forked from OSchip/llvm-project
1452 lines
58 KiB
C++
1452 lines
58 KiB
C++
//===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass implements a simple loop unroller. It works best when loops have
|
|
// been canonicalized by the -indvars pass, allowing it to determine the trip
|
|
// counts of loops easily.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/CodeMetrics.h"
|
|
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/LoopAnalysisManager.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/LoopUnrollAnalyzer.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Scalar/LoopPassManager.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Utils/LoopSimplify.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Transforms/Utils/SizeOpts.h"
|
|
#include "llvm/Transforms/Utils/UnrollLoop.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <limits>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "loop-unroll"
|
|
|
|
cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
|
|
"forget-scev-loop-unroll", cl::init(false), cl::Hidden,
|
|
cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
|
|
" the current top-most loop. This is somtimes preferred to reduce"
|
|
" compile time."));
|
|
|
|
static cl::opt<unsigned>
|
|
UnrollThreshold("unroll-threshold", cl::Hidden,
|
|
cl::desc("The cost threshold for loop unrolling"));
|
|
|
|
static cl::opt<unsigned> UnrollPartialThreshold(
|
|
"unroll-partial-threshold", cl::Hidden,
|
|
cl::desc("The cost threshold for partial loop unrolling"));
|
|
|
|
static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
|
|
"unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
|
|
cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
|
|
"to the threshold when aggressively unrolling a loop due to the "
|
|
"dynamic cost savings. If completely unrolling a loop will reduce "
|
|
"the total runtime from X to Y, we boost the loop unroll "
|
|
"threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
|
|
"X/Y). This limit avoids excessive code bloat."));
|
|
|
|
static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
|
|
"unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
|
|
cl::desc("Don't allow loop unrolling to simulate more than this number of"
|
|
"iterations when checking full unroll profitability"));
|
|
|
|
static cl::opt<unsigned> UnrollCount(
|
|
"unroll-count", cl::Hidden,
|
|
cl::desc("Use this unroll count for all loops including those with "
|
|
"unroll_count pragma values, for testing purposes"));
|
|
|
|
static cl::opt<unsigned> UnrollMaxCount(
|
|
"unroll-max-count", cl::Hidden,
|
|
cl::desc("Set the max unroll count for partial and runtime unrolling, for"
|
|
"testing purposes"));
|
|
|
|
static cl::opt<unsigned> UnrollFullMaxCount(
|
|
"unroll-full-max-count", cl::Hidden,
|
|
cl::desc(
|
|
"Set the max unroll count for full unrolling, for testing purposes"));
|
|
|
|
static cl::opt<unsigned> UnrollPeelCount(
|
|
"unroll-peel-count", cl::Hidden,
|
|
cl::desc("Set the unroll peeling count, for testing purposes"));
|
|
|
|
static cl::opt<bool>
|
|
UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
|
|
cl::desc("Allows loops to be partially unrolled until "
|
|
"-unroll-threshold loop size is reached."));
|
|
|
|
static cl::opt<bool> UnrollAllowRemainder(
|
|
"unroll-allow-remainder", cl::Hidden,
|
|
cl::desc("Allow generation of a loop remainder (extra iterations) "
|
|
"when unrolling a loop."));
|
|
|
|
static cl::opt<bool>
|
|
UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
|
|
cl::desc("Unroll loops with run-time trip counts"));
|
|
|
|
static cl::opt<unsigned> UnrollMaxUpperBound(
|
|
"unroll-max-upperbound", cl::init(8), cl::Hidden,
|
|
cl::desc(
|
|
"The max of trip count upper bound that is considered in unrolling"));
|
|
|
|
static cl::opt<unsigned> PragmaUnrollThreshold(
|
|
"pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
|
|
cl::desc("Unrolled size limit for loops with an unroll(full) or "
|
|
"unroll_count pragma."));
|
|
|
|
static cl::opt<unsigned> FlatLoopTripCountThreshold(
|
|
"flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
|
|
cl::desc("If the runtime tripcount for the loop is lower than the "
|
|
"threshold, the loop is considered as flat and will be less "
|
|
"aggressively unrolled."));
|
|
|
|
static cl::opt<bool>
|
|
UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
|
|
cl::desc("Allows loops to be peeled when the dynamic "
|
|
"trip count is known to be low."));
|
|
|
|
static cl::opt<bool> UnrollUnrollRemainder(
|
|
"unroll-remainder", cl::Hidden,
|
|
cl::desc("Allow the loop remainder to be unrolled."));
|
|
|
|
// This option isn't ever intended to be enabled, it serves to allow
|
|
// experiments to check the assumptions about when this kind of revisit is
|
|
// necessary.
|
|
static cl::opt<bool> UnrollRevisitChildLoops(
|
|
"unroll-revisit-child-loops", cl::Hidden,
|
|
cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
|
|
"This shouldn't typically be needed as child loops (or their "
|
|
"clones) were already visited."));
|
|
|
|
/// A magic value for use with the Threshold parameter to indicate
|
|
/// that the loop unroll should be performed regardless of how much
|
|
/// code expansion would result.
|
|
static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
|
|
|
|
/// Gather the various unrolling parameters based on the defaults, compiler
|
|
/// flags, TTI overrides and user specified parameters.
|
|
TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
|
|
Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
|
|
BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel,
|
|
Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
|
|
Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
|
|
Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) {
|
|
TargetTransformInfo::UnrollingPreferences UP;
|
|
|
|
// Set up the defaults
|
|
UP.Threshold = OptLevel > 2 ? 300 : 150;
|
|
UP.MaxPercentThresholdBoost = 400;
|
|
UP.OptSizeThreshold = 0;
|
|
UP.PartialThreshold = 150;
|
|
UP.PartialOptSizeThreshold = 0;
|
|
UP.Count = 0;
|
|
UP.PeelCount = 0;
|
|
UP.DefaultUnrollRuntimeCount = 8;
|
|
UP.MaxCount = std::numeric_limits<unsigned>::max();
|
|
UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
|
|
UP.BEInsns = 2;
|
|
UP.Partial = false;
|
|
UP.Runtime = false;
|
|
UP.AllowRemainder = true;
|
|
UP.UnrollRemainder = false;
|
|
UP.AllowExpensiveTripCount = false;
|
|
UP.Force = false;
|
|
UP.UpperBound = false;
|
|
UP.AllowPeeling = true;
|
|
UP.UnrollAndJam = false;
|
|
UP.UnrollAndJamInnerLoopThreshold = 60;
|
|
|
|
// Override with any target specific settings
|
|
TTI.getUnrollingPreferences(L, SE, UP);
|
|
|
|
// Apply size attributes
|
|
bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
|
|
llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI);
|
|
if (OptForSize) {
|
|
UP.Threshold = UP.OptSizeThreshold;
|
|
UP.PartialThreshold = UP.PartialOptSizeThreshold;
|
|
UP.MaxPercentThresholdBoost = 100;
|
|
}
|
|
|
|
// Apply any user values specified by cl::opt
|
|
if (UnrollThreshold.getNumOccurrences() > 0)
|
|
UP.Threshold = UnrollThreshold;
|
|
if (UnrollPartialThreshold.getNumOccurrences() > 0)
|
|
UP.PartialThreshold = UnrollPartialThreshold;
|
|
if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
|
|
UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
|
|
if (UnrollMaxCount.getNumOccurrences() > 0)
|
|
UP.MaxCount = UnrollMaxCount;
|
|
if (UnrollFullMaxCount.getNumOccurrences() > 0)
|
|
UP.FullUnrollMaxCount = UnrollFullMaxCount;
|
|
if (UnrollPeelCount.getNumOccurrences() > 0)
|
|
UP.PeelCount = UnrollPeelCount;
|
|
if (UnrollAllowPartial.getNumOccurrences() > 0)
|
|
UP.Partial = UnrollAllowPartial;
|
|
if (UnrollAllowRemainder.getNumOccurrences() > 0)
|
|
UP.AllowRemainder = UnrollAllowRemainder;
|
|
if (UnrollRuntime.getNumOccurrences() > 0)
|
|
UP.Runtime = UnrollRuntime;
|
|
if (UnrollMaxUpperBound == 0)
|
|
UP.UpperBound = false;
|
|
if (UnrollAllowPeeling.getNumOccurrences() > 0)
|
|
UP.AllowPeeling = UnrollAllowPeeling;
|
|
if (UnrollUnrollRemainder.getNumOccurrences() > 0)
|
|
UP.UnrollRemainder = UnrollUnrollRemainder;
|
|
|
|
// Apply user values provided by argument
|
|
if (UserThreshold.hasValue()) {
|
|
UP.Threshold = *UserThreshold;
|
|
UP.PartialThreshold = *UserThreshold;
|
|
}
|
|
if (UserCount.hasValue())
|
|
UP.Count = *UserCount;
|
|
if (UserAllowPartial.hasValue())
|
|
UP.Partial = *UserAllowPartial;
|
|
if (UserRuntime.hasValue())
|
|
UP.Runtime = *UserRuntime;
|
|
if (UserUpperBound.hasValue())
|
|
UP.UpperBound = *UserUpperBound;
|
|
if (UserAllowPeeling.hasValue())
|
|
UP.AllowPeeling = *UserAllowPeeling;
|
|
|
|
return UP;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// A struct to densely store the state of an instruction after unrolling at
|
|
/// each iteration.
|
|
///
|
|
/// This is designed to work like a tuple of <Instruction *, int> for the
|
|
/// purposes of hashing and lookup, but to be able to associate two boolean
|
|
/// states with each key.
|
|
struct UnrolledInstState {
|
|
Instruction *I;
|
|
int Iteration : 30;
|
|
unsigned IsFree : 1;
|
|
unsigned IsCounted : 1;
|
|
};
|
|
|
|
/// Hashing and equality testing for a set of the instruction states.
|
|
struct UnrolledInstStateKeyInfo {
|
|
using PtrInfo = DenseMapInfo<Instruction *>;
|
|
using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
|
|
|
|
static inline UnrolledInstState getEmptyKey() {
|
|
return {PtrInfo::getEmptyKey(), 0, 0, 0};
|
|
}
|
|
|
|
static inline UnrolledInstState getTombstoneKey() {
|
|
return {PtrInfo::getTombstoneKey(), 0, 0, 0};
|
|
}
|
|
|
|
static inline unsigned getHashValue(const UnrolledInstState &S) {
|
|
return PairInfo::getHashValue({S.I, S.Iteration});
|
|
}
|
|
|
|
static inline bool isEqual(const UnrolledInstState &LHS,
|
|
const UnrolledInstState &RHS) {
|
|
return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
|
|
}
|
|
};
|
|
|
|
struct EstimatedUnrollCost {
|
|
/// The estimated cost after unrolling.
|
|
unsigned UnrolledCost;
|
|
|
|
/// The estimated dynamic cost of executing the instructions in the
|
|
/// rolled form.
|
|
unsigned RolledDynamicCost;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Figure out if the loop is worth full unrolling.
|
|
///
|
|
/// Complete loop unrolling can make some loads constant, and we need to know
|
|
/// if that would expose any further optimization opportunities. This routine
|
|
/// estimates this optimization. It computes cost of unrolled loop
|
|
/// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
|
|
/// dynamic cost we mean that we won't count costs of blocks that are known not
|
|
/// to be executed (i.e. if we have a branch in the loop and we know that at the
|
|
/// given iteration its condition would be resolved to true, we won't add up the
|
|
/// cost of the 'false'-block).
|
|
/// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
|
|
/// the analysis failed (no benefits expected from the unrolling, or the loop is
|
|
/// too big to analyze), the returned value is None.
|
|
static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
|
|
const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
|
|
const SmallPtrSetImpl<const Value *> &EphValues,
|
|
const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) {
|
|
// We want to be able to scale offsets by the trip count and add more offsets
|
|
// to them without checking for overflows, and we already don't want to
|
|
// analyze *massive* trip counts, so we force the max to be reasonably small.
|
|
assert(UnrollMaxIterationsCountToAnalyze <
|
|
(unsigned)(std::numeric_limits<int>::max() / 2) &&
|
|
"The unroll iterations max is too large!");
|
|
|
|
// Only analyze inner loops. We can't properly estimate cost of nested loops
|
|
// and we won't visit inner loops again anyway.
|
|
if (!L->empty())
|
|
return None;
|
|
|
|
// Don't simulate loops with a big or unknown tripcount
|
|
if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
|
|
TripCount > UnrollMaxIterationsCountToAnalyze)
|
|
return None;
|
|
|
|
SmallSetVector<BasicBlock *, 16> BBWorklist;
|
|
SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
|
|
DenseMap<Value *, Constant *> SimplifiedValues;
|
|
SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
|
|
|
|
// The estimated cost of the unrolled form of the loop. We try to estimate
|
|
// this by simplifying as much as we can while computing the estimate.
|
|
unsigned UnrolledCost = 0;
|
|
|
|
// We also track the estimated dynamic (that is, actually executed) cost in
|
|
// the rolled form. This helps identify cases when the savings from unrolling
|
|
// aren't just exposing dead control flows, but actual reduced dynamic
|
|
// instructions due to the simplifications which we expect to occur after
|
|
// unrolling.
|
|
unsigned RolledDynamicCost = 0;
|
|
|
|
// We track the simplification of each instruction in each iteration. We use
|
|
// this to recursively merge costs into the unrolled cost on-demand so that
|
|
// we don't count the cost of any dead code. This is essentially a map from
|
|
// <instruction, int> to <bool, bool>, but stored as a densely packed struct.
|
|
DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
|
|
|
|
// A small worklist used to accumulate cost of instructions from each
|
|
// observable and reached root in the loop.
|
|
SmallVector<Instruction *, 16> CostWorklist;
|
|
|
|
// PHI-used worklist used between iterations while accumulating cost.
|
|
SmallVector<Instruction *, 4> PHIUsedList;
|
|
|
|
// Helper function to accumulate cost for instructions in the loop.
|
|
auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
|
|
assert(Iteration >= 0 && "Cannot have a negative iteration!");
|
|
assert(CostWorklist.empty() && "Must start with an empty cost list");
|
|
assert(PHIUsedList.empty() && "Must start with an empty phi used list");
|
|
CostWorklist.push_back(&RootI);
|
|
for (;; --Iteration) {
|
|
do {
|
|
Instruction *I = CostWorklist.pop_back_val();
|
|
|
|
// InstCostMap only uses I and Iteration as a key, the other two values
|
|
// don't matter here.
|
|
auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
|
|
if (CostIter == InstCostMap.end())
|
|
// If an input to a PHI node comes from a dead path through the loop
|
|
// we may have no cost data for it here. What that actually means is
|
|
// that it is free.
|
|
continue;
|
|
auto &Cost = *CostIter;
|
|
if (Cost.IsCounted)
|
|
// Already counted this instruction.
|
|
continue;
|
|
|
|
// Mark that we are counting the cost of this instruction now.
|
|
Cost.IsCounted = true;
|
|
|
|
// If this is a PHI node in the loop header, just add it to the PHI set.
|
|
if (auto *PhiI = dyn_cast<PHINode>(I))
|
|
if (PhiI->getParent() == L->getHeader()) {
|
|
assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
|
|
"inherently simplify during unrolling.");
|
|
if (Iteration == 0)
|
|
continue;
|
|
|
|
// Push the incoming value from the backedge into the PHI used list
|
|
// if it is an in-loop instruction. We'll use this to populate the
|
|
// cost worklist for the next iteration (as we count backwards).
|
|
if (auto *OpI = dyn_cast<Instruction>(
|
|
PhiI->getIncomingValueForBlock(L->getLoopLatch())))
|
|
if (L->contains(OpI))
|
|
PHIUsedList.push_back(OpI);
|
|
continue;
|
|
}
|
|
|
|
// First accumulate the cost of this instruction.
|
|
if (!Cost.IsFree) {
|
|
UnrolledCost += TTI.getUserCost(I);
|
|
LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
|
|
<< Iteration << "): ");
|
|
LLVM_DEBUG(I->dump());
|
|
}
|
|
|
|
// We must count the cost of every operand which is not free,
|
|
// recursively. If we reach a loop PHI node, simply add it to the set
|
|
// to be considered on the next iteration (backwards!).
|
|
for (Value *Op : I->operands()) {
|
|
// Check whether this operand is free due to being a constant or
|
|
// outside the loop.
|
|
auto *OpI = dyn_cast<Instruction>(Op);
|
|
if (!OpI || !L->contains(OpI))
|
|
continue;
|
|
|
|
// Otherwise accumulate its cost.
|
|
CostWorklist.push_back(OpI);
|
|
}
|
|
} while (!CostWorklist.empty());
|
|
|
|
if (PHIUsedList.empty())
|
|
// We've exhausted the search.
|
|
break;
|
|
|
|
assert(Iteration > 0 &&
|
|
"Cannot track PHI-used values past the first iteration!");
|
|
CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
|
|
PHIUsedList.clear();
|
|
}
|
|
};
|
|
|
|
// Ensure that we don't violate the loop structure invariants relied on by
|
|
// this analysis.
|
|
assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
|
|
assert(L->isLCSSAForm(DT) &&
|
|
"Must have loops in LCSSA form to track live-out values.");
|
|
|
|
LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
|
|
|
|
// Simulate execution of each iteration of the loop counting instructions,
|
|
// which would be simplified.
|
|
// Since the same load will take different values on different iterations,
|
|
// we literally have to go through all loop's iterations.
|
|
for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
|
|
LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
|
|
|
|
// Prepare for the iteration by collecting any simplified entry or backedge
|
|
// inputs.
|
|
for (Instruction &I : *L->getHeader()) {
|
|
auto *PHI = dyn_cast<PHINode>(&I);
|
|
if (!PHI)
|
|
break;
|
|
|
|
// The loop header PHI nodes must have exactly two input: one from the
|
|
// loop preheader and one from the loop latch.
|
|
assert(
|
|
PHI->getNumIncomingValues() == 2 &&
|
|
"Must have an incoming value only for the preheader and the latch.");
|
|
|
|
Value *V = PHI->getIncomingValueForBlock(
|
|
Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
|
|
Constant *C = dyn_cast<Constant>(V);
|
|
if (Iteration != 0 && !C)
|
|
C = SimplifiedValues.lookup(V);
|
|
if (C)
|
|
SimplifiedInputValues.push_back({PHI, C});
|
|
}
|
|
|
|
// Now clear and re-populate the map for the next iteration.
|
|
SimplifiedValues.clear();
|
|
while (!SimplifiedInputValues.empty())
|
|
SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
|
|
|
|
UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
|
|
|
|
BBWorklist.clear();
|
|
BBWorklist.insert(L->getHeader());
|
|
// Note that we *must not* cache the size, this loop grows the worklist.
|
|
for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
|
|
BasicBlock *BB = BBWorklist[Idx];
|
|
|
|
// Visit all instructions in the given basic block and try to simplify
|
|
// it. We don't change the actual IR, just count optimization
|
|
// opportunities.
|
|
for (Instruction &I : *BB) {
|
|
// These won't get into the final code - don't even try calculating the
|
|
// cost for them.
|
|
if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
|
|
continue;
|
|
|
|
// Track this instruction's expected baseline cost when executing the
|
|
// rolled loop form.
|
|
RolledDynamicCost += TTI.getUserCost(&I);
|
|
|
|
// Visit the instruction to analyze its loop cost after unrolling,
|
|
// and if the visitor returns true, mark the instruction as free after
|
|
// unrolling and continue.
|
|
bool IsFree = Analyzer.visit(I);
|
|
bool Inserted = InstCostMap.insert({&I, (int)Iteration,
|
|
(unsigned)IsFree,
|
|
/*IsCounted*/ false}).second;
|
|
(void)Inserted;
|
|
assert(Inserted && "Cannot have a state for an unvisited instruction!");
|
|
|
|
if (IsFree)
|
|
continue;
|
|
|
|
// Can't properly model a cost of a call.
|
|
// FIXME: With a proper cost model we should be able to do it.
|
|
if (auto *CI = dyn_cast<CallInst>(&I)) {
|
|
const Function *Callee = CI->getCalledFunction();
|
|
if (!Callee || TTI.isLoweredToCall(Callee)) {
|
|
LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
|
|
return None;
|
|
}
|
|
}
|
|
|
|
// If the instruction might have a side-effect recursively account for
|
|
// the cost of it and all the instructions leading up to it.
|
|
if (I.mayHaveSideEffects())
|
|
AddCostRecursively(I, Iteration);
|
|
|
|
// If unrolled body turns out to be too big, bail out.
|
|
if (UnrolledCost > MaxUnrolledLoopSize) {
|
|
LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
|
|
<< " UnrolledCost: " << UnrolledCost
|
|
<< ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
|
|
<< "\n");
|
|
return None;
|
|
}
|
|
}
|
|
|
|
Instruction *TI = BB->getTerminator();
|
|
|
|
// Add in the live successors by first checking whether we have terminator
|
|
// that may be simplified based on the values simplified by this call.
|
|
BasicBlock *KnownSucc = nullptr;
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
|
|
if (BI->isConditional()) {
|
|
if (Constant *SimpleCond =
|
|
SimplifiedValues.lookup(BI->getCondition())) {
|
|
// Just take the first successor if condition is undef
|
|
if (isa<UndefValue>(SimpleCond))
|
|
KnownSucc = BI->getSuccessor(0);
|
|
else if (ConstantInt *SimpleCondVal =
|
|
dyn_cast<ConstantInt>(SimpleCond))
|
|
KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
|
|
}
|
|
}
|
|
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
|
|
if (Constant *SimpleCond =
|
|
SimplifiedValues.lookup(SI->getCondition())) {
|
|
// Just take the first successor if condition is undef
|
|
if (isa<UndefValue>(SimpleCond))
|
|
KnownSucc = SI->getSuccessor(0);
|
|
else if (ConstantInt *SimpleCondVal =
|
|
dyn_cast<ConstantInt>(SimpleCond))
|
|
KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
|
|
}
|
|
}
|
|
if (KnownSucc) {
|
|
if (L->contains(KnownSucc))
|
|
BBWorklist.insert(KnownSucc);
|
|
else
|
|
ExitWorklist.insert({BB, KnownSucc});
|
|
continue;
|
|
}
|
|
|
|
// Add BB's successors to the worklist.
|
|
for (BasicBlock *Succ : successors(BB))
|
|
if (L->contains(Succ))
|
|
BBWorklist.insert(Succ);
|
|
else
|
|
ExitWorklist.insert({BB, Succ});
|
|
AddCostRecursively(*TI, Iteration);
|
|
}
|
|
|
|
// If we found no optimization opportunities on the first iteration, we
|
|
// won't find them on later ones too.
|
|
if (UnrolledCost == RolledDynamicCost) {
|
|
LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n"
|
|
<< " UnrolledCost: " << UnrolledCost << "\n");
|
|
return None;
|
|
}
|
|
}
|
|
|
|
while (!ExitWorklist.empty()) {
|
|
BasicBlock *ExitingBB, *ExitBB;
|
|
std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
|
|
|
|
for (Instruction &I : *ExitBB) {
|
|
auto *PN = dyn_cast<PHINode>(&I);
|
|
if (!PN)
|
|
break;
|
|
|
|
Value *Op = PN->getIncomingValueForBlock(ExitingBB);
|
|
if (auto *OpI = dyn_cast<Instruction>(Op))
|
|
if (L->contains(OpI))
|
|
AddCostRecursively(*OpI, TripCount - 1);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Analysis finished:\n"
|
|
<< "UnrolledCost: " << UnrolledCost << ", "
|
|
<< "RolledDynamicCost: " << RolledDynamicCost << "\n");
|
|
return {{UnrolledCost, RolledDynamicCost}};
|
|
}
|
|
|
|
/// ApproximateLoopSize - Approximate the size of the loop.
|
|
unsigned llvm::ApproximateLoopSize(
|
|
const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
|
|
const TargetTransformInfo &TTI,
|
|
const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
|
|
CodeMetrics Metrics;
|
|
for (BasicBlock *BB : L->blocks())
|
|
Metrics.analyzeBasicBlock(BB, TTI, EphValues);
|
|
NumCalls = Metrics.NumInlineCandidates;
|
|
NotDuplicatable = Metrics.notDuplicatable;
|
|
Convergent = Metrics.convergent;
|
|
|
|
unsigned LoopSize = Metrics.NumInsts;
|
|
|
|
// Don't allow an estimate of size zero. This would allows unrolling of loops
|
|
// with huge iteration counts, which is a compile time problem even if it's
|
|
// not a problem for code quality. Also, the code using this size may assume
|
|
// that each loop has at least three instructions (likely a conditional
|
|
// branch, a comparison feeding that branch, and some kind of loop increment
|
|
// feeding that comparison instruction).
|
|
LoopSize = std::max(LoopSize, BEInsns + 1);
|
|
|
|
return LoopSize;
|
|
}
|
|
|
|
// Returns the loop hint metadata node with the given name (for example,
|
|
// "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
|
|
// returned.
|
|
static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
|
|
if (MDNode *LoopID = L->getLoopID())
|
|
return GetUnrollMetadata(LoopID, Name);
|
|
return nullptr;
|
|
}
|
|
|
|
// Returns true if the loop has an unroll(full) pragma.
|
|
static bool HasUnrollFullPragma(const Loop *L) {
|
|
return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
|
|
}
|
|
|
|
// Returns true if the loop has an unroll(enable) pragma. This metadata is used
|
|
// for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
|
|
static bool HasUnrollEnablePragma(const Loop *L) {
|
|
return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
|
|
}
|
|
|
|
// Returns true if the loop has an runtime unroll(disable) pragma.
|
|
static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
|
|
return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
|
|
}
|
|
|
|
// If loop has an unroll_count pragma return the (necessarily
|
|
// positive) value from the pragma. Otherwise return 0.
|
|
static unsigned UnrollCountPragmaValue(const Loop *L) {
|
|
MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
|
|
if (MD) {
|
|
assert(MD->getNumOperands() == 2 &&
|
|
"Unroll count hint metadata should have two operands.");
|
|
unsigned Count =
|
|
mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
|
|
assert(Count >= 1 && "Unroll count must be positive.");
|
|
return Count;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Computes the boosting factor for complete unrolling.
|
|
// If fully unrolling the loop would save a lot of RolledDynamicCost, it would
|
|
// be beneficial to fully unroll the loop even if unrolledcost is large. We
|
|
// use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
|
|
// the unroll threshold.
|
|
static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
|
|
unsigned MaxPercentThresholdBoost) {
|
|
if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
|
|
return 100;
|
|
else if (Cost.UnrolledCost != 0)
|
|
// The boosting factor is RolledDynamicCost / UnrolledCost
|
|
return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
|
|
MaxPercentThresholdBoost);
|
|
else
|
|
return MaxPercentThresholdBoost;
|
|
}
|
|
|
|
// Returns loop size estimation for unrolled loop.
|
|
static uint64_t getUnrolledLoopSize(
|
|
unsigned LoopSize,
|
|
TargetTransformInfo::UnrollingPreferences &UP) {
|
|
assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
|
|
return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
|
|
}
|
|
|
|
// Returns true if unroll count was set explicitly.
|
|
// Calculates unroll count and writes it to UP.Count.
|
|
// Unless IgnoreUser is true, will also use metadata and command-line options
|
|
// that are specific to to the LoopUnroll pass (which, for instance, are
|
|
// irrelevant for the LoopUnrollAndJam pass).
|
|
// FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
|
|
// many LoopUnroll-specific options. The shared functionality should be
|
|
// refactored into it own function.
|
|
bool llvm::computeUnrollCount(
|
|
Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
|
|
ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
|
|
OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount,
|
|
unsigned &TripMultiple, unsigned LoopSize,
|
|
TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
|
|
|
|
// Check for explicit Count.
|
|
// 1st priority is unroll count set by "unroll-count" option.
|
|
bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
|
|
if (UserUnrollCount) {
|
|
UP.Count = UnrollCount;
|
|
UP.AllowExpensiveTripCount = true;
|
|
UP.Force = true;
|
|
if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
|
|
return true;
|
|
}
|
|
|
|
// 2nd priority is unroll count set by pragma.
|
|
unsigned PragmaCount = UnrollCountPragmaValue(L);
|
|
if (PragmaCount > 0) {
|
|
UP.Count = PragmaCount;
|
|
UP.Runtime = true;
|
|
UP.AllowExpensiveTripCount = true;
|
|
UP.Force = true;
|
|
if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
|
|
getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
|
|
return true;
|
|
}
|
|
bool PragmaFullUnroll = HasUnrollFullPragma(L);
|
|
if (PragmaFullUnroll && TripCount != 0) {
|
|
UP.Count = TripCount;
|
|
if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
|
|
return false;
|
|
}
|
|
|
|
bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
|
|
bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
|
|
PragmaEnableUnroll || UserUnrollCount;
|
|
|
|
if (ExplicitUnroll && TripCount != 0) {
|
|
// If the loop has an unrolling pragma, we want to be more aggressive with
|
|
// unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
|
|
// value which is larger than the default limits.
|
|
UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
|
|
UP.PartialThreshold =
|
|
std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
|
|
}
|
|
|
|
// 3rd priority is full unroll count.
|
|
// Full unroll makes sense only when TripCount or its upper bound could be
|
|
// statically calculated.
|
|
// Also we need to check if we exceed FullUnrollMaxCount.
|
|
// If using the upper bound to unroll, TripMultiple should be set to 1 because
|
|
// we do not know when loop may exit.
|
|
// MaxTripCount and ExactTripCount cannot both be non zero since we only
|
|
// compute the former when the latter is zero.
|
|
unsigned ExactTripCount = TripCount;
|
|
assert((ExactTripCount == 0 || MaxTripCount == 0) &&
|
|
"ExtractTripCount and MaxTripCount cannot both be non zero.");
|
|
unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount;
|
|
UP.Count = FullUnrollTripCount;
|
|
if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
|
|
// When computing the unrolled size, note that BEInsns are not replicated
|
|
// like the rest of the loop body.
|
|
if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
|
|
UseUpperBound = (MaxTripCount == FullUnrollTripCount);
|
|
TripCount = FullUnrollTripCount;
|
|
TripMultiple = UP.UpperBound ? 1 : TripMultiple;
|
|
return ExplicitUnroll;
|
|
} else {
|
|
// The loop isn't that small, but we still can fully unroll it if that
|
|
// helps to remove a significant number of instructions.
|
|
// To check that, run additional analysis on the loop.
|
|
if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
|
|
L, FullUnrollTripCount, DT, SE, EphValues, TTI,
|
|
UP.Threshold * UP.MaxPercentThresholdBoost / 100)) {
|
|
unsigned Boost =
|
|
getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
|
|
if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
|
|
UseUpperBound = (MaxTripCount == FullUnrollTripCount);
|
|
TripCount = FullUnrollTripCount;
|
|
TripMultiple = UP.UpperBound ? 1 : TripMultiple;
|
|
return ExplicitUnroll;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// 4th priority is loop peeling.
|
|
computePeelCount(L, LoopSize, UP, TripCount, SE);
|
|
if (UP.PeelCount) {
|
|
UP.Runtime = false;
|
|
UP.Count = 1;
|
|
return ExplicitUnroll;
|
|
}
|
|
|
|
// 5th priority is partial unrolling.
|
|
// Try partial unroll only when TripCount could be statically calculated.
|
|
if (TripCount) {
|
|
UP.Partial |= ExplicitUnroll;
|
|
if (!UP.Partial) {
|
|
LLVM_DEBUG(dbgs() << " will not try to unroll partially because "
|
|
<< "-unroll-allow-partial not given\n");
|
|
UP.Count = 0;
|
|
return false;
|
|
}
|
|
if (UP.Count == 0)
|
|
UP.Count = TripCount;
|
|
if (UP.PartialThreshold != NoThreshold) {
|
|
// Reduce unroll count to be modulo of TripCount for partial unrolling.
|
|
if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
|
|
UP.Count =
|
|
(std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
|
|
(LoopSize - UP.BEInsns);
|
|
if (UP.Count > UP.MaxCount)
|
|
UP.Count = UP.MaxCount;
|
|
while (UP.Count != 0 && TripCount % UP.Count != 0)
|
|
UP.Count--;
|
|
if (UP.AllowRemainder && UP.Count <= 1) {
|
|
// If there is no Count that is modulo of TripCount, set Count to
|
|
// largest power-of-two factor that satisfies the threshold limit.
|
|
// As we'll create fixup loop, do the type of unrolling only if
|
|
// remainder loop is allowed.
|
|
UP.Count = UP.DefaultUnrollRuntimeCount;
|
|
while (UP.Count != 0 &&
|
|
getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
|
|
UP.Count >>= 1;
|
|
}
|
|
if (UP.Count < 2) {
|
|
if (PragmaEnableUnroll)
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE,
|
|
"UnrollAsDirectedTooLarge",
|
|
L->getStartLoc(), L->getHeader())
|
|
<< "Unable to unroll loop as directed by unroll(enable) "
|
|
"pragma "
|
|
"because unrolled size is too large.";
|
|
});
|
|
UP.Count = 0;
|
|
}
|
|
} else {
|
|
UP.Count = TripCount;
|
|
}
|
|
if (UP.Count > UP.MaxCount)
|
|
UP.Count = UP.MaxCount;
|
|
if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
|
|
UP.Count != TripCount)
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE,
|
|
"FullUnrollAsDirectedTooLarge",
|
|
L->getStartLoc(), L->getHeader())
|
|
<< "Unable to fully unroll loop as directed by unroll pragma "
|
|
"because "
|
|
"unrolled size is too large.";
|
|
});
|
|
return ExplicitUnroll;
|
|
}
|
|
assert(TripCount == 0 &&
|
|
"All cases when TripCount is constant should be covered here.");
|
|
if (PragmaFullUnroll)
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(
|
|
DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
|
|
L->getStartLoc(), L->getHeader())
|
|
<< "Unable to fully unroll loop as directed by unroll(full) "
|
|
"pragma "
|
|
"because loop has a runtime trip count.";
|
|
});
|
|
|
|
// 6th priority is runtime unrolling.
|
|
// Don't unroll a runtime trip count loop when it is disabled.
|
|
if (HasRuntimeUnrollDisablePragma(L)) {
|
|
UP.Count = 0;
|
|
return false;
|
|
}
|
|
|
|
// Check if the runtime trip count is too small when profile is available.
|
|
if (L->getHeader()->getParent()->hasProfileData()) {
|
|
if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
|
|
if (*ProfileTripCount < FlatLoopTripCountThreshold)
|
|
return false;
|
|
else
|
|
UP.AllowExpensiveTripCount = true;
|
|
}
|
|
}
|
|
|
|
// Reduce count based on the type of unrolling and the threshold values.
|
|
UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
|
|
if (!UP.Runtime) {
|
|
LLVM_DEBUG(
|
|
dbgs() << " will not try to unroll loop with runtime trip count "
|
|
<< "-unroll-runtime not given\n");
|
|
UP.Count = 0;
|
|
return false;
|
|
}
|
|
if (UP.Count == 0)
|
|
UP.Count = UP.DefaultUnrollRuntimeCount;
|
|
|
|
// Reduce unroll count to be the largest power-of-two factor of
|
|
// the original count which satisfies the threshold limit.
|
|
while (UP.Count != 0 &&
|
|
getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
|
|
UP.Count >>= 1;
|
|
|
|
#ifndef NDEBUG
|
|
unsigned OrigCount = UP.Count;
|
|
#endif
|
|
|
|
if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
|
|
while (UP.Count != 0 && TripMultiple % UP.Count != 0)
|
|
UP.Count >>= 1;
|
|
LLVM_DEBUG(
|
|
dbgs() << "Remainder loop is restricted (that could architecture "
|
|
"specific or because the loop contains a convergent "
|
|
"instruction), so unroll count must divide the trip "
|
|
"multiple, "
|
|
<< TripMultiple << ". Reducing unroll count from " << OrigCount
|
|
<< " to " << UP.Count << ".\n");
|
|
|
|
using namespace ore;
|
|
|
|
if (PragmaCount > 0 && !UP.AllowRemainder)
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE,
|
|
"DifferentUnrollCountFromDirected",
|
|
L->getStartLoc(), L->getHeader())
|
|
<< "Unable to unroll loop the number of times directed by "
|
|
"unroll_count pragma because remainder loop is restricted "
|
|
"(that could architecture specific or because the loop "
|
|
"contains a convergent instruction) and so must have an "
|
|
"unroll "
|
|
"count that divides the loop trip multiple of "
|
|
<< NV("TripMultiple", TripMultiple) << ". Unrolling instead "
|
|
<< NV("UnrollCount", UP.Count) << " time(s).";
|
|
});
|
|
}
|
|
|
|
if (UP.Count > UP.MaxCount)
|
|
UP.Count = UP.MaxCount;
|
|
LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count
|
|
<< "\n");
|
|
if (UP.Count < 2)
|
|
UP.Count = 0;
|
|
return ExplicitUnroll;
|
|
}
|
|
|
|
static LoopUnrollResult tryToUnrollLoop(
|
|
Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
|
|
const TargetTransformInfo &TTI, AssumptionCache &AC,
|
|
OptimizationRemarkEmitter &ORE,
|
|
BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
|
|
bool PreserveLCSSA, int OptLevel,
|
|
bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
|
|
Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
|
|
Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
|
|
Optional<bool> ProvidedAllowPeeling) {
|
|
LLVM_DEBUG(dbgs() << "Loop Unroll: F["
|
|
<< L->getHeader()->getParent()->getName() << "] Loop %"
|
|
<< L->getHeader()->getName() << "\n");
|
|
TransformationMode TM = hasUnrollTransformation(L);
|
|
if (TM & TM_Disable)
|
|
return LoopUnrollResult::Unmodified;
|
|
if (!L->isLoopSimplifyForm()) {
|
|
LLVM_DEBUG(
|
|
dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
|
|
return LoopUnrollResult::Unmodified;
|
|
}
|
|
|
|
// When automtatic unrolling is disabled, do not unroll unless overridden for
|
|
// this loop.
|
|
if (OnlyWhenForced && !(TM & TM_Enable))
|
|
return LoopUnrollResult::Unmodified;
|
|
|
|
bool OptForSize = L->getHeader()->getParent()->hasOptSize();
|
|
unsigned NumInlineCandidates;
|
|
bool NotDuplicatable;
|
|
bool Convergent;
|
|
TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
|
|
L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount,
|
|
ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
|
|
ProvidedAllowPeeling);
|
|
|
|
// Exit early if unrolling is disabled. For OptForSize, we pick the loop size
|
|
// as threshold later on.
|
|
if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
|
|
!OptForSize)
|
|
return LoopUnrollResult::Unmodified;
|
|
|
|
SmallPtrSet<const Value *, 32> EphValues;
|
|
CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
|
|
|
|
unsigned LoopSize =
|
|
ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
|
|
TTI, EphValues, UP.BEInsns);
|
|
LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
|
|
if (NotDuplicatable) {
|
|
LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
|
|
<< " instructions.\n");
|
|
return LoopUnrollResult::Unmodified;
|
|
}
|
|
|
|
// When optimizing for size, use LoopSize as threshold, to (fully) unroll
|
|
// loops, if it does not increase code size.
|
|
if (OptForSize)
|
|
UP.Threshold = std::max(UP.Threshold, LoopSize);
|
|
|
|
if (NumInlineCandidates != 0) {
|
|
LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
|
|
return LoopUnrollResult::Unmodified;
|
|
}
|
|
|
|
// Find trip count and trip multiple if count is not available
|
|
unsigned TripCount = 0;
|
|
unsigned MaxTripCount = 0;
|
|
unsigned TripMultiple = 1;
|
|
// If there are multiple exiting blocks but one of them is the latch, use the
|
|
// latch for the trip count estimation. Otherwise insist on a single exiting
|
|
// block for the trip count estimation.
|
|
BasicBlock *ExitingBlock = L->getLoopLatch();
|
|
if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
|
|
ExitingBlock = L->getExitingBlock();
|
|
if (ExitingBlock) {
|
|
TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
|
|
TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
|
|
}
|
|
|
|
// If the loop contains a convergent operation, the prelude we'd add
|
|
// to do the first few instructions before we hit the unrolled loop
|
|
// is unsafe -- it adds a control-flow dependency to the convergent
|
|
// operation. Therefore restrict remainder loop (try unrollig without).
|
|
//
|
|
// TODO: This is quite conservative. In practice, convergent_op()
|
|
// is likely to be called unconditionally in the loop. In this
|
|
// case, the program would be ill-formed (on most architectures)
|
|
// unless n were the same on all threads in a thread group.
|
|
// Assuming n is the same on all threads, any kind of unrolling is
|
|
// safe. But currently llvm's notion of convergence isn't powerful
|
|
// enough to express this.
|
|
if (Convergent)
|
|
UP.AllowRemainder = false;
|
|
|
|
// Try to find the trip count upper bound if we cannot find the exact trip
|
|
// count.
|
|
bool MaxOrZero = false;
|
|
if (!TripCount) {
|
|
MaxTripCount = SE.getSmallConstantMaxTripCount(L);
|
|
MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
|
|
// We can unroll by the upper bound amount if it's generally allowed or if
|
|
// we know that the loop is executed either the upper bound or zero times.
|
|
// (MaxOrZero unrolling keeps only the first loop test, so the number of
|
|
// loop tests remains the same compared to the non-unrolled version, whereas
|
|
// the generic upper bound unrolling keeps all but the last loop test so the
|
|
// number of loop tests goes up which may end up being worse on targets with
|
|
// constrained branch predictor resources so is controlled by an option.)
|
|
// In addition we only unroll small upper bounds.
|
|
if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) {
|
|
MaxTripCount = 0;
|
|
}
|
|
}
|
|
|
|
// computeUnrollCount() decides whether it is beneficial to use upper bound to
|
|
// fully unroll the loop.
|
|
bool UseUpperBound = false;
|
|
bool IsCountSetExplicitly = computeUnrollCount(
|
|
L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount,
|
|
TripMultiple, LoopSize, UP, UseUpperBound);
|
|
if (!UP.Count)
|
|
return LoopUnrollResult::Unmodified;
|
|
// Unroll factor (Count) must be less or equal to TripCount.
|
|
if (TripCount && UP.Count > TripCount)
|
|
UP.Count = TripCount;
|
|
|
|
// Save loop properties before it is transformed.
|
|
MDNode *OrigLoopID = L->getLoopID();
|
|
|
|
// Unroll the loop.
|
|
Loop *RemainderLoop = nullptr;
|
|
LoopUnrollResult UnrollResult = UnrollLoop(
|
|
L,
|
|
{UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
|
|
UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder,
|
|
ForgetAllSCEV},
|
|
LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop);
|
|
if (UnrollResult == LoopUnrollResult::Unmodified)
|
|
return LoopUnrollResult::Unmodified;
|
|
|
|
if (RemainderLoop) {
|
|
Optional<MDNode *> RemainderLoopID =
|
|
makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
|
|
LLVMLoopUnrollFollowupRemainder});
|
|
if (RemainderLoopID.hasValue())
|
|
RemainderLoop->setLoopID(RemainderLoopID.getValue());
|
|
}
|
|
|
|
if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
|
|
Optional<MDNode *> NewLoopID =
|
|
makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
|
|
LLVMLoopUnrollFollowupUnrolled});
|
|
if (NewLoopID.hasValue()) {
|
|
L->setLoopID(NewLoopID.getValue());
|
|
|
|
// Do not setLoopAlreadyUnrolled if loop attributes have been specified
|
|
// explicitly.
|
|
return UnrollResult;
|
|
}
|
|
}
|
|
|
|
// If loop has an unroll count pragma or unrolled by explicitly set count
|
|
// mark loop as unrolled to prevent unrolling beyond that requested.
|
|
// If the loop was peeled, we already "used up" the profile information
|
|
// we had, so we don't want to unroll or peel again.
|
|
if (UnrollResult != LoopUnrollResult::FullyUnrolled &&
|
|
(IsCountSetExplicitly || UP.PeelCount))
|
|
L->setLoopAlreadyUnrolled();
|
|
|
|
return UnrollResult;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class LoopUnroll : public LoopPass {
|
|
public:
|
|
static char ID; // Pass ID, replacement for typeid
|
|
|
|
int OptLevel;
|
|
|
|
/// If false, use a cost model to determine whether unrolling of a loop is
|
|
/// profitable. If true, only loops that explicitly request unrolling via
|
|
/// metadata are considered. All other loops are skipped.
|
|
bool OnlyWhenForced;
|
|
|
|
/// If false, when SCEV is invalidated, only forget everything in the
|
|
/// top-most loop (call forgetTopMostLoop), of the loop being processed.
|
|
/// Otherwise, forgetAllLoops and rebuild when needed next.
|
|
bool ForgetAllSCEV;
|
|
|
|
Optional<unsigned> ProvidedCount;
|
|
Optional<unsigned> ProvidedThreshold;
|
|
Optional<bool> ProvidedAllowPartial;
|
|
Optional<bool> ProvidedRuntime;
|
|
Optional<bool> ProvidedUpperBound;
|
|
Optional<bool> ProvidedAllowPeeling;
|
|
|
|
LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
|
|
bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
|
|
Optional<unsigned> Count = None,
|
|
Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
|
|
Optional<bool> UpperBound = None,
|
|
Optional<bool> AllowPeeling = None)
|
|
: LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
|
|
ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
|
|
ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
|
|
ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
|
|
ProvidedAllowPeeling(AllowPeeling) {
|
|
initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
|
|
if (skipLoop(L))
|
|
return false;
|
|
|
|
Function &F = *L->getHeader()->getParent();
|
|
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
const TargetTransformInfo &TTI =
|
|
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
// For the old PM, we can't use OptimizationRemarkEmitter as an analysis
|
|
// pass. Function analyses need to be preserved across loop transformations
|
|
// but ORE cannot be preserved (see comment before the pass definition).
|
|
OptimizationRemarkEmitter ORE(&F);
|
|
bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
|
|
|
|
LoopUnrollResult Result = tryToUnrollLoop(
|
|
L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr,
|
|
PreserveLCSSA, OptLevel, OnlyWhenForced,
|
|
ForgetAllSCEV, ProvidedCount, ProvidedThreshold, ProvidedAllowPartial,
|
|
ProvidedRuntime, ProvidedUpperBound, ProvidedAllowPeeling);
|
|
|
|
if (Result == LoopUnrollResult::FullyUnrolled)
|
|
LPM.markLoopAsDeleted(*L);
|
|
|
|
return Result != LoopUnrollResult::Unmodified;
|
|
}
|
|
|
|
/// This transformation requires natural loop information & requires that
|
|
/// loop preheaders be inserted into the CFG...
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
// FIXME: Loop passes are required to preserve domtree, and for now we just
|
|
// recreate dom info if anything gets unrolled.
|
|
getLoopAnalysisUsage(AU);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char LoopUnroll::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
|
|
|
|
Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
|
|
bool ForgetAllSCEV, int Threshold, int Count,
|
|
int AllowPartial, int Runtime, int UpperBound,
|
|
int AllowPeeling) {
|
|
// TODO: It would make more sense for this function to take the optionals
|
|
// directly, but that's dangerous since it would silently break out of tree
|
|
// callers.
|
|
return new LoopUnroll(
|
|
OptLevel, OnlyWhenForced, ForgetAllSCEV,
|
|
Threshold == -1 ? None : Optional<unsigned>(Threshold),
|
|
Count == -1 ? None : Optional<unsigned>(Count),
|
|
AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
|
|
Runtime == -1 ? None : Optional<bool>(Runtime),
|
|
UpperBound == -1 ? None : Optional<bool>(UpperBound),
|
|
AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
|
|
}
|
|
|
|
Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
|
|
bool ForgetAllSCEV) {
|
|
return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
|
|
0, 0, 0, 0);
|
|
}
|
|
|
|
PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
|
|
LoopStandardAnalysisResults &AR,
|
|
LPMUpdater &Updater) {
|
|
const auto &FAM =
|
|
AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
|
|
Function *F = L.getHeader()->getParent();
|
|
|
|
auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
|
|
// FIXME: This should probably be optional rather than required.
|
|
if (!ORE)
|
|
report_fatal_error(
|
|
"LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not "
|
|
"cached at a higher level");
|
|
|
|
// Keep track of the previous loop structure so we can identify new loops
|
|
// created by unrolling.
|
|
Loop *ParentL = L.getParentLoop();
|
|
SmallPtrSet<Loop *, 4> OldLoops;
|
|
if (ParentL)
|
|
OldLoops.insert(ParentL->begin(), ParentL->end());
|
|
else
|
|
OldLoops.insert(AR.LI.begin(), AR.LI.end());
|
|
|
|
std::string LoopName = L.getName();
|
|
|
|
bool Changed =
|
|
tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE,
|
|
/*BFI*/ nullptr, /*PSI*/ nullptr,
|
|
/*PreserveLCSSA*/ true, OptLevel, OnlyWhenForced,
|
|
ForgetSCEV, /*Count*/ None,
|
|
/*Threshold*/ None, /*AllowPartial*/ false,
|
|
/*Runtime*/ false, /*UpperBound*/ false,
|
|
/*AllowPeeling*/ false) != LoopUnrollResult::Unmodified;
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
|
|
// The parent must not be damaged by unrolling!
|
|
#ifndef NDEBUG
|
|
if (ParentL)
|
|
ParentL->verifyLoop();
|
|
#endif
|
|
|
|
// Unrolling can do several things to introduce new loops into a loop nest:
|
|
// - Full unrolling clones child loops within the current loop but then
|
|
// removes the current loop making all of the children appear to be new
|
|
// sibling loops.
|
|
//
|
|
// When a new loop appears as a sibling loop after fully unrolling,
|
|
// its nesting structure has fundamentally changed and we want to revisit
|
|
// it to reflect that.
|
|
//
|
|
// When unrolling has removed the current loop, we need to tell the
|
|
// infrastructure that it is gone.
|
|
//
|
|
// Finally, we support a debugging/testing mode where we revisit child loops
|
|
// as well. These are not expected to require further optimizations as either
|
|
// they or the loop they were cloned from have been directly visited already.
|
|
// But the debugging mode allows us to check this assumption.
|
|
bool IsCurrentLoopValid = false;
|
|
SmallVector<Loop *, 4> SibLoops;
|
|
if (ParentL)
|
|
SibLoops.append(ParentL->begin(), ParentL->end());
|
|
else
|
|
SibLoops.append(AR.LI.begin(), AR.LI.end());
|
|
erase_if(SibLoops, [&](Loop *SibLoop) {
|
|
if (SibLoop == &L) {
|
|
IsCurrentLoopValid = true;
|
|
return true;
|
|
}
|
|
|
|
// Otherwise erase the loop from the list if it was in the old loops.
|
|
return OldLoops.count(SibLoop) != 0;
|
|
});
|
|
Updater.addSiblingLoops(SibLoops);
|
|
|
|
if (!IsCurrentLoopValid) {
|
|
Updater.markLoopAsDeleted(L, LoopName);
|
|
} else {
|
|
// We can only walk child loops if the current loop remained valid.
|
|
if (UnrollRevisitChildLoops) {
|
|
// Walk *all* of the child loops.
|
|
SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
|
|
Updater.addChildLoops(ChildLoops);
|
|
}
|
|
}
|
|
|
|
return getLoopPassPreservedAnalyses();
|
|
}
|
|
|
|
template <typename RangeT>
|
|
static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) {
|
|
SmallVector<Loop *, 8> Worklist;
|
|
// We use an internal worklist to build up the preorder traversal without
|
|
// recursion.
|
|
SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
|
|
|
|
for (Loop *RootL : Loops) {
|
|
assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
|
|
assert(PreOrderWorklist.empty() &&
|
|
"Must start with an empty preorder walk worklist.");
|
|
PreOrderWorklist.push_back(RootL);
|
|
do {
|
|
Loop *L = PreOrderWorklist.pop_back_val();
|
|
PreOrderWorklist.append(L->begin(), L->end());
|
|
PreOrderLoops.push_back(L);
|
|
} while (!PreOrderWorklist.empty());
|
|
|
|
Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end());
|
|
PreOrderLoops.clear();
|
|
}
|
|
return Worklist;
|
|
}
|
|
|
|
PreservedAnalyses LoopUnrollPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
|
|
auto &LI = AM.getResult<LoopAnalysis>(F);
|
|
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &AC = AM.getResult<AssumptionAnalysis>(F);
|
|
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
|
|
|
|
LoopAnalysisManager *LAM = nullptr;
|
|
if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
|
|
LAM = &LAMProxy->getManager();
|
|
|
|
const ModuleAnalysisManager &MAM =
|
|
AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
|
|
ProfileSummaryInfo *PSI =
|
|
MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
|
|
auto *BFI = (PSI && PSI->hasProfileSummary()) ?
|
|
&AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
|
|
|
|
bool Changed = false;
|
|
|
|
// The unroller requires loops to be in simplified form, and also needs LCSSA.
|
|
// Since simplification may add new inner loops, it has to run before the
|
|
// legality and profitability checks. This means running the loop unroller
|
|
// will simplify all loops, regardless of whether anything end up being
|
|
// unrolled.
|
|
for (auto &L : LI) {
|
|
Changed |=
|
|
simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
|
|
Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
|
|
}
|
|
|
|
SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI);
|
|
|
|
while (!Worklist.empty()) {
|
|
// Because the LoopInfo stores the loops in RPO, we walk the worklist
|
|
// from back to front so that we work forward across the CFG, which
|
|
// for unrolling is only needed to get optimization remarks emitted in
|
|
// a forward order.
|
|
Loop &L = *Worklist.pop_back_val();
|
|
#ifndef NDEBUG
|
|
Loop *ParentL = L.getParentLoop();
|
|
#endif
|
|
|
|
// Check if the profile summary indicates that the profiled application
|
|
// has a huge working set size, in which case we disable peeling to avoid
|
|
// bloating it further.
|
|
Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
|
|
if (PSI && PSI->hasHugeWorkingSetSize())
|
|
LocalAllowPeeling = false;
|
|
std::string LoopName = L.getName();
|
|
// The API here is quite complex to call and we allow to select some
|
|
// flavors of unrolling during construction time (by setting UnrollOpts).
|
|
LoopUnrollResult Result = tryToUnrollLoop(
|
|
&L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
|
|
/*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
|
|
UnrollOpts.ForgetSCEV, /*Count*/ None,
|
|
/*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
|
|
UnrollOpts.AllowUpperBound, LocalAllowPeeling);
|
|
Changed |= Result != LoopUnrollResult::Unmodified;
|
|
|
|
// The parent must not be damaged by unrolling!
|
|
#ifndef NDEBUG
|
|
if (Result != LoopUnrollResult::Unmodified && ParentL)
|
|
ParentL->verifyLoop();
|
|
#endif
|
|
|
|
// Clear any cached analysis results for L if we removed it completely.
|
|
if (LAM && Result == LoopUnrollResult::FullyUnrolled)
|
|
LAM->clear(L, LoopName);
|
|
}
|
|
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
|
|
return getLoopPassPreservedAnalyses();
|
|
}
|