forked from OSchip/llvm-project
2106 lines
80 KiB
C++
2106 lines
80 KiB
C++
//===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/Mangle.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/Basic/ABI.h"
|
|
#include "clang/Basic/DiagnosticOptions.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
|
|
using namespace clang;
|
|
|
|
namespace {
|
|
|
|
/// \brief Retrieve the declaration context that should be used when mangling
|
|
/// the given declaration.
|
|
static const DeclContext *getEffectiveDeclContext(const Decl *D) {
|
|
// The ABI assumes that lambda closure types that occur within
|
|
// default arguments live in the context of the function. However, due to
|
|
// the way in which Clang parses and creates function declarations, this is
|
|
// not the case: the lambda closure type ends up living in the context
|
|
// where the function itself resides, because the function declaration itself
|
|
// had not yet been created. Fix the context here.
|
|
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
|
|
if (RD->isLambda())
|
|
if (ParmVarDecl *ContextParam =
|
|
dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
|
|
return ContextParam->getDeclContext();
|
|
}
|
|
|
|
// Perform the same check for block literals.
|
|
if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
|
|
if (ParmVarDecl *ContextParam =
|
|
dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
|
|
return ContextParam->getDeclContext();
|
|
}
|
|
|
|
const DeclContext *DC = D->getDeclContext();
|
|
if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
|
|
return getEffectiveDeclContext(CD);
|
|
|
|
return DC;
|
|
}
|
|
|
|
static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
|
|
return getEffectiveDeclContext(cast<Decl>(DC));
|
|
}
|
|
|
|
static const FunctionDecl *getStructor(const FunctionDecl *fn) {
|
|
if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
|
|
return ftd->getTemplatedDecl();
|
|
|
|
return fn;
|
|
}
|
|
|
|
/// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
|
|
/// Microsoft Visual C++ ABI.
|
|
class MicrosoftCXXNameMangler {
|
|
MangleContext &Context;
|
|
raw_ostream &Out;
|
|
|
|
/// The "structor" is the top-level declaration being mangled, if
|
|
/// that's not a template specialization; otherwise it's the pattern
|
|
/// for that specialization.
|
|
const NamedDecl *Structor;
|
|
unsigned StructorType;
|
|
|
|
typedef llvm::StringMap<unsigned> BackRefMap;
|
|
BackRefMap NameBackReferences;
|
|
bool UseNameBackReferences;
|
|
|
|
typedef llvm::DenseMap<void*, unsigned> ArgBackRefMap;
|
|
ArgBackRefMap TypeBackReferences;
|
|
|
|
ASTContext &getASTContext() const { return Context.getASTContext(); }
|
|
|
|
// FIXME: If we add support for __ptr32/64 qualifiers, then we should push
|
|
// this check into mangleQualifiers().
|
|
const bool PointersAre64Bit;
|
|
|
|
public:
|
|
enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
|
|
|
|
MicrosoftCXXNameMangler(MangleContext &C, raw_ostream &Out_)
|
|
: Context(C), Out(Out_),
|
|
Structor(0), StructorType(-1),
|
|
UseNameBackReferences(true),
|
|
PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
|
|
64) { }
|
|
|
|
MicrosoftCXXNameMangler(MangleContext &C, raw_ostream &Out_,
|
|
const CXXDestructorDecl *D, CXXDtorType Type)
|
|
: Context(C), Out(Out_),
|
|
Structor(getStructor(D)), StructorType(Type),
|
|
UseNameBackReferences(true),
|
|
PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
|
|
64) { }
|
|
|
|
raw_ostream &getStream() const { return Out; }
|
|
|
|
void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
|
|
void mangleName(const NamedDecl *ND);
|
|
void mangleDeclaration(const NamedDecl *ND);
|
|
void mangleFunctionEncoding(const FunctionDecl *FD);
|
|
void mangleVariableEncoding(const VarDecl *VD);
|
|
void mangleNumber(int64_t Number);
|
|
void mangleType(QualType T, SourceRange Range,
|
|
QualifierMangleMode QMM = QMM_Mangle);
|
|
void mangleFunctionType(const FunctionType *T, const FunctionDecl *D = 0,
|
|
bool ForceInstMethod = false);
|
|
void manglePostfix(const DeclContext *DC, bool NoFunction = false);
|
|
|
|
private:
|
|
void disableBackReferences() { UseNameBackReferences = false; }
|
|
void mangleUnqualifiedName(const NamedDecl *ND) {
|
|
mangleUnqualifiedName(ND, ND->getDeclName());
|
|
}
|
|
void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
|
|
void mangleSourceName(StringRef Name);
|
|
void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
|
|
void mangleCXXDtorType(CXXDtorType T);
|
|
void mangleQualifiers(Qualifiers Quals, bool IsMember);
|
|
void manglePointerQualifiers(Qualifiers Quals);
|
|
|
|
void mangleUnscopedTemplateName(const TemplateDecl *ND);
|
|
void mangleTemplateInstantiationName(const TemplateDecl *TD,
|
|
const TemplateArgumentList &TemplateArgs);
|
|
void mangleObjCMethodName(const ObjCMethodDecl *MD);
|
|
void mangleLocalName(const FunctionDecl *FD);
|
|
|
|
void mangleArgumentType(QualType T, SourceRange Range);
|
|
|
|
// Declare manglers for every type class.
|
|
#define ABSTRACT_TYPE(CLASS, PARENT)
|
|
#define NON_CANONICAL_TYPE(CLASS, PARENT)
|
|
#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
|
|
SourceRange Range);
|
|
#include "clang/AST/TypeNodes.def"
|
|
#undef ABSTRACT_TYPE
|
|
#undef NON_CANONICAL_TYPE
|
|
#undef TYPE
|
|
|
|
void mangleType(const TagDecl *TD);
|
|
void mangleDecayedArrayType(const ArrayType *T);
|
|
void mangleArrayType(const ArrayType *T);
|
|
void mangleFunctionClass(const FunctionDecl *FD);
|
|
void mangleCallingConvention(const FunctionType *T);
|
|
void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
|
|
void mangleExpression(const Expr *E);
|
|
void mangleThrowSpecification(const FunctionProtoType *T);
|
|
|
|
void mangleTemplateArgs(const TemplateDecl *TD,
|
|
const TemplateArgumentList &TemplateArgs);
|
|
void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA);
|
|
};
|
|
|
|
/// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
|
|
/// Microsoft Visual C++ ABI.
|
|
class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
|
|
public:
|
|
MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags)
|
|
: MicrosoftMangleContext(Context, Diags) {}
|
|
virtual bool shouldMangleCXXName(const NamedDecl *D);
|
|
virtual void mangleCXXName(const NamedDecl *D, raw_ostream &Out);
|
|
virtual void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
|
|
uint64_t OffsetInVFTable,
|
|
raw_ostream &);
|
|
virtual void mangleThunk(const CXXMethodDecl *MD,
|
|
const ThunkInfo &Thunk,
|
|
raw_ostream &);
|
|
virtual void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
|
|
const ThisAdjustment &ThisAdjustment,
|
|
raw_ostream &);
|
|
virtual void mangleCXXVFTable(const CXXRecordDecl *Derived,
|
|
ArrayRef<const CXXRecordDecl *> BasePath,
|
|
raw_ostream &Out);
|
|
virtual void mangleCXXVBTable(const CXXRecordDecl *Derived,
|
|
ArrayRef<const CXXRecordDecl *> BasePath,
|
|
raw_ostream &Out);
|
|
virtual void mangleCXXRTTI(QualType T, raw_ostream &);
|
|
virtual void mangleCXXRTTIName(QualType T, raw_ostream &);
|
|
virtual void mangleTypeName(QualType T, raw_ostream &);
|
|
virtual void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
|
|
raw_ostream &);
|
|
virtual void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
|
|
raw_ostream &);
|
|
virtual void mangleReferenceTemporary(const VarDecl *, raw_ostream &);
|
|
virtual void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out);
|
|
virtual void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out);
|
|
virtual void mangleDynamicAtExitDestructor(const VarDecl *D,
|
|
raw_ostream &Out);
|
|
|
|
private:
|
|
void mangleInitFiniStub(const VarDecl *D, raw_ostream &Out, char CharCode);
|
|
};
|
|
|
|
}
|
|
|
|
bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
LanguageLinkage L = FD->getLanguageLinkage();
|
|
// Overloadable functions need mangling.
|
|
if (FD->hasAttr<OverloadableAttr>())
|
|
return true;
|
|
|
|
// The ABI expects that we would never mangle "typical" user-defined entry
|
|
// points regardless of visibility or freestanding-ness.
|
|
//
|
|
// N.B. This is distinct from asking about "main". "main" has a lot of
|
|
// special rules associated with it in the standard while these
|
|
// user-defined entry points are outside of the purview of the standard.
|
|
// For example, there can be only one definition for "main" in a standards
|
|
// compliant program; however nothing forbids the existence of wmain and
|
|
// WinMain in the same translation unit.
|
|
if (FD->isMSVCRTEntryPoint())
|
|
return false;
|
|
|
|
// C++ functions and those whose names are not a simple identifier need
|
|
// mangling.
|
|
if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
|
|
return true;
|
|
|
|
// C functions are not mangled.
|
|
if (L == CLanguageLinkage)
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, no mangling is done outside C++ mode.
|
|
if (!getASTContext().getLangOpts().CPlusPlus)
|
|
return false;
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
// C variables are not mangled.
|
|
if (VD->isExternC())
|
|
return false;
|
|
|
|
// Variables at global scope with non-internal linkage are not mangled.
|
|
const DeclContext *DC = getEffectiveDeclContext(D);
|
|
// Check for extern variable declared locally.
|
|
if (DC->isFunctionOrMethod() && D->hasLinkage())
|
|
while (!DC->isNamespace() && !DC->isTranslationUnit())
|
|
DC = getEffectiveParentContext(DC);
|
|
|
|
if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
|
|
!isa<VarTemplateSpecializationDecl>(D))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangle(const NamedDecl *D,
|
|
StringRef Prefix) {
|
|
// MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
|
|
// Therefore it's really important that we don't decorate the
|
|
// name with leading underscores or leading/trailing at signs. So, by
|
|
// default, we emit an asm marker at the start so we get the name right.
|
|
// Callers can override this with a custom prefix.
|
|
|
|
// <mangled-name> ::= ? <name> <type-encoding>
|
|
Out << Prefix;
|
|
mangleName(D);
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
|
|
mangleFunctionEncoding(FD);
|
|
else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
|
|
mangleVariableEncoding(VD);
|
|
else {
|
|
// TODO: Fields? Can MSVC even mangle them?
|
|
// Issue a diagnostic for now.
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this declaration yet");
|
|
Diags.Report(D->getLocation(), DiagID)
|
|
<< D->getSourceRange();
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
|
|
// <type-encoding> ::= <function-class> <function-type>
|
|
|
|
// Since MSVC operates on the type as written and not the canonical type, it
|
|
// actually matters which decl we have here. MSVC appears to choose the
|
|
// first, since it is most likely to be the declaration in a header file.
|
|
FD = FD->getFirstDecl();
|
|
|
|
// We should never ever see a FunctionNoProtoType at this point.
|
|
// We don't even know how to mangle their types anyway :).
|
|
const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
|
|
|
|
// extern "C" functions can hold entities that must be mangled.
|
|
// As it stands, these functions still need to get expressed in the full
|
|
// external name. They have their class and type omitted, replaced with '9'.
|
|
if (Context.shouldMangleDeclName(FD)) {
|
|
// First, the function class.
|
|
mangleFunctionClass(FD);
|
|
|
|
mangleFunctionType(FT, FD);
|
|
} else
|
|
Out << '9';
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
|
|
// <type-encoding> ::= <storage-class> <variable-type>
|
|
// <storage-class> ::= 0 # private static member
|
|
// ::= 1 # protected static member
|
|
// ::= 2 # public static member
|
|
// ::= 3 # global
|
|
// ::= 4 # static local
|
|
|
|
// The first character in the encoding (after the name) is the storage class.
|
|
if (VD->isStaticDataMember()) {
|
|
// If it's a static member, it also encodes the access level.
|
|
switch (VD->getAccess()) {
|
|
default:
|
|
case AS_private: Out << '0'; break;
|
|
case AS_protected: Out << '1'; break;
|
|
case AS_public: Out << '2'; break;
|
|
}
|
|
}
|
|
else if (!VD->isStaticLocal())
|
|
Out << '3';
|
|
else
|
|
Out << '4';
|
|
// Now mangle the type.
|
|
// <variable-type> ::= <type> <cvr-qualifiers>
|
|
// ::= <type> <pointee-cvr-qualifiers> # pointers, references
|
|
// Pointers and references are odd. The type of 'int * const foo;' gets
|
|
// mangled as 'QAHA' instead of 'PAHB', for example.
|
|
TypeLoc TL = VD->getTypeSourceInfo()->getTypeLoc();
|
|
QualType Ty = TL.getType();
|
|
if (Ty->isPointerType() || Ty->isReferenceType() ||
|
|
Ty->isMemberPointerType()) {
|
|
mangleType(Ty, TL.getSourceRange(), QMM_Drop);
|
|
if (PointersAre64Bit)
|
|
Out << 'E';
|
|
if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
|
|
mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
|
|
// Member pointers are suffixed with a back reference to the member
|
|
// pointer's class name.
|
|
mangleName(MPT->getClass()->getAsCXXRecordDecl());
|
|
} else
|
|
mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
|
|
} else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
|
|
// Global arrays are funny, too.
|
|
mangleDecayedArrayType(AT);
|
|
if (AT->getElementType()->isArrayType())
|
|
Out << 'A';
|
|
else
|
|
mangleQualifiers(Ty.getQualifiers(), false);
|
|
} else {
|
|
mangleType(Ty, TL.getSourceRange(), QMM_Drop);
|
|
mangleQualifiers(Ty.getLocalQualifiers(), false);
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
|
|
// <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
|
|
const DeclContext *DC = ND->getDeclContext();
|
|
|
|
// Always start with the unqualified name.
|
|
mangleUnqualifiedName(ND);
|
|
|
|
// If this is an extern variable declared locally, the relevant DeclContext
|
|
// is that of the containing namespace, or the translation unit.
|
|
if (isa<FunctionDecl>(DC) && ND->hasLinkage())
|
|
while (!DC->isNamespace() && !DC->isTranslationUnit())
|
|
DC = DC->getParent();
|
|
|
|
manglePostfix(DC);
|
|
|
|
// Terminate the whole name with an '@'.
|
|
Out << '@';
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
|
|
// <non-negative integer> ::= A@ # when Number == 0
|
|
// ::= <decimal digit> # when 1 <= Number <= 10
|
|
// ::= <hex digit>+ @ # when Number >= 10
|
|
//
|
|
// <number> ::= [?] <non-negative integer>
|
|
|
|
uint64_t Value = static_cast<uint64_t>(Number);
|
|
if (Number < 0) {
|
|
Value = -Value;
|
|
Out << '?';
|
|
}
|
|
|
|
if (Value == 0)
|
|
Out << "A@";
|
|
else if (Value >= 1 && Value <= 10)
|
|
Out << (Value - 1);
|
|
else {
|
|
// Numbers that are not encoded as decimal digits are represented as nibbles
|
|
// in the range of ASCII characters 'A' to 'P'.
|
|
// The number 0x123450 would be encoded as 'BCDEFA'
|
|
char EncodedNumberBuffer[sizeof(uint64_t) * 2];
|
|
llvm::MutableArrayRef<char> BufferRef(EncodedNumberBuffer);
|
|
llvm::MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
|
|
for (; Value != 0; Value >>= 4)
|
|
*I++ = 'A' + (Value & 0xf);
|
|
Out.write(I.base(), I - BufferRef.rbegin());
|
|
Out << '@';
|
|
}
|
|
}
|
|
|
|
static const TemplateDecl *
|
|
isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
|
|
// Check if we have a function template.
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
|
|
if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
|
|
TemplateArgs = FD->getTemplateSpecializationArgs();
|
|
return TD;
|
|
}
|
|
}
|
|
|
|
// Check if we have a class template.
|
|
if (const ClassTemplateSpecializationDecl *Spec =
|
|
dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
|
|
TemplateArgs = &Spec->getTemplateArgs();
|
|
return Spec->getSpecializedTemplate();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
|
|
DeclarationName Name) {
|
|
// <unqualified-name> ::= <operator-name>
|
|
// ::= <ctor-dtor-name>
|
|
// ::= <source-name>
|
|
// ::= <template-name>
|
|
|
|
// Check if we have a template.
|
|
const TemplateArgumentList *TemplateArgs = 0;
|
|
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
|
|
// Function templates aren't considered for name back referencing. This
|
|
// makes sense since function templates aren't likely to occur multiple
|
|
// times in a symbol.
|
|
// FIXME: Test alias template mangling with MSVC 2013.
|
|
if (!isa<ClassTemplateDecl>(TD)) {
|
|
mangleTemplateInstantiationName(TD, *TemplateArgs);
|
|
return;
|
|
}
|
|
|
|
// We have a class template.
|
|
// Here comes the tricky thing: if we need to mangle something like
|
|
// void foo(A::X<Y>, B::X<Y>),
|
|
// the X<Y> part is aliased. However, if you need to mangle
|
|
// void foo(A::X<A::Y>, A::X<B::Y>),
|
|
// the A::X<> part is not aliased.
|
|
// That said, from the mangler's perspective we have a structure like this:
|
|
// namespace[s] -> type[ -> template-parameters]
|
|
// but from the Clang perspective we have
|
|
// type [ -> template-parameters]
|
|
// \-> namespace[s]
|
|
// What we do is we create a new mangler, mangle the same type (without
|
|
// a namespace suffix) using the extra mangler with back references
|
|
// disabled (to avoid infinite recursion) and then use the mangled type
|
|
// name as a key to check the mangling of different types for aliasing.
|
|
|
|
std::string BackReferenceKey;
|
|
BackRefMap::iterator Found;
|
|
if (UseNameBackReferences) {
|
|
llvm::raw_string_ostream Stream(BackReferenceKey);
|
|
MicrosoftCXXNameMangler Extra(Context, Stream);
|
|
Extra.disableBackReferences();
|
|
Extra.mangleUnqualifiedName(ND, Name);
|
|
Stream.flush();
|
|
|
|
Found = NameBackReferences.find(BackReferenceKey);
|
|
}
|
|
if (!UseNameBackReferences || Found == NameBackReferences.end()) {
|
|
mangleTemplateInstantiationName(TD, *TemplateArgs);
|
|
if (UseNameBackReferences && NameBackReferences.size() < 10) {
|
|
size_t Size = NameBackReferences.size();
|
|
NameBackReferences[BackReferenceKey] = Size;
|
|
}
|
|
} else {
|
|
Out << Found->second;
|
|
}
|
|
return;
|
|
}
|
|
|
|
switch (Name.getNameKind()) {
|
|
case DeclarationName::Identifier: {
|
|
if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
|
|
mangleSourceName(II->getName());
|
|
break;
|
|
}
|
|
|
|
// Otherwise, an anonymous entity. We must have a declaration.
|
|
assert(ND && "mangling empty name without declaration");
|
|
|
|
if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
|
|
if (NS->isAnonymousNamespace()) {
|
|
Out << "?A@";
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We must have an anonymous struct.
|
|
const TagDecl *TD = cast<TagDecl>(ND);
|
|
if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
|
|
assert(TD->getDeclContext() == D->getDeclContext() &&
|
|
"Typedef should not be in another decl context!");
|
|
assert(D->getDeclName().getAsIdentifierInfo() &&
|
|
"Typedef was not named!");
|
|
mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
|
|
break;
|
|
}
|
|
|
|
if (TD->hasDeclaratorForAnonDecl()) {
|
|
// Anonymous types with no tag or typedef get the name of their
|
|
// declarator mangled in.
|
|
llvm::SmallString<64> Name("<unnamed-type-");
|
|
Name += TD->getDeclaratorForAnonDecl()->getName();
|
|
Name += ">";
|
|
mangleSourceName(Name.str());
|
|
} else {
|
|
// Anonymous types with no tag, no typedef, or declarator get
|
|
// '<unnamed-tag>'.
|
|
mangleSourceName("<unnamed-tag>");
|
|
}
|
|
break;
|
|
}
|
|
|
|
case DeclarationName::ObjCZeroArgSelector:
|
|
case DeclarationName::ObjCOneArgSelector:
|
|
case DeclarationName::ObjCMultiArgSelector:
|
|
llvm_unreachable("Can't mangle Objective-C selector names here!");
|
|
|
|
case DeclarationName::CXXConstructorName:
|
|
if (ND == Structor) {
|
|
assert(StructorType == Ctor_Complete &&
|
|
"Should never be asked to mangle a ctor other than complete");
|
|
}
|
|
Out << "?0";
|
|
break;
|
|
|
|
case DeclarationName::CXXDestructorName:
|
|
if (ND == Structor)
|
|
// If the named decl is the C++ destructor we're mangling,
|
|
// use the type we were given.
|
|
mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
|
|
else
|
|
// Otherwise, use the base destructor name. This is relevant if a
|
|
// class with a destructor is declared within a destructor.
|
|
mangleCXXDtorType(Dtor_Base);
|
|
break;
|
|
|
|
case DeclarationName::CXXConversionFunctionName:
|
|
// <operator-name> ::= ?B # (cast)
|
|
// The target type is encoded as the return type.
|
|
Out << "?B";
|
|
break;
|
|
|
|
case DeclarationName::CXXOperatorName:
|
|
mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
|
|
break;
|
|
|
|
case DeclarationName::CXXLiteralOperatorName: {
|
|
// FIXME: Was this added in VS2010? Does MS even know how to mangle this?
|
|
DiagnosticsEngine Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this literal operator yet");
|
|
Diags.Report(ND->getLocation(), DiagID);
|
|
break;
|
|
}
|
|
|
|
case DeclarationName::CXXUsingDirective:
|
|
llvm_unreachable("Can't mangle a using directive name!");
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::manglePostfix(const DeclContext *DC,
|
|
bool NoFunction) {
|
|
// <postfix> ::= <unqualified-name> [<postfix>]
|
|
// ::= <substitution> [<postfix>]
|
|
|
|
if (!DC) return;
|
|
|
|
while (isa<LinkageSpecDecl>(DC))
|
|
DC = DC->getParent();
|
|
|
|
if (DC->isTranslationUnit())
|
|
return;
|
|
|
|
if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
|
|
DiagnosticsEngine Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle a local inside this block yet");
|
|
Diags.Report(BD->getLocation(), DiagID);
|
|
|
|
// FIXME: This is completely, utterly, wrong; see ItaniumMangle
|
|
// for how this should be done.
|
|
Out << "__block_invoke" << Context.getBlockId(BD, false);
|
|
Out << '@';
|
|
return manglePostfix(DC->getParent(), NoFunction);
|
|
} else if (isa<CapturedDecl>(DC)) {
|
|
// Skip CapturedDecl context.
|
|
manglePostfix(DC->getParent(), NoFunction);
|
|
return;
|
|
}
|
|
|
|
if (NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
|
|
return;
|
|
else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
|
|
mangleObjCMethodName(Method);
|
|
else if (const FunctionDecl *Func = dyn_cast<FunctionDecl>(DC))
|
|
mangleLocalName(Func);
|
|
else {
|
|
mangleUnqualifiedName(cast<NamedDecl>(DC));
|
|
manglePostfix(DC->getParent(), NoFunction);
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
|
|
// Microsoft uses the names on the case labels for these dtor variants. Clang
|
|
// uses the Itanium terminology internally. Everything in this ABI delegates
|
|
// towards the base dtor.
|
|
switch (T) {
|
|
// <operator-name> ::= ?1 # destructor
|
|
case Dtor_Base: Out << "?1"; return;
|
|
// <operator-name> ::= ?_D # vbase destructor
|
|
case Dtor_Complete: Out << "?_D"; return;
|
|
// <operator-name> ::= ?_G # scalar deleting destructor
|
|
case Dtor_Deleting: Out << "?_G"; return;
|
|
// <operator-name> ::= ?_E # vector deleting destructor
|
|
// FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need
|
|
// it.
|
|
}
|
|
llvm_unreachable("Unsupported dtor type?");
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
|
|
SourceLocation Loc) {
|
|
switch (OO) {
|
|
// ?0 # constructor
|
|
// ?1 # destructor
|
|
// <operator-name> ::= ?2 # new
|
|
case OO_New: Out << "?2"; break;
|
|
// <operator-name> ::= ?3 # delete
|
|
case OO_Delete: Out << "?3"; break;
|
|
// <operator-name> ::= ?4 # =
|
|
case OO_Equal: Out << "?4"; break;
|
|
// <operator-name> ::= ?5 # >>
|
|
case OO_GreaterGreater: Out << "?5"; break;
|
|
// <operator-name> ::= ?6 # <<
|
|
case OO_LessLess: Out << "?6"; break;
|
|
// <operator-name> ::= ?7 # !
|
|
case OO_Exclaim: Out << "?7"; break;
|
|
// <operator-name> ::= ?8 # ==
|
|
case OO_EqualEqual: Out << "?8"; break;
|
|
// <operator-name> ::= ?9 # !=
|
|
case OO_ExclaimEqual: Out << "?9"; break;
|
|
// <operator-name> ::= ?A # []
|
|
case OO_Subscript: Out << "?A"; break;
|
|
// ?B # conversion
|
|
// <operator-name> ::= ?C # ->
|
|
case OO_Arrow: Out << "?C"; break;
|
|
// <operator-name> ::= ?D # *
|
|
case OO_Star: Out << "?D"; break;
|
|
// <operator-name> ::= ?E # ++
|
|
case OO_PlusPlus: Out << "?E"; break;
|
|
// <operator-name> ::= ?F # --
|
|
case OO_MinusMinus: Out << "?F"; break;
|
|
// <operator-name> ::= ?G # -
|
|
case OO_Minus: Out << "?G"; break;
|
|
// <operator-name> ::= ?H # +
|
|
case OO_Plus: Out << "?H"; break;
|
|
// <operator-name> ::= ?I # &
|
|
case OO_Amp: Out << "?I"; break;
|
|
// <operator-name> ::= ?J # ->*
|
|
case OO_ArrowStar: Out << "?J"; break;
|
|
// <operator-name> ::= ?K # /
|
|
case OO_Slash: Out << "?K"; break;
|
|
// <operator-name> ::= ?L # %
|
|
case OO_Percent: Out << "?L"; break;
|
|
// <operator-name> ::= ?M # <
|
|
case OO_Less: Out << "?M"; break;
|
|
// <operator-name> ::= ?N # <=
|
|
case OO_LessEqual: Out << "?N"; break;
|
|
// <operator-name> ::= ?O # >
|
|
case OO_Greater: Out << "?O"; break;
|
|
// <operator-name> ::= ?P # >=
|
|
case OO_GreaterEqual: Out << "?P"; break;
|
|
// <operator-name> ::= ?Q # ,
|
|
case OO_Comma: Out << "?Q"; break;
|
|
// <operator-name> ::= ?R # ()
|
|
case OO_Call: Out << "?R"; break;
|
|
// <operator-name> ::= ?S # ~
|
|
case OO_Tilde: Out << "?S"; break;
|
|
// <operator-name> ::= ?T # ^
|
|
case OO_Caret: Out << "?T"; break;
|
|
// <operator-name> ::= ?U # |
|
|
case OO_Pipe: Out << "?U"; break;
|
|
// <operator-name> ::= ?V # &&
|
|
case OO_AmpAmp: Out << "?V"; break;
|
|
// <operator-name> ::= ?W # ||
|
|
case OO_PipePipe: Out << "?W"; break;
|
|
// <operator-name> ::= ?X # *=
|
|
case OO_StarEqual: Out << "?X"; break;
|
|
// <operator-name> ::= ?Y # +=
|
|
case OO_PlusEqual: Out << "?Y"; break;
|
|
// <operator-name> ::= ?Z # -=
|
|
case OO_MinusEqual: Out << "?Z"; break;
|
|
// <operator-name> ::= ?_0 # /=
|
|
case OO_SlashEqual: Out << "?_0"; break;
|
|
// <operator-name> ::= ?_1 # %=
|
|
case OO_PercentEqual: Out << "?_1"; break;
|
|
// <operator-name> ::= ?_2 # >>=
|
|
case OO_GreaterGreaterEqual: Out << "?_2"; break;
|
|
// <operator-name> ::= ?_3 # <<=
|
|
case OO_LessLessEqual: Out << "?_3"; break;
|
|
// <operator-name> ::= ?_4 # &=
|
|
case OO_AmpEqual: Out << "?_4"; break;
|
|
// <operator-name> ::= ?_5 # |=
|
|
case OO_PipeEqual: Out << "?_5"; break;
|
|
// <operator-name> ::= ?_6 # ^=
|
|
case OO_CaretEqual: Out << "?_6"; break;
|
|
// ?_7 # vftable
|
|
// ?_8 # vbtable
|
|
// ?_9 # vcall
|
|
// ?_A # typeof
|
|
// ?_B # local static guard
|
|
// ?_C # string
|
|
// ?_D # vbase destructor
|
|
// ?_E # vector deleting destructor
|
|
// ?_F # default constructor closure
|
|
// ?_G # scalar deleting destructor
|
|
// ?_H # vector constructor iterator
|
|
// ?_I # vector destructor iterator
|
|
// ?_J # vector vbase constructor iterator
|
|
// ?_K # virtual displacement map
|
|
// ?_L # eh vector constructor iterator
|
|
// ?_M # eh vector destructor iterator
|
|
// ?_N # eh vector vbase constructor iterator
|
|
// ?_O # copy constructor closure
|
|
// ?_P<name> # udt returning <name>
|
|
// ?_Q # <unknown>
|
|
// ?_R0 # RTTI Type Descriptor
|
|
// ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
|
|
// ?_R2 # RTTI Base Class Array
|
|
// ?_R3 # RTTI Class Hierarchy Descriptor
|
|
// ?_R4 # RTTI Complete Object Locator
|
|
// ?_S # local vftable
|
|
// ?_T # local vftable constructor closure
|
|
// <operator-name> ::= ?_U # new[]
|
|
case OO_Array_New: Out << "?_U"; break;
|
|
// <operator-name> ::= ?_V # delete[]
|
|
case OO_Array_Delete: Out << "?_V"; break;
|
|
|
|
case OO_Conditional: {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this conditional operator yet");
|
|
Diags.Report(Loc, DiagID);
|
|
break;
|
|
}
|
|
|
|
case OO_None:
|
|
case NUM_OVERLOADED_OPERATORS:
|
|
llvm_unreachable("Not an overloaded operator");
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
|
|
// <source name> ::= <identifier> @
|
|
BackRefMap::iterator Found;
|
|
if (UseNameBackReferences)
|
|
Found = NameBackReferences.find(Name);
|
|
if (!UseNameBackReferences || Found == NameBackReferences.end()) {
|
|
Out << Name << '@';
|
|
if (UseNameBackReferences && NameBackReferences.size() < 10) {
|
|
size_t Size = NameBackReferences.size();
|
|
NameBackReferences[Name] = Size;
|
|
}
|
|
} else {
|
|
Out << Found->second;
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
|
|
Context.mangleObjCMethodName(MD, Out);
|
|
}
|
|
|
|
// Find out how many function decls live above this one and return an integer
|
|
// suitable for use as the number in a numbered anonymous scope.
|
|
// TODO: Memoize.
|
|
static unsigned getLocalNestingLevel(const FunctionDecl *FD) {
|
|
const DeclContext *DC = FD->getParent();
|
|
int level = 1;
|
|
|
|
while (DC && !DC->isTranslationUnit()) {
|
|
if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) level++;
|
|
DC = DC->getParent();
|
|
}
|
|
|
|
return 2*level;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleLocalName(const FunctionDecl *FD) {
|
|
// <nested-name> ::= <numbered-anonymous-scope> ? <mangled-name>
|
|
// <numbered-anonymous-scope> ::= ? <number>
|
|
// Even though the name is rendered in reverse order (e.g.
|
|
// A::B::C is rendered as C@B@A), VC numbers the scopes from outermost to
|
|
// innermost. So a method bar in class C local to function foo gets mangled
|
|
// as something like:
|
|
// ?bar@C@?1??foo@@YAXXZ@QAEXXZ
|
|
// This is more apparent when you have a type nested inside a method of a
|
|
// type nested inside a function. A method baz in class D local to method
|
|
// bar of class C local to function foo gets mangled as:
|
|
// ?baz@D@?3??bar@C@?1??foo@@YAXXZ@QAEXXZ@QAEXXZ
|
|
// This scheme is general enough to support GCC-style nested
|
|
// functions. You could have a method baz of class C inside a function bar
|
|
// inside a function foo, like so:
|
|
// ?baz@C@?3??bar@?1??foo@@YAXXZ@YAXXZ@QAEXXZ
|
|
unsigned NestLevel = getLocalNestingLevel(FD);
|
|
Out << '?';
|
|
mangleNumber(NestLevel);
|
|
Out << '?';
|
|
mangle(FD, "?");
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
|
|
const TemplateDecl *TD,
|
|
const TemplateArgumentList &TemplateArgs) {
|
|
// <template-name> ::= <unscoped-template-name> <template-args>
|
|
// ::= <substitution>
|
|
// Always start with the unqualified name.
|
|
|
|
// Templates have their own context for back references.
|
|
ArgBackRefMap OuterArgsContext;
|
|
BackRefMap OuterTemplateContext;
|
|
NameBackReferences.swap(OuterTemplateContext);
|
|
TypeBackReferences.swap(OuterArgsContext);
|
|
|
|
mangleUnscopedTemplateName(TD);
|
|
mangleTemplateArgs(TD, TemplateArgs);
|
|
|
|
// Restore the previous back reference contexts.
|
|
NameBackReferences.swap(OuterTemplateContext);
|
|
TypeBackReferences.swap(OuterArgsContext);
|
|
}
|
|
|
|
void
|
|
MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
|
|
// <unscoped-template-name> ::= ?$ <unqualified-name>
|
|
Out << "?$";
|
|
mangleUnqualifiedName(TD);
|
|
}
|
|
|
|
void
|
|
MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
|
|
bool IsBoolean) {
|
|
// <integer-literal> ::= $0 <number>
|
|
Out << "$0";
|
|
// Make sure booleans are encoded as 0/1.
|
|
if (IsBoolean && Value.getBoolValue())
|
|
mangleNumber(1);
|
|
else
|
|
mangleNumber(Value.getSExtValue());
|
|
}
|
|
|
|
void
|
|
MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
|
|
// See if this is a constant expression.
|
|
llvm::APSInt Value;
|
|
if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
|
|
mangleIntegerLiteral(Value, E->getType()->isBooleanType());
|
|
return;
|
|
}
|
|
|
|
const CXXUuidofExpr *UE = 0;
|
|
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
|
|
if (UO->getOpcode() == UO_AddrOf)
|
|
UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr());
|
|
} else
|
|
UE = dyn_cast<CXXUuidofExpr>(E);
|
|
|
|
if (UE) {
|
|
// This CXXUuidofExpr is mangled as-if it were actually a VarDecl from
|
|
// const __s_GUID _GUID_{lower case UUID with underscores}
|
|
StringRef Uuid = UE->getUuidAsStringRef(Context.getASTContext());
|
|
std::string Name = "_GUID_" + Uuid.lower();
|
|
std::replace(Name.begin(), Name.end(), '-', '_');
|
|
|
|
// If we had to peek through an address-of operator, treat this like we are
|
|
// dealing with a pointer type. Otherwise, treat it like a const reference.
|
|
//
|
|
// N.B. This matches up with the handling of TemplateArgument::Declaration
|
|
// in mangleTemplateArg
|
|
if (UE == E)
|
|
Out << "$E?";
|
|
else
|
|
Out << "$1?";
|
|
Out << Name << "@@3U__s_GUID@@B";
|
|
return;
|
|
}
|
|
|
|
// As bad as this diagnostic is, it's better than crashing.
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot yet mangle expression type %0");
|
|
Diags.Report(E->getExprLoc(), DiagID)
|
|
<< E->getStmtClassName() << E->getSourceRange();
|
|
}
|
|
|
|
void
|
|
MicrosoftCXXNameMangler::mangleTemplateArgs(const TemplateDecl *TD,
|
|
const TemplateArgumentList &TemplateArgs) {
|
|
// <template-args> ::= {<type> | <integer-literal>}+ @
|
|
unsigned NumTemplateArgs = TemplateArgs.size();
|
|
for (unsigned i = 0; i < NumTemplateArgs; ++i) {
|
|
const TemplateArgument &TA = TemplateArgs[i];
|
|
mangleTemplateArg(TD, TA);
|
|
}
|
|
Out << '@';
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
|
|
const TemplateArgument &TA) {
|
|
switch (TA.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Can't mangle null template arguments!");
|
|
case TemplateArgument::TemplateExpansion:
|
|
llvm_unreachable("Can't mangle template expansion arguments!");
|
|
case TemplateArgument::Type: {
|
|
QualType T = TA.getAsType();
|
|
mangleType(T, SourceRange(), QMM_Escape);
|
|
break;
|
|
}
|
|
case TemplateArgument::Declaration: {
|
|
const NamedDecl *ND = cast<NamedDecl>(TA.getAsDecl());
|
|
mangle(ND, TA.isDeclForReferenceParam() ? "$E?" : "$1?");
|
|
break;
|
|
}
|
|
case TemplateArgument::Integral:
|
|
mangleIntegerLiteral(TA.getAsIntegral(),
|
|
TA.getIntegralType()->isBooleanType());
|
|
break;
|
|
case TemplateArgument::NullPtr:
|
|
Out << "$0A@";
|
|
break;
|
|
case TemplateArgument::Expression:
|
|
mangleExpression(TA.getAsExpr());
|
|
break;
|
|
case TemplateArgument::Pack:
|
|
// Unlike Itanium, there is no character code to indicate an argument pack.
|
|
for (TemplateArgument::pack_iterator I = TA.pack_begin(), E = TA.pack_end();
|
|
I != E; ++I)
|
|
mangleTemplateArg(TD, *I);
|
|
break;
|
|
case TemplateArgument::Template:
|
|
mangleType(cast<TagDecl>(
|
|
TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl()));
|
|
break;
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
|
|
bool IsMember) {
|
|
// <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
|
|
// 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
|
|
// 'I' means __restrict (32/64-bit).
|
|
// Note that the MSVC __restrict keyword isn't the same as the C99 restrict
|
|
// keyword!
|
|
// <base-cvr-qualifiers> ::= A # near
|
|
// ::= B # near const
|
|
// ::= C # near volatile
|
|
// ::= D # near const volatile
|
|
// ::= E # far (16-bit)
|
|
// ::= F # far const (16-bit)
|
|
// ::= G # far volatile (16-bit)
|
|
// ::= H # far const volatile (16-bit)
|
|
// ::= I # huge (16-bit)
|
|
// ::= J # huge const (16-bit)
|
|
// ::= K # huge volatile (16-bit)
|
|
// ::= L # huge const volatile (16-bit)
|
|
// ::= M <basis> # based
|
|
// ::= N <basis> # based const
|
|
// ::= O <basis> # based volatile
|
|
// ::= P <basis> # based const volatile
|
|
// ::= Q # near member
|
|
// ::= R # near const member
|
|
// ::= S # near volatile member
|
|
// ::= T # near const volatile member
|
|
// ::= U # far member (16-bit)
|
|
// ::= V # far const member (16-bit)
|
|
// ::= W # far volatile member (16-bit)
|
|
// ::= X # far const volatile member (16-bit)
|
|
// ::= Y # huge member (16-bit)
|
|
// ::= Z # huge const member (16-bit)
|
|
// ::= 0 # huge volatile member (16-bit)
|
|
// ::= 1 # huge const volatile member (16-bit)
|
|
// ::= 2 <basis> # based member
|
|
// ::= 3 <basis> # based const member
|
|
// ::= 4 <basis> # based volatile member
|
|
// ::= 5 <basis> # based const volatile member
|
|
// ::= 6 # near function (pointers only)
|
|
// ::= 7 # far function (pointers only)
|
|
// ::= 8 # near method (pointers only)
|
|
// ::= 9 # far method (pointers only)
|
|
// ::= _A <basis> # based function (pointers only)
|
|
// ::= _B <basis> # based function (far?) (pointers only)
|
|
// ::= _C <basis> # based method (pointers only)
|
|
// ::= _D <basis> # based method (far?) (pointers only)
|
|
// ::= _E # block (Clang)
|
|
// <basis> ::= 0 # __based(void)
|
|
// ::= 1 # __based(segment)?
|
|
// ::= 2 <name> # __based(name)
|
|
// ::= 3 # ?
|
|
// ::= 4 # ?
|
|
// ::= 5 # not really based
|
|
bool HasConst = Quals.hasConst(),
|
|
HasVolatile = Quals.hasVolatile();
|
|
|
|
if (!IsMember) {
|
|
if (HasConst && HasVolatile) {
|
|
Out << 'D';
|
|
} else if (HasVolatile) {
|
|
Out << 'C';
|
|
} else if (HasConst) {
|
|
Out << 'B';
|
|
} else {
|
|
Out << 'A';
|
|
}
|
|
} else {
|
|
if (HasConst && HasVolatile) {
|
|
Out << 'T';
|
|
} else if (HasVolatile) {
|
|
Out << 'S';
|
|
} else if (HasConst) {
|
|
Out << 'R';
|
|
} else {
|
|
Out << 'Q';
|
|
}
|
|
}
|
|
|
|
// FIXME: For now, just drop all extension qualifiers on the floor.
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::manglePointerQualifiers(Qualifiers Quals) {
|
|
// <pointer-cvr-qualifiers> ::= P # no qualifiers
|
|
// ::= Q # const
|
|
// ::= R # volatile
|
|
// ::= S # const volatile
|
|
bool HasConst = Quals.hasConst(),
|
|
HasVolatile = Quals.hasVolatile();
|
|
if (HasConst && HasVolatile) {
|
|
Out << 'S';
|
|
} else if (HasVolatile) {
|
|
Out << 'R';
|
|
} else if (HasConst) {
|
|
Out << 'Q';
|
|
} else {
|
|
Out << 'P';
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
|
|
SourceRange Range) {
|
|
// MSVC will backreference two canonically equivalent types that have slightly
|
|
// different manglings when mangled alone.
|
|
|
|
// Decayed types do not match up with non-decayed versions of the same type.
|
|
//
|
|
// e.g.
|
|
// void (*x)(void) will not form a backreference with void x(void)
|
|
void *TypePtr;
|
|
if (const DecayedType *DT = T->getAs<DecayedType>()) {
|
|
TypePtr = DT->getOriginalType().getCanonicalType().getAsOpaquePtr();
|
|
// If the original parameter was textually written as an array,
|
|
// instead treat the decayed parameter like it's const.
|
|
//
|
|
// e.g.
|
|
// int [] -> int * const
|
|
if (DT->getOriginalType()->isArrayType())
|
|
T = T.withConst();
|
|
} else
|
|
TypePtr = T.getCanonicalType().getAsOpaquePtr();
|
|
|
|
ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
|
|
|
|
if (Found == TypeBackReferences.end()) {
|
|
size_t OutSizeBefore = Out.GetNumBytesInBuffer();
|
|
|
|
mangleType(T, Range, QMM_Drop);
|
|
|
|
// See if it's worth creating a back reference.
|
|
// Only types longer than 1 character are considered
|
|
// and only 10 back references slots are available:
|
|
bool LongerThanOneChar = (Out.GetNumBytesInBuffer() - OutSizeBefore > 1);
|
|
if (LongerThanOneChar && TypeBackReferences.size() < 10) {
|
|
size_t Size = TypeBackReferences.size();
|
|
TypeBackReferences[TypePtr] = Size;
|
|
}
|
|
} else {
|
|
Out << Found->second;
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
|
|
QualifierMangleMode QMM) {
|
|
// Don't use the canonical types. MSVC includes things like 'const' on
|
|
// pointer arguments to function pointers that canonicalization strips away.
|
|
T = T.getDesugaredType(getASTContext());
|
|
Qualifiers Quals = T.getLocalQualifiers();
|
|
if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
|
|
// If there were any Quals, getAsArrayType() pushed them onto the array
|
|
// element type.
|
|
if (QMM == QMM_Mangle)
|
|
Out << 'A';
|
|
else if (QMM == QMM_Escape || QMM == QMM_Result)
|
|
Out << "$$B";
|
|
mangleArrayType(AT);
|
|
return;
|
|
}
|
|
|
|
bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
|
|
T->isBlockPointerType();
|
|
|
|
switch (QMM) {
|
|
case QMM_Drop:
|
|
break;
|
|
case QMM_Mangle:
|
|
if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
|
|
Out << '6';
|
|
mangleFunctionType(FT);
|
|
return;
|
|
}
|
|
mangleQualifiers(Quals, false);
|
|
break;
|
|
case QMM_Escape:
|
|
if (!IsPointer && Quals) {
|
|
Out << "$$C";
|
|
mangleQualifiers(Quals, false);
|
|
}
|
|
break;
|
|
case QMM_Result:
|
|
if ((!IsPointer && Quals) || isa<TagType>(T)) {
|
|
Out << '?';
|
|
mangleQualifiers(Quals, false);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// We have to mangle these now, while we still have enough information.
|
|
if (IsPointer)
|
|
manglePointerQualifiers(Quals);
|
|
const Type *ty = T.getTypePtr();
|
|
|
|
switch (ty->getTypeClass()) {
|
|
#define ABSTRACT_TYPE(CLASS, PARENT)
|
|
#define NON_CANONICAL_TYPE(CLASS, PARENT) \
|
|
case Type::CLASS: \
|
|
llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
|
|
return;
|
|
#define TYPE(CLASS, PARENT) \
|
|
case Type::CLASS: \
|
|
mangleType(cast<CLASS##Type>(ty), Range); \
|
|
break;
|
|
#include "clang/AST/TypeNodes.def"
|
|
#undef ABSTRACT_TYPE
|
|
#undef NON_CANONICAL_TYPE
|
|
#undef TYPE
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T,
|
|
SourceRange Range) {
|
|
// <type> ::= <builtin-type>
|
|
// <builtin-type> ::= X # void
|
|
// ::= C # signed char
|
|
// ::= D # char
|
|
// ::= E # unsigned char
|
|
// ::= F # short
|
|
// ::= G # unsigned short (or wchar_t if it's not a builtin)
|
|
// ::= H # int
|
|
// ::= I # unsigned int
|
|
// ::= J # long
|
|
// ::= K # unsigned long
|
|
// L # <none>
|
|
// ::= M # float
|
|
// ::= N # double
|
|
// ::= O # long double (__float80 is mangled differently)
|
|
// ::= _J # long long, __int64
|
|
// ::= _K # unsigned long long, __int64
|
|
// ::= _L # __int128
|
|
// ::= _M # unsigned __int128
|
|
// ::= _N # bool
|
|
// _O # <array in parameter>
|
|
// ::= _T # __float80 (Intel)
|
|
// ::= _W # wchar_t
|
|
// ::= _Z # __float80 (Digital Mars)
|
|
switch (T->getKind()) {
|
|
case BuiltinType::Void: Out << 'X'; break;
|
|
case BuiltinType::SChar: Out << 'C'; break;
|
|
case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break;
|
|
case BuiltinType::UChar: Out << 'E'; break;
|
|
case BuiltinType::Short: Out << 'F'; break;
|
|
case BuiltinType::UShort: Out << 'G'; break;
|
|
case BuiltinType::Int: Out << 'H'; break;
|
|
case BuiltinType::UInt: Out << 'I'; break;
|
|
case BuiltinType::Long: Out << 'J'; break;
|
|
case BuiltinType::ULong: Out << 'K'; break;
|
|
case BuiltinType::Float: Out << 'M'; break;
|
|
case BuiltinType::Double: Out << 'N'; break;
|
|
// TODO: Determine size and mangle accordingly
|
|
case BuiltinType::LongDouble: Out << 'O'; break;
|
|
case BuiltinType::LongLong: Out << "_J"; break;
|
|
case BuiltinType::ULongLong: Out << "_K"; break;
|
|
case BuiltinType::Int128: Out << "_L"; break;
|
|
case BuiltinType::UInt128: Out << "_M"; break;
|
|
case BuiltinType::Bool: Out << "_N"; break;
|
|
case BuiltinType::WChar_S:
|
|
case BuiltinType::WChar_U: Out << "_W"; break;
|
|
|
|
#define BUILTIN_TYPE(Id, SingletonId)
|
|
#define PLACEHOLDER_TYPE(Id, SingletonId) \
|
|
case BuiltinType::Id:
|
|
#include "clang/AST/BuiltinTypes.def"
|
|
case BuiltinType::Dependent:
|
|
llvm_unreachable("placeholder types shouldn't get to name mangling");
|
|
|
|
case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break;
|
|
case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break;
|
|
case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break;
|
|
|
|
case BuiltinType::OCLImage1d: Out << "PAUocl_image1d@@"; break;
|
|
case BuiltinType::OCLImage1dArray: Out << "PAUocl_image1darray@@"; break;
|
|
case BuiltinType::OCLImage1dBuffer: Out << "PAUocl_image1dbuffer@@"; break;
|
|
case BuiltinType::OCLImage2d: Out << "PAUocl_image2d@@"; break;
|
|
case BuiltinType::OCLImage2dArray: Out << "PAUocl_image2darray@@"; break;
|
|
case BuiltinType::OCLImage3d: Out << "PAUocl_image3d@@"; break;
|
|
case BuiltinType::OCLSampler: Out << "PAUocl_sampler@@"; break;
|
|
case BuiltinType::OCLEvent: Out << "PAUocl_event@@"; break;
|
|
|
|
case BuiltinType::NullPtr: Out << "$$T"; break;
|
|
|
|
case BuiltinType::Char16:
|
|
case BuiltinType::Char32:
|
|
case BuiltinType::Half: {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this built-in %0 type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< T->getName(Context.getASTContext().getPrintingPolicy())
|
|
<< Range;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// <type> ::= <function-type>
|
|
void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T,
|
|
SourceRange) {
|
|
// Structors only appear in decls, so at this point we know it's not a
|
|
// structor type.
|
|
// FIXME: This may not be lambda-friendly.
|
|
Out << "$$A6";
|
|
mangleFunctionType(T);
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
|
|
SourceRange) {
|
|
llvm_unreachable("Can't mangle K&R function prototypes");
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
|
|
const FunctionDecl *D,
|
|
bool ForceInstMethod) {
|
|
// <function-type> ::= <this-cvr-qualifiers> <calling-convention>
|
|
// <return-type> <argument-list> <throw-spec>
|
|
const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
|
|
|
|
SourceRange Range;
|
|
if (D) Range = D->getSourceRange();
|
|
|
|
bool IsStructor = false, IsInstMethod = ForceInstMethod;
|
|
if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
|
|
if (MD->isInstance())
|
|
IsInstMethod = true;
|
|
if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
|
|
IsStructor = true;
|
|
}
|
|
|
|
// If this is a C++ instance method, mangle the CVR qualifiers for the
|
|
// this pointer.
|
|
if (IsInstMethod) {
|
|
if (PointersAre64Bit)
|
|
Out << 'E';
|
|
mangleQualifiers(Qualifiers::fromCVRMask(Proto->getTypeQuals()), false);
|
|
}
|
|
|
|
mangleCallingConvention(T);
|
|
|
|
// <return-type> ::= <type>
|
|
// ::= @ # structors (they have no declared return type)
|
|
if (IsStructor) {
|
|
if (isa<CXXDestructorDecl>(D) && D == Structor &&
|
|
StructorType == Dtor_Deleting) {
|
|
// The scalar deleting destructor takes an extra int argument.
|
|
// However, the FunctionType generated has 0 arguments.
|
|
// FIXME: This is a temporary hack.
|
|
// Maybe should fix the FunctionType creation instead?
|
|
Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
|
|
return;
|
|
}
|
|
Out << '@';
|
|
} else {
|
|
QualType ResultType = Proto->getResultType();
|
|
if (ResultType->isVoidType())
|
|
ResultType = ResultType.getUnqualifiedType();
|
|
mangleType(ResultType, Range, QMM_Result);
|
|
}
|
|
|
|
// <argument-list> ::= X # void
|
|
// ::= <type>+ @
|
|
// ::= <type>* Z # varargs
|
|
if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
|
|
Out << 'X';
|
|
} else {
|
|
// Happens for function pointer type arguments for example.
|
|
for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
|
|
ArgEnd = Proto->arg_type_end();
|
|
Arg != ArgEnd; ++Arg)
|
|
mangleArgumentType(*Arg, Range);
|
|
// <builtin-type> ::= Z # ellipsis
|
|
if (Proto->isVariadic())
|
|
Out << 'Z';
|
|
else
|
|
Out << '@';
|
|
}
|
|
|
|
mangleThrowSpecification(Proto);
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
|
|
// <function-class> ::= <member-function> E? # E designates a 64-bit 'this'
|
|
// # pointer. in 64-bit mode *all*
|
|
// # 'this' pointers are 64-bit.
|
|
// ::= <global-function>
|
|
// <member-function> ::= A # private: near
|
|
// ::= B # private: far
|
|
// ::= C # private: static near
|
|
// ::= D # private: static far
|
|
// ::= E # private: virtual near
|
|
// ::= F # private: virtual far
|
|
// ::= I # protected: near
|
|
// ::= J # protected: far
|
|
// ::= K # protected: static near
|
|
// ::= L # protected: static far
|
|
// ::= M # protected: virtual near
|
|
// ::= N # protected: virtual far
|
|
// ::= Q # public: near
|
|
// ::= R # public: far
|
|
// ::= S # public: static near
|
|
// ::= T # public: static far
|
|
// ::= U # public: virtual near
|
|
// ::= V # public: virtual far
|
|
// <global-function> ::= Y # global near
|
|
// ::= Z # global far
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
|
|
switch (MD->getAccess()) {
|
|
case AS_none:
|
|
llvm_unreachable("Unsupported access specifier");
|
|
case AS_private:
|
|
if (MD->isStatic())
|
|
Out << 'C';
|
|
else if (MD->isVirtual())
|
|
Out << 'E';
|
|
else
|
|
Out << 'A';
|
|
break;
|
|
case AS_protected:
|
|
if (MD->isStatic())
|
|
Out << 'K';
|
|
else if (MD->isVirtual())
|
|
Out << 'M';
|
|
else
|
|
Out << 'I';
|
|
break;
|
|
case AS_public:
|
|
if (MD->isStatic())
|
|
Out << 'S';
|
|
else if (MD->isVirtual())
|
|
Out << 'U';
|
|
else
|
|
Out << 'Q';
|
|
}
|
|
} else
|
|
Out << 'Y';
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
|
|
// <calling-convention> ::= A # __cdecl
|
|
// ::= B # __export __cdecl
|
|
// ::= C # __pascal
|
|
// ::= D # __export __pascal
|
|
// ::= E # __thiscall
|
|
// ::= F # __export __thiscall
|
|
// ::= G # __stdcall
|
|
// ::= H # __export __stdcall
|
|
// ::= I # __fastcall
|
|
// ::= J # __export __fastcall
|
|
// The 'export' calling conventions are from a bygone era
|
|
// (*cough*Win16*cough*) when functions were declared for export with
|
|
// that keyword. (It didn't actually export them, it just made them so
|
|
// that they could be in a DLL and somebody from another module could call
|
|
// them.)
|
|
CallingConv CC = T->getCallConv();
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unsupported CC for mangling");
|
|
case CC_X86_64Win64:
|
|
case CC_X86_64SysV:
|
|
case CC_C: Out << 'A'; break;
|
|
case CC_X86Pascal: Out << 'C'; break;
|
|
case CC_X86ThisCall: Out << 'E'; break;
|
|
case CC_X86StdCall: Out << 'G'; break;
|
|
case CC_X86FastCall: Out << 'I'; break;
|
|
}
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleThrowSpecification(
|
|
const FunctionProtoType *FT) {
|
|
// <throw-spec> ::= Z # throw(...) (default)
|
|
// ::= @ # throw() or __declspec/__attribute__((nothrow))
|
|
// ::= <type>+
|
|
// NOTE: Since the Microsoft compiler ignores throw specifications, they are
|
|
// all actually mangled as 'Z'. (They're ignored because their associated
|
|
// functionality isn't implemented, and probably never will be.)
|
|
Out << 'Z';
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
|
|
SourceRange Range) {
|
|
// Probably should be mangled as a template instantiation; need to see what
|
|
// VC does first.
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this unresolved dependent type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
// <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
|
|
// <union-type> ::= T <name>
|
|
// <struct-type> ::= U <name>
|
|
// <class-type> ::= V <name>
|
|
// <enum-type> ::= W4 <name>
|
|
void MicrosoftCXXNameMangler::mangleType(const EnumType *T, SourceRange) {
|
|
mangleType(cast<TagType>(T)->getDecl());
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const RecordType *T, SourceRange) {
|
|
mangleType(cast<TagType>(T)->getDecl());
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
|
|
switch (TD->getTagKind()) {
|
|
case TTK_Union:
|
|
Out << 'T';
|
|
break;
|
|
case TTK_Struct:
|
|
case TTK_Interface:
|
|
Out << 'U';
|
|
break;
|
|
case TTK_Class:
|
|
Out << 'V';
|
|
break;
|
|
case TTK_Enum:
|
|
Out << "W4";
|
|
break;
|
|
}
|
|
mangleName(TD);
|
|
}
|
|
|
|
// <type> ::= <array-type>
|
|
// <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
|
|
// [Y <dimension-count> <dimension>+]
|
|
// <element-type> # as global, E is never required
|
|
// It's supposed to be the other way around, but for some strange reason, it
|
|
// isn't. Today this behavior is retained for the sole purpose of backwards
|
|
// compatibility.
|
|
void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
|
|
// This isn't a recursive mangling, so now we have to do it all in this
|
|
// one call.
|
|
manglePointerQualifiers(T->getElementType().getQualifiers());
|
|
mangleType(T->getElementType(), SourceRange());
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T,
|
|
SourceRange) {
|
|
llvm_unreachable("Should have been special cased");
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T,
|
|
SourceRange) {
|
|
llvm_unreachable("Should have been special cased");
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
|
|
SourceRange) {
|
|
llvm_unreachable("Should have been special cased");
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
|
|
SourceRange) {
|
|
llvm_unreachable("Should have been special cased");
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
|
|
QualType ElementTy(T, 0);
|
|
SmallVector<llvm::APInt, 3> Dimensions;
|
|
for (;;) {
|
|
if (const ConstantArrayType *CAT =
|
|
getASTContext().getAsConstantArrayType(ElementTy)) {
|
|
Dimensions.push_back(CAT->getSize());
|
|
ElementTy = CAT->getElementType();
|
|
} else if (ElementTy->isVariableArrayType()) {
|
|
const VariableArrayType *VAT =
|
|
getASTContext().getAsVariableArrayType(ElementTy);
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this variable-length array yet");
|
|
Diags.Report(VAT->getSizeExpr()->getExprLoc(), DiagID)
|
|
<< VAT->getBracketsRange();
|
|
return;
|
|
} else if (ElementTy->isDependentSizedArrayType()) {
|
|
// The dependent expression has to be folded into a constant (TODO).
|
|
const DependentSizedArrayType *DSAT =
|
|
getASTContext().getAsDependentSizedArrayType(ElementTy);
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this dependent-length array yet");
|
|
Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
|
|
<< DSAT->getBracketsRange();
|
|
return;
|
|
} else if (const IncompleteArrayType *IAT =
|
|
getASTContext().getAsIncompleteArrayType(ElementTy)) {
|
|
Dimensions.push_back(llvm::APInt(32, 0));
|
|
ElementTy = IAT->getElementType();
|
|
}
|
|
else break;
|
|
}
|
|
Out << 'Y';
|
|
// <dimension-count> ::= <number> # number of extra dimensions
|
|
mangleNumber(Dimensions.size());
|
|
for (unsigned Dim = 0; Dim < Dimensions.size(); ++Dim)
|
|
mangleNumber(Dimensions[Dim].getLimitedValue());
|
|
mangleType(ElementTy, SourceRange(), QMM_Escape);
|
|
}
|
|
|
|
// <type> ::= <pointer-to-member-type>
|
|
// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
|
|
// <class name> <type>
|
|
void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
|
|
SourceRange Range) {
|
|
QualType PointeeType = T->getPointeeType();
|
|
if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
|
|
Out << '8';
|
|
mangleName(T->getClass()->castAs<RecordType>()->getDecl());
|
|
mangleFunctionType(FPT, 0, true);
|
|
} else {
|
|
if (PointersAre64Bit && !T->getPointeeType()->isFunctionType())
|
|
Out << 'E';
|
|
mangleQualifiers(PointeeType.getQualifiers(), true);
|
|
mangleName(T->getClass()->castAs<RecordType>()->getDecl());
|
|
mangleType(PointeeType, Range, QMM_Drop);
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this template type parameter type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(
|
|
const SubstTemplateTypeParmPackType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this substituted parameter pack yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
// <type> ::= <pointer-type>
|
|
// <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
|
|
// # the E is required for 64-bit non-static pointers
|
|
void MicrosoftCXXNameMangler::mangleType(const PointerType *T,
|
|
SourceRange Range) {
|
|
QualType PointeeTy = T->getPointeeType();
|
|
if (PointersAre64Bit && !T->getPointeeType()->isFunctionType())
|
|
Out << 'E';
|
|
mangleType(PointeeTy, Range);
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
|
|
SourceRange Range) {
|
|
// Object pointers never have qualifiers.
|
|
Out << 'A';
|
|
if (PointersAre64Bit && !T->getPointeeType()->isFunctionType())
|
|
Out << 'E';
|
|
mangleType(T->getPointeeType(), Range);
|
|
}
|
|
|
|
// <type> ::= <reference-type>
|
|
// <reference-type> ::= A E? <cvr-qualifiers> <type>
|
|
// # the E is required for 64-bit non-static lvalue references
|
|
void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
|
|
SourceRange Range) {
|
|
Out << 'A';
|
|
if (PointersAre64Bit && !T->getPointeeType()->isFunctionType())
|
|
Out << 'E';
|
|
mangleType(T->getPointeeType(), Range);
|
|
}
|
|
|
|
// <type> ::= <r-value-reference-type>
|
|
// <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
|
|
// # the E is required for 64-bit non-static rvalue references
|
|
void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
|
|
SourceRange Range) {
|
|
Out << "$$Q";
|
|
if (PointersAre64Bit && !T->getPointeeType()->isFunctionType())
|
|
Out << 'E';
|
|
mangleType(T->getPointeeType(), Range);
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const ComplexType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this complex number type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const VectorType *T,
|
|
SourceRange Range) {
|
|
const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
|
|
assert(ET && "vectors with non-builtin elements are unsupported");
|
|
uint64_t Width = getASTContext().getTypeSize(T);
|
|
// Pattern match exactly the typedefs in our intrinsic headers. Anything that
|
|
// doesn't match the Intel types uses a custom mangling below.
|
|
bool IntelVector = true;
|
|
if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
|
|
Out << "T__m64";
|
|
} else if (Width == 128 || Width == 256) {
|
|
if (ET->getKind() == BuiltinType::Float)
|
|
Out << "T__m" << Width;
|
|
else if (ET->getKind() == BuiltinType::LongLong)
|
|
Out << "T__m" << Width << 'i';
|
|
else if (ET->getKind() == BuiltinType::Double)
|
|
Out << "U__m" << Width << 'd';
|
|
else
|
|
IntelVector = false;
|
|
} else {
|
|
IntelVector = false;
|
|
}
|
|
|
|
if (!IntelVector) {
|
|
// The MS ABI doesn't have a special mangling for vector types, so we define
|
|
// our own mangling to handle uses of __vector_size__ on user-specified
|
|
// types, and for extensions like __v4sf.
|
|
Out << "T__clang_vec" << T->getNumElements() << '_';
|
|
mangleType(ET, Range);
|
|
}
|
|
|
|
Out << "@@";
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this extended vector type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this dependent-sized extended vector type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T,
|
|
SourceRange) {
|
|
// ObjC interfaces have structs underlying them.
|
|
Out << 'U';
|
|
mangleName(T->getDecl());
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
|
|
SourceRange Range) {
|
|
// We don't allow overloading by different protocol qualification,
|
|
// so mangling them isn't necessary.
|
|
mangleType(T->getBaseType(), Range);
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
|
|
SourceRange Range) {
|
|
Out << "_E";
|
|
|
|
QualType pointee = T->getPointeeType();
|
|
mangleFunctionType(pointee->castAs<FunctionProtoType>());
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
|
|
SourceRange) {
|
|
llvm_unreachable("Cannot mangle injected class name type.");
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this template specialization type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this dependent name type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(
|
|
const DependentTemplateSpecializationType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this dependent template specialization type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this pack expansion yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this typeof(type) yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this typeof(expression) yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this decltype() yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this unary transform type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const AutoType *T, SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this 'auto' type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const AtomicType *T,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this C11 atomic type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D,
|
|
raw_ostream &Out) {
|
|
assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
|
|
"Invalid mangleName() call, argument is not a variable or function!");
|
|
assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
|
|
"Invalid mangleName() call on 'structor decl!");
|
|
|
|
PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
|
|
getASTContext().getSourceManager(),
|
|
"Mangling declaration");
|
|
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
return Mangler.mangle(D);
|
|
}
|
|
|
|
// <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
|
|
// <virtual-adjustment>
|
|
// <no-adjustment> ::= A # private near
|
|
// ::= B # private far
|
|
// ::= I # protected near
|
|
// ::= J # protected far
|
|
// ::= Q # public near
|
|
// ::= R # public far
|
|
// <static-adjustment> ::= G <static-offset> # private near
|
|
// ::= H <static-offset> # private far
|
|
// ::= O <static-offset> # protected near
|
|
// ::= P <static-offset> # protected far
|
|
// ::= W <static-offset> # public near
|
|
// ::= X <static-offset> # public far
|
|
// <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
|
|
// ::= $1 <virtual-shift> <static-offset> # private far
|
|
// ::= $2 <virtual-shift> <static-offset> # protected near
|
|
// ::= $3 <virtual-shift> <static-offset> # protected far
|
|
// ::= $4 <virtual-shift> <static-offset> # public near
|
|
// ::= $5 <virtual-shift> <static-offset> # public far
|
|
// <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift>
|
|
// <vtordisp-shift> ::= <offset-to-vtordisp>
|
|
// <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset>
|
|
// <offset-to-vtordisp>
|
|
static void mangleThunkThisAdjustment(const CXXMethodDecl *MD,
|
|
const ThisAdjustment &Adjustment,
|
|
MicrosoftCXXNameMangler &Mangler,
|
|
raw_ostream &Out) {
|
|
if (!Adjustment.Virtual.isEmpty()) {
|
|
Out << '$';
|
|
char AccessSpec;
|
|
switch (MD->getAccess()) {
|
|
case AS_none:
|
|
llvm_unreachable("Unsupported access specifier");
|
|
case AS_private:
|
|
AccessSpec = '0';
|
|
break;
|
|
case AS_protected:
|
|
AccessSpec = '2';
|
|
break;
|
|
case AS_public:
|
|
AccessSpec = '4';
|
|
}
|
|
if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
|
|
Out << 'R' << AccessSpec;
|
|
Mangler.mangleNumber(
|
|
static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
|
|
Mangler.mangleNumber(
|
|
static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
|
|
Mangler.mangleNumber(
|
|
static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
|
|
Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
|
|
} else {
|
|
Out << AccessSpec;
|
|
Mangler.mangleNumber(
|
|
static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
|
|
Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
|
|
}
|
|
} else if (Adjustment.NonVirtual != 0) {
|
|
switch (MD->getAccess()) {
|
|
case AS_none:
|
|
llvm_unreachable("Unsupported access specifier");
|
|
case AS_private:
|
|
Out << 'G';
|
|
break;
|
|
case AS_protected:
|
|
Out << 'O';
|
|
break;
|
|
case AS_public:
|
|
Out << 'W';
|
|
}
|
|
Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
|
|
} else {
|
|
switch (MD->getAccess()) {
|
|
case AS_none:
|
|
llvm_unreachable("Unsupported access specifier");
|
|
case AS_private:
|
|
Out << 'A';
|
|
break;
|
|
case AS_protected:
|
|
Out << 'I';
|
|
break;
|
|
case AS_public:
|
|
Out << 'Q';
|
|
}
|
|
}
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(
|
|
const CXXMethodDecl *MD, uint64_t OffsetInVFTable, raw_ostream &Out) {
|
|
bool Is64Bit = getASTContext().getTargetInfo().getPointerWidth(0) == 64;
|
|
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "\01??_9";
|
|
Mangler.mangleName(MD->getParent());
|
|
Mangler.getStream() << "$B";
|
|
Mangler.mangleNumber(OffsetInVFTable);
|
|
Mangler.getStream() << "A";
|
|
Mangler.getStream() << (Is64Bit ? "A" : "E");
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
|
|
const ThunkInfo &Thunk,
|
|
raw_ostream &Out) {
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Out << "\01?";
|
|
Mangler.mangleName(MD);
|
|
mangleThunkThisAdjustment(MD, Thunk.This, Mangler, Out);
|
|
if (!Thunk.Return.isEmpty())
|
|
assert(Thunk.Method != 0 && "Thunk info should hold the overridee decl");
|
|
|
|
const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
|
|
Mangler.mangleFunctionType(
|
|
DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
|
|
const CXXDestructorDecl *DD, CXXDtorType Type,
|
|
const ThisAdjustment &Adjustment, raw_ostream &Out) {
|
|
// FIXME: Actually, the dtor thunk should be emitted for vector deleting
|
|
// dtors rather than scalar deleting dtors. Just use the vector deleting dtor
|
|
// mangling manually until we support both deleting dtor types.
|
|
assert(Type == Dtor_Deleting);
|
|
MicrosoftCXXNameMangler Mangler(*this, Out, DD, Type);
|
|
Out << "\01??_E";
|
|
Mangler.mangleName(DD->getParent());
|
|
mangleThunkThisAdjustment(DD, Adjustment, Mangler, Out);
|
|
Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXVFTable(
|
|
const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
|
|
raw_ostream &Out) {
|
|
// <mangled-name> ::= ?_7 <class-name> <storage-class>
|
|
// <cvr-qualifiers> [<name>] @
|
|
// NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
|
|
// is always '6' for vftables.
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "\01??_7";
|
|
Mangler.mangleName(Derived);
|
|
Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
|
|
for (ArrayRef<const CXXRecordDecl *>::iterator I = BasePath.begin(),
|
|
E = BasePath.end();
|
|
I != E; ++I) {
|
|
Mangler.mangleName(*I);
|
|
}
|
|
Mangler.getStream() << '@';
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXVBTable(
|
|
const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
|
|
raw_ostream &Out) {
|
|
// <mangled-name> ::= ?_8 <class-name> <storage-class>
|
|
// <cvr-qualifiers> [<name>] @
|
|
// NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
|
|
// is always '7' for vbtables.
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "\01??_8";
|
|
Mangler.mangleName(Derived);
|
|
Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const.
|
|
for (ArrayRef<const CXXRecordDecl *>::iterator I = BasePath.begin(),
|
|
E = BasePath.end();
|
|
I != E; ++I) {
|
|
Mangler.mangleName(*I);
|
|
}
|
|
Mangler.getStream() << '@';
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &) {
|
|
// FIXME: Give a location...
|
|
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle RTTI descriptors for type %0 yet");
|
|
getDiags().Report(DiagID)
|
|
<< T.getBaseTypeIdentifier();
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T, raw_ostream &) {
|
|
// FIXME: Give a location...
|
|
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle the name of type %0 into RTTI descriptors yet");
|
|
getDiags().Report(DiagID)
|
|
<< T.getBaseTypeIdentifier();
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
|
|
// This is just a made up unique string for the purposes of tbaa. undname
|
|
// does *not* know how to demangle it.
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << '?';
|
|
Mangler.mangleType(T, SourceRange());
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
|
|
CXXCtorType Type,
|
|
raw_ostream &Out) {
|
|
MicrosoftCXXNameMangler mangler(*this, Out);
|
|
mangler.mangle(D);
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
|
|
CXXDtorType Type,
|
|
raw_ostream &Out) {
|
|
MicrosoftCXXNameMangler mangler(*this, Out, D, Type);
|
|
mangler.mangle(D);
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleReferenceTemporary(const VarDecl *VD,
|
|
raw_ostream &) {
|
|
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this reference temporary yet");
|
|
getDiags().Report(VD->getLocation(), DiagID);
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
|
|
raw_ostream &Out) {
|
|
// TODO: This is not correct, especially with respect to MSVC2013. MSVC2013
|
|
// utilizes thread local variables to implement thread safe, re-entrant
|
|
// initialization for statics. They no longer differentiate between an
|
|
// externally visible and non-externally visible static with respect to
|
|
// mangling, they all get $TSS <number>.
|
|
//
|
|
// N.B. This means that they can get more than 32 static variable guards in a
|
|
// scope. It also means that they broke compatibility with their own ABI.
|
|
|
|
// <guard-name> ::= ?_B <postfix> @51
|
|
// ::= ?$S <guard-num> @ <postfix> @4IA
|
|
|
|
// The first mangling is what MSVC uses to guard static locals in inline
|
|
// functions. It uses a different mangling in external functions to support
|
|
// guarding more than 32 variables. MSVC rejects inline functions with more
|
|
// than 32 static locals. We don't fully implement the second mangling
|
|
// because those guards are not externally visible, and instead use LLVM's
|
|
// default renaming when creating a new guard variable.
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
|
|
bool Visible = VD->isExternallyVisible();
|
|
// <operator-name> ::= ?_B # local static guard
|
|
Mangler.getStream() << (Visible ? "\01??_B" : "\01?$S1@");
|
|
Mangler.manglePostfix(VD->getDeclContext());
|
|
Mangler.getStream() << (Visible ? "@51" : "@4IA");
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
|
|
raw_ostream &Out,
|
|
char CharCode) {
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "\01??__" << CharCode;
|
|
Mangler.mangleName(D);
|
|
// This is the function class mangling. These stubs are global, non-variadic,
|
|
// cdecl functions that return void and take no args.
|
|
Mangler.getStream() << "YAXXZ";
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
|
|
raw_ostream &Out) {
|
|
// <initializer-name> ::= ?__E <name> YAXXZ
|
|
mangleInitFiniStub(D, Out, 'E');
|
|
}
|
|
|
|
void
|
|
MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
|
|
raw_ostream &Out) {
|
|
// <destructor-name> ::= ?__F <name> YAXXZ
|
|
mangleInitFiniStub(D, Out, 'F');
|
|
}
|
|
|
|
MicrosoftMangleContext *
|
|
MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
|
|
return new MicrosoftMangleContextImpl(Context, Diags);
|
|
}
|