llvm-project/llvm/lib/CodeGen/BranchRelaxation.cpp

496 lines
17 KiB
C++

//===-- BranchRelaxation.cpp ----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "branch-relaxation"
STATISTIC(NumSplit, "Number of basic blocks split");
STATISTIC(NumConditionalRelaxed, "Number of conditional branches relaxed");
STATISTIC(NumUnconditionalRelaxed, "Number of unconditional branches relaxed");
#define BRANCH_RELAX_NAME "Branch relaxation pass"
namespace {
class BranchRelaxation : public MachineFunctionPass {
/// BasicBlockInfo - Information about the offset and size of a single
/// basic block.
struct BasicBlockInfo {
/// Offset - Distance from the beginning of the function to the beginning
/// of this basic block.
///
/// The offset is always aligned as required by the basic block.
unsigned Offset;
/// Size - Size of the basic block in bytes. If the block contains
/// inline assembly, this is a worst case estimate.
///
/// The size does not include any alignment padding whether from the
/// beginning of the block, or from an aligned jump table at the end.
unsigned Size;
BasicBlockInfo() : Offset(0), Size(0) {}
/// Compute the offset immediately following this block. \p MBB is the next
/// block.
unsigned postOffset(const MachineBasicBlock &MBB) const {
unsigned PO = Offset + Size;
unsigned Align = MBB.getAlignment();
if (Align == 0)
return PO;
unsigned AlignAmt = 1 << Align;
unsigned ParentAlign = MBB.getParent()->getAlignment();
if (Align <= ParentAlign)
return PO + OffsetToAlignment(PO, AlignAmt);
// The alignment of this MBB is larger than the function's alignment, so we
// can't tell whether or not it will insert nops. Assume that it will.
return PO + AlignAmt + OffsetToAlignment(PO, AlignAmt);
}
};
SmallVector<BasicBlockInfo, 16> BlockInfo;
std::unique_ptr<RegScavenger> RS;
MachineFunction *MF;
const TargetInstrInfo *TII;
bool relaxBranchInstructions();
void scanFunction();
MachineBasicBlock *createNewBlockAfter(MachineBasicBlock &BB);
MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI);
void adjustBlockOffsets(MachineBasicBlock &MBB);
bool isBlockInRange(const MachineInstr &MI, const MachineBasicBlock &BB) const;
bool fixupConditionalBranch(MachineInstr &MI);
bool fixupUnconditionalBranch(MachineInstr &MI);
uint64_t computeBlockSize(const MachineBasicBlock &MBB) const;
unsigned getInstrOffset(const MachineInstr &MI) const;
void dumpBBs();
void verify();
public:
static char ID;
BranchRelaxation() : MachineFunctionPass(ID) { }
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override {
return BRANCH_RELAX_NAME;
}
};
}
char BranchRelaxation::ID = 0;
char &llvm::BranchRelaxationPassID = BranchRelaxation::ID;
INITIALIZE_PASS(BranchRelaxation, DEBUG_TYPE, BRANCH_RELAX_NAME, false, false)
/// verify - check BBOffsets, BBSizes, alignment of islands
void BranchRelaxation::verify() {
#ifndef NDEBUG
unsigned PrevNum = MF->begin()->getNumber();
for (MachineBasicBlock &MBB : *MF) {
unsigned Align = MBB.getAlignment();
unsigned Num = MBB.getNumber();
assert(BlockInfo[Num].Offset % (1u << Align) == 0);
assert(!Num || BlockInfo[PrevNum].postOffset(MBB) <= BlockInfo[Num].Offset);
PrevNum = Num;
}
#endif
}
/// print block size and offset information - debugging
void BranchRelaxation::dumpBBs() {
for (auto &MBB : *MF) {
const BasicBlockInfo &BBI = BlockInfo[MBB.getNumber()];
dbgs() << format("BB#%u\toffset=%08x\t", MBB.getNumber(), BBI.Offset)
<< format("size=%#x\n", BBI.Size);
}
}
/// scanFunction - Do the initial scan of the function, building up
/// information about each block.
void BranchRelaxation::scanFunction() {
BlockInfo.clear();
BlockInfo.resize(MF->getNumBlockIDs());
// First thing, compute the size of all basic blocks, and see if the function
// has any inline assembly in it. If so, we have to be conservative about
// alignment assumptions, as we don't know for sure the size of any
// instructions in the inline assembly.
for (MachineBasicBlock &MBB : *MF)
BlockInfo[MBB.getNumber()].Size = computeBlockSize(MBB);
// Compute block offsets and known bits.
adjustBlockOffsets(*MF->begin());
}
/// computeBlockSize - Compute the size for MBB.
uint64_t BranchRelaxation::computeBlockSize(const MachineBasicBlock &MBB) const {
uint64_t Size = 0;
for (const MachineInstr &MI : MBB)
Size += TII->getInstSizeInBytes(MI);
return Size;
}
/// getInstrOffset - Return the current offset of the specified machine
/// instruction from the start of the function. This offset changes as stuff is
/// moved around inside the function.
unsigned BranchRelaxation::getInstrOffset(const MachineInstr &MI) const {
const MachineBasicBlock *MBB = MI.getParent();
// The offset is composed of two things: the sum of the sizes of all MBB's
// before this instruction's block, and the offset from the start of the block
// it is in.
unsigned Offset = BlockInfo[MBB->getNumber()].Offset;
// Sum instructions before MI in MBB.
for (MachineBasicBlock::const_iterator I = MBB->begin(); &*I != &MI; ++I) {
assert(I != MBB->end() && "Didn't find MI in its own basic block?");
Offset += TII->getInstSizeInBytes(*I);
}
return Offset;
}
void BranchRelaxation::adjustBlockOffsets(MachineBasicBlock &Start) {
unsigned PrevNum = Start.getNumber();
for (auto &MBB : make_range(MachineFunction::iterator(Start), MF->end())) {
unsigned Num = MBB.getNumber();
if (!Num) // block zero is never changed from offset zero.
continue;
// Get the offset and known bits at the end of the layout predecessor.
// Include the alignment of the current block.
BlockInfo[Num].Offset = BlockInfo[PrevNum].postOffset(MBB);
PrevNum = Num;
}
}
/// Insert a new empty basic block and insert it after \BB
MachineBasicBlock *BranchRelaxation::createNewBlockAfter(MachineBasicBlock &BB) {
// Create a new MBB for the code after the OrigBB.
MachineBasicBlock *NewBB =
MF->CreateMachineBasicBlock(BB.getBasicBlock());
MF->insert(++BB.getIterator(), NewBB);
// Insert an entry into BlockInfo to align it properly with the block numbers.
BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
return NewBB;
}
/// Split the basic block containing MI into two blocks, which are joined by
/// an unconditional branch. Update data structures and renumber blocks to
/// account for this change and returns the newly created block.
/// NOTE: Successor list of the original BB is out of date after this function,
/// and must be updated by the caller! Other transforms follow using this
/// utility function, so no point updating now rather than waiting.
MachineBasicBlock *BranchRelaxation::splitBlockBeforeInstr(MachineInstr &MI) {
MachineBasicBlock *OrigBB = MI.getParent();
// Create a new MBB for the code after the OrigBB.
MachineBasicBlock *NewBB =
MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
MF->insert(++OrigBB->getIterator(), NewBB);
// Splice the instructions starting with MI over to NewBB.
NewBB->splice(NewBB->end(), OrigBB, MI.getIterator(), OrigBB->end());
// Add an unconditional branch from OrigBB to NewBB.
// Note the new unconditional branch is not being recorded.
// There doesn't seem to be meaningful DebugInfo available; this doesn't
// correspond to anything in the source.
TII->insertUnconditionalBranch(*OrigBB, NewBB, DebugLoc());
// Insert an entry into BlockInfo to align it properly with the block numbers.
BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
// Figure out how large the OrigBB is. As the first half of the original
// block, it cannot contain a tablejump. The size includes
// the new jump we added. (It should be possible to do this without
// recounting everything, but it's very confusing, and this is rarely
// executed.)
BlockInfo[OrigBB->getNumber()].Size = computeBlockSize(*OrigBB);
// Figure out how large the NewMBB is. As the second half of the original
// block, it may contain a tablejump.
BlockInfo[NewBB->getNumber()].Size = computeBlockSize(*NewBB);
// All BBOffsets following these blocks must be modified.
adjustBlockOffsets(*OrigBB);
++NumSplit;
return NewBB;
}
/// isBlockInRange - Returns true if the distance between specific MI and
/// specific BB can fit in MI's displacement field.
bool BranchRelaxation::isBlockInRange(
const MachineInstr &MI, const MachineBasicBlock &DestBB) const {
int64_t BrOffset = getInstrOffset(MI);
int64_t DestOffset = BlockInfo[DestBB.getNumber()].Offset;
if (TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - BrOffset))
return true;
DEBUG(
dbgs() << "Out of range branch to destination BB#" << DestBB.getNumber()
<< " from BB#" << MI.getParent()->getNumber()
<< " to " << DestOffset
<< " offset " << DestOffset - BrOffset
<< '\t' << MI
);
return false;
}
/// fixupConditionalBranch - Fix up a conditional branch whose destination is
/// too far away to fit in its displacement field. It is converted to an inverse
/// conditional branch + an unconditional branch to the destination.
bool BranchRelaxation::fixupConditionalBranch(MachineInstr &MI) {
DebugLoc DL = MI.getDebugLoc();
MachineBasicBlock *MBB = MI.getParent();
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
SmallVector<MachineOperand, 4> Cond;
bool Fail = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
assert(!Fail && "branches to be relaxed must be analyzable");
(void)Fail;
// Add an unconditional branch to the destination and invert the branch
// condition to jump over it:
// tbz L1
// =>
// tbnz L2
// b L1
// L2:
if (FBB && isBlockInRange(MI, *FBB)) {
// Last MI in the BB is an unconditional branch. We can simply invert the
// condition and swap destinations:
// beq L1
// b L2
// =>
// bne L2
// b L1
DEBUG(dbgs() << " Invert condition and swap "
"its destination with " << MBB->back());
TII->reverseBranchCondition(Cond);
int OldSize = 0, NewSize = 0;
TII->removeBranch(*MBB, &OldSize);
TII->insertBranch(*MBB, FBB, TBB, Cond, DL, &NewSize);
BlockInfo[MBB->getNumber()].Size += (NewSize - OldSize);
return true;
} else if (FBB) {
// We need to split the basic block here to obtain two long-range
// unconditional branches.
auto &NewBB = *MF->CreateMachineBasicBlock(MBB->getBasicBlock());
MF->insert(++MBB->getIterator(), &NewBB);
// Insert an entry into BlockInfo to align it properly with the block
// numbers.
BlockInfo.insert(BlockInfo.begin() + NewBB.getNumber(), BasicBlockInfo());
unsigned &NewBBSize = BlockInfo[NewBB.getNumber()].Size;
int NewBrSize;
TII->insertUnconditionalBranch(NewBB, FBB, DL, &NewBrSize);
NewBBSize += NewBrSize;
// Update the successor lists according to the transformation to follow.
// Do it here since if there's no split, no update is needed.
MBB->replaceSuccessor(FBB, &NewBB);
NewBB.addSuccessor(FBB);
}
// We now have an appropriate fall-through block in place (either naturally or
// just created), so we can invert the condition.
MachineBasicBlock &NextBB = *std::next(MachineFunction::iterator(MBB));
DEBUG(dbgs() << " Insert B to BB#" << TBB->getNumber()
<< ", invert condition and change dest. to BB#"
<< NextBB.getNumber() << '\n');
unsigned &MBBSize = BlockInfo[MBB->getNumber()].Size;
// Insert a new conditional branch and a new unconditional branch.
int RemovedSize = 0;
TII->reverseBranchCondition(Cond);
TII->removeBranch(*MBB, &RemovedSize);
MBBSize -= RemovedSize;
int AddedSize = 0;
TII->insertBranch(*MBB, &NextBB, TBB, Cond, DL, &AddedSize);
MBBSize += AddedSize;
// Finally, keep the block offsets up to date.
adjustBlockOffsets(*MBB);
return true;
}
bool BranchRelaxation::fixupUnconditionalBranch(MachineInstr &MI) {
MachineBasicBlock *MBB = MI.getParent();
unsigned OldBrSize = TII->getInstSizeInBytes(MI);
MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);
int64_t DestOffset = BlockInfo[DestBB->getNumber()].Offset;
int64_t SrcOffset = getInstrOffset(MI);
assert(!TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - SrcOffset));
BlockInfo[MBB->getNumber()].Size -= OldBrSize;
MachineBasicBlock *BranchBB = MBB;
// If this was an expanded conditional branch, there is already a single
// unconditional branch in a block.
if (!MBB->empty()) {
BranchBB = createNewBlockAfter(*MBB);
// Add live outs.
for (const MachineBasicBlock *Succ : MBB->successors()) {
for (const MachineBasicBlock::RegisterMaskPair &LiveIn : Succ->liveins())
BranchBB->addLiveIn(LiveIn);
}
BranchBB->sortUniqueLiveIns();
BranchBB->addSuccessor(DestBB);
MBB->replaceSuccessor(DestBB, BranchBB);
}
DebugLoc DL = MI.getDebugLoc();
MI.eraseFromParent();
// insertUnconditonalBranch may have inserted a new block.
BlockInfo[MBB->getNumber()].Size += TII->insertIndirectBranch(
*BranchBB, *DestBB, DL, DestOffset - SrcOffset, RS.get());
computeBlockSize(*BranchBB);
adjustBlockOffsets(*MBB);
return true;
}
bool BranchRelaxation::relaxBranchInstructions() {
bool Changed = false;
// Relaxing branches involves creating new basic blocks, so re-eval
// end() for termination.
for (MachineFunction::iterator I = MF->begin(); I != MF->end(); ++I) {
MachineBasicBlock &MBB = *I;
MachineBasicBlock::iterator Next;
for (MachineBasicBlock::iterator J = MBB.getFirstTerminator();
J != MBB.end(); J = Next) {
Next = std::next(J);
MachineInstr &MI = *J;
if (MI.isConditionalBranch()) {
MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);
if (!isBlockInRange(MI, *DestBB)) {
if (Next != MBB.end() && Next->isConditionalBranch()) {
// If there are multiple conditional branches, this isn't an
// analyzable block. Split later terminators into a new block so
// each one will be analyzable.
MachineBasicBlock *NewBB = splitBlockBeforeInstr(*Next);
NewBB->transferSuccessors(&MBB);
MBB.addSuccessor(NewBB);
MBB.addSuccessor(DestBB);
// Cleanup potential unconditional branch to successor block.
NewBB->updateTerminator();
MBB.updateTerminator();
} else {
fixupConditionalBranch(MI);
++NumConditionalRelaxed;
}
Changed = true;
// This may have modified all of the terminators, so start over.
Next = MBB.getFirstTerminator();
}
}
if (MI.isUnconditionalBranch()) {
// Unconditional branch destination might be unanalyzable, assume these
// are OK.
if (MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI)) {
if (!isBlockInRange(MI, *DestBB)) {
fixupUnconditionalBranch(MI);
++NumUnconditionalRelaxed;
Changed = true;
}
}
// Unconditional branch is the last terminator.
break;
}
}
}
return Changed;
}
bool BranchRelaxation::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
DEBUG(dbgs() << "***** BranchRelaxation *****\n");
const TargetSubtargetInfo &ST = MF->getSubtarget();
TII = ST.getInstrInfo();
const TargetRegisterInfo *TRI = ST.getRegisterInfo();
if (TRI->trackLivenessAfterRegAlloc(*MF))
RS.reset(new RegScavenger());
// Renumber all of the machine basic blocks in the function, guaranteeing that
// the numbers agree with the position of the block in the function.
MF->RenumberBlocks();
// Do the initial scan of the function, building up information about the
// sizes of each block.
scanFunction();
DEBUG(dbgs() << " Basic blocks before relaxation\n"; dumpBBs(););
bool MadeChange = false;
while (relaxBranchInstructions())
MadeChange = true;
// After a while, this might be made debug-only, but it is not expensive.
verify();
DEBUG(dbgs() << " Basic blocks after relaxation\n\n"; dumpBBs());
BlockInfo.clear();
return MadeChange;
}