forked from OSchip/llvm-project
145 lines
4.3 KiB
C++
145 lines
4.3 KiB
C++
//===-- Square root of x86 long double numbers ------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H
|
|
#define LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H
|
|
|
|
#include "FPBits.h"
|
|
#include "Sqrt.h"
|
|
|
|
#include "utils/CPP/TypeTraits.h"
|
|
|
|
namespace __llvm_libc {
|
|
namespace fputil {
|
|
|
|
#if (defined(__x86_64__) || defined(__i386__))
|
|
namespace internal {
|
|
|
|
template <>
|
|
inline void normalize<long double>(int &exponent, __uint128_t &mantissa) {
|
|
// Use binary search to shift the leading 1 bit similar to float.
|
|
// With MantissaWidth<long double> = 63, it will take
|
|
// ceil(log2(63)) = 6 steps checking the mantissa bits.
|
|
constexpr int nsteps = 6; // = ceil(log2(MantissaWidth))
|
|
constexpr __uint128_t bounds[nsteps] = {
|
|
__uint128_t(1) << 32, __uint128_t(1) << 48, __uint128_t(1) << 56,
|
|
__uint128_t(1) << 60, __uint128_t(1) << 62, __uint128_t(1) << 63};
|
|
constexpr int shifts[nsteps] = {32, 16, 8, 4, 2, 1};
|
|
|
|
for (int i = 0; i < nsteps; ++i) {
|
|
if (mantissa < bounds[i]) {
|
|
exponent -= shifts[i];
|
|
mantissa <<= shifts[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace internal
|
|
|
|
// Correctly rounded SQRT with round to nearest, ties to even.
|
|
// Shift-and-add algorithm.
|
|
template <> inline long double sqrt<long double, 0>(long double x) {
|
|
using UIntType = typename FPBits<long double>::UIntType;
|
|
constexpr UIntType One = UIntType(1)
|
|
<< int(MantissaWidth<long double>::value);
|
|
|
|
FPBits<long double> bits(x);
|
|
|
|
if (bits.isInfOrNaN()) {
|
|
if (bits.sign && (bits.mantissa == 0)) {
|
|
// sqrt(-Inf) = NaN
|
|
return FPBits<long double>::buildNaN(One >> 1);
|
|
} else {
|
|
// sqrt(NaN) = NaN
|
|
// sqrt(+Inf) = +Inf
|
|
return x;
|
|
}
|
|
} else if (bits.isZero()) {
|
|
// sqrt(+0) = +0
|
|
// sqrt(-0) = -0
|
|
return x;
|
|
} else if (bits.sign) {
|
|
// sqrt( negative numbers ) = NaN
|
|
return FPBits<long double>::buildNaN(One >> 1);
|
|
} else {
|
|
int xExp = bits.getExponent();
|
|
UIntType xMant = bits.mantissa;
|
|
|
|
// Step 1a: Normalize denormal input
|
|
if (bits.implicitBit) {
|
|
xMant |= One;
|
|
} else if (bits.exponent == 0) {
|
|
internal::normalize<long double>(xExp, xMant);
|
|
}
|
|
|
|
// Step 1b: Make sure the exponent is even.
|
|
if (xExp & 1) {
|
|
--xExp;
|
|
xMant <<= 1;
|
|
}
|
|
|
|
// After step 1b, x = 2^(xExp) * xMant, where xExp is even, and
|
|
// 1 <= xMant < 4. So sqrt(x) = 2^(xExp / 2) * y, with 1 <= y < 2.
|
|
// Notice that the output of sqrt is always in the normal range.
|
|
// To perform shift-and-add algorithm to find y, let denote:
|
|
// y(n) = 1.y_1 y_2 ... y_n, we can define the nth residue to be:
|
|
// r(n) = 2^n ( xMant - y(n)^2 ).
|
|
// That leads to the following recurrence formula:
|
|
// r(n) = 2*r(n-1) - y_n*[ 2*y(n-1) + 2^(-n-1) ]
|
|
// with the initial conditions: y(0) = 1, and r(0) = x - 1.
|
|
// So the nth digit y_n of the mantissa of sqrt(x) can be found by:
|
|
// y_n = 1 if 2*r(n-1) >= 2*y(n - 1) + 2^(-n-1)
|
|
// 0 otherwise.
|
|
UIntType y = One;
|
|
UIntType r = xMant - One;
|
|
|
|
for (UIntType current_bit = One >> 1; current_bit; current_bit >>= 1) {
|
|
r <<= 1;
|
|
UIntType tmp = (y << 1) + current_bit; // 2*y(n - 1) + 2^(-n-1)
|
|
if (r >= tmp) {
|
|
r -= tmp;
|
|
y += current_bit;
|
|
}
|
|
}
|
|
|
|
// We compute one more iteration in order to round correctly.
|
|
bool lsb = y & 1; // Least significant bit
|
|
bool rb = false; // Round bit
|
|
r <<= 2;
|
|
UIntType tmp = (y << 2) + 1;
|
|
if (r >= tmp) {
|
|
r -= tmp;
|
|
rb = true;
|
|
}
|
|
|
|
// Append the exponent field.
|
|
xExp = ((xExp >> 1) + FPBits<long double>::exponentBias);
|
|
y |= (static_cast<UIntType>(xExp)
|
|
<< (MantissaWidth<long double>::value + 1));
|
|
|
|
// Round to nearest, ties to even
|
|
if (rb && (lsb || (r != 0))) {
|
|
++y;
|
|
}
|
|
|
|
// Extract output
|
|
FPBits<long double> out(0.0L);
|
|
out.exponent = xExp;
|
|
out.implicitBit = 1;
|
|
out.mantissa = (y & (One - 1));
|
|
|
|
return out;
|
|
}
|
|
}
|
|
#endif // defined(__x86_64__) || defined(__i386__)
|
|
|
|
} // namespace fputil
|
|
} // namespace __llvm_libc
|
|
|
|
#endif // LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H
|