
if (contains(&info[j], info[i].tab))
|
||
return fuse(i, j, info, NULL, 0, 0);
|
||
|
||
if (isl_tab_rollback(info[i].tab, snap) < 0)
|
||
return isl_change_error;
|
||
|
||
return isl_change_none;
|
||
}
|
||
|
||
|
||
/* Both basic maps have at least one inequality with and adjacent
|
||
* (but opposite) inequality in the other basic map.
|
||
* Check that there are no cut constraints and that there is only
|
||
* a single pair of adjacent inequalities.
|
||
* If so, we can replace the pair by a single basic map described
|
||
* by all but the pair of adjacent inequalities.
|
||
* Any additional points introduced lie strictly between the two
|
||
* adjacent hyperplanes and can therefore be integral.
|
||
*
|
||
* ____ _____
|
||
* / ||\ / \
|
||
* / || \ / \
|
||
* \ || \ => \ \
|
||
* \ || / \ /
|
||
* \___||_/ \_____/
|
||
*
|
||
* The test for a single pair of adjancent inequalities is important
|
||
* for avoiding the combination of two basic maps like the following
|
||
*
|
||
* /|
|
||
* / |
|
||
* /__|
|
||
* _____
|
||
* | |
|
||
* | |
|
||
* |___|
|
||
*
|
||
* If there are some cut constraints on one side, then we may
|
||
* still be able to fuse the two basic maps, but we need to perform
|
||
* some additional checks in is_adj_ineq_extension.
|
||
*/
|
||
static enum isl_change check_adj_ineq(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
int count_i, count_j;
|
||
int cut_i, cut_j;
|
||
|
||
count_i = count(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_INEQ);
|
||
count_j = count(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_INEQ);
|
||
|
||
if (count_i != 1 && count_j != 1)
|
||
return isl_change_none;
|
||
|
||
cut_i = any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT) ||
|
||
any(info[i].ineq, info[i].bmap->n_ineq, STATUS_CUT);
|
||
cut_j = any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_CUT) ||
|
||
any(info[j].ineq, info[j].bmap->n_ineq, STATUS_CUT);
|
||
|
||
if (!cut_i && !cut_j && count_i == 1 && count_j == 1)
|
||
return fuse(i, j, info, NULL, 0, 0);
|
||
|
||
if (count_i == 1 && !cut_i)
|
||
return is_adj_ineq_extension(i, j, info);
|
||
|
||
if (count_j == 1 && !cut_j)
|
||
return is_adj_ineq_extension(j, i, info);
|
||
|
||
return isl_change_none;
|
||
}
|
||
|
||
/* Basic map "i" has an inequality "k" that is adjacent to some equality
|
||
* of basic map "j". All the other inequalities are valid for "j".
|
||
* Check if basic map "j" forms an extension of basic map "i".
|
||
*
|
||
* In particular, we relax constraint "k", compute the corresponding
|
||
* facet and check whether it is included in the other basic map.
|
||
* If so, we know that relaxing the constraint extends the basic
|
||
* map with exactly the other basic map (we already know that this
|
||
* other basic map is included in the extension, because there
|
||
* were no "cut" inequalities in "i") and we can replace the
|
||
* two basic maps by this extension.
|
||
* Each integer division that does not have exactly the same
|
||
* definition in "i" and "j" is marked unknown and the basic map
|
||
* is scheduled to be simplified in an attempt to recover
|
||
* the integer division definition.
|
||
* Place this extension in the position that is the smallest of i and j.
|
||
* ____ _____
|
||
* / || / |
|
||
* / || / |
|
||
* \ || => \ |
|
||
* \ || \ |
|
||
* \___|| \____|
|
||
*/
|
||
static enum isl_change is_adj_eq_extension(int i, int j, int k,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
int change = isl_change_none;
|
||
int super;
|
||
struct isl_tab_undo *snap, *snap2;
|
||
unsigned n_eq = info[i].bmap->n_eq;
|
||
|
||
if (isl_tab_is_equality(info[i].tab, n_eq + k))
|
||
return isl_change_none;
|
||
|
||
snap = isl_tab_snap(info[i].tab);
|
||
if (isl_tab_relax(info[i].tab, n_eq + k) < 0)
|
||
return isl_change_error;
|
||
snap2 = isl_tab_snap(info[i].tab);
|
||
if (isl_tab_select_facet(info[i].tab, n_eq + k) < 0)
|
||
return isl_change_error;
|
||
super = contains(&info[j], info[i].tab);
|
||
if (super) {
|
||
int l;
|
||
unsigned total;
|
||
|
||
if (isl_tab_rollback(info[i].tab, snap2) < 0)
|
||
return isl_change_error;
|
||
info[i].bmap = isl_basic_map_cow(info[i].bmap);
|
||
if (!info[i].bmap)
|
||
return isl_change_error;
|
||
total = isl_basic_map_total_dim(info[i].bmap);
|
||
for (l = 0; l < info[i].bmap->n_div; ++l)
|
||
if (!isl_seq_eq(info[i].bmap->div[l],
|
||
info[j].bmap->div[l], 1 + 1 + total)) {
|
||
isl_int_set_si(info[i].bmap->div[l][0], 0);
|
||
info[i].simplify = 1;
|
||
}
|
||
isl_int_add_ui(info[i].bmap->ineq[k][0],
|
||
info[i].bmap->ineq[k][0], 1);
|
||
ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_FINAL);
|
||
drop(&info[j]);
|
||
if (j < i)
|
||
exchange(&info[i], &info[j]);
|
||
change = isl_change_fuse;
|
||
} else
|
||
if (isl_tab_rollback(info[i].tab, snap) < 0)
|
||
return isl_change_error;
|
||
|
||
return change;
|
||
}
|
||
|
||
/* Data structure that keeps track of the wrapping constraints
|
||
* and of information to bound the coefficients of those constraints.
|
||
*
|
||
* bound is set if we want to apply a bound on the coefficients
|
||
* mat contains the wrapping constraints
|
||
* max is the bound on the coefficients (if bound is set)
|
||
*/
|
||
struct isl_wraps {
|
||
int bound;
|
||
isl_mat *mat;
|
||
isl_int max;
|
||
};
|
||
|
||
/* Update wraps->max to be greater than or equal to the coefficients
|
||
* in the equalities and inequalities of info->bmap that can be removed
|
||
* if we end up applying wrapping.
|
||
*/
|
||
static void wraps_update_max(struct isl_wraps *wraps,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
int k;
|
||
isl_int max_k;
|
||
unsigned total = isl_basic_map_total_dim(info->bmap);
|
||
|
||
isl_int_init(max_k);
|
||
|
||
for (k = 0; k < info->bmap->n_eq; ++k) {
|
||
if (info->eq[2 * k] == STATUS_VALID &&
|
||
info->eq[2 * k + 1] == STATUS_VALID)
|
||
continue;
|
||
isl_seq_abs_max(info->bmap->eq[k] + 1, total, &max_k);
|
||
if (isl_int_abs_gt(max_k, wraps->max))
|
||
isl_int_set(wraps->max, max_k);
|
||
}
|
||
|
||
for (k = 0; k < info->bmap->n_ineq; ++k) {
|
||
if (info->ineq[k] == STATUS_VALID ||
|
||
info->ineq[k] == STATUS_REDUNDANT)
|
||
continue;
|
||
isl_seq_abs_max(info->bmap->ineq[k] + 1, total, &max_k);
|
||
if (isl_int_abs_gt(max_k, wraps->max))
|
||
isl_int_set(wraps->max, max_k);
|
||
}
|
||
|
||
isl_int_clear(max_k);
|
||
}
|
||
|
||
/* Initialize the isl_wraps data structure.
|
||
* If we want to bound the coefficients of the wrapping constraints,
|
||
* we set wraps->max to the largest coefficient
|
||
* in the equalities and inequalities that can be removed if we end up
|
||
* applying wrapping.
|
||
*/
|
||
static void wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat,
|
||
struct isl_coalesce_info *info, int i, int j)
|
||
{
|
||
isl_ctx *ctx;
|
||
|
||
wraps->bound = 0;
|
||
wraps->mat = mat;
|
||
if (!mat)
|
||
return;
|
||
ctx = isl_mat_get_ctx(mat);
|
||
wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx);
|
||
if (!wraps->bound)
|
||
return;
|
||
isl_int_init(wraps->max);
|
||
isl_int_set_si(wraps->max, 0);
|
||
wraps_update_max(wraps, &info[i]);
|
||
wraps_update_max(wraps, &info[j]);
|
||
}
|
||
|
||
/* Free the contents of the isl_wraps data structure.
|
||
*/
|
||
static void wraps_free(struct isl_wraps *wraps)
|
||
{
|
||
isl_mat_free(wraps->mat);
|
||
if (wraps->bound)
|
||
isl_int_clear(wraps->max);
|
||
}
|
||
|
||
/* Is the wrapping constraint in row "row" allowed?
|
||
*
|
||
* If wraps->bound is set, we check that none of the coefficients
|
||
* is greater than wraps->max.
|
||
*/
|
||
static int allow_wrap(struct isl_wraps *wraps, int row)
|
||
{
|
||
int i;
|
||
|
||
if (!wraps->bound)
|
||
return 1;
|
||
|
||
for (i = 1; i < wraps->mat->n_col; ++i)
|
||
if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Wrap "ineq" (or its opposite if "negate" is set) around "bound"
|
||
* to include "set" and add the result in position "w" of "wraps".
|
||
* "len" is the total number of coefficients in "bound" and "ineq".
|
||
* Return 1 on success, 0 on failure and -1 on error.
|
||
* Wrapping can fail if the result of wrapping is equal to "bound"
|
||
* or if we want to bound the sizes of the coefficients and
|
||
* the wrapped constraint does not satisfy this bound.
|
||
*/
|
||
static int add_wrap(struct isl_wraps *wraps, int w, isl_int *bound,
|
||
isl_int *ineq, unsigned len, __isl_keep isl_set *set, int negate)
|
||
{
|
||
isl_seq_cpy(wraps->mat->row[w], bound, len);
|
||
if (negate) {
|
||
isl_seq_neg(wraps->mat->row[w + 1], ineq, len);
|
||
ineq = wraps->mat->row[w + 1];
|
||
}
|
||
if (!isl_set_wrap_facet(set, wraps->mat->row[w], ineq))
|
||
return -1;
|
||
if (isl_seq_eq(wraps->mat->row[w], bound, len))
|
||
return 0;
|
||
if (!allow_wrap(wraps, w))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* For each constraint in info->bmap that is not redundant (as determined
|
||
* by info->tab) and that is not a valid constraint for the other basic map,
|
||
* wrap the constraint around "bound" such that it includes the whole
|
||
* set "set" and append the resulting constraint to "wraps".
|
||
* Note that the constraints that are valid for the other basic map
|
||
* will be added to the combined basic map by default, so there is
|
||
* no need to wrap them.
|
||
* The caller wrap_in_facets even relies on this function not wrapping
|
||
* any constraints that are already valid.
|
||
* "wraps" is assumed to have been pre-allocated to the appropriate size.
|
||
* wraps->n_row is the number of actual wrapped constraints that have
|
||
* been added.
|
||
* If any of the wrapping problems results in a constraint that is
|
||
* identical to "bound", then this means that "set" is unbounded in such
|
||
* way that no wrapping is possible. If this happens then wraps->n_row
|
||
* is reset to zero.
|
||
* Similarly, if we want to bound the coefficients of the wrapping
|
||
* constraints and a newly added wrapping constraint does not
|
||
* satisfy the bound, then wraps->n_row is also reset to zero.
|
||
*/
|
||
static int add_wraps(struct isl_wraps *wraps, struct isl_coalesce_info *info,
|
||
isl_int *bound, __isl_keep isl_set *set)
|
||
{
|
||
int l, m;
|
||
int w;
|
||
int added;
|
||
isl_basic_map *bmap = info->bmap;
|
||
unsigned len = 1 + isl_basic_map_total_dim(bmap);
|
||
|
||
w = wraps->mat->n_row;
|
||
|
||
for (l = 0; l < bmap->n_ineq; ++l) {
|
||
if (info->ineq[l] == STATUS_VALID ||
|
||
info->ineq[l] == STATUS_REDUNDANT)
|
||
continue;
|
||
if (isl_seq_is_neg(bound, bmap->ineq[l], len))
|
||
continue;
|
||
if (isl_seq_eq(bound, bmap->ineq[l], len))
|
||
continue;
|
||
if (isl_tab_is_redundant(info->tab, bmap->n_eq + l))
|
||
continue;
|
||
|
||
added = add_wrap(wraps, w, bound, bmap->ineq[l], len, set, 0);
|
||
if (added < 0)
|
||
return -1;
|
||
if (!added)
|
||
goto unbounded;
|
||
++w;
|
||
}
|
||
for (l = 0; l < bmap->n_eq; ++l) {
|
||
if (isl_seq_is_neg(bound, bmap->eq[l], len))
|
||
continue;
|
||
if (isl_seq_eq(bound, bmap->eq[l], len))
|
||
continue;
|
||
|
||
for (m = 0; m < 2; ++m) {
|
||
if (info->eq[2 * l + m] == STATUS_VALID)
|
||
continue;
|
||
added = add_wrap(wraps, w, bound, bmap->eq[l], len,
|
||
set, !m);
|
||
if (added < 0)
|
||
return -1;
|
||
if (!added)
|
||
goto unbounded;
|
||
++w;
|
||
}
|
||
}
|
||
|
||
wraps->mat->n_row = w;
|
||
return 0;
|
||
unbounded:
|
||
wraps->mat->n_row = 0;
|
||
return 0;
|
||
}
|
||
|
||
/* Check if the constraints in "wraps" from "first" until the last
|
||
* are all valid for the basic set represented by "tab".
|
||
* If not, wraps->n_row is set to zero.
|
||
*/
|
||
static int check_wraps(__isl_keep isl_mat *wraps, int first,
|
||
struct isl_tab *tab)
|
||
{
|
||
int i;
|
||
|
||
for (i = first; i < wraps->n_row; ++i) {
|
||
enum isl_ineq_type type;
|
||
type = isl_tab_ineq_type(tab, wraps->row[i]);
|
||
if (type == isl_ineq_error)
|
||
return -1;
|
||
if (type == isl_ineq_redundant)
|
||
continue;
|
||
wraps->n_row = 0;
|
||
return 0;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return a set that corresponds to the non-redundant constraints
|
||
* (as recorded in tab) of bmap.
|
||
*
|
||
* It's important to remove the redundant constraints as some
|
||
* of the other constraints may have been modified after the
|
||
* constraints were marked redundant.
|
||
* In particular, a constraint may have been relaxed.
|
||
* Redundant constraints are ignored when a constraint is relaxed
|
||
* and should therefore continue to be ignored ever after.
|
||
* Otherwise, the relaxation might be thwarted by some of
|
||
* these constraints.
|
||
*
|
||
* Update the underlying set to ensure that the dimension doesn't change.
|
||
* Otherwise the integer divisions could get dropped if the tab
|
||
* turns out to be empty.
|
||
*/
|
||
static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap,
|
||
struct isl_tab *tab)
|
||
{
|
||
isl_basic_set *bset;
|
||
|
||
bmap = isl_basic_map_copy(bmap);
|
||
bset = isl_basic_map_underlying_set(bmap);
|
||
bset = isl_basic_set_cow(bset);
|
||
bset = isl_basic_set_update_from_tab(bset, tab);
|
||
return isl_set_from_basic_set(bset);
|
||
}
|
||
|
||
/* Wrap the constraints of info->bmap that bound the facet defined
|
||
* by inequality "k" around (the opposite of) this inequality to
|
||
* include "set". "bound" may be used to store the negated inequality.
|
||
* Since the wrapped constraints are not guaranteed to contain the whole
|
||
* of info->bmap, we check them in check_wraps.
|
||
* If any of the wrapped constraints turn out to be invalid, then
|
||
* check_wraps will reset wrap->n_row to zero.
|
||
*/
|
||
static int add_wraps_around_facet(struct isl_wraps *wraps,
|
||
struct isl_coalesce_info *info, int k, isl_int *bound,
|
||
__isl_keep isl_set *set)
|
||
{
|
||
struct isl_tab_undo *snap;
|
||
int n;
|
||
unsigned total = isl_basic_map_total_dim(info->bmap);
|
||
|
||
snap = isl_tab_snap(info->tab);
|
||
|
||
if (isl_tab_select_facet(info->tab, info->bmap->n_eq + k) < 0)
|
||
return -1;
|
||
if (isl_tab_detect_redundant(info->tab) < 0)
|
||
return -1;
|
||
|
||
isl_seq_neg(bound, info->bmap->ineq[k], 1 + total);
|
||
|
||
n = wraps->mat->n_row;
|
||
if (add_wraps(wraps, info, bound, set) < 0)
|
||
return -1;
|
||
|
||
if (isl_tab_rollback(info->tab, snap) < 0)
|
||
return -1;
|
||
if (check_wraps(wraps->mat, n, info->tab) < 0)
|
||
return -1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Given a basic set i with a constraint k that is adjacent to
|
||
* basic set j, check if we can wrap
|
||
* both the facet corresponding to k (if "wrap_facet" is set) and basic map j
|
||
* (always) around their ridges to include the other set.
|
||
* If so, replace the pair of basic sets by their union.
|
||
*
|
||
* All constraints of i (except k) are assumed to be valid or
|
||
* cut constraints for j.
|
||
* Wrapping the cut constraints to include basic map j may result
|
||
* in constraints that are no longer valid of basic map i
|
||
* we have to check that the resulting wrapping constraints are valid for i.
|
||
* If "wrap_facet" is not set, then all constraints of i (except k)
|
||
* are assumed to be valid for j.
|
||
* ____ _____
|
||
* / | / \
|
||
* / || / |
|
||
* \ || => \ |
|
||
* \ || \ |
|
||
* \___|| \____|
|
||
*
|
||
*/
|
||
static enum isl_change can_wrap_in_facet(int i, int j, int k,
|
||
struct isl_coalesce_info *info, int wrap_facet)
|
||
{
|
||
enum isl_change change = isl_change_none;
|
||
struct isl_wraps wraps;
|
||
isl_ctx *ctx;
|
||
isl_mat *mat;
|
||
struct isl_set *set_i = NULL;
|
||
struct isl_set *set_j = NULL;
|
||
struct isl_vec *bound = NULL;
|
||
unsigned total = isl_basic_map_total_dim(info[i].bmap);
|
||
|
||
set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
|
||
set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
|
||
ctx = isl_basic_map_get_ctx(info[i].bmap);
|
||
mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
|
||
info[i].bmap->n_ineq + info[j].bmap->n_ineq,
|
||
1 + total);
|
||
wraps_init(&wraps, mat, info, i, j);
|
||
bound = isl_vec_alloc(ctx, 1 + total);
|
||
if (!set_i || !set_j || !wraps.mat || !bound)
|
||
goto error;
|
||
|
||
isl_seq_cpy(bound->el, info[i].bmap->ineq[k], 1 + total);
|
||
isl_int_add_ui(bound->el[0], bound->el[0], 1);
|
||
|
||
isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
|
||
wraps.mat->n_row = 1;
|
||
|
||
if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
|
||
goto error;
|
||
if (!wraps.mat->n_row)
|
||
goto unbounded;
|
||
|
||
if (wrap_facet) {
|
||
if (add_wraps_around_facet(&wraps, &info[i], k,
|
||
bound->el, set_j) < 0)
|
||
goto error;
|
||
if (!wraps.mat->n_row)
|
||
goto unbounded;
|
||
}
|
||
|
||
change = fuse(i, j, info, wraps.mat, 0, 0);
|
||
|
||
unbounded:
|
||
wraps_free(&wraps);
|
||
|
||
isl_set_free(set_i);
|
||
isl_set_free(set_j);
|
||
|
||
isl_vec_free(bound);
|
||
|
||
return change;
|
||
error:
|
||
wraps_free(&wraps);
|
||
isl_vec_free(bound);
|
||
isl_set_free(set_i);
|
||
isl_set_free(set_j);
|
||
return isl_change_error;
|
||
}
|
||
|
||
/* Given a pair of basic maps i and j such that j sticks out
|
||
* of i at n cut constraints, each time by at most one,
|
||
* try to compute wrapping constraints and replace the two
|
||
* basic maps by a single basic map.
|
||
* The other constraints of i are assumed to be valid for j.
|
||
*
|
||
* For each cut constraint t(x) >= 0 of i, we add the relaxed version
|
||
* t(x) + 1 >= 0, along with wrapping constraints for all constraints
|
||
* of basic map j that bound the part of basic map j that sticks out
|
||
* of the cut constraint.
|
||
* In particular, we first intersect basic map j with t(x) + 1 = 0.
|
||
* If the result is empty, then t(x) >= 0 was actually a valid constraint
|
||
* (with respect to the integer points), so we add t(x) >= 0 instead.
|
||
* Otherwise, we wrap the constraints of basic map j that are not
|
||
* redundant in this intersection and that are not already valid
|
||
* for basic map i over basic map i.
|
||
* Note that it is sufficient to wrap the constraints to include
|
||
* basic map i, because we will only wrap the constraints that do
|
||
* not include basic map i already. The wrapped constraint will
|
||
* therefore be more relaxed compared to the original constraint.
|
||
* Since the original constraint is valid for basic map j, so is
|
||
* the wrapped constraint.
|
||
*
|
||
* If any wrapping fails, i.e., if we cannot wrap to touch
|
||
* the union, then we give up.
|
||
* Otherwise, the pair of basic maps is replaced by their union.
|
||
*/
|
||
static enum isl_change wrap_in_facets(int i, int j, int *cuts, int n,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
enum isl_change change = isl_change_none;
|
||
struct isl_wraps wraps;
|
||
isl_ctx *ctx;
|
||
isl_mat *mat;
|
||
isl_set *set_i = NULL;
|
||
unsigned total = isl_basic_map_total_dim(info[i].bmap);
|
||
int max_wrap;
|
||
int k, w;
|
||
struct isl_tab_undo *snap;
|
||
|
||
if (isl_tab_extend_cons(info[j].tab, 1) < 0)
|
||
goto error;
|
||
|
||
max_wrap = 1 + 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq;
|
||
max_wrap *= n;
|
||
|
||
set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
|
||
ctx = isl_basic_map_get_ctx(info[i].bmap);
|
||
mat = isl_mat_alloc(ctx, max_wrap, 1 + total);
|
||
wraps_init(&wraps, mat, info, i, j);
|
||
if (!set_i || !wraps.mat)
|
||
goto error;
|
||
|
||
snap = isl_tab_snap(info[j].tab);
|
||
|
||
wraps.mat->n_row = 0;
|
||
|
||
for (k = 0; k < n; ++k) {
|
||
w = wraps.mat->n_row++;
|
||
isl_seq_cpy(wraps.mat->row[w],
|
||
info[i].bmap->ineq[cuts[k]], 1 + total);
|
||
isl_int_add_ui(wraps.mat->row[w][0], wraps.mat->row[w][0], 1);
|
||
if (isl_tab_add_eq(info[j].tab, wraps.mat->row[w]) < 0)
|
||
goto error;
|
||
if (isl_tab_detect_redundant(info[j].tab) < 0)
|
||
goto error;
|
||
|
||
if (info[j].tab->empty)
|
||
isl_int_sub_ui(wraps.mat->row[w][0],
|
||
wraps.mat->row[w][0], 1);
|
||
else if (add_wraps(&wraps, &info[j],
|
||
wraps.mat->row[w], set_i) < 0)
|
||
goto error;
|
||
|
||
if (isl_tab_rollback(info[j].tab, snap) < 0)
|
||
goto error;
|
||
|
||
if (!wraps.mat->n_row)
|
||
break;
|
||
}
|
||
|
||
if (k == n)
|
||
change = fuse(i, j, info, wraps.mat, 0, 1);
|
||
|
||
wraps_free(&wraps);
|
||
isl_set_free(set_i);
|
||
|
||
return change;
|
||
error:
|
||
wraps_free(&wraps);
|
||
isl_set_free(set_i);
|
||
return isl_change_error;
|
||
}
|
||
|
||
/* Given two basic sets i and j such that i has no cut equalities,
|
||
* check if relaxing all the cut inequalities of i by one turns
|
||
* them into valid constraint for j and check if we can wrap in
|
||
* the bits that are sticking out.
|
||
* If so, replace the pair by their union.
|
||
*
|
||
* We first check if all relaxed cut inequalities of i are valid for j
|
||
* and then try to wrap in the intersections of the relaxed cut inequalities
|
||
* with j.
|
||
*
|
||
* During this wrapping, we consider the points of j that lie at a distance
|
||
* of exactly 1 from i. In particular, we ignore the points that lie in
|
||
* between this lower-dimensional space and the basic map i.
|
||
* We can therefore only apply this to integer maps.
|
||
* ____ _____
|
||
* / ___|_ / \
|
||
* / | | / |
|
||
* \ | | => \ |
|
||
* \|____| \ |
|
||
* \___| \____/
|
||
*
|
||
* _____ ______
|
||
* | ____|_ | \
|
||
* | | | | |
|
||
* | | | => | |
|
||
* |_| | | |
|
||
* |_____| \______|
|
||
*
|
||
* _______
|
||
* | |
|
||
* | |\ |
|
||
* | | \ |
|
||
* | | \ |
|
||
* | | \|
|
||
* | | \
|
||
* | |_____\
|
||
* | |
|
||
* |_______|
|
||
*
|
||
* Wrapping can fail if the result of wrapping one of the facets
|
||
* around its edges does not produce any new facet constraint.
|
||
* In particular, this happens when we try to wrap in unbounded sets.
|
||
*
|
||
* _______________________________________________________________________
|
||
* |
|
||
* | ___
|
||
* | | |
|
||
* |_| |_________________________________________________________________
|
||
* |___|
|
||
*
|
||
* The following is not an acceptable result of coalescing the above two
|
||
* sets as it includes extra integer points.
|
||
* _______________________________________________________________________
|
||
* |
|
||
* |
|
||
* |
|
||
* |
|
||
* \______________________________________________________________________
|
||
*/
|
||
static enum isl_change can_wrap_in_set(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
enum isl_change change = isl_change_none;
|
||
int k, m;
|
||
int n;
|
||
int *cuts = NULL;
|
||
isl_ctx *ctx;
|
||
|
||
if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) ||
|
||
ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
|
||
return isl_change_none;
|
||
|
||
n = count(info[i].ineq, info[i].bmap->n_ineq, STATUS_CUT);
|
||
if (n == 0)
|
||
return isl_change_none;
|
||
|
||
ctx = isl_basic_map_get_ctx(info[i].bmap);
|
||
cuts = isl_alloc_array(ctx, int, n);
|
||
if (!cuts)
|
||
return isl_change_error;
|
||
|
||
for (k = 0, m = 0; m < n; ++k) {
|
||
enum isl_ineq_type type;
|
||
|
||
if (info[i].ineq[k] != STATUS_CUT)
|
||
continue;
|
||
|
||
isl_int_add_ui(info[i].bmap->ineq[k][0],
|
||
info[i].bmap->ineq[k][0], 1);
|
||
type = isl_tab_ineq_type(info[j].tab, info[i].bmap->ineq[k]);
|
||
isl_int_sub_ui(info[i].bmap->ineq[k][0],
|
||
info[i].bmap->ineq[k][0], 1);
|
||
if (type == isl_ineq_error)
|
||
goto error;
|
||
if (type != isl_ineq_redundant)
|
||
break;
|
||
cuts[m] = k;
|
||
++m;
|
||
}
|
||
|
||
if (m == n)
|
||
change = wrap_in_facets(i, j, cuts, n, info);
|
||
|
||
free(cuts);
|
||
|
||
return change;
|
||
error:
|
||
free(cuts);
|
||
return isl_change_error;
|
||
}
|
||
|
||
/* Check if either i or j has only cut inequalities that can
|
||
* be used to wrap in (a facet of) the other basic set.
|
||
* if so, replace the pair by their union.
|
||
*/
|
||
static enum isl_change check_wrap(int i, int j, struct isl_coalesce_info *info)
|
||
{
|
||
enum isl_change change = isl_change_none;
|
||
|
||
if (!any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT))
|
||
change = can_wrap_in_set(i, j, info);
|
||
if (change != isl_change_none)
|
||
return change;
|
||
|
||
if (!any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_CUT))
|
||
change = can_wrap_in_set(j, i, info);
|
||
return change;
|
||
}
|
||
|
||
/* At least one of the basic maps has an equality that is adjacent
|
||
* to inequality. Make sure that only one of the basic maps has
|
||
* such an equality and that the other basic map has exactly one
|
||
* inequality adjacent to an equality.
|
||
* We call the basic map that has the inequality "i" and the basic
|
||
* map that has the equality "j".
|
||
* If "i" has any "cut" (in)equality, then relaxing the inequality
|
||
* by one would not result in a basic map that contains the other
|
||
* basic map. However, it may still be possible to wrap in the other
|
||
* basic map.
|
||
*/
|
||
static enum isl_change check_adj_eq(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
enum isl_change change = isl_change_none;
|
||
int k;
|
||
int any_cut;
|
||
|
||
if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_INEQ) &&
|
||
any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ADJ_INEQ))
|
||
/* ADJ EQ TOO MANY */
|
||
return isl_change_none;
|
||
|
||
if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_INEQ))
|
||
return check_adj_eq(j, i, info);
|
||
|
||
/* j has an equality adjacent to an inequality in i */
|
||
|
||
if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT))
|
||
return isl_change_none;
|
||
any_cut = any(info[i].ineq, info[i].bmap->n_ineq, STATUS_CUT);
|
||
if (count(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_EQ) != 1 ||
|
||
any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_EQ) ||
|
||
any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_INEQ) ||
|
||
any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_INEQ))
|
||
/* ADJ EQ TOO MANY */
|
||
return isl_change_none;
|
||
|
||
for (k = 0; k < info[i].bmap->n_ineq; ++k)
|
||
if (info[i].ineq[k] == STATUS_ADJ_EQ)
|
||
break;
|
||
|
||
if (!any_cut) {
|
||
change = is_adj_eq_extension(i, j, k, info);
|
||
if (change != isl_change_none)
|
||
return change;
|
||
}
|
||
|
||
change = can_wrap_in_facet(i, j, k, info, any_cut);
|
||
|
||
return change;
|
||
}
|
||
|
||
/* The two basic maps lie on adjacent hyperplanes. In particular,
|
||
* basic map "i" has an equality that lies parallel to basic map "j".
|
||
* Check if we can wrap the facets around the parallel hyperplanes
|
||
* to include the other set.
|
||
*
|
||
* We perform basically the same operations as can_wrap_in_facet,
|
||
* except that we don't need to select a facet of one of the sets.
|
||
* _
|
||
* \\ \\
|
||
* \\ => \\
|
||
* \ \|
|
||
*
|
||
* If there is more than one equality of "i" adjacent to an equality of "j",
|
||
* then the result will satisfy one or more equalities that are a linear
|
||
* combination of these equalities. These will be encoded as pairs
|
||
* of inequalities in the wrapping constraints and need to be made
|
||
* explicit.
|
||
*/
|
||
static enum isl_change check_eq_adj_eq(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
int k;
|
||
enum isl_change change = isl_change_none;
|
||
int detect_equalities = 0;
|
||
struct isl_wraps wraps;
|
||
isl_ctx *ctx;
|
||
isl_mat *mat;
|
||
struct isl_set *set_i = NULL;
|
||
struct isl_set *set_j = NULL;
|
||
struct isl_vec *bound = NULL;
|
||
unsigned total = isl_basic_map_total_dim(info[i].bmap);
|
||
|
||
if (count(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_EQ) != 1)
|
||
detect_equalities = 1;
|
||
|
||
for (k = 0; k < 2 * info[i].bmap->n_eq ; ++k)
|
||
if (info[i].eq[k] == STATUS_ADJ_EQ)
|
||
break;
|
||
|
||
set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
|
||
set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
|
||
ctx = isl_basic_map_get_ctx(info[i].bmap);
|
||
mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
|
||
info[i].bmap->n_ineq + info[j].bmap->n_ineq,
|
||
1 + total);
|
||
wraps_init(&wraps, mat, info, i, j);
|
||
bound = isl_vec_alloc(ctx, 1 + total);
|
||
if (!set_i || !set_j || !wraps.mat || !bound)
|
||
goto error;
|
||
|
||
if (k % 2 == 0)
|
||
isl_seq_neg(bound->el, info[i].bmap->eq[k / 2], 1 + total);
|
||
else
|
||
isl_seq_cpy(bound->el, info[i].bmap->eq[k / 2], 1 + total);
|
||
isl_int_add_ui(bound->el[0], bound->el[0], 1);
|
||
|
||
isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
|
||
wraps.mat->n_row = 1;
|
||
|
||
if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
|
||
goto error;
|
||
if (!wraps.mat->n_row)
|
||
goto unbounded;
|
||
|
||
isl_int_sub_ui(bound->el[0], bound->el[0], 1);
|
||
isl_seq_neg(bound->el, bound->el, 1 + total);
|
||
|
||
isl_seq_cpy(wraps.mat->row[wraps.mat->n_row], bound->el, 1 + total);
|
||
wraps.mat->n_row++;
|
||
|
||
if (add_wraps(&wraps, &info[i], bound->el, set_j) < 0)
|
||
goto error;
|
||
if (!wraps.mat->n_row)
|
||
goto unbounded;
|
||
|
||
change = fuse(i, j, info, wraps.mat, detect_equalities, 0);
|
||
|
||
if (0) {
|
||
error: change = isl_change_error;
|
||
}
|
||
unbounded:
|
||
|
||
wraps_free(&wraps);
|
||
isl_set_free(set_i);
|
||
isl_set_free(set_j);
|
||
isl_vec_free(bound);
|
||
|
||
return change;
|
||
}
|
||
|
||
/* Check if the union of the given pair of basic maps
|
||
* can be represented by a single basic map.
|
||
* If so, replace the pair by the single basic map and return
|
||
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
|
||
* Otherwise, return isl_change_none.
|
||
* The two basic maps are assumed to live in the same local space.
|
||
*
|
||
* We first check the effect of each constraint of one basic map
|
||
* on the other basic map.
|
||
* The constraint may be
|
||
* redundant the constraint is redundant in its own
|
||
* basic map and should be ignore and removed
|
||
* in the end
|
||
* valid all (integer) points of the other basic map
|
||
* satisfy the constraint
|
||
* separate no (integer) point of the other basic map
|
||
* satisfies the constraint
|
||
* cut some but not all points of the other basic map
|
||
* satisfy the constraint
|
||
* adj_eq the given constraint is adjacent (on the outside)
|
||
* to an equality of the other basic map
|
||
* adj_ineq the given constraint is adjacent (on the outside)
|
||
* to an inequality of the other basic map
|
||
*
|
||
* We consider seven cases in which we can replace the pair by a single
|
||
* basic map. We ignore all "redundant" constraints.
|
||
*
|
||
* 1. all constraints of one basic map are valid
|
||
* => the other basic map is a subset and can be removed
|
||
*
|
||
* 2. all constraints of both basic maps are either "valid" or "cut"
|
||
* and the facets corresponding to the "cut" constraints
|
||
* of one of the basic maps lies entirely inside the other basic map
|
||
* => the pair can be replaced by a basic map consisting
|
||
* of the valid constraints in both basic maps
|
||
*
|
||
* 3. there is a single pair of adjacent inequalities
|
||
* (all other constraints are "valid")
|
||
* => the pair can be replaced by a basic map consisting
|
||
* of the valid constraints in both basic maps
|
||
*
|
||
* 4. one basic map has a single adjacent inequality, while the other
|
||
* constraints are "valid". The other basic map has some
|
||
* "cut" constraints, but replacing the adjacent inequality by
|
||
* its opposite and adding the valid constraints of the other
|
||
* basic map results in a subset of the other basic map
|
||
* => the pair can be replaced by a basic map consisting
|
||
* of the valid constraints in both basic maps
|
||
*
|
||
* 5. there is a single adjacent pair of an inequality and an equality,
|
||
* the other constraints of the basic map containing the inequality are
|
||
* "valid". Moreover, if the inequality the basic map is relaxed
|
||
* and then turned into an equality, then resulting facet lies
|
||
* entirely inside the other basic map
|
||
* => the pair can be replaced by the basic map containing
|
||
* the inequality, with the inequality relaxed.
|
||
*
|
||
* 6. there is a single adjacent pair of an inequality and an equality,
|
||
* the other constraints of the basic map containing the inequality are
|
||
* "valid". Moreover, the facets corresponding to both
|
||
* the inequality and the equality can be wrapped around their
|
||
* ridges to include the other basic map
|
||
* => the pair can be replaced by a basic map consisting
|
||
* of the valid constraints in both basic maps together
|
||
* with all wrapping constraints
|
||
*
|
||
* 7. one of the basic maps extends beyond the other by at most one.
|
||
* Moreover, the facets corresponding to the cut constraints and
|
||
* the pieces of the other basic map at offset one from these cut
|
||
* constraints can be wrapped around their ridges to include
|
||
* the union of the two basic maps
|
||
* => the pair can be replaced by a basic map consisting
|
||
* of the valid constraints in both basic maps together
|
||
* with all wrapping constraints
|
||
*
|
||
* 8. the two basic maps live in adjacent hyperplanes. In principle
|
||
* such sets can always be combined through wrapping, but we impose
|
||
* that there is only one such pair, to avoid overeager coalescing.
|
||
*
|
||
* Throughout the computation, we maintain a collection of tableaus
|
||
* corresponding to the basic maps. When the basic maps are dropped
|
||
* or combined, the tableaus are modified accordingly.
|
||
*/
|
||
static enum isl_change coalesce_local_pair(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
enum isl_change change = isl_change_none;
|
||
|
||
info[i].eq = info[i].ineq = NULL;
|
||
info[j].eq = info[j].ineq = NULL;
|
||
|
||
info[i].eq = eq_status_in(info[i].bmap, info[j].tab);
|
||
if (info[i].bmap->n_eq && !info[i].eq)
|
||
goto error;
|
||
if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ERROR))
|
||
goto error;
|
||
if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_SEPARATE))
|
||
goto done;
|
||
|
||
info[j].eq = eq_status_in(info[j].bmap, info[i].tab);
|
||
if (info[j].bmap->n_eq && !info[j].eq)
|
||
goto error;
|
||
if (any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ERROR))
|
||
goto error;
|
||
if (any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_SEPARATE))
|
||
goto done;
|
||
|
||
info[i].ineq = ineq_status_in(info[i].bmap, info[i].tab, info[j].tab);
|
||
if (info[i].bmap->n_ineq && !info[i].ineq)
|
||
goto error;
|
||
if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ERROR))
|
||
goto error;
|
||
if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_SEPARATE))
|
||
goto done;
|
||
|
||
info[j].ineq = ineq_status_in(info[j].bmap, info[j].tab, info[i].tab);
|
||
if (info[j].bmap->n_ineq && !info[j].ineq)
|
||
goto error;
|
||
if (any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ERROR))
|
||
goto error;
|
||
if (any(info[j].ineq, info[j].bmap->n_ineq, STATUS_SEPARATE))
|
||
goto done;
|
||
|
||
if (all(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_VALID) &&
|
||
all(info[i].ineq, info[i].bmap->n_ineq, STATUS_VALID)) {
|
||
drop(&info[j]);
|
||
change = isl_change_drop_second;
|
||
} else if (all(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_VALID) &&
|
||
all(info[j].ineq, info[j].bmap->n_ineq, STATUS_VALID)) {
|
||
drop(&info[i]);
|
||
change = isl_change_drop_first;
|
||
} else if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_EQ)) {
|
||
change = check_eq_adj_eq(i, j, info);
|
||
} else if (any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ADJ_EQ)) {
|
||
change = check_eq_adj_eq(j, i, info);
|
||
} else if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_INEQ) ||
|
||
any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ADJ_INEQ)) {
|
||
change = check_adj_eq(i, j, info);
|
||
} else if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_EQ) ||
|
||
any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_EQ)) {
|
||
/* Can't happen */
|
||
/* BAD ADJ INEQ */
|
||
} else if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_INEQ) ||
|
||
any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_INEQ)) {
|
||
change = check_adj_ineq(i, j, info);
|
||
} else {
|
||
if (!any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT) &&
|
||
!any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_CUT))
|
||
change = check_facets(i, j, info);
|
||
if (change == isl_change_none)
|
||
change = check_wrap(i, j, info);
|
||
}
|
||
|
||
done:
|
||
free(info[i].eq);
|
||
free(info[j].eq);
|
||
free(info[i].ineq);
|
||
free(info[j].ineq);
|
||
return change;
|
||
error:
|
||
free(info[i].eq);
|
||
free(info[j].eq);
|
||
free(info[i].ineq);
|
||
free(info[j].ineq);
|
||
return isl_change_error;
|
||
}
|
||
|
||
/* Shift the integer division at position "div" of the basic map
|
||
* represented by "info" by "shift".
|
||
*
|
||
* That is, if the integer division has the form
|
||
*
|
||
* floor(f(x)/d)
|
||
*
|
||
* then replace it by
|
||
*
|
||
* floor((f(x) + shift * d)/d) - shift
|
||
*/
|
||
static int shift_div(struct isl_coalesce_info *info, int div, isl_int shift)
|
||
{
|
||
unsigned total;
|
||
|
||
info->bmap = isl_basic_map_shift_div(info->bmap, div, shift);
|
||
if (!info->bmap)
|
||
return -1;
|
||
|
||
total = isl_basic_map_dim(info->bmap, isl_dim_all);
|
||
total -= isl_basic_map_dim(info->bmap, isl_dim_div);
|
||
if (isl_tab_shift_var(info->tab, total + div, shift) < 0)
|
||
return -1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Check if some of the divs in the basic map represented by "info1"
|
||
* are shifts of the corresponding divs in the basic map represented
|
||
* by "info2". If so, align them with those of "info2".
|
||
* Only do this if "info1" and "info2" have the same number
|
||
* of integer divisions.
|
||
*
|
||
* An integer division is considered to be a shift of another integer
|
||
* division if one is equal to the other plus a constant.
|
||
*
|
||
* In particular, for each pair of integer divisions, if both are known,
|
||
* have identical coefficients (apart from the constant term) and
|
||
* if the difference between the constant terms (taking into account
|
||
* the denominator) is an integer, then move the difference outside.
|
||
* That is, if one integer division is of the form
|
||
*
|
||
* floor((f(x) + c_1)/d)
|
||
*
|
||
* while the other is of the form
|
||
*
|
||
* floor((f(x) + c_2)/d)
|
||
*
|
||
* and n = (c_2 - c_1)/d is an integer, then replace the first
|
||
* integer division by
|
||
*
|
||
* floor((f(x) + c_1 + n * d)/d) - n = floor((f(x) + c_2)/d) - n
|
||
*/
|
||
static int harmonize_divs(struct isl_coalesce_info *info1,
|
||
struct isl_coalesce_info *info2)
|
||
{
|
||
int i;
|
||
int total;
|
||
|
||
if (!info1->bmap || !info2->bmap)
|
||
return -1;
|
||
|
||
if (info1->bmap->n_div != info2->bmap->n_div)
|
||
return 0;
|
||
if (info1->bmap->n_div == 0)
|
||
return 0;
|
||
|
||
total = isl_basic_map_total_dim(info1->bmap);
|
||
for (i = 0; i < info1->bmap->n_div; ++i) {
|
||
isl_int d;
|
||
int r = 0;
|
||
|
||
if (isl_int_is_zero(info1->bmap->div[i][0]) ||
|
||
isl_int_is_zero(info2->bmap->div[i][0]))
|
||
continue;
|
||
if (isl_int_ne(info1->bmap->div[i][0], info2->bmap->div[i][0]))
|
||
continue;
|
||
if (isl_int_eq(info1->bmap->div[i][1], info2->bmap->div[i][1]))
|
||
continue;
|
||
if (!isl_seq_eq(info1->bmap->div[i] + 2,
|
||
info2->bmap->div[i] + 2, total))
|
||
continue;
|
||
isl_int_init(d);
|
||
isl_int_sub(d, info2->bmap->div[i][1], info1->bmap->div[i][1]);
|
||
if (isl_int_is_divisible_by(d, info1->bmap->div[i][0])) {
|
||
isl_int_divexact(d, d, info1->bmap->div[i][0]);
|
||
r = shift_div(info1, i, d);
|
||
}
|
||
isl_int_clear(d);
|
||
if (r < 0)
|
||
return -1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Do the two basic maps live in the same local space, i.e.,
|
||
* do they have the same (known) divs?
|
||
* If either basic map has any unknown divs, then we can only assume
|
||
* that they do not live in the same local space.
|
||
*/
|
||
static int same_divs(__isl_keep isl_basic_map *bmap1,
|
||
__isl_keep isl_basic_map *bmap2)
|
||
{
|
||
int i;
|
||
int known;
|
||
int total;
|
||
|
||
if (!bmap1 || !bmap2)
|
||
return -1;
|
||
if (bmap1->n_div != bmap2->n_div)
|
||
return 0;
|
||
|
||
if (bmap1->n_div == 0)
|
||
return 1;
|
||
|
||
known = isl_basic_map_divs_known(bmap1);
|
||
if (known < 0 || !known)
|
||
return known;
|
||
known = isl_basic_map_divs_known(bmap2);
|
||
if (known < 0 || !known)
|
||
return known;
|
||
|
||
total = isl_basic_map_total_dim(bmap1);
|
||
for (i = 0; i < bmap1->n_div; ++i)
|
||
if (!isl_seq_eq(bmap1->div[i], bmap2->div[i], 2 + total))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Does "bmap" contain the basic map represented by the tableau "tab"
|
||
* after expanding the divs of "bmap" to match those of "tab"?
|
||
* The expansion is performed using the divs "div" and expansion "exp"
|
||
* computed by the caller.
|
||
* Then we check if all constraints of the expanded "bmap" are valid for "tab".
|
||
*/
|
||
static int contains_with_expanded_divs(__isl_keep isl_basic_map *bmap,
|
||
struct isl_tab *tab, __isl_keep isl_mat *div, int *exp)
|
||
{
|
||
int superset = 0;
|
||
int *eq_i = NULL;
|
||
int *ineq_i = NULL;
|
||
|
||
bmap = isl_basic_map_copy(bmap);
|
||
bmap = isl_basic_set_expand_divs(bmap, isl_mat_copy(div), exp);
|
||
|
||
if (!bmap)
|
||
goto error;
|
||
|
||
eq_i = eq_status_in(bmap, tab);
|
||
if (bmap->n_eq && !eq_i)
|
||
goto error;
|
||
if (any(eq_i, 2 * bmap->n_eq, STATUS_ERROR))
|
||
goto error;
|
||
if (any(eq_i, 2 * bmap->n_eq, STATUS_SEPARATE))
|
||
goto done;
|
||
|
||
ineq_i = ineq_status_in(bmap, NULL, tab);
|
||
if (bmap->n_ineq && !ineq_i)
|
||
goto error;
|
||
if (any(ineq_i, bmap->n_ineq, STATUS_ERROR))
|
||
goto error;
|
||
if (any(ineq_i, bmap->n_ineq, STATUS_SEPARATE))
|
||
goto done;
|
||
|
||
if (all(eq_i, 2 * bmap->n_eq, STATUS_VALID) &&
|
||
all(ineq_i, bmap->n_ineq, STATUS_VALID))
|
||
superset = 1;
|
||
|
||
done:
|
||
isl_basic_map_free(bmap);
|
||
free(eq_i);
|
||
free(ineq_i);
|
||
return superset;
|
||
error:
|
||
isl_basic_map_free(bmap);
|
||
free(eq_i);
|
||
free(ineq_i);
|
||
return -1;
|
||
}
|
||
|
||
/* Does "bmap_i" contain the basic map represented by "info_j"
|
||
* after aligning the divs of "bmap_i" to those of "info_j".
|
||
* Note that this can only succeed if the number of divs of "bmap_i"
|
||
* is smaller than (or equal to) the number of divs of "info_j".
|
||
*
|
||
* We first check if the divs of "bmap_i" are all known and form a subset
|
||
* of those of "bmap_j". If so, we pass control over to
|
||
* contains_with_expanded_divs.
|
||
*/
|
||
static int contains_after_aligning_divs(__isl_keep isl_basic_map *bmap_i,
|
||
struct isl_coalesce_info *info_j)
|
||
{
|
||
int known;
|
||
isl_mat *div_i, *div_j, *div;
|
||
int *exp1 = NULL;
|
||
int *exp2 = NULL;
|
||
isl_ctx *ctx;
|
||
int subset;
|
||
|
||
known = isl_basic_map_divs_known(bmap_i);
|
||
if (known < 0 || !known)
|
||
return known;
|
||
|
||
ctx = isl_basic_map_get_ctx(bmap_i);
|
||
|
||
div_i = isl_basic_map_get_divs(bmap_i);
|
||
div_j = isl_basic_map_get_divs(info_j->bmap);
|
||
|
||
if (!div_i || !div_j)
|
||
goto error;
|
||
|
||
exp1 = isl_alloc_array(ctx, int, div_i->n_row);
|
||
exp2 = isl_alloc_array(ctx, int, div_j->n_row);
|
||
if ((div_i->n_row && !exp1) || (div_j->n_row && !exp2))
|
||
goto error;
|
||
|
||
div = isl_merge_divs(div_i, div_j, exp1, exp2);
|
||
if (!div)
|
||
goto error;
|
||
|
||
if (div->n_row == div_j->n_row)
|
||
subset = contains_with_expanded_divs(bmap_i,
|
||
info_j->tab, div, exp1);
|
||
else
|
||
subset = 0;
|
||
|
||
isl_mat_free(div);
|
||
|
||
isl_mat_free(div_i);
|
||
isl_mat_free(div_j);
|
||
|
||
free(exp2);
|
||
free(exp1);
|
||
|
||
return subset;
|
||
error:
|
||
isl_mat_free(div_i);
|
||
isl_mat_free(div_j);
|
||
free(exp1);
|
||
free(exp2);
|
||
return -1;
|
||
}
|
||
|
||
/* Check if the basic map "j" is a subset of basic map "i",
|
||
* if "i" has fewer divs that "j".
|
||
* If so, remove basic map "j".
|
||
*
|
||
* If the two basic maps have the same number of divs, then
|
||
* they must necessarily be different. Otherwise, we would have
|
||
* called coalesce_local_pair. We therefore don't try anything
|
||
* in this case.
|
||
*/
|
||
static int coalesced_subset(int i, int j, struct isl_coalesce_info *info)
|
||
{
|
||
int superset;
|
||
|
||
if (info[i].bmap->n_div >= info[j].bmap->n_div)
|
||
return 0;
|
||
|
||
superset = contains_after_aligning_divs(info[i].bmap, &info[j]);
|
||
if (superset < 0)
|
||
return -1;
|
||
if (superset)
|
||
drop(&info[j]);
|
||
|
||
return superset;
|
||
}
|
||
|
||
/* Check if basic map "j" is a subset of basic map "i" after
|
||
* exploiting the extra equalities of "j" to simplify the divs of "i".
|
||
* If so, remove basic map "j".
|
||
*
|
||
* If "j" does not have any equalities or if they are the same
|
||
* as those of "i", then we cannot exploit them to simplify the divs.
|
||
* Similarly, if there are no divs in "i", then they cannot be simplified.
|
||
* If, on the other hand, the affine hulls of "i" and "j" do not intersect,
|
||
* then "j" cannot be a subset of "i".
|
||
*
|
||
* Otherwise, we intersect "i" with the affine hull of "j" and then
|
||
* check if "j" is a subset of the result after aligning the divs.
|
||
* If so, then "j" is definitely a subset of "i" and can be removed.
|
||
* Note that if after intersection with the affine hull of "j".
|
||
* "i" still has more divs than "j", then there is no way we can
|
||
* align the divs of "i" to those of "j".
|
||
*/
|
||
static int coalesced_subset_with_equalities(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
isl_basic_map *hull_i, *hull_j, *bmap_i;
|
||
int equal, empty, subset;
|
||
|
||
if (info[j].bmap->n_eq == 0)
|
||
return 0;
|
||
if (info[i].bmap->n_div == 0)
|
||
return 0;
|
||
|
||
hull_i = isl_basic_map_copy(info[i].bmap);
|
||
hull_i = isl_basic_map_plain_affine_hull(hull_i);
|
||
hull_j = isl_basic_map_copy(info[j].bmap);
|
||
hull_j = isl_basic_map_plain_affine_hull(hull_j);
|
||
|
||
hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i));
|
||
equal = isl_basic_map_plain_is_equal(hull_i, hull_j);
|
||
empty = isl_basic_map_plain_is_empty(hull_j);
|
||
isl_basic_map_free(hull_i);
|
||
|
||
if (equal < 0 || equal || empty < 0 || empty) {
|
||
isl_basic_map_free(hull_j);
|
||
return equal < 0 || empty < 0 ? -1 : 0;
|
||
}
|
||
|
||
bmap_i = isl_basic_map_copy(info[i].bmap);
|
||
bmap_i = isl_basic_map_intersect(bmap_i, hull_j);
|
||
if (!bmap_i)
|
||
return -1;
|
||
|
||
if (bmap_i->n_div > info[j].bmap->n_div) {
|
||
isl_basic_map_free(bmap_i);
|
||
return 0;
|
||
}
|
||
|
||
subset = contains_after_aligning_divs(bmap_i, &info[j]);
|
||
|
||
isl_basic_map_free(bmap_i);
|
||
|
||
if (subset < 0)
|
||
return -1;
|
||
if (subset)
|
||
drop(&info[j]);
|
||
|
||
return subset;
|
||
}
|
||
|
||
/* Check if one of the basic maps is a subset of the other and, if so,
|
||
* drop the subset.
|
||
* Note that we only perform any test if the number of divs is different
|
||
* in the two basic maps. In case the number of divs is the same,
|
||
* we have already established that the divs are different
|
||
* in the two basic maps.
|
||
* In particular, if the number of divs of basic map i is smaller than
|
||
* the number of divs of basic map j, then we check if j is a subset of i
|
||
* and vice versa.
|
||
*/
|
||
static enum isl_change check_coalesce_subset(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
int changed;
|
||
|
||
changed = coalesced_subset(i, j, info);
|
||
if (changed < 0 || changed)
|
||
return changed < 0 ? isl_change_error : isl_change_drop_second;
|
||
|
||
changed = coalesced_subset(j, i, info);
|
||
if (changed < 0 || changed)
|
||
return changed < 0 ? isl_change_error : isl_change_drop_first;
|
||
|
||
changed = coalesced_subset_with_equalities(i, j, info);
|
||
if (changed < 0 || changed)
|
||
return changed < 0 ? isl_change_error : isl_change_drop_second;
|
||
|
||
changed = coalesced_subset_with_equalities(j, i, info);
|
||
if (changed < 0 || changed)
|
||
return changed < 0 ? isl_change_error : isl_change_drop_first;
|
||
|
||
return isl_change_none;
|
||
}
|
||
|
||
/* Does "bmap" involve any divs that themselves refer to divs?
|
||
*/
|
||
static int has_nested_div(__isl_keep isl_basic_map *bmap)
|
||
{
|
||
int i;
|
||
unsigned total;
|
||
unsigned n_div;
|
||
|
||
total = isl_basic_map_dim(bmap, isl_dim_all);
|
||
n_div = isl_basic_map_dim(bmap, isl_dim_div);
|
||
total -= n_div;
|
||
|
||
for (i = 0; i < n_div; ++i)
|
||
if (isl_seq_first_non_zero(bmap->div[i] + 2 + total,
|
||
n_div) != -1)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return a list of affine expressions, one for each integer division
|
||
* in "bmap_i". For each integer division that also appears in "bmap_j",
|
||
* the affine expression is set to NaN. The number of NaNs in the list
|
||
* is equal to the number of integer divisions in "bmap_j".
|
||
* For the other integer divisions of "bmap_i", the corresponding
|
||
* element in the list is a purely affine expression equal to the integer
|
||
* division in "hull".
|
||
* If no such list can be constructed, then the number of elements
|
||
* in the returned list is smaller than the number of integer divisions
|
||
* in "bmap_i".
|
||
*/
|
||
static __isl_give isl_aff_list *set_up_substitutions(
|
||
__isl_keep isl_basic_map *bmap_i, __isl_keep isl_basic_map *bmap_j,
|
||
__isl_take isl_basic_map *hull)
|
||
{
|
||
unsigned n_div_i, n_div_j, total;
|
||
isl_ctx *ctx;
|
||
isl_local_space *ls;
|
||
isl_basic_set *wrap_hull;
|
||
isl_aff *aff_nan;
|
||
isl_aff_list *list;
|
||
int i, j;
|
||
|
||
if (!hull)
|
||
return NULL;
|
||
|
||
ctx = isl_basic_map_get_ctx(hull);
|
||
|
||
n_div_i = isl_basic_map_dim(bmap_i, isl_dim_div);
|
||
n_div_j = isl_basic_map_dim(bmap_j, isl_dim_div);
|
||
total = isl_basic_map_total_dim(bmap_i) - n_div_i;
|
||
|
||
ls = isl_basic_map_get_local_space(bmap_i);
|
||
ls = isl_local_space_wrap(ls);
|
||
wrap_hull = isl_basic_map_wrap(hull);
|
||
|
||
aff_nan = isl_aff_nan_on_domain(isl_local_space_copy(ls));
|
||
list = isl_aff_list_alloc(ctx, n_div_i);
|
||
|
||
j = 0;
|
||
for (i = 0; i < n_div_i; ++i) {
|
||
isl_aff *aff;
|
||
|
||
if (j < n_div_j &&
|
||
isl_seq_eq(bmap_i->div[i], bmap_j->div[j], 2 + total)) {
|
||
++j;
|
||
list = isl_aff_list_add(list, isl_aff_copy(aff_nan));
|
||
continue;
|
||
}
|
||
if (n_div_i - i <= n_div_j - j)
|
||
break;
|
||
|
||
aff = isl_local_space_get_div(ls, i);
|
||
aff = isl_aff_substitute_equalities(aff,
|
||
isl_basic_set_copy(wrap_hull));
|
||
aff = isl_aff_floor(aff);
|
||
if (!aff)
|
||
goto error;
|
||
if (isl_aff_dim(aff, isl_dim_div) != 0) {
|
||
isl_aff_free(aff);
|
||
break;
|
||
}
|
||
|
||
list = isl_aff_list_add(list, aff);
|
||
}
|
||
|
||
isl_aff_free(aff_nan);
|
||
isl_local_space_free(ls);
|
||
isl_basic_set_free(wrap_hull);
|
||
|
||
return list;
|
||
error:
|
||
isl_local_space_free(ls);
|
||
isl_basic_set_free(wrap_hull);
|
||
isl_aff_list_free(list);
|
||
return NULL;
|
||
}
|
||
|
||
/* Add variables to "tab" corresponding to the elements in "list"
|
||
* that are not set to NaN.
|
||
* "dim" is the offset in the variables of "tab" where we should
|
||
* start considering the elements in "list".
|
||
* When this function returns, the total number of variables in "tab"
|
||
* is equal to "dim" plus the number of elements in "list".
|
||
*/
|
||
static int add_sub_vars(struct isl_tab *tab, __isl_keep isl_aff_list *list,
|
||
int dim)
|
||
{
|
||
int i, n;
|
||
|
||
n = isl_aff_list_n_aff(list);
|
||
for (i = 0; i < n; ++i) {
|
||
int is_nan;
|
||
isl_aff *aff;
|
||
|
||
aff = isl_aff_list_get_aff(list, i);
|
||
is_nan = isl_aff_is_nan(aff);
|
||
isl_aff_free(aff);
|
||
if (is_nan < 0)
|
||
return -1;
|
||
|
||
if (!is_nan && isl_tab_insert_var(tab, dim + i) < 0)
|
||
return -1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* For each element in "list" that is not set to NaN, fix the corresponding
|
||
* variable in "tab" to the purely affine expression defined by the element.
|
||
* "dim" is the offset in the variables of "tab" where we should
|
||
* start considering the elements in "list".
|
||
*/
|
||
static int add_sub_equalities(struct isl_tab *tab,
|
||
__isl_keep isl_aff_list *list, int dim)
|
||
{
|
||
int i, n;
|
||
isl_ctx *ctx;
|
||
isl_vec *sub;
|
||
isl_aff *aff;
|
||
|
||
n = isl_aff_list_n_aff(list);
|
||
|
||
ctx = isl_tab_get_ctx(tab);
|
||
sub = isl_vec_alloc(ctx, 1 + dim + n);
|
||
if (!sub)
|
||
return -1;
|
||
isl_seq_clr(sub->el + 1 + dim, n);
|
||
|
||
for (i = 0; i < n; ++i) {
|
||
aff = isl_aff_list_get_aff(list, i);
|
||
if (!aff)
|
||
goto error;
|
||
if (isl_aff_is_nan(aff)) {
|
||
isl_aff_free(aff);
|
||
continue;
|
||
}
|
||
isl_seq_cpy(sub->el, aff->v->el + 1, 1 + dim);
|
||
isl_int_neg(sub->el[1 + dim + i], aff->v->el[0]);
|
||
if (isl_tab_add_eq(tab, sub->el) < 0)
|
||
goto error;
|
||
isl_int_set_si(sub->el[1 + dim + i], 0);
|
||
isl_aff_free(aff);
|
||
}
|
||
|
||
isl_vec_free(sub);
|
||
return 0;
|
||
error:
|
||
isl_aff_free(aff);
|
||
isl_vec_free(sub);
|
||
return -1;
|
||
}
|
||
|
||
/* Add variables to info->tab corresponding to the elements in "list"
|
||
* that are not set to NaN. The value of the added variable
|
||
* is fixed to the purely affine expression defined by the element.
|
||
* "dim" is the offset in the variables of info->tab where we should
|
||
* start considering the elements in "list".
|
||
* When this function returns, the total number of variables in info->tab
|
||
* is equal to "dim" plus the number of elements in "list".
|
||
* Additionally, add the div constraints that have been added info->bmap
|
||
* after the tableau was constructed to info->tab. These constraints
|
||
* start at position "n_ineq" in info->bmap.
|
||
* The constraints need to be added to the tableau before
|
||
* the equalities assigning the purely affine expression
|
||
* because the position needs to match that in info->bmap.
|
||
* They are frozen because the corresponding added equality is a consequence
|
||
* of the two div constraints and the other equalities, meaning that
|
||
* the div constraints would otherwise get marked as redundant,
|
||
* while they are only redundant with respect to the extra equalities
|
||
* added to the tableau, which do not appear explicitly in the basic map.
|
||
*/
|
||
static int add_subs(struct isl_coalesce_info *info,
|
||
__isl_keep isl_aff_list *list, int dim, int n_ineq)
|
||
{
|
||
int i, extra_var, extra_con;
|
||
int n;
|
||
unsigned n_eq = info->bmap->n_eq;
|
||
|
||
if (!list)
|
||
return -1;
|
||
|
||
n = isl_aff_list_n_aff(list);
|
||
extra_var = n - (info->tab->n_var - dim);
|
||
extra_con = info->bmap->n_ineq - n_ineq;
|
||
|
||
if (isl_tab_extend_vars(info->tab, extra_var) < 0)
|
||
return -1;
|
||
if (isl_tab_extend_cons(info->tab, extra_con + 2 * extra_var) < 0)
|
||
return -1;
|
||
if (add_sub_vars(info->tab, list, dim) < 0)
|
||
return -1;
|
||
|
||
for (i = n_ineq; i < info->bmap->n_ineq; ++i) {
|
||
if (isl_tab_add_ineq(info->tab, info->bmap->ineq[i]) < 0)
|
||
return -1;
|
||
if (isl_tab_freeze_constraint(info->tab, n_eq + i) < 0)
|
||
return -1;
|
||
}
|
||
|
||
return add_sub_equalities(info->tab, list, dim);
|
||
}
|
||
|
||
/* Coalesce basic map "j" into basic map "i" after adding the extra integer
|
||
* divisions in "i" but not in "j" to basic map "j", with values
|
||
* specified by "list". The total number of elements in "list"
|
||
* is equal to the number of integer divisions in "i", while the number
|
||
* of NaN elements in the list is equal to the number of integer divisions
|
||
* in "j".
|
||
* Adding extra integer divisions to "j" through isl_basic_map_align_divs
|
||
* also adds the corresponding div constraints. These need to be added
|
||
* to the corresponding tableau as well in add_subs to maintain consistency.
|
||
*
|
||
* If no coalescing can be performed, then we need to revert basic map "j"
|
||
* to its original state. We do the same if basic map "i" gets dropped
|
||
* during the coalescing, even though this should not happen in practice
|
||
* since we have already checked for "j" being a subset of "i"
|
||
* before we reach this stage.
|
||
*/
|
||
static enum isl_change coalesce_with_subs(int i, int j,
|
||
struct isl_coalesce_info *info, __isl_keep isl_aff_list *list)
|
||
{
|
||
isl_basic_map *bmap_j;
|
||
struct isl_tab_undo *snap;
|
||
unsigned dim;
|
||
enum isl_change change;
|
||
int n_ineq;
|
||
|
||
bmap_j = isl_basic_map_copy(info[j].bmap);
|
||
n_ineq = info[j].bmap->n_ineq;
|
||
info[j].bmap = isl_basic_map_align_divs(info[j].bmap, info[i].bmap);
|
||
if (!info[j].bmap)
|
||
goto error;
|
||
|
||
snap = isl_tab_snap(info[j].tab);
|
||
|
||
dim = isl_basic_map_dim(bmap_j, isl_dim_all);
|
||
dim -= isl_basic_map_dim(bmap_j, isl_dim_div);
|
||
if (add_subs(&info[j], list, dim, n_ineq) < 0)
|
||
goto error;
|
||
|
||
change = coalesce_local_pair(i, j, info);
|
||
if (change != isl_change_none && change != isl_change_drop_first) {
|
||
isl_basic_map_free(bmap_j);
|
||
} else {
|
||
isl_basic_map_free(info[j].bmap);
|
||
info[j].bmap = bmap_j;
|
||
|
||
if (isl_tab_rollback(info[j].tab, snap) < 0)
|
||
return isl_change_error;
|
||
}
|
||
|
||
return change;
|
||
error:
|
||
isl_basic_map_free(bmap_j);
|
||
return isl_change_error;
|
||
}
|
||
|
||
/* Check if we can coalesce basic map "j" into basic map "i" after copying
|
||
* those extra integer divisions in "i" that can be simplified away
|
||
* using the extra equalities in "j".
|
||
* All divs are assumed to be known and not contain any nested divs.
|
||
*
|
||
* We first check if there are any extra equalities in "j" that we
|
||
* can exploit. Then we check if every integer division in "i"
|
||
* either already appears in "j" or can be simplified using the
|
||
* extra equalities to a purely affine expression.
|
||
* If these tests succeed, then we try to coalesce the two basic maps
|
||
* by introducing extra dimensions in "j" corresponding to
|
||
* the extra integer divsisions "i" fixed to the corresponding
|
||
* purely affine expression.
|
||
*/
|
||
static enum isl_change check_coalesce_into_eq(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
unsigned n_div_i, n_div_j;
|
||
isl_basic_map *hull_i, *hull_j;
|
||
int equal, empty;
|
||
isl_aff_list *list;
|
||
enum isl_change change;
|
||
|
||
n_div_i = isl_basic_map_dim(info[i].bmap, isl_dim_div);
|
||
n_div_j = isl_basic_map_dim(info[j].bmap, isl_dim_div);
|
||
if (n_div_i <= n_div_j)
|
||
return isl_change_none;
|
||
if (info[j].bmap->n_eq == 0)
|
||
return isl_change_none;
|
||
|
||
hull_i = isl_basic_map_copy(info[i].bmap);
|
||
hull_i = isl_basic_map_plain_affine_hull(hull_i);
|
||
hull_j = isl_basic_map_copy(info[j].bmap);
|
||
hull_j = isl_basic_map_plain_affine_hull(hull_j);
|
||
|
||
hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i));
|
||
equal = isl_basic_map_plain_is_equal(hull_i, hull_j);
|
||
empty = isl_basic_map_plain_is_empty(hull_j);
|
||
isl_basic_map_free(hull_i);
|
||
|
||
if (equal < 0 || empty < 0)
|
||
goto error;
|
||
if (equal || empty) {
|
||
isl_basic_map_free(hull_j);
|
||
return isl_change_none;
|
||
}
|
||
|
||
list = set_up_substitutions(info[i].bmap, info[j].bmap, hull_j);
|
||
if (!list)
|
||
goto error;
|
||
if (isl_aff_list_n_aff(list) < n_div_i)
|
||
change = isl_change_none;
|
||
else
|
||
change = coalesce_with_subs(i, j, info, list);
|
||
|
||
isl_aff_list_free(list);
|
||
|
||
return change;
|
||
error:
|
||
isl_basic_map_free(hull_j);
|
||
return isl_change_error;
|
||
}
|
||
|
||
/* Check if we can coalesce basic maps "i" and "j" after copying
|
||
* those extra integer divisions in one of the basic maps that can
|
||
* be simplified away using the extra equalities in the other basic map.
|
||
* We require all divs to be known in both basic maps.
|
||
* Furthermore, to simplify the comparison of div expressions,
|
||
* we do not allow any nested integer divisions.
|
||
*/
|
||
static enum isl_change check_coalesce_eq(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
int known, nested;
|
||
enum isl_change change;
|
||
|
||
known = isl_basic_map_divs_known(info[i].bmap);
|
||
if (known < 0 || !known)
|
||
return known < 0 ? isl_change_error : isl_change_none;
|
||
known = isl_basic_map_divs_known(info[j].bmap);
|
||
if (known < 0 || !known)
|
||
return known < 0 ? isl_change_error : isl_change_none;
|
||
nested = has_nested_div(info[i].bmap);
|
||
if (nested < 0 || nested)
|
||
return nested < 0 ? isl_change_error : isl_change_none;
|
||
nested = has_nested_div(info[j].bmap);
|
||
if (nested < 0 || nested)
|
||
return nested < 0 ? isl_change_error : isl_change_none;
|
||
|
||
change = check_coalesce_into_eq(i, j, info);
|
||
if (change != isl_change_none)
|
||
return change;
|
||
change = check_coalesce_into_eq(j, i, info);
|
||
if (change != isl_change_none)
|
||
return invert_change(change);
|
||
|
||
return isl_change_none;
|
||
}
|
||
|
||
/* Check if the union of the given pair of basic maps
|
||
* can be represented by a single basic map.
|
||
* If so, replace the pair by the single basic map and return
|
||
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
|
||
* Otherwise, return isl_change_none.
|
||
*
|
||
* We first check if the two basic maps live in the same local space,
|
||
* after aligning the divs that differ by only an integer constant.
|
||
* If so, we do the complete check. Otherwise, we check if they have
|
||
* the same number of integer divisions and can be coalesced, if one is
|
||
* an obvious subset of the other or if the extra integer divisions
|
||
* of one basic map can be simplified away using the extra equalities
|
||
* of the other basic map.
|
||
*/
|
||
static enum isl_change coalesce_pair(int i, int j,
|
||
struct isl_coalesce_info *info)
|
||
{
|
||
int same;
|
||
enum isl_change change;
|
||
|
||
if (harmonize_divs(&info[i], &info[j]) < 0)
|
||
return isl_change_error;
|
||
same = same_divs(info[i].bmap, info[j].bmap);
|
||
if (same < 0)
|
||
return isl_change_error;
|
||
if (same)
|
||
return coalesce_local_pair(i, j, info);
|
||
|
||
if (info[i].bmap->n_div == info[j].bmap->n_div) {
|
||
change = coalesce_local_pair(i, j, info);
|
||
if (change != isl_change_none)
|
||
return change;
|
||
}
|
||
|
||
change = check_coalesce_subset(i, j, info);
|
||
if (change != isl_change_none)
|
||
return change;
|
||
|
||
return check_coalesce_eq(i, j, info);
|
||
}
|
||
|
||
/* Return the maximum of "a" and "b".
|
||
*/
|
||
static inline int max(int a, int b)
|
||
{
|
||
return a > b ? a : b;
|
||
}
|
||
|
||
/* Pairwise coalesce the basic maps in the range [start1, end1[ of "info"
|
||
* with those in the range [start2, end2[, skipping basic maps
|
||
* that have been removed (either before or within this function).
|
||
*
|
||
* For each basic map i in the first range, we check if it can be coalesced
|
||
* with respect to any previously considered basic map j in the second range.
|
||
* If i gets dropped (because it was a subset of some j), then
|
||
* we can move on to the next basic map.
|
||
* If j gets dropped, we need to continue checking against the other
|
||
* previously considered basic maps.
|
||
* If the two basic maps got fused, then we recheck the fused basic map
|
||
* against the previously considered basic maps, starting at i + 1
|
||
* (even if start2 is greater than i + 1).
|
||
*/
|
||
static int coalesce_range(isl_ctx *ctx, struct isl_coalesce_info *info,
|
||
int start1, int end1, int start2, int end2)
|
||
{
|
||
int i, j;
|
||
|
||
for (i = end1 - 1; i >= start1; --i) {
|
||
if (info[i].removed)
|
||
continue;
|
||
for (j = max(i + 1, start2); j < end2; ++j) {
|
||
enum isl_change changed;
|
||
|
||
if (info[j].removed)
|
||
continue;
|
||
if (info[i].removed)
|
||
isl_die(ctx, isl_error_internal,
|
||
"basic map unexpectedly removed",
|
||
return -1);
|
||
changed = coalesce_pair(i, j, info);
|
||
switch (changed) {
|
||
case isl_change_error:
|
||
return -1;
|
||
case isl_change_none:
|
||
case isl_change_drop_second:
|
||
continue;
|
||
case isl_change_drop_first:
|
||
j = end2;
|
||
break;
|
||
case isl_change_fuse:
|
||
j = i;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Pairwise coalesce the basic maps described by the "n" elements of "info".
|
||
*
|
||
* We consider groups of basic maps that live in the same apparent
|
||
* affine hull and we first coalesce within such a group before we
|
||
* coalesce the elements in the group with elements of previously
|
||
* considered groups. If a fuse happens during the second phase,
|
||
* then we also reconsider the elements within the group.
|
||
*/
|
||
static int coalesce(isl_ctx *ctx, int n, struct isl_coalesce_info *info)
|
||
{
|
||
int start, end;
|
||
|
||
for (end = n; end > 0; end = start) {
|
||
start = end - 1;
|
||
while (start >= 1 &&
|
||
info[start - 1].hull_hash == info[start].hull_hash)
|
||
start--;
|
||
if (coalesce_range(ctx, info, start, end, start, end) < 0)
|
||
return -1;
|
||
if (coalesce_range(ctx, info, start, end, end, n) < 0)
|
||
return -1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Update the basic maps in "map" based on the information in "info".
|
||
* In particular, remove the basic maps that have been marked removed and
|
||
* update the others based on the information in the corresponding tableau.
|
||
* Since we detected implicit equalities without calling
|
||
* isl_basic_map_gauss, we need to do it now.
|
||
* Also call isl_basic_map_simplify if we may have lost the definition
|
||
* of one or more integer divisions.
|
||
*/
|
||
static __isl_give isl_map *update_basic_maps(__isl_take isl_map *map,
|
||
int n, struct isl_coalesce_info *info)
|
||
{
|
||
int i;
|
||
|
||
if (!map)
|
||
return NULL;
|
||
|
||
for (i = n - 1; i >= 0; --i) {
|
||
if (info[i].removed) {
|
||
isl_basic_map_free(map->p[i]);
|
||
if (i != map->n - 1)
|
||
map->p[i] = map->p[map->n - 1];
|
||
map->n--;
|
||
continue;
|
||
}
|
||
|
||
info[i].bmap = isl_basic_map_update_from_tab(info[i].bmap,
|
||
info[i].tab);
|
||
info[i].bmap = isl_basic_map_gauss(info[i].bmap, NULL);
|
||
if (info[i].simplify)
|
||
info[i].bmap = isl_basic_map_simplify(info[i].bmap);
|
||
info[i].bmap = isl_basic_map_finalize(info[i].bmap);
|
||
if (!info[i].bmap)
|
||
return isl_map_free(map);
|
||
ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT);
|
||
ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT);
|
||
isl_basic_map_free(map->p[i]);
|
||
map->p[i] = info[i].bmap;
|
||
info[i].bmap = NULL;
|
||
}
|
||
|
||
return map;
|
||
}
|
||
|
||
/* For each pair of basic maps in the map, check if the union of the two
|
||
* can be represented by a single basic map.
|
||
* If so, replace the pair by the single basic map and start over.
|
||
*
|
||
* We factor out any (hidden) common factor from the constraint
|
||
* coefficients to improve the detection of adjacent constraints.
|
||
*
|
||
* Since we are constructing the tableaus of the basic maps anyway,
|
||
* we exploit them to detect implicit equalities and redundant constraints.
|
||
* This also helps the coalescing as it can ignore the redundant constraints.
|
||
* In order to avoid confusion, we make all implicit equalities explicit
|
||
* in the basic maps. We don't call isl_basic_map_gauss, though,
|
||
* as that may affect the number of constraints.
|
||
* This means that we have to call isl_basic_map_gauss at the end
|
||
* of the computation (in update_basic_maps) to ensure that
|
||
* the basic maps are not left in an unexpected state.
|
||
* For each basic map, we also compute the hash of the apparent affine hull
|
||
* for use in coalesce.
|
||
*/
|
||
struct isl_map *isl_map_coalesce(struct isl_map *map)
|
||
{
|
||
int i;
|
||
unsigned n;
|
||
isl_ctx *ctx;
|
||
struct isl_coalesce_info *info = NULL;
|
||
|
||
map = isl_map_remove_empty_parts(map);
|
||
if (!map)
|
||
return NULL;
|
||
|
||
if (map->n <= 1)
|
||
return map;
|
||
|
||
ctx = isl_map_get_ctx(map);
|
||
map = isl_map_sort_divs(map);
|
||
map = isl_map_cow(map);
|
||
|
||
if (!map)
|
||
return NULL;
|
||
|
||
n = map->n;
|
||
|
||
info = isl_calloc_array(map->ctx, struct isl_coalesce_info, n);
|
||
if (!info)
|
||
goto error;
|
||
|
||
for (i = 0; i < map->n; ++i) {
|
||
map->p[i] = isl_basic_map_reduce_coefficients(map->p[i]);
|
||
if (!map->p[i])
|
||
goto error;
|
||
info[i].bmap = isl_basic_map_copy(map->p[i]);
|
||
info[i].tab = isl_tab_from_basic_map(info[i].bmap, 0);
|
||
if (!info[i].tab)
|
||
goto error;
|
||
if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT))
|
||
if (isl_tab_detect_implicit_equalities(info[i].tab) < 0)
|
||
goto error;
|
||
info[i].bmap = isl_tab_make_equalities_explicit(info[i].tab,
|
||
info[i].bmap);
|
||
if (!info[i].bmap)
|
||
goto error;
|
||
if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT))
|
||
if (isl_tab_detect_redundant(info[i].tab) < 0)
|
||
goto error;
|
||
if (coalesce_info_set_hull_hash(&info[i]) < 0)
|
||
goto error;
|
||
}
|
||
for (i = map->n - 1; i >= 0; --i)
|
||
if (info[i].tab->empty)
|
||
drop(&info[i]);
|
||
|
||
if (coalesce(ctx, n, info) < 0)
|
||
goto error;
|
||
|
||
map = update_basic_maps(map, n, info);
|
||
|
||
clear_coalesce_info(n, info);
|
||
|
||
return map;
|
||
error:
|
||
clear_coalesce_info(n, info);
|
||
isl_map_free(map);
|
||
return NULL;
|
||
}
|
||
|
||
/* For each pair of basic sets in the set, check if the union of the two
|
||
* can be represented by a single basic set.
|
||
* If so, replace the pair by the single basic set and start over.
|
||
*/
|
||
struct isl_set *isl_set_coalesce(struct isl_set *set)
|
||
{
|
||
return (struct isl_set *)isl_map_coalesce((struct isl_map *)set);
|
||
}
|