llvm-project/flang/lib/Optimizer/CodeGen/CodeGen.cpp

3439 lines
145 KiB
C++

//===-- CodeGen.cpp -- bridge to lower to LLVM ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/CodeGen/CodeGen.h"
#include "CGOps.h"
#include "PassDetail.h"
#include "flang/ISO_Fortran_binding.h"
#include "flang/Optimizer/Dialect/FIRAttr.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Support/InternalNames.h"
#include "flang/Optimizer/Support/TypeCode.h"
#include "flang/Semantics/runtime-type-info.h"
#include "mlir/Conversion/ArithmeticToLLVM/ArithmeticToLLVM.h"
#include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h"
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/OpenMPToLLVM/ConvertOpenMPToLLVM.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
#include "llvm/ADT/ArrayRef.h"
#define DEBUG_TYPE "flang-codegen"
// fir::LLVMTypeConverter for converting to LLVM IR dialect types.
#include "TypeConverter.h"
// TODO: This should really be recovered from the specified target.
static constexpr unsigned defaultAlign = 8;
/// `fir.box` attribute values as defined for CFI_attribute_t in
/// flang/ISO_Fortran_binding.h.
static constexpr unsigned kAttrPointer = CFI_attribute_pointer;
static constexpr unsigned kAttrAllocatable = CFI_attribute_allocatable;
static inline mlir::Type getVoidPtrType(mlir::MLIRContext *context) {
return mlir::LLVM::LLVMPointerType::get(mlir::IntegerType::get(context, 8));
}
static mlir::LLVM::ConstantOp
genConstantIndex(mlir::Location loc, mlir::Type ity,
mlir::ConversionPatternRewriter &rewriter,
std::int64_t offset) {
auto cattr = rewriter.getI64IntegerAttr(offset);
return rewriter.create<mlir::LLVM::ConstantOp>(loc, ity, cattr);
}
static mlir::Block *createBlock(mlir::ConversionPatternRewriter &rewriter,
mlir::Block *insertBefore) {
assert(insertBefore && "expected valid insertion block");
return rewriter.createBlock(insertBefore->getParent(),
mlir::Region::iterator(insertBefore));
}
namespace {
/// FIR conversion pattern template
template <typename FromOp>
class FIROpConversion : public mlir::ConvertOpToLLVMPattern<FromOp> {
public:
explicit FIROpConversion(fir::LLVMTypeConverter &lowering,
const fir::FIRToLLVMPassOptions &options)
: mlir::ConvertOpToLLVMPattern<FromOp>(lowering), options(options) {}
protected:
mlir::Type convertType(mlir::Type ty) const {
return lowerTy().convertType(ty);
}
mlir::Type voidPtrTy() const { return getVoidPtrType(); }
mlir::Type getVoidPtrType() const {
return mlir::LLVM::LLVMPointerType::get(
mlir::IntegerType::get(&lowerTy().getContext(), 8));
}
mlir::LLVM::ConstantOp
genI32Constant(mlir::Location loc, mlir::ConversionPatternRewriter &rewriter,
int value) const {
mlir::Type i32Ty = rewriter.getI32Type();
mlir::IntegerAttr attr = rewriter.getI32IntegerAttr(value);
return rewriter.create<mlir::LLVM::ConstantOp>(loc, i32Ty, attr);
}
mlir::LLVM::ConstantOp
genConstantOffset(mlir::Location loc,
mlir::ConversionPatternRewriter &rewriter,
int offset) const {
mlir::Type ity = lowerTy().offsetType();
mlir::IntegerAttr cattr = rewriter.getI32IntegerAttr(offset);
return rewriter.create<mlir::LLVM::ConstantOp>(loc, ity, cattr);
}
/// Perform an extension or truncation as needed on an integer value. Lowering
/// to the specific target may involve some sign-extending or truncation of
/// values, particularly to fit them from abstract box types to the
/// appropriate reified structures.
mlir::Value integerCast(mlir::Location loc,
mlir::ConversionPatternRewriter &rewriter,
mlir::Type ty, mlir::Value val) const {
auto valTy = val.getType();
// If the value was not yet lowered, lower its type so that it can
// be used in getPrimitiveTypeSizeInBits.
if (!valTy.isa<mlir::IntegerType>())
valTy = convertType(valTy);
auto toSize = mlir::LLVM::getPrimitiveTypeSizeInBits(ty);
auto fromSize = mlir::LLVM::getPrimitiveTypeSizeInBits(valTy);
if (toSize < fromSize)
return rewriter.create<mlir::LLVM::TruncOp>(loc, ty, val);
if (toSize > fromSize)
return rewriter.create<mlir::LLVM::SExtOp>(loc, ty, val);
return val;
}
/// Construct code sequence to extract the specifc value from a `fir.box`.
mlir::Value getValueFromBox(mlir::Location loc, mlir::Value box,
mlir::Type resultTy,
mlir::ConversionPatternRewriter &rewriter,
unsigned boxValue) const {
mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
mlir::LLVM::ConstantOp cValuePos =
genConstantOffset(loc, rewriter, boxValue);
auto pty = mlir::LLVM::LLVMPointerType::get(resultTy);
auto p = rewriter.create<mlir::LLVM::GEPOp>(
loc, pty, box, mlir::ValueRange{c0, cValuePos});
return rewriter.create<mlir::LLVM::LoadOp>(loc, resultTy, p);
}
/// Method to construct code sequence to get the triple for dimension `dim`
/// from a box.
llvm::SmallVector<mlir::Value, 3>
getDimsFromBox(mlir::Location loc, llvm::ArrayRef<mlir::Type> retTys,
mlir::Value box, mlir::Value dim,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
mlir::LLVM::ConstantOp cDims =
genConstantOffset(loc, rewriter, kDimsPosInBox);
mlir::LLVM::LoadOp l0 =
loadFromOffset(loc, box, c0, cDims, dim, 0, retTys[0], rewriter);
mlir::LLVM::LoadOp l1 =
loadFromOffset(loc, box, c0, cDims, dim, 1, retTys[1], rewriter);
mlir::LLVM::LoadOp l2 =
loadFromOffset(loc, box, c0, cDims, dim, 2, retTys[2], rewriter);
return {l0.getResult(), l1.getResult(), l2.getResult()};
}
mlir::LLVM::LoadOp
loadFromOffset(mlir::Location loc, mlir::Value a, mlir::LLVM::ConstantOp c0,
mlir::LLVM::ConstantOp cDims, mlir::Value dim, int off,
mlir::Type ty,
mlir::ConversionPatternRewriter &rewriter) const {
auto pty = mlir::LLVM::LLVMPointerType::get(ty);
mlir::LLVM::ConstantOp c = genConstantOffset(loc, rewriter, off);
mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, a, c0, cDims, dim, c);
return rewriter.create<mlir::LLVM::LoadOp>(loc, ty, p);
}
mlir::Value
loadStrideFromBox(mlir::Location loc, mlir::Value box, unsigned dim,
mlir::ConversionPatternRewriter &rewriter) const {
auto idxTy = lowerTy().indexType();
auto c0 = genConstantOffset(loc, rewriter, 0);
auto cDims = genConstantOffset(loc, rewriter, kDimsPosInBox);
auto dimValue = genConstantIndex(loc, idxTy, rewriter, dim);
return loadFromOffset(loc, box, c0, cDims, dimValue, kDimStridePos, idxTy,
rewriter);
}
/// Read base address from a fir.box. Returned address has type ty.
mlir::Value
loadBaseAddrFromBox(mlir::Location loc, mlir::Type ty, mlir::Value box,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
mlir::LLVM::ConstantOp cAddr =
genConstantOffset(loc, rewriter, kAddrPosInBox);
auto pty = mlir::LLVM::LLVMPointerType::get(ty);
mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, box, c0, cAddr);
return rewriter.create<mlir::LLVM::LoadOp>(loc, ty, p);
}
mlir::Value
loadElementSizeFromBox(mlir::Location loc, mlir::Type ty, mlir::Value box,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
mlir::LLVM::ConstantOp cElemLen =
genConstantOffset(loc, rewriter, kElemLenPosInBox);
auto pty = mlir::LLVM::LLVMPointerType::get(ty);
mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, box, c0, cElemLen);
return rewriter.create<mlir::LLVM::LoadOp>(loc, ty, p);
}
// Get the element type given an LLVM type that is of the form
// [llvm.ptr](array|struct|vector)+ and the provided indexes.
static mlir::Type getBoxEleTy(mlir::Type type,
llvm::ArrayRef<unsigned> indexes) {
if (auto t = type.dyn_cast<mlir::LLVM::LLVMPointerType>())
type = t.getElementType();
for (auto i : indexes) {
if (auto t = type.dyn_cast<mlir::LLVM::LLVMStructType>()) {
assert(!t.isOpaque() && i < t.getBody().size());
type = t.getBody()[i];
} else if (auto t = type.dyn_cast<mlir::LLVM::LLVMArrayType>()) {
type = t.getElementType();
} else if (auto t = type.dyn_cast<mlir::VectorType>()) {
type = t.getElementType();
} else {
fir::emitFatalError(mlir::UnknownLoc::get(type.getContext()),
"request for invalid box element type");
}
}
return type;
}
// Return LLVM type of the base address given the LLVM type
// of the related descriptor (lowered fir.box type).
static mlir::Type getBaseAddrTypeFromBox(mlir::Type type) {
return getBoxEleTy(type, {kAddrPosInBox});
}
// Load the attribute from the \p box and perform a check against \p maskValue
// The final comparison is implemented as `(attribute & maskValue) != 0`.
mlir::Value genBoxAttributeCheck(mlir::Location loc, mlir::Value box,
mlir::ConversionPatternRewriter &rewriter,
unsigned maskValue) const {
mlir::Type attrTy = rewriter.getI32Type();
mlir::Value attribute =
getValueFromBox(loc, box, attrTy, rewriter, kAttributePosInBox);
mlir::LLVM::ConstantOp attrMask =
genConstantOffset(loc, rewriter, maskValue);
auto maskRes =
rewriter.create<mlir::LLVM::AndOp>(loc, attrTy, attribute, attrMask);
mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
return rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::ne, maskRes, c0);
}
template <typename... ARGS>
mlir::LLVM::GEPOp genGEP(mlir::Location loc, mlir::Type ty,
mlir::ConversionPatternRewriter &rewriter,
mlir::Value base, ARGS... args) const {
llvm::SmallVector<mlir::Value> cv{args...};
return rewriter.create<mlir::LLVM::GEPOp>(loc, ty, base, cv);
}
fir::LLVMTypeConverter &lowerTy() const {
return *static_cast<fir::LLVMTypeConverter *>(this->getTypeConverter());
}
const fir::FIRToLLVMPassOptions &options;
};
/// FIR conversion pattern template
template <typename FromOp>
class FIROpAndTypeConversion : public FIROpConversion<FromOp> {
public:
using FIROpConversion<FromOp>::FIROpConversion;
using OpAdaptor = typename FromOp::Adaptor;
mlir::LogicalResult
matchAndRewrite(FromOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const final {
mlir::Type ty = this->convertType(op.getType());
return doRewrite(op, ty, adaptor, rewriter);
}
virtual mlir::LogicalResult
doRewrite(FromOp addr, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const = 0;
};
// Lower `fir.address_of` operation to `llvm.address_of` operation.
struct AddrOfOpConversion : public FIROpConversion<fir::AddrOfOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::AddrOfOp addr, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto ty = convertType(addr.getType());
rewriter.replaceOpWithNewOp<mlir::LLVM::AddressOfOp>(
addr, ty, addr.getSymbol().getRootReference().getValue());
return mlir::success();
}
};
} // namespace
/// Lookup the function to compute the memory size of this parametric derived
/// type. The size of the object may depend on the LEN type parameters of the
/// derived type.
static mlir::LLVM::LLVMFuncOp
getDependentTypeMemSizeFn(fir::RecordType recTy, fir::AllocaOp op,
mlir::ConversionPatternRewriter &rewriter) {
auto module = op->getParentOfType<mlir::ModuleOp>();
std::string name = recTy.getName().str() + "P.mem.size";
return module.lookupSymbol<mlir::LLVM::LLVMFuncOp>(name);
}
namespace {
/// convert to LLVM IR dialect `alloca`
struct AllocaOpConversion : public FIROpConversion<fir::AllocaOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::AllocaOp alloc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::ValueRange operands = adaptor.getOperands();
auto loc = alloc.getLoc();
mlir::Type ity = lowerTy().indexType();
unsigned i = 0;
mlir::Value size = genConstantIndex(loc, ity, rewriter, 1).getResult();
mlir::Type ty = convertType(alloc.getType());
mlir::Type resultTy = ty;
if (alloc.hasLenParams()) {
unsigned end = alloc.numLenParams();
llvm::SmallVector<mlir::Value> lenParams;
for (; i < end; ++i)
lenParams.push_back(operands[i]);
mlir::Type scalarType = fir::unwrapSequenceType(alloc.getInType());
if (auto chrTy = scalarType.dyn_cast<fir::CharacterType>()) {
fir::CharacterType rawCharTy = fir::CharacterType::getUnknownLen(
chrTy.getContext(), chrTy.getFKind());
ty = mlir::LLVM::LLVMPointerType::get(convertType(rawCharTy));
assert(end == 1);
size = integerCast(loc, rewriter, ity, lenParams[0]);
} else if (auto recTy = scalarType.dyn_cast<fir::RecordType>()) {
mlir::LLVM::LLVMFuncOp memSizeFn =
getDependentTypeMemSizeFn(recTy, alloc, rewriter);
if (!memSizeFn)
emitError(loc, "did not find allocation function");
mlir::NamedAttribute attr = rewriter.getNamedAttr(
"callee", mlir::SymbolRefAttr::get(memSizeFn));
auto call = rewriter.create<mlir::LLVM::CallOp>(
loc, ity, lenParams, llvm::ArrayRef<mlir::NamedAttribute>{attr});
size = call.getResult(0);
ty = mlir::LLVM::LLVMPointerType::get(
mlir::IntegerType::get(alloc.getContext(), 8));
} else {
return emitError(loc, "unexpected type ")
<< scalarType << " with type parameters";
}
}
if (alloc.hasShapeOperands()) {
mlir::Type allocEleTy = fir::unwrapRefType(alloc.getType());
// Scale the size by constant factors encoded in the array type.
// We only do this for arrays that don't have a constant interior, since
// those are the only ones that get decayed to a pointer to the element
// type.
if (auto seqTy = allocEleTy.dyn_cast<fir::SequenceType>()) {
if (!seqTy.hasConstantInterior()) {
fir::SequenceType::Extent constSize = 1;
for (auto extent : seqTy.getShape())
if (extent != fir::SequenceType::getUnknownExtent())
constSize *= extent;
mlir::Value constVal{
genConstantIndex(loc, ity, rewriter, constSize).getResult()};
size = rewriter.create<mlir::LLVM::MulOp>(loc, ity, size, constVal);
}
}
unsigned end = operands.size();
for (; i < end; ++i)
size = rewriter.create<mlir::LLVM::MulOp>(
loc, ity, size, integerCast(loc, rewriter, ity, operands[i]));
}
if (ty == resultTy) {
// Do not emit the bitcast if ty and resultTy are the same.
rewriter.replaceOpWithNewOp<mlir::LLVM::AllocaOp>(alloc, ty, size,
alloc->getAttrs());
} else {
auto al = rewriter.create<mlir::LLVM::AllocaOp>(loc, ty, size,
alloc->getAttrs());
rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(alloc, resultTy, al);
}
return mlir::success();
}
};
} // namespace
/// Construct an `llvm.extractvalue` instruction. It will return value at
/// element \p x from \p tuple.
static mlir::LLVM::ExtractValueOp
genExtractValueWithIndex(mlir::Location loc, mlir::Value tuple, mlir::Type ty,
mlir::ConversionPatternRewriter &rewriter,
mlir::MLIRContext *ctx, int x) {
auto cx = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(x));
auto xty = ty.cast<mlir::LLVM::LLVMStructType>().getBody()[x];
return rewriter.create<mlir::LLVM::ExtractValueOp>(loc, xty, tuple, cx);
}
namespace {
/// Lower `fir.box_addr` to the sequence of operations to extract the first
/// element of the box.
struct BoxAddrOpConversion : public FIROpConversion<fir::BoxAddrOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxAddrOp boxaddr, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value a = adaptor.getOperands()[0];
auto loc = boxaddr.getLoc();
mlir::Type ty = convertType(boxaddr.getType());
if (auto argty = boxaddr.getVal().getType().dyn_cast<fir::BoxType>()) {
rewriter.replaceOp(boxaddr, loadBaseAddrFromBox(loc, ty, a, rewriter));
} else {
auto c0attr = rewriter.getI32IntegerAttr(0);
auto c0 = mlir::ArrayAttr::get(boxaddr.getContext(), c0attr);
rewriter.replaceOpWithNewOp<mlir::LLVM::ExtractValueOp>(boxaddr, ty, a,
c0);
}
return mlir::success();
}
};
/// Convert `!fir.boxchar_len` to `!llvm.extractvalue` for the 2nd part of the
/// boxchar.
struct BoxCharLenOpConversion : public FIROpConversion<fir::BoxCharLenOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxCharLenOp boxCharLen, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value boxChar = adaptor.getOperands()[0];
mlir::Location loc = boxChar.getLoc();
mlir::MLIRContext *ctx = boxChar.getContext();
mlir::Type returnValTy = boxCharLen.getResult().getType();
constexpr int boxcharLenIdx = 1;
mlir::LLVM::ExtractValueOp len = genExtractValueWithIndex(
loc, boxChar, boxChar.getType(), rewriter, ctx, boxcharLenIdx);
mlir::Value lenAfterCast = integerCast(loc, rewriter, returnValTy, len);
rewriter.replaceOp(boxCharLen, lenAfterCast);
return mlir::success();
}
};
/// Lower `fir.box_dims` to a sequence of operations to extract the requested
/// dimension infomartion from the boxed value.
/// Result in a triple set of GEPs and loads.
struct BoxDimsOpConversion : public FIROpConversion<fir::BoxDimsOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxDimsOp boxdims, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
llvm::SmallVector<mlir::Type, 3> resultTypes = {
convertType(boxdims.getResult(0).getType()),
convertType(boxdims.getResult(1).getType()),
convertType(boxdims.getResult(2).getType()),
};
auto results =
getDimsFromBox(boxdims.getLoc(), resultTypes, adaptor.getOperands()[0],
adaptor.getOperands()[1], rewriter);
rewriter.replaceOp(boxdims, results);
return mlir::success();
}
};
/// Lower `fir.box_elesize` to a sequence of operations ro extract the size of
/// an element in the boxed value.
struct BoxEleSizeOpConversion : public FIROpConversion<fir::BoxEleSizeOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxEleSizeOp boxelesz, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value a = adaptor.getOperands()[0];
auto loc = boxelesz.getLoc();
auto ty = convertType(boxelesz.getType());
auto elemSize = getValueFromBox(loc, a, ty, rewriter, kElemLenPosInBox);
rewriter.replaceOp(boxelesz, elemSize);
return mlir::success();
}
};
/// Lower `fir.box_isalloc` to a sequence of operations to determine if the
/// boxed value was from an ALLOCATABLE entity.
struct BoxIsAllocOpConversion : public FIROpConversion<fir::BoxIsAllocOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxIsAllocOp boxisalloc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value box = adaptor.getOperands()[0];
auto loc = boxisalloc.getLoc();
mlir::Value check =
genBoxAttributeCheck(loc, box, rewriter, kAttrAllocatable);
rewriter.replaceOp(boxisalloc, check);
return mlir::success();
}
};
/// Lower `fir.box_isarray` to a sequence of operations to determine if the
/// boxed is an array.
struct BoxIsArrayOpConversion : public FIROpConversion<fir::BoxIsArrayOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxIsArrayOp boxisarray, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value a = adaptor.getOperands()[0];
auto loc = boxisarray.getLoc();
auto rank =
getValueFromBox(loc, a, rewriter.getI32Type(), rewriter, kRankPosInBox);
auto c0 = genConstantOffset(loc, rewriter, 0);
rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>(
boxisarray, mlir::LLVM::ICmpPredicate::ne, rank, c0);
return mlir::success();
}
};
/// Lower `fir.box_isptr` to a sequence of operations to determined if the
/// boxed value was from a POINTER entity.
struct BoxIsPtrOpConversion : public FIROpConversion<fir::BoxIsPtrOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxIsPtrOp boxisptr, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value box = adaptor.getOperands()[0];
auto loc = boxisptr.getLoc();
mlir::Value check = genBoxAttributeCheck(loc, box, rewriter, kAttrPointer);
rewriter.replaceOp(boxisptr, check);
return mlir::success();
}
};
/// Lower `fir.box_rank` to the sequence of operation to extract the rank from
/// the box.
struct BoxRankOpConversion : public FIROpConversion<fir::BoxRankOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxRankOp boxrank, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value a = adaptor.getOperands()[0];
auto loc = boxrank.getLoc();
mlir::Type ty = convertType(boxrank.getType());
auto result = getValueFromBox(loc, a, ty, rewriter, kRankPosInBox);
rewriter.replaceOp(boxrank, result);
return mlir::success();
}
};
/// Lower `fir.boxproc_host` operation. Extracts the host pointer from the
/// boxproc.
/// TODO: Part of supporting Fortran 2003 procedure pointers.
struct BoxProcHostOpConversion : public FIROpConversion<fir::BoxProcHostOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxProcHostOp boxprochost, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(boxprochost.getLoc(), "fir.boxproc_host codegen");
return mlir::failure();
}
};
/// Lower `fir.box_tdesc` to the sequence of operations to extract the type
/// descriptor from the box.
struct BoxTypeDescOpConversion : public FIROpConversion<fir::BoxTypeDescOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxTypeDescOp boxtypedesc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value box = adaptor.getOperands()[0];
auto loc = boxtypedesc.getLoc();
mlir::Type typeTy =
fir::getDescFieldTypeModel<kTypePosInBox>()(boxtypedesc.getContext());
auto result = getValueFromBox(loc, box, typeTy, rewriter, kTypePosInBox);
auto typePtrTy = mlir::LLVM::LLVMPointerType::get(typeTy);
rewriter.replaceOpWithNewOp<mlir::LLVM::IntToPtrOp>(boxtypedesc, typePtrTy,
result);
return mlir::success();
}
};
/// Lower `fir.string_lit` to LLVM IR dialect operation.
struct StringLitOpConversion : public FIROpConversion<fir::StringLitOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::StringLitOp constop, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto ty = convertType(constop.getType());
auto attr = constop.getValue();
if (attr.isa<mlir::StringAttr>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>(constop, ty, attr);
return mlir::success();
}
auto charTy = constop.getType().cast<fir::CharacterType>();
unsigned bits = lowerTy().characterBitsize(charTy);
mlir::Type intTy = rewriter.getIntegerType(bits);
mlir::Location loc = constop.getLoc();
mlir::Value cst = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
if (auto arr = attr.dyn_cast<mlir::DenseElementsAttr>()) {
cst = rewriter.create<mlir::LLVM::ConstantOp>(loc, ty, arr);
} else if (auto arr = attr.dyn_cast<mlir::ArrayAttr>()) {
for (auto a : llvm::enumerate(arr.getValue())) {
// convert each character to a precise bitsize
auto elemAttr = mlir::IntegerAttr::get(
intTy,
a.value().cast<mlir::IntegerAttr>().getValue().zextOrTrunc(bits));
auto elemCst =
rewriter.create<mlir::LLVM::ConstantOp>(loc, intTy, elemAttr);
auto index = mlir::ArrayAttr::get(
constop.getContext(), rewriter.getI32IntegerAttr(a.index()));
cst = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, cst, elemCst,
index);
}
} else {
return mlir::failure();
}
rewriter.replaceOp(constop, cst);
return mlir::success();
}
};
// `fir.call` -> `llvm.call`
struct CallOpConversion : public FIROpConversion<fir::CallOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::CallOp call, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
llvm::SmallVector<mlir::Type> resultTys;
for (auto r : call.getResults())
resultTys.push_back(convertType(r.getType()));
rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
call, resultTys, adaptor.getOperands(), call->getAttrs());
return mlir::success();
}
};
} // namespace
static mlir::Type getComplexEleTy(mlir::Type complex) {
if (auto cc = complex.dyn_cast<mlir::ComplexType>())
return cc.getElementType();
return complex.cast<fir::ComplexType>().getElementType();
}
namespace {
/// Compare complex values
///
/// Per 10.1, the only comparisons available are .EQ. (oeq) and .NE. (une).
///
/// For completeness, all other comparison are done on the real component only.
struct CmpcOpConversion : public FIROpConversion<fir::CmpcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::CmpcOp cmp, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::ValueRange operands = adaptor.getOperands();
mlir::MLIRContext *ctxt = cmp.getContext();
mlir::Type eleTy = convertType(getComplexEleTy(cmp.getLhs().getType()));
mlir::Type resTy = convertType(cmp.getType());
mlir::Location loc = cmp.getLoc();
auto pos0 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(0));
llvm::SmallVector<mlir::Value, 2> rp{
rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, operands[0],
pos0),
rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, operands[1],
pos0)};
auto rcp =
rewriter.create<mlir::LLVM::FCmpOp>(loc, resTy, rp, cmp->getAttrs());
auto pos1 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(1));
llvm::SmallVector<mlir::Value, 2> ip{
rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, operands[0],
pos1),
rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, operands[1],
pos1)};
auto icp =
rewriter.create<mlir::LLVM::FCmpOp>(loc, resTy, ip, cmp->getAttrs());
llvm::SmallVector<mlir::Value, 2> cp{rcp, icp};
switch (cmp.getPredicate()) {
case mlir::arith::CmpFPredicate::OEQ: // .EQ.
rewriter.replaceOpWithNewOp<mlir::LLVM::AndOp>(cmp, resTy, cp);
break;
case mlir::arith::CmpFPredicate::UNE: // .NE.
rewriter.replaceOpWithNewOp<mlir::LLVM::OrOp>(cmp, resTy, cp);
break;
default:
rewriter.replaceOp(cmp, rcp.getResult());
break;
}
return mlir::success();
}
};
/// Lower complex constants
struct ConstcOpConversion : public FIROpConversion<fir::ConstcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::ConstcOp conc, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = conc.getLoc();
mlir::MLIRContext *ctx = conc.getContext();
mlir::Type ty = convertType(conc.getType());
mlir::Type ety = convertType(getComplexEleTy(conc.getType()));
auto realFloatAttr = mlir::FloatAttr::get(ety, getValue(conc.getReal()));
auto realPart =
rewriter.create<mlir::LLVM::ConstantOp>(loc, ety, realFloatAttr);
auto imFloatAttr = mlir::FloatAttr::get(ety, getValue(conc.getImaginary()));
auto imPart =
rewriter.create<mlir::LLVM::ConstantOp>(loc, ety, imFloatAttr);
auto realIndex = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto imIndex = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
auto undef = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto setReal = rewriter.create<mlir::LLVM::InsertValueOp>(
loc, ty, undef, realPart, realIndex);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(conc, ty, setReal,
imPart, imIndex);
return mlir::success();
}
inline llvm::APFloat getValue(mlir::Attribute attr) const {
return attr.cast<fir::RealAttr>().getValue();
}
};
/// convert value of from-type to value of to-type
struct ConvertOpConversion : public FIROpConversion<fir::ConvertOp> {
using FIROpConversion::FIROpConversion;
static bool isFloatingPointTy(mlir::Type ty) {
return ty.isa<mlir::FloatType>();
}
mlir::LogicalResult
matchAndRewrite(fir::ConvertOp convert, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto fromFirTy = convert.getValue().getType();
auto toFirTy = convert.getRes().getType();
auto fromTy = convertType(fromFirTy);
auto toTy = convertType(toFirTy);
mlir::Value op0 = adaptor.getOperands()[0];
if (fromTy == toTy) {
rewriter.replaceOp(convert, op0);
return mlir::success();
}
auto loc = convert.getLoc();
auto convertFpToFp = [&](mlir::Value val, unsigned fromBits,
unsigned toBits, mlir::Type toTy) -> mlir::Value {
if (fromBits == toBits) {
// TODO: Converting between two floating-point representations with the
// same bitwidth is not allowed for now.
mlir::emitError(loc,
"cannot implicitly convert between two floating-point "
"representations of the same bitwidth");
return {};
}
if (fromBits > toBits)
return rewriter.create<mlir::LLVM::FPTruncOp>(loc, toTy, val);
return rewriter.create<mlir::LLVM::FPExtOp>(loc, toTy, val);
};
// Complex to complex conversion.
if (fir::isa_complex(fromFirTy) && fir::isa_complex(toFirTy)) {
// Special case: handle the conversion of a complex such that both the
// real and imaginary parts are converted together.
auto zero = mlir::ArrayAttr::get(convert.getContext(),
rewriter.getI32IntegerAttr(0));
auto one = mlir::ArrayAttr::get(convert.getContext(),
rewriter.getI32IntegerAttr(1));
auto ty = convertType(getComplexEleTy(convert.getValue().getType()));
auto rp = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, op0, zero);
auto ip = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, op0, one);
auto nt = convertType(getComplexEleTy(convert.getRes().getType()));
auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(ty);
auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(nt);
auto rc = convertFpToFp(rp, fromBits, toBits, nt);
auto ic = convertFpToFp(ip, fromBits, toBits, nt);
auto un = rewriter.create<mlir::LLVM::UndefOp>(loc, toTy);
auto i1 =
rewriter.create<mlir::LLVM::InsertValueOp>(loc, toTy, un, rc, zero);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(convert, toTy, i1,
ic, one);
return mlir::success();
}
// Follow UNIX F77 convention for logicals:
// 1. underlying integer is not zero => logical is .TRUE.
// 2. logical is .TRUE. => set underlying integer to 1.
auto i1Type = mlir::IntegerType::get(convert.getContext(), 1);
if (fromFirTy.isa<fir::LogicalType>() && toFirTy == i1Type) {
mlir::Value zero = genConstantIndex(loc, fromTy, rewriter, 0);
rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>(
convert, mlir::LLVM::ICmpPredicate::ne, op0, zero);
return mlir::success();
}
if (fromFirTy == i1Type && toFirTy.isa<fir::LogicalType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::ZExtOp>(convert, toTy, op0);
return mlir::success();
}
// Floating point to floating point conversion.
if (isFloatingPointTy(fromTy)) {
if (isFloatingPointTy(toTy)) {
auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(fromTy);
auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(toTy);
auto v = convertFpToFp(op0, fromBits, toBits, toTy);
rewriter.replaceOp(convert, v);
return mlir::success();
}
if (toTy.isa<mlir::IntegerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::FPToSIOp>(convert, toTy, op0);
return mlir::success();
}
} else if (fromTy.isa<mlir::IntegerType>()) {
// Integer to integer conversion.
if (toTy.isa<mlir::IntegerType>()) {
auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(fromTy);
auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(toTy);
assert(fromBits != toBits);
if (fromBits > toBits) {
rewriter.replaceOpWithNewOp<mlir::LLVM::TruncOp>(convert, toTy, op0);
return mlir::success();
}
rewriter.replaceOpWithNewOp<mlir::LLVM::SExtOp>(convert, toTy, op0);
return mlir::success();
}
// Integer to floating point conversion.
if (isFloatingPointTy(toTy)) {
rewriter.replaceOpWithNewOp<mlir::LLVM::SIToFPOp>(convert, toTy, op0);
return mlir::success();
}
// Integer to pointer conversion.
if (toTy.isa<mlir::LLVM::LLVMPointerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::IntToPtrOp>(convert, toTy, op0);
return mlir::success();
}
} else if (fromTy.isa<mlir::LLVM::LLVMPointerType>()) {
// Pointer to integer conversion.
if (toTy.isa<mlir::IntegerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::PtrToIntOp>(convert, toTy, op0);
return mlir::success();
}
// Pointer to pointer conversion.
if (toTy.isa<mlir::LLVM::LLVMPointerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(convert, toTy, op0);
return mlir::success();
}
}
return emitError(loc) << "cannot convert " << fromTy << " to " << toTy;
}
};
/// Lower `fir.dispatch` operation. A virtual call to a method in a dispatch
/// table.
struct DispatchOpConversion : public FIROpConversion<fir::DispatchOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::DispatchOp dispatch, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(dispatch.getLoc(), "fir.dispatch codegen");
return mlir::failure();
}
};
/// Lower `fir.dispatch_table` operation. The dispatch table for a Fortran
/// derived type.
struct DispatchTableOpConversion
: public FIROpConversion<fir::DispatchTableOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::DispatchTableOp dispTab, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(dispTab.getLoc(), "fir.dispatch_table codegen");
return mlir::failure();
}
};
/// Lower `fir.dt_entry` operation. An entry in a dispatch table; binds a
/// method-name to a function.
struct DTEntryOpConversion : public FIROpConversion<fir::DTEntryOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::DTEntryOp dtEnt, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(dtEnt.getLoc(), "fir.dt_entry codegen");
return mlir::failure();
}
};
/// Lower `fir.global_len` operation.
struct GlobalLenOpConversion : public FIROpConversion<fir::GlobalLenOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::GlobalLenOp globalLen, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(globalLen.getLoc(), "fir.global_len codegen");
return mlir::failure();
}
};
/// Lower fir.len_param_index
struct LenParamIndexOpConversion
: public FIROpConversion<fir::LenParamIndexOp> {
using FIROpConversion::FIROpConversion;
// FIXME: this should be specialized by the runtime target
mlir::LogicalResult
matchAndRewrite(fir::LenParamIndexOp lenp, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(lenp.getLoc(), "fir.len_param_index codegen");
}
};
/// Convert `!fir.emboxchar<!fir.char<KIND, ?>, #n>` into a sequence of
/// instructions that generate `!llvm.struct<(ptr<ik>, i64)>`. The 1st element
/// in this struct is a pointer. Its type is determined from `KIND`. The 2nd
/// element is the length of the character buffer (`#n`).
struct EmboxCharOpConversion : public FIROpConversion<fir::EmboxCharOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::EmboxCharOp emboxChar, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::ValueRange operands = adaptor.getOperands();
auto *ctx = emboxChar.getContext();
mlir::Value charBuffer = operands[0];
mlir::Value charBufferLen = operands[1];
mlir::Location loc = emboxChar.getLoc();
mlir::Type llvmStructTy = convertType(emboxChar.getType());
auto llvmStruct = rewriter.create<mlir::LLVM::UndefOp>(loc, llvmStructTy);
mlir::Type lenTy =
llvmStructTy.cast<mlir::LLVM::LLVMStructType>().getBody()[1];
mlir::Value lenAfterCast = integerCast(loc, rewriter, lenTy, charBufferLen);
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
auto insertBufferOp = rewriter.create<mlir::LLVM::InsertValueOp>(
loc, llvmStructTy, llvmStruct, charBuffer, c0);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
emboxChar, llvmStructTy, insertBufferOp, lenAfterCast, c1);
return mlir::success();
}
};
} // namespace
/// Return the LLVMFuncOp corresponding to the standard malloc call.
static mlir::LLVM::LLVMFuncOp
getMalloc(fir::AllocMemOp op, mlir::ConversionPatternRewriter &rewriter) {
auto module = op->getParentOfType<mlir::ModuleOp>();
if (mlir::LLVM::LLVMFuncOp mallocFunc =
module.lookupSymbol<mlir::LLVM::LLVMFuncOp>("malloc"))
return mallocFunc;
mlir::OpBuilder moduleBuilder(
op->getParentOfType<mlir::ModuleOp>().getBodyRegion());
auto indexType = mlir::IntegerType::get(op.getContext(), 64);
return moduleBuilder.create<mlir::LLVM::LLVMFuncOp>(
rewriter.getUnknownLoc(), "malloc",
mlir::LLVM::LLVMFunctionType::get(getVoidPtrType(op.getContext()),
indexType,
/*isVarArg=*/false));
}
/// Helper function for generating the LLVM IR that computes the size
/// in bytes for a derived type.
static mlir::Value
computeDerivedTypeSize(mlir::Location loc, mlir::Type ptrTy, mlir::Type idxTy,
mlir::ConversionPatternRewriter &rewriter) {
auto nullPtr = rewriter.create<mlir::LLVM::NullOp>(loc, ptrTy);
mlir::Value one = genConstantIndex(loc, idxTy, rewriter, 1);
llvm::SmallVector<mlir::Value> args{one};
auto gep = rewriter.create<mlir::LLVM::GEPOp>(loc, ptrTy, nullPtr, args);
return rewriter.create<mlir::LLVM::PtrToIntOp>(loc, idxTy, gep);
}
namespace {
/// Lower a `fir.allocmem` instruction into `llvm.call @malloc`
struct AllocMemOpConversion : public FIROpConversion<fir::AllocMemOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::AllocMemOp heap, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto heapTy = heap.getType();
auto ty = convertType(heapTy);
mlir::LLVM::LLVMFuncOp mallocFunc = getMalloc(heap, rewriter);
mlir::Location loc = heap.getLoc();
auto ity = lowerTy().indexType();
auto dataTy = fir::unwrapRefType(heapTy);
if (fir::isRecordWithTypeParameters(fir::unwrapSequenceType(dataTy)))
TODO(loc, "fir.allocmem codegen of derived type with length parameters");
mlir::Value size = genTypeSizeInBytes(loc, ity, rewriter, ty);
// !fir.array<NxMx!fir.char<K,?>> sets `size` to the width of !fir.char<K>.
// So multiply the constant dimensions here.
if (fir::hasDynamicSize(dataTy))
if (auto seqTy = dataTy.dyn_cast<fir::SequenceType>())
if (fir::characterWithDynamicLen(seqTy.getEleTy())) {
fir::SequenceType::Extent arrSize = 1;
for (auto d : seqTy.getShape())
if (d != fir::SequenceType::getUnknownExtent())
arrSize *= d;
size = rewriter.create<mlir::LLVM::MulOp>(
loc, ity, size, genConstantIndex(loc, ity, rewriter, arrSize));
}
for (mlir::Value opnd : adaptor.getOperands())
size = rewriter.create<mlir::LLVM::MulOp>(
loc, ity, size, integerCast(loc, rewriter, ity, opnd));
heap->setAttr("callee", mlir::SymbolRefAttr::get(mallocFunc));
auto malloc = rewriter.create<mlir::LLVM::CallOp>(
loc, ::getVoidPtrType(heap.getContext()), size, heap->getAttrs());
rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(heap, ty,
malloc.getResult(0));
return mlir::success();
}
// Compute the (allocation) size of the allocmem type in bytes.
mlir::Value genTypeSizeInBytes(mlir::Location loc, mlir::Type idxTy,
mlir::ConversionPatternRewriter &rewriter,
mlir::Type llTy) const {
// Use the primitive size, if available.
auto ptrTy = llTy.dyn_cast<mlir::LLVM::LLVMPointerType>();
if (auto size =
mlir::LLVM::getPrimitiveTypeSizeInBits(ptrTy.getElementType()))
return genConstantIndex(loc, idxTy, rewriter, size / 8);
// Otherwise, generate the GEP trick in LLVM IR to compute the size.
return computeDerivedTypeSize(loc, ptrTy, idxTy, rewriter);
}
};
} // namespace
/// Return the LLVMFuncOp corresponding to the standard free call.
static mlir::LLVM::LLVMFuncOp
getFree(fir::FreeMemOp op, mlir::ConversionPatternRewriter &rewriter) {
auto module = op->getParentOfType<mlir::ModuleOp>();
if (mlir::LLVM::LLVMFuncOp freeFunc =
module.lookupSymbol<mlir::LLVM::LLVMFuncOp>("free"))
return freeFunc;
mlir::OpBuilder moduleBuilder(module.getBodyRegion());
auto voidType = mlir::LLVM::LLVMVoidType::get(op.getContext());
return moduleBuilder.create<mlir::LLVM::LLVMFuncOp>(
rewriter.getUnknownLoc(), "free",
mlir::LLVM::LLVMFunctionType::get(voidType,
getVoidPtrType(op.getContext()),
/*isVarArg=*/false));
}
namespace {
/// Lower a `fir.freemem` instruction into `llvm.call @free`
struct FreeMemOpConversion : public FIROpConversion<fir::FreeMemOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::FreeMemOp freemem, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::LLVM::LLVMFuncOp freeFunc = getFree(freemem, rewriter);
mlir::Location loc = freemem.getLoc();
auto bitcast = rewriter.create<mlir::LLVM::BitcastOp>(
freemem.getLoc(), voidPtrTy(), adaptor.getOperands()[0]);
freemem->setAttr("callee", mlir::SymbolRefAttr::get(freeFunc));
rewriter.create<mlir::LLVM::CallOp>(
loc, mlir::TypeRange{}, mlir::ValueRange{bitcast}, freemem->getAttrs());
rewriter.eraseOp(freemem);
return mlir::success();
}
};
} // namespace
namespace {} // namespace
/// Common base class for embox to descriptor conversion.
template <typename OP>
struct EmboxCommonConversion : public FIROpConversion<OP> {
using FIROpConversion<OP>::FIROpConversion;
// Find the LLVMFuncOp in whose entry block the alloca should be inserted.
// The order to find the LLVMFuncOp is as follows:
// 1. The parent operation of the current block if it is a LLVMFuncOp.
// 2. The first ancestor that is a LLVMFuncOp.
mlir::LLVM::LLVMFuncOp
getFuncForAllocaInsert(mlir::ConversionPatternRewriter &rewriter) const {
mlir::Operation *parentOp = rewriter.getInsertionBlock()->getParentOp();
return mlir::isa<mlir::LLVM::LLVMFuncOp>(parentOp)
? mlir::cast<mlir::LLVM::LLVMFuncOp>(parentOp)
: parentOp->getParentOfType<mlir::LLVM::LLVMFuncOp>();
}
// Generate an alloca of size 1 and type \p toTy.
mlir::LLVM::AllocaOp
genAllocaWithType(mlir::Location loc, mlir::Type toTy, unsigned alignment,
mlir::ConversionPatternRewriter &rewriter) const {
auto thisPt = rewriter.saveInsertionPoint();
mlir::LLVM::LLVMFuncOp func = getFuncForAllocaInsert(rewriter);
rewriter.setInsertionPointToStart(&func.front());
auto size = this->genI32Constant(loc, rewriter, 1);
auto al = rewriter.create<mlir::LLVM::AllocaOp>(loc, toTy, size, alignment);
rewriter.restoreInsertionPoint(thisPt);
return al;
}
static int getCFIAttr(fir::BoxType boxTy) {
auto eleTy = boxTy.getEleTy();
if (eleTy.isa<fir::PointerType>())
return CFI_attribute_pointer;
if (eleTy.isa<fir::HeapType>())
return CFI_attribute_allocatable;
return CFI_attribute_other;
}
static fir::RecordType unwrapIfDerived(fir::BoxType boxTy) {
return fir::unwrapSequenceType(fir::dyn_cast_ptrOrBoxEleTy(boxTy))
.template dyn_cast<fir::RecordType>();
}
static bool isDerivedTypeWithLenParams(fir::BoxType boxTy) {
auto recTy = unwrapIfDerived(boxTy);
return recTy && recTy.getNumLenParams() > 0;
}
static bool isDerivedType(fir::BoxType boxTy) {
return unwrapIfDerived(boxTy) != nullptr;
}
// Get the element size and CFI type code of the boxed value.
std::tuple<mlir::Value, mlir::Value> getSizeAndTypeCode(
mlir::Location loc, mlir::ConversionPatternRewriter &rewriter,
mlir::Type boxEleTy, mlir::ValueRange lenParams = {}) const {
auto doInteger =
[&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
int typeCode = fir::integerBitsToTypeCode(width);
return {this->genConstantOffset(loc, rewriter, width / 8),
this->genConstantOffset(loc, rewriter, typeCode)};
};
auto doLogical =
[&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
int typeCode = fir::logicalBitsToTypeCode(width);
return {this->genConstantOffset(loc, rewriter, width / 8),
this->genConstantOffset(loc, rewriter, typeCode)};
};
auto doFloat = [&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
int typeCode = fir::realBitsToTypeCode(width);
return {this->genConstantOffset(loc, rewriter, width / 8),
this->genConstantOffset(loc, rewriter, typeCode)};
};
auto doComplex =
[&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
auto typeCode = fir::complexBitsToTypeCode(width);
return {this->genConstantOffset(loc, rewriter, width / 8 * 2),
this->genConstantOffset(loc, rewriter, typeCode)};
};
auto doCharacter =
[&](unsigned width,
mlir::Value len) -> std::tuple<mlir::Value, mlir::Value> {
auto typeCode = fir::characterBitsToTypeCode(width);
auto typeCodeVal = this->genConstantOffset(loc, rewriter, typeCode);
if (width == 8)
return {len, typeCodeVal};
auto byteWidth = this->genConstantOffset(loc, rewriter, width / 8);
auto i64Ty = mlir::IntegerType::get(&this->lowerTy().getContext(), 64);
auto size =
rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, byteWidth, len);
return {size, typeCodeVal};
};
auto getKindMap = [&]() -> fir::KindMapping & {
return this->lowerTy().getKindMap();
};
// Pointer-like types.
if (auto eleTy = fir::dyn_cast_ptrEleTy(boxEleTy))
boxEleTy = eleTy;
// Integer types.
if (fir::isa_integer(boxEleTy)) {
if (auto ty = boxEleTy.dyn_cast<mlir::IntegerType>())
return doInteger(ty.getWidth());
auto ty = boxEleTy.cast<fir::IntegerType>();
return doInteger(getKindMap().getIntegerBitsize(ty.getFKind()));
}
// Floating point types.
if (fir::isa_real(boxEleTy)) {
if (auto ty = boxEleTy.dyn_cast<mlir::FloatType>())
return doFloat(ty.getWidth());
auto ty = boxEleTy.cast<fir::RealType>();
return doFloat(getKindMap().getRealBitsize(ty.getFKind()));
}
// Complex types.
if (fir::isa_complex(boxEleTy)) {
if (auto ty = boxEleTy.dyn_cast<mlir::ComplexType>())
return doComplex(
ty.getElementType().cast<mlir::FloatType>().getWidth());
auto ty = boxEleTy.cast<fir::ComplexType>();
return doComplex(getKindMap().getRealBitsize(ty.getFKind()));
}
// Character types.
if (auto ty = boxEleTy.dyn_cast<fir::CharacterType>()) {
auto charWidth = getKindMap().getCharacterBitsize(ty.getFKind());
if (ty.getLen() != fir::CharacterType::unknownLen()) {
auto len = this->genConstantOffset(loc, rewriter, ty.getLen());
return doCharacter(charWidth, len);
}
assert(!lenParams.empty());
return doCharacter(charWidth, lenParams.back());
}
// Logical type.
if (auto ty = boxEleTy.dyn_cast<fir::LogicalType>())
return doLogical(getKindMap().getLogicalBitsize(ty.getFKind()));
// Array types.
if (auto seqTy = boxEleTy.dyn_cast<fir::SequenceType>())
return getSizeAndTypeCode(loc, rewriter, seqTy.getEleTy(), lenParams);
// Derived-type types.
if (boxEleTy.isa<fir::RecordType>()) {
auto ptrTy = mlir::LLVM::LLVMPointerType::get(
this->lowerTy().convertType(boxEleTy));
auto nullPtr = rewriter.create<mlir::LLVM::NullOp>(loc, ptrTy);
auto one =
genConstantIndex(loc, this->lowerTy().offsetType(), rewriter, 1);
auto gep = rewriter.create<mlir::LLVM::GEPOp>(loc, ptrTy, nullPtr,
mlir::ValueRange{one});
auto eleSize = rewriter.create<mlir::LLVM::PtrToIntOp>(
loc, this->lowerTy().indexType(), gep);
return {eleSize,
this->genConstantOffset(loc, rewriter, fir::derivedToTypeCode())};
}
// Reference type.
if (fir::isa_ref_type(boxEleTy)) {
// FIXME: use the target pointer size rather than sizeof(void*)
return {this->genConstantOffset(loc, rewriter, sizeof(void *)),
this->genConstantOffset(loc, rewriter, CFI_type_cptr)};
}
fir::emitFatalError(loc, "unhandled type in fir.box code generation");
}
/// Basic pattern to write a field in the descriptor
mlir::Value insertField(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value dest,
llvm::ArrayRef<unsigned> fldIndexes,
mlir::Value value, bool bitcast = false) const {
auto boxTy = dest.getType();
auto fldTy = this->getBoxEleTy(boxTy, fldIndexes);
if (bitcast)
value = rewriter.create<mlir::LLVM::BitcastOp>(loc, fldTy, value);
else
value = this->integerCast(loc, rewriter, fldTy, value);
llvm::SmallVector<mlir::Attribute, 2> attrs;
for (auto i : fldIndexes)
attrs.push_back(rewriter.getI32IntegerAttr(i));
auto indexesAttr = mlir::ArrayAttr::get(rewriter.getContext(), attrs);
return rewriter.create<mlir::LLVM::InsertValueOp>(loc, boxTy, dest, value,
indexesAttr);
}
inline mlir::Value
insertBaseAddress(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value dest,
mlir::Value base) const {
return insertField(rewriter, loc, dest, {kAddrPosInBox}, base,
/*bitCast=*/true);
}
inline mlir::Value insertLowerBound(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value dest,
unsigned dim, mlir::Value lb) const {
return insertField(rewriter, loc, dest,
{kDimsPosInBox, dim, kDimLowerBoundPos}, lb);
}
inline mlir::Value insertExtent(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value dest,
unsigned dim, mlir::Value extent) const {
return insertField(rewriter, loc, dest, {kDimsPosInBox, dim, kDimExtentPos},
extent);
}
inline mlir::Value insertStride(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value dest,
unsigned dim, mlir::Value stride) const {
return insertField(rewriter, loc, dest, {kDimsPosInBox, dim, kDimStridePos},
stride);
}
/// Get the address of the type descriptor global variable that was created by
/// lowering for derived type \p recType.
template <typename BOX>
mlir::Value
getTypeDescriptor(BOX box, mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, fir::RecordType recType) const {
std::string name =
fir::NameUniquer::getTypeDescriptorName(recType.getName());
auto module = box->template getParentOfType<mlir::ModuleOp>();
if (auto global = module.template lookupSymbol<fir::GlobalOp>(name)) {
auto ty = mlir::LLVM::LLVMPointerType::get(
this->lowerTy().convertType(global.getType()));
return rewriter.create<mlir::LLVM::AddressOfOp>(loc, ty,
global.getSymName());
}
if (auto global =
module.template lookupSymbol<mlir::LLVM::GlobalOp>(name)) {
// The global may have already been translated to LLVM.
auto ty = mlir::LLVM::LLVMPointerType::get(global.getType());
return rewriter.create<mlir::LLVM::AddressOfOp>(loc, ty,
global.getSymName());
}
// Type info derived types do not have type descriptors since they are the
// types defining type descriptors.
if (!this->options.ignoreMissingTypeDescriptors &&
!fir::NameUniquer::belongsToModule(
name, Fortran::semantics::typeInfoBuiltinModule))
fir::emitFatalError(
loc, "runtime derived type info descriptor was not generated");
return rewriter.create<mlir::LLVM::NullOp>(
loc, ::getVoidPtrType(box.getContext()));
}
template <typename BOX>
std::tuple<fir::BoxType, mlir::Value, mlir::Value>
consDescriptorPrefix(BOX box, mlir::ConversionPatternRewriter &rewriter,
unsigned rank, mlir::ValueRange lenParams) const {
auto loc = box.getLoc();
auto boxTy = box.getType().template dyn_cast<fir::BoxType>();
auto convTy = this->lowerTy().convertBoxType(boxTy, rank);
auto llvmBoxPtrTy = convTy.template cast<mlir::LLVM::LLVMPointerType>();
auto llvmBoxTy = llvmBoxPtrTy.getElementType();
mlir::Value descriptor =
rewriter.create<mlir::LLVM::UndefOp>(loc, llvmBoxTy);
llvm::SmallVector<mlir::Value> typeparams = lenParams;
if constexpr (!std::is_same_v<BOX, fir::EmboxOp>) {
if (!box.substr().empty() && fir::hasDynamicSize(boxTy.getEleTy()))
typeparams.push_back(box.substr()[1]);
}
// Write each of the fields with the appropriate values
auto [eleSize, cfiTy] =
getSizeAndTypeCode(loc, rewriter, boxTy.getEleTy(), typeparams);
descriptor =
insertField(rewriter, loc, descriptor, {kElemLenPosInBox}, eleSize);
descriptor = insertField(rewriter, loc, descriptor, {kVersionPosInBox},
this->genI32Constant(loc, rewriter, CFI_VERSION));
descriptor = insertField(rewriter, loc, descriptor, {kRankPosInBox},
this->genI32Constant(loc, rewriter, rank));
descriptor = insertField(rewriter, loc, descriptor, {kTypePosInBox}, cfiTy);
descriptor =
insertField(rewriter, loc, descriptor, {kAttributePosInBox},
this->genI32Constant(loc, rewriter, getCFIAttr(boxTy)));
const bool hasAddendum = isDerivedType(boxTy);
descriptor =
insertField(rewriter, loc, descriptor, {kF18AddendumPosInBox},
this->genI32Constant(loc, rewriter, hasAddendum ? 1 : 0));
if (hasAddendum) {
auto isArray =
fir::dyn_cast_ptrOrBoxEleTy(boxTy).template isa<fir::SequenceType>();
unsigned typeDescFieldId = isArray ? kOptTypePtrPosInBox : kDimsPosInBox;
auto typeDesc =
getTypeDescriptor(box, rewriter, loc, unwrapIfDerived(boxTy));
descriptor =
insertField(rewriter, loc, descriptor, {typeDescFieldId}, typeDesc,
/*bitCast=*/true);
}
return {boxTy, descriptor, eleSize};
}
/// Compute the base address of a substring given the base address of a scalar
/// string and the zero based string lower bound.
mlir::Value shiftSubstringBase(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value base,
mlir::Value lowerBound) const {
llvm::SmallVector<mlir::Value> gepOperands;
auto baseType =
base.getType().cast<mlir::LLVM::LLVMPointerType>().getElementType();
if (baseType.isa<mlir::LLVM::LLVMArrayType>()) {
auto idxTy = this->lowerTy().indexType();
mlir::Value zero = genConstantIndex(loc, idxTy, rewriter, 0);
gepOperands.push_back(zero);
}
gepOperands.push_back(lowerBound);
return this->genGEP(loc, base.getType(), rewriter, base, gepOperands);
}
/// If the embox is not in a globalOp body, allocate storage for the box;
/// store the value inside and return the generated alloca. Return the input
/// value otherwise.
mlir::Value
placeInMemoryIfNotGlobalInit(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value boxValue) const {
auto *thisBlock = rewriter.getInsertionBlock();
if (thisBlock && mlir::isa<mlir::LLVM::GlobalOp>(thisBlock->getParentOp()))
return boxValue;
auto boxPtrTy = mlir::LLVM::LLVMPointerType::get(boxValue.getType());
auto alloca = genAllocaWithType(loc, boxPtrTy, defaultAlign, rewriter);
rewriter.create<mlir::LLVM::StoreOp>(loc, boxValue, alloca);
return alloca;
}
};
/// Compute the extent of a triplet slice (lb:ub:step).
static mlir::Value
computeTripletExtent(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value lb, mlir::Value ub,
mlir::Value step, mlir::Value zero, mlir::Type type) {
mlir::Value extent = rewriter.create<mlir::LLVM::SubOp>(loc, type, ub, lb);
extent = rewriter.create<mlir::LLVM::AddOp>(loc, type, extent, step);
extent = rewriter.create<mlir::LLVM::SDivOp>(loc, type, extent, step);
// If the resulting extent is negative (`ub-lb` and `step` have different
// signs), zero must be returned instead.
auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::sgt, extent, zero);
return rewriter.create<mlir::LLVM::SelectOp>(loc, cmp, extent, zero);
}
/// Create a generic box on a memory reference. This conversions lowers the
/// abstract box to the appropriate, initialized descriptor.
struct EmboxOpConversion : public EmboxCommonConversion<fir::EmboxOp> {
using EmboxCommonConversion::EmboxCommonConversion;
mlir::LogicalResult
matchAndRewrite(fir::EmboxOp embox, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
assert(!embox.getShape() && "There should be no dims on this embox op");
auto [boxTy, dest, eleSize] =
consDescriptorPrefix(embox, rewriter, /*rank=*/0,
/*lenParams=*/adaptor.getOperands().drop_front(1));
dest = insertBaseAddress(rewriter, embox.getLoc(), dest,
adaptor.getOperands()[0]);
if (isDerivedTypeWithLenParams(boxTy)) {
TODO(embox.getLoc(),
"fir.embox codegen of derived with length parameters");
return mlir::failure();
}
auto result = placeInMemoryIfNotGlobalInit(rewriter, embox.getLoc(), dest);
rewriter.replaceOp(embox, result);
return mlir::success();
}
};
/// Create a generic box on a memory reference.
struct XEmboxOpConversion : public EmboxCommonConversion<fir::cg::XEmboxOp> {
using EmboxCommonConversion::EmboxCommonConversion;
mlir::LogicalResult
matchAndRewrite(fir::cg::XEmboxOp xbox, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto [boxTy, dest, eleSize] = consDescriptorPrefix(
xbox, rewriter, xbox.getOutRank(),
adaptor.getOperands().drop_front(xbox.lenParamOffset()));
// Generate the triples in the dims field of the descriptor
mlir::ValueRange operands = adaptor.getOperands();
auto i64Ty = mlir::IntegerType::get(xbox.getContext(), 64);
mlir::Value base = operands[0];
assert(!xbox.shape().empty() && "must have a shape");
unsigned shapeOffset = xbox.shapeOffset();
bool hasShift = !xbox.shift().empty();
unsigned shiftOffset = xbox.shiftOffset();
bool hasSlice = !xbox.slice().empty();
unsigned sliceOffset = xbox.sliceOffset();
mlir::Location loc = xbox.getLoc();
mlir::Value zero = genConstantIndex(loc, i64Ty, rewriter, 0);
mlir::Value one = genConstantIndex(loc, i64Ty, rewriter, 1);
mlir::Value prevDim = integerCast(loc, rewriter, i64Ty, eleSize);
mlir::Value prevPtrOff = one;
mlir::Type eleTy = boxTy.getEleTy();
const unsigned rank = xbox.getRank();
llvm::SmallVector<mlir::Value> gepArgs;
unsigned constRows = 0;
mlir::Value ptrOffset = zero;
if (auto memEleTy = fir::dyn_cast_ptrEleTy(xbox.memref().getType()))
if (auto seqTy = memEleTy.dyn_cast<fir::SequenceType>()) {
mlir::Type seqEleTy = seqTy.getEleTy();
// Adjust the element scaling factor if the element is a dependent type.
if (fir::hasDynamicSize(seqEleTy)) {
if (fir::isa_char(seqEleTy)) {
assert(xbox.lenParams().size() == 1);
prevPtrOff = integerCast(loc, rewriter, i64Ty,
operands[xbox.lenParamOffset()]);
} else if (seqEleTy.isa<fir::RecordType>()) {
TODO(loc, "generate call to calculate size of PDT");
} else {
return rewriter.notifyMatchFailure(xbox, "unexpected dynamic type");
}
} else {
constRows = seqTy.getConstantRows();
}
}
bool hasSubcomp = !xbox.subcomponent().empty();
if (!xbox.substr().empty())
TODO(loc, "codegen of fir.embox with substring");
mlir::Value stepExpr;
if (hasSubcomp) {
// We have a subcomponent. The step value needs to be the number of
// bytes per element (which is a derived type).
mlir::Type ty0 = base.getType();
[[maybe_unused]] auto ptrTy = ty0.dyn_cast<mlir::LLVM::LLVMPointerType>();
assert(ptrTy && "expected pointer type");
mlir::Type memEleTy = fir::dyn_cast_ptrEleTy(xbox.memref().getType());
assert(memEleTy && "expected fir pointer type");
auto seqTy = memEleTy.dyn_cast<fir::SequenceType>();
assert(seqTy && "expected sequence type");
mlir::Type seqEleTy = seqTy.getEleTy();
auto eleTy = mlir::LLVM::LLVMPointerType::get(convertType(seqEleTy));
stepExpr = computeDerivedTypeSize(loc, eleTy, i64Ty, rewriter);
}
// Process the array subspace arguments (shape, shift, etc.), if any,
// translating everything to values in the descriptor wherever the entity
// has a dynamic array dimension.
for (unsigned di = 0, descIdx = 0; di < rank; ++di) {
mlir::Value extent = operands[shapeOffset];
mlir::Value outerExtent = extent;
bool skipNext = false;
if (hasSlice) {
mlir::Value off = operands[sliceOffset];
mlir::Value adj = one;
if (hasShift)
adj = operands[shiftOffset];
auto ao = rewriter.create<mlir::LLVM::SubOp>(loc, i64Ty, off, adj);
if (constRows > 0) {
gepArgs.push_back(ao);
} else {
auto dimOff =
rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, ao, prevPtrOff);
ptrOffset =
rewriter.create<mlir::LLVM::AddOp>(loc, i64Ty, dimOff, ptrOffset);
}
if (mlir::isa_and_nonnull<fir::UndefOp>(
xbox.slice()[3 * di + 1].getDefiningOp())) {
// This dimension contains a scalar expression in the array slice op.
// The dimension is loop invariant, will be dropped, and will not
// appear in the descriptor.
skipNext = true;
}
}
if (!skipNext) {
if (hasSlice)
extent = computeTripletExtent(rewriter, loc, operands[sliceOffset],
operands[sliceOffset + 1],
operands[sliceOffset + 2], zero, i64Ty);
// store lower bound (normally 0) for BIND(C) interoperability.
mlir::Value lb = zero;
const bool isaPointerOrAllocatable =
eleTy.isa<fir::PointerType>() || eleTy.isa<fir::HeapType>();
// Lower bound is defaults to 1 for POINTER, ALLOCATABLE, and
// denormalized descriptors.
if (isaPointerOrAllocatable || !normalizedLowerBound(xbox)) {
lb = one;
// If there is a shifted origin, and no fir.slice, and this is not
// a normalized descriptor then use the value from the shift op as
// the lower bound.
if (hasShift && !(hasSlice || hasSubcomp)) {
lb = operands[shiftOffset];
auto extentIsEmpty = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::eq, extent, zero);
lb = rewriter.create<mlir::LLVM::SelectOp>(loc, extentIsEmpty, one,
lb);
}
}
dest = insertLowerBound(rewriter, loc, dest, descIdx, lb);
dest = insertExtent(rewriter, loc, dest, descIdx, extent);
// store step (scaled by shaped extent)
mlir::Value step = hasSubcomp ? stepExpr : prevDim;
if (hasSlice)
step = rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, step,
operands[sliceOffset + 2]);
dest = insertStride(rewriter, loc, dest, descIdx, step);
++descIdx;
}
// compute the stride and offset for the next natural dimension
prevDim =
rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, prevDim, outerExtent);
if (constRows == 0)
prevPtrOff = rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, prevPtrOff,
outerExtent);
else
--constRows;
// increment iterators
++shapeOffset;
if (hasShift)
++shiftOffset;
if (hasSlice)
sliceOffset += 3;
}
if (hasSlice || hasSubcomp || !xbox.substr().empty()) {
llvm::SmallVector<mlir::Value> args = {ptrOffset};
args.append(gepArgs.rbegin(), gepArgs.rend());
if (hasSubcomp) {
// For each field in the path add the offset to base via the args list.
// In the most general case, some offsets must be computed since
// they are not be known until runtime.
if (fir::hasDynamicSize(fir::unwrapSequenceType(
fir::unwrapPassByRefType(xbox.memref().getType()))))
TODO(loc, "fir.embox codegen dynamic size component in derived type");
args.append(operands.begin() + xbox.subcomponentOffset(),
operands.begin() + xbox.subcomponentOffset() +
xbox.subcomponent().size());
}
base =
rewriter.create<mlir::LLVM::GEPOp>(loc, base.getType(), base, args);
if (!xbox.substr().empty())
base = shiftSubstringBase(rewriter, loc, base,
operands[xbox.substrOffset()]);
}
dest = insertBaseAddress(rewriter, loc, dest, base);
if (isDerivedTypeWithLenParams(boxTy))
TODO(loc, "fir.embox codegen of derived with length parameters");
mlir::Value result = placeInMemoryIfNotGlobalInit(rewriter, loc, dest);
rewriter.replaceOp(xbox, result);
return mlir::success();
}
/// Return true if `xbox` has a normalized lower bounds attribute. A box value
/// that is neither a POINTER nor an ALLOCATABLE should be normalized to a
/// zero origin lower bound for interoperability with BIND(C).
inline static bool normalizedLowerBound(fir::cg::XEmboxOp xbox) {
return xbox->hasAttr(fir::getNormalizedLowerBoundAttrName());
}
};
/// Create a new box given a box reference.
struct XReboxOpConversion : public EmboxCommonConversion<fir::cg::XReboxOp> {
using EmboxCommonConversion::EmboxCommonConversion;
mlir::LogicalResult
matchAndRewrite(fir::cg::XReboxOp rebox, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = rebox.getLoc();
mlir::Type idxTy = lowerTy().indexType();
mlir::Value loweredBox = adaptor.getOperands()[0];
mlir::ValueRange operands = adaptor.getOperands();
// Create new descriptor and fill its non-shape related data.
llvm::SmallVector<mlir::Value, 2> lenParams;
mlir::Type inputEleTy = getInputEleTy(rebox);
if (auto charTy = inputEleTy.dyn_cast<fir::CharacterType>()) {
mlir::Value len =
loadElementSizeFromBox(loc, idxTy, loweredBox, rewriter);
if (charTy.getFKind() != 1) {
mlir::Value width =
genConstantIndex(loc, idxTy, rewriter, charTy.getFKind());
len = rewriter.create<mlir::LLVM::SDivOp>(loc, idxTy, len, width);
}
lenParams.emplace_back(len);
} else if (auto recTy = inputEleTy.dyn_cast<fir::RecordType>()) {
if (recTy.getNumLenParams() != 0)
TODO(loc, "reboxing descriptor of derived type with length parameters");
}
auto [boxTy, dest, eleSize] =
consDescriptorPrefix(rebox, rewriter, rebox.getOutRank(), lenParams);
// Read input extents, strides, and base address
llvm::SmallVector<mlir::Value> inputExtents;
llvm::SmallVector<mlir::Value> inputStrides;
const unsigned inputRank = rebox.getRank();
for (unsigned i = 0; i < inputRank; ++i) {
mlir::Value dim = genConstantIndex(loc, idxTy, rewriter, i);
llvm::SmallVector<mlir::Value, 3> dimInfo =
getDimsFromBox(loc, {idxTy, idxTy, idxTy}, loweredBox, dim, rewriter);
inputExtents.emplace_back(dimInfo[1]);
inputStrides.emplace_back(dimInfo[2]);
}
mlir::Type baseTy = getBaseAddrTypeFromBox(loweredBox.getType());
mlir::Value baseAddr =
loadBaseAddrFromBox(loc, baseTy, loweredBox, rewriter);
if (!rebox.slice().empty() || !rebox.subcomponent().empty())
return sliceBox(rebox, dest, baseAddr, inputExtents, inputStrides,
operands, rewriter);
return reshapeBox(rebox, dest, baseAddr, inputExtents, inputStrides,
operands, rewriter);
}
private:
/// Write resulting shape and base address in descriptor, and replace rebox
/// op.
mlir::LogicalResult
finalizeRebox(fir::cg::XReboxOp rebox, mlir::Value dest, mlir::Value base,
mlir::ValueRange lbounds, mlir::ValueRange extents,
mlir::ValueRange strides,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::Location loc = rebox.getLoc();
mlir::Value zero =
genConstantIndex(loc, lowerTy().indexType(), rewriter, 0);
mlir::Value one = genConstantIndex(loc, lowerTy().indexType(), rewriter, 1);
for (auto iter : llvm::enumerate(llvm::zip(extents, strides))) {
mlir::Value extent = std::get<0>(iter.value());
unsigned dim = iter.index();
mlir::Value lb = one;
if (!lbounds.empty()) {
lb = lbounds[dim];
auto extentIsEmpty = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::eq, extent, zero);
lb = rewriter.create<mlir::LLVM::SelectOp>(loc, extentIsEmpty, one, lb);
};
dest = insertLowerBound(rewriter, loc, dest, dim, lb);
dest = insertExtent(rewriter, loc, dest, dim, extent);
dest = insertStride(rewriter, loc, dest, dim, std::get<1>(iter.value()));
}
dest = insertBaseAddress(rewriter, loc, dest, base);
mlir::Value result =
placeInMemoryIfNotGlobalInit(rewriter, rebox.getLoc(), dest);
rewriter.replaceOp(rebox, result);
return mlir::success();
}
// Apply slice given the base address, extents and strides of the input box.
mlir::LogicalResult
sliceBox(fir::cg::XReboxOp rebox, mlir::Value dest, mlir::Value base,
mlir::ValueRange inputExtents, mlir::ValueRange inputStrides,
mlir::ValueRange operands,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::Location loc = rebox.getLoc();
mlir::Type voidPtrTy = ::getVoidPtrType(rebox.getContext());
mlir::Type idxTy = lowerTy().indexType();
mlir::Value zero = genConstantIndex(loc, idxTy, rewriter, 0);
// Apply subcomponent and substring shift on base address.
if (!rebox.subcomponent().empty() || !rebox.substr().empty()) {
// Cast to inputEleTy* so that a GEP can be used.
mlir::Type inputEleTy = getInputEleTy(rebox);
auto llvmElePtrTy =
mlir::LLVM::LLVMPointerType::get(convertType(inputEleTy));
base = rewriter.create<mlir::LLVM::BitcastOp>(loc, llvmElePtrTy, base);
if (!rebox.subcomponent().empty()) {
llvm::SmallVector<mlir::Value> gepOperands = {zero};
for (unsigned i = 0; i < rebox.subcomponent().size(); ++i)
gepOperands.push_back(operands[rebox.subcomponentOffset() + i]);
base = genGEP(loc, llvmElePtrTy, rewriter, base, gepOperands);
}
if (!rebox.substr().empty())
base = shiftSubstringBase(rewriter, loc, base,
operands[rebox.substrOffset()]);
}
if (rebox.slice().empty())
// The array section is of the form array[%component][substring], keep
// the input array extents and strides.
return finalizeRebox(rebox, dest, base, /*lbounds*/ llvm::None,
inputExtents, inputStrides, rewriter);
// Strides from the fir.box are in bytes.
base = rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, base);
// The slice is of the form array(i:j:k)[%component]. Compute new extents
// and strides.
llvm::SmallVector<mlir::Value> slicedExtents;
llvm::SmallVector<mlir::Value> slicedStrides;
mlir::Value one = genConstantIndex(loc, idxTy, rewriter, 1);
const bool sliceHasOrigins = !rebox.shift().empty();
unsigned sliceOps = rebox.sliceOffset();
unsigned shiftOps = rebox.shiftOffset();
auto strideOps = inputStrides.begin();
const unsigned inputRank = inputStrides.size();
for (unsigned i = 0; i < inputRank;
++i, ++strideOps, ++shiftOps, sliceOps += 3) {
mlir::Value sliceLb =
integerCast(loc, rewriter, idxTy, operands[sliceOps]);
mlir::Value inputStride = *strideOps; // already idxTy
// Apply origin shift: base += (lb-shift)*input_stride
mlir::Value sliceOrigin =
sliceHasOrigins
? integerCast(loc, rewriter, idxTy, operands[shiftOps])
: one;
mlir::Value diff =
rewriter.create<mlir::LLVM::SubOp>(loc, idxTy, sliceLb, sliceOrigin);
mlir::Value offset =
rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, diff, inputStride);
base = genGEP(loc, voidPtrTy, rewriter, base, offset);
// Apply upper bound and step if this is a triplet. Otherwise, the
// dimension is dropped and no extents/strides are computed.
mlir::Value upper = operands[sliceOps + 1];
const bool isTripletSlice =
!mlir::isa_and_nonnull<mlir::LLVM::UndefOp>(upper.getDefiningOp());
if (isTripletSlice) {
mlir::Value step =
integerCast(loc, rewriter, idxTy, operands[sliceOps + 2]);
// extent = ub-lb+step/step
mlir::Value sliceUb = integerCast(loc, rewriter, idxTy, upper);
mlir::Value extent = computeTripletExtent(rewriter, loc, sliceLb,
sliceUb, step, zero, idxTy);
slicedExtents.emplace_back(extent);
// stride = step*input_stride
mlir::Value stride =
rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, step, inputStride);
slicedStrides.emplace_back(stride);
}
}
return finalizeRebox(rebox, dest, base, /*lbounds*/ llvm::None,
slicedExtents, slicedStrides, rewriter);
}
/// Apply a new shape to the data described by a box given the base address,
/// extents and strides of the box.
mlir::LogicalResult
reshapeBox(fir::cg::XReboxOp rebox, mlir::Value dest, mlir::Value base,
mlir::ValueRange inputExtents, mlir::ValueRange inputStrides,
mlir::ValueRange operands,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::ValueRange reboxShifts{operands.begin() + rebox.shiftOffset(),
operands.begin() + rebox.shiftOffset() +
rebox.shift().size()};
if (rebox.shape().empty()) {
// Only setting new lower bounds.
return finalizeRebox(rebox, dest, base, reboxShifts, inputExtents,
inputStrides, rewriter);
}
mlir::Location loc = rebox.getLoc();
// Strides from the fir.box are in bytes.
mlir::Type voidPtrTy = ::getVoidPtrType(rebox.getContext());
base = rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, base);
llvm::SmallVector<mlir::Value> newStrides;
llvm::SmallVector<mlir::Value> newExtents;
mlir::Type idxTy = lowerTy().indexType();
// First stride from input box is kept. The rest is assumed contiguous
// (it is not possible to reshape otherwise). If the input is scalar,
// which may be OK if all new extents are ones, the stride does not
// matter, use one.
mlir::Value stride = inputStrides.empty()
? genConstantIndex(loc, idxTy, rewriter, 1)
: inputStrides[0];
for (unsigned i = 0; i < rebox.shape().size(); ++i) {
mlir::Value rawExtent = operands[rebox.shapeOffset() + i];
mlir::Value extent = integerCast(loc, rewriter, idxTy, rawExtent);
newExtents.emplace_back(extent);
newStrides.emplace_back(stride);
// nextStride = extent * stride;
stride = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, extent, stride);
}
return finalizeRebox(rebox, dest, base, reboxShifts, newExtents, newStrides,
rewriter);
}
/// Return scalar element type of the input box.
static mlir::Type getInputEleTy(fir::cg::XReboxOp rebox) {
auto ty = fir::dyn_cast_ptrOrBoxEleTy(rebox.box().getType());
if (auto seqTy = ty.dyn_cast<fir::SequenceType>())
return seqTy.getEleTy();
return ty;
}
};
/// Lower `fir.emboxproc` operation. Creates a procedure box.
/// TODO: Part of supporting Fortran 2003 procedure pointers.
struct EmboxProcOpConversion : public FIROpConversion<fir::EmboxProcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::EmboxProcOp emboxproc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(emboxproc.getLoc(), "fir.emboxproc codegen");
return mlir::failure();
}
};
// Code shared between insert_value and extract_value Ops.
struct ValueOpCommon {
// Translate the arguments pertaining to any multidimensional array to
// row-major order for LLVM-IR.
static void toRowMajor(llvm::SmallVectorImpl<mlir::Attribute> &attrs,
mlir::Type ty) {
assert(ty && "type is null");
const auto end = attrs.size();
for (std::remove_const_t<decltype(end)> i = 0; i < end; ++i) {
if (auto seq = ty.dyn_cast<mlir::LLVM::LLVMArrayType>()) {
const auto dim = getDimension(seq);
if (dim > 1) {
auto ub = std::min(i + dim, end);
std::reverse(attrs.begin() + i, attrs.begin() + ub);
i += dim - 1;
}
ty = getArrayElementType(seq);
} else if (auto st = ty.dyn_cast<mlir::LLVM::LLVMStructType>()) {
ty = st.getBody()[attrs[i].cast<mlir::IntegerAttr>().getInt()];
} else {
llvm_unreachable("index into invalid type");
}
}
}
static llvm::SmallVector<mlir::Attribute>
collectIndices(mlir::ConversionPatternRewriter &rewriter,
mlir::ArrayAttr arrAttr) {
llvm::SmallVector<mlir::Attribute> attrs;
for (auto i = arrAttr.begin(), e = arrAttr.end(); i != e; ++i) {
if (i->isa<mlir::IntegerAttr>()) {
attrs.push_back(*i);
} else {
auto fieldName = i->cast<mlir::StringAttr>().getValue();
++i;
auto ty = i->cast<mlir::TypeAttr>().getValue();
auto index = ty.cast<fir::RecordType>().getFieldIndex(fieldName);
attrs.push_back(mlir::IntegerAttr::get(rewriter.getI32Type(), index));
}
}
return attrs;
}
private:
static unsigned getDimension(mlir::LLVM::LLVMArrayType ty) {
unsigned result = 1;
for (auto eleTy = ty.getElementType().dyn_cast<mlir::LLVM::LLVMArrayType>();
eleTy;
eleTy = eleTy.getElementType().dyn_cast<mlir::LLVM::LLVMArrayType>())
++result;
return result;
}
static mlir::Type getArrayElementType(mlir::LLVM::LLVMArrayType ty) {
auto eleTy = ty.getElementType();
while (auto arrTy = eleTy.dyn_cast<mlir::LLVM::LLVMArrayType>())
eleTy = arrTy.getElementType();
return eleTy;
}
};
namespace {
/// Extract a subobject value from an ssa-value of aggregate type
struct ExtractValueOpConversion
: public FIROpAndTypeConversion<fir::ExtractValueOp>,
public ValueOpCommon {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
mlir::LogicalResult
doRewrite(fir::ExtractValueOp extractVal, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto attrs = collectIndices(rewriter, extractVal.getCoor());
toRowMajor(attrs, adaptor.getOperands()[0].getType());
auto position = mlir::ArrayAttr::get(extractVal.getContext(), attrs);
rewriter.replaceOpWithNewOp<mlir::LLVM::ExtractValueOp>(
extractVal, ty, adaptor.getOperands()[0], position);
return mlir::success();
}
};
/// InsertValue is the generalized instruction for the composition of new
/// aggregate type values.
struct InsertValueOpConversion
: public FIROpAndTypeConversion<fir::InsertValueOp>,
public ValueOpCommon {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
mlir::LogicalResult
doRewrite(fir::InsertValueOp insertVal, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto attrs = collectIndices(rewriter, insertVal.getCoor());
toRowMajor(attrs, adaptor.getOperands()[0].getType());
auto position = mlir::ArrayAttr::get(insertVal.getContext(), attrs);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
insertVal, ty, adaptor.getOperands()[0], adaptor.getOperands()[1],
position);
return mlir::success();
}
};
/// InsertOnRange inserts a value into a sequence over a range of offsets.
struct InsertOnRangeOpConversion
: public FIROpAndTypeConversion<fir::InsertOnRangeOp> {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
// Increments an array of subscripts in a row major fasion.
void incrementSubscripts(const llvm::SmallVector<uint64_t> &dims,
llvm::SmallVector<uint64_t> &subscripts) const {
for (size_t i = dims.size(); i > 0; --i) {
if (++subscripts[i - 1] < dims[i - 1]) {
return;
}
subscripts[i - 1] = 0;
}
}
mlir::LogicalResult
doRewrite(fir::InsertOnRangeOp range, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
llvm::SmallVector<uint64_t> dims;
auto type = adaptor.getOperands()[0].getType();
// Iteratively extract the array dimensions from the type.
while (auto t = type.dyn_cast<mlir::LLVM::LLVMArrayType>()) {
dims.push_back(t.getNumElements());
type = t.getElementType();
}
llvm::SmallVector<uint64_t> lBounds;
llvm::SmallVector<uint64_t> uBounds;
// Unzip the upper and lower bound and convert to a row major format.
mlir::DenseIntElementsAttr coor = range.getCoor();
auto reversedCoor = llvm::reverse(coor.getValues<int64_t>());
for (auto i = reversedCoor.begin(), e = reversedCoor.end(); i != e; ++i) {
uBounds.push_back(*i++);
lBounds.push_back(*i);
}
auto &subscripts = lBounds;
auto loc = range.getLoc();
mlir::Value lastOp = adaptor.getOperands()[0];
mlir::Value insertVal = adaptor.getOperands()[1];
auto i64Ty = rewriter.getI64Type();
while (subscripts != uBounds) {
// Convert uint64_t's to Attribute's.
llvm::SmallVector<mlir::Attribute> subscriptAttrs;
for (const auto &subscript : subscripts)
subscriptAttrs.push_back(mlir::IntegerAttr::get(i64Ty, subscript));
lastOp = rewriter.create<mlir::LLVM::InsertValueOp>(
loc, ty, lastOp, insertVal,
mlir::ArrayAttr::get(range.getContext(), subscriptAttrs));
incrementSubscripts(dims, subscripts);
}
// Convert uint64_t's to Attribute's.
llvm::SmallVector<mlir::Attribute> subscriptAttrs;
for (const auto &subscript : subscripts)
subscriptAttrs.push_back(
mlir::IntegerAttr::get(rewriter.getI64Type(), subscript));
mlir::ArrayRef<mlir::Attribute> arrayRef(subscriptAttrs);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
range, ty, lastOp, insertVal,
mlir::ArrayAttr::get(range.getContext(), arrayRef));
return mlir::success();
}
};
} // namespace
namespace {
/// XArrayCoor is the address arithmetic on a dynamically shaped, sliced,
/// shifted etc. array.
/// (See the static restriction on coordinate_of.) array_coor determines the
/// coordinate (location) of a specific element.
struct XArrayCoorOpConversion
: public FIROpAndTypeConversion<fir::cg::XArrayCoorOp> {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
mlir::LogicalResult
doRewrite(fir::cg::XArrayCoorOp coor, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto loc = coor.getLoc();
mlir::ValueRange operands = adaptor.getOperands();
unsigned rank = coor.getRank();
assert(coor.indices().size() == rank);
assert(coor.shape().empty() || coor.shape().size() == rank);
assert(coor.shift().empty() || coor.shift().size() == rank);
assert(coor.slice().empty() || coor.slice().size() == 3 * rank);
mlir::Type idxTy = lowerTy().indexType();
mlir::Value one = genConstantIndex(loc, idxTy, rewriter, 1);
mlir::Value prevExt = one;
mlir::Value zero = genConstantIndex(loc, idxTy, rewriter, 0);
mlir::Value offset = zero;
const bool isShifted = !coor.shift().empty();
const bool isSliced = !coor.slice().empty();
const bool baseIsBoxed = coor.memref().getType().isa<fir::BoxType>();
auto indexOps = coor.indices().begin();
auto shapeOps = coor.shape().begin();
auto shiftOps = coor.shift().begin();
auto sliceOps = coor.slice().begin();
// For each dimension of the array, generate the offset calculation.
for (unsigned i = 0; i < rank;
++i, ++indexOps, ++shapeOps, ++shiftOps, sliceOps += 3) {
mlir::Value index =
integerCast(loc, rewriter, idxTy, operands[coor.indicesOffset() + i]);
mlir::Value lb = isShifted ? integerCast(loc, rewriter, idxTy,
operands[coor.shiftOffset() + i])
: one;
mlir::Value step = one;
bool normalSlice = isSliced;
// Compute zero based index in dimension i of the element, applying
// potential triplets and lower bounds.
if (isSliced) {
mlir::Value ub = *(sliceOps + 1);
normalSlice = !mlir::isa_and_nonnull<fir::UndefOp>(ub.getDefiningOp());
if (normalSlice)
step = integerCast(loc, rewriter, idxTy, *(sliceOps + 2));
}
auto idx = rewriter.create<mlir::LLVM::SubOp>(loc, idxTy, index, lb);
mlir::Value diff =
rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, idx, step);
if (normalSlice) {
mlir::Value sliceLb =
integerCast(loc, rewriter, idxTy, operands[coor.sliceOffset() + i]);
auto adj = rewriter.create<mlir::LLVM::SubOp>(loc, idxTy, sliceLb, lb);
diff = rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, diff, adj);
}
// Update the offset given the stride and the zero based index `diff`
// that was just computed.
if (baseIsBoxed) {
// Use stride in bytes from the descriptor.
mlir::Value stride =
loadStrideFromBox(loc, adaptor.getOperands()[0], i, rewriter);
auto sc = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, diff, stride);
offset = rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, sc, offset);
} else {
// Use stride computed at last iteration.
auto sc = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, diff, prevExt);
offset = rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, sc, offset);
// Compute next stride assuming contiguity of the base array
// (in element number).
auto nextExt =
integerCast(loc, rewriter, idxTy, operands[coor.shapeOffset() + i]);
prevExt =
rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, prevExt, nextExt);
}
}
// Add computed offset to the base address.
if (baseIsBoxed) {
// Working with byte offsets. The base address is read from the fir.box.
// and need to be casted to i8* to do the pointer arithmetic.
mlir::Type baseTy =
getBaseAddrTypeFromBox(adaptor.getOperands()[0].getType());
mlir::Value base =
loadBaseAddrFromBox(loc, baseTy, adaptor.getOperands()[0], rewriter);
mlir::Type voidPtrTy = getVoidPtrType();
base = rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, base);
llvm::SmallVector<mlir::Value> args{offset};
auto addr =
rewriter.create<mlir::LLVM::GEPOp>(loc, voidPtrTy, base, args);
if (coor.subcomponent().empty()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(coor, baseTy, addr);
return mlir::success();
}
auto casted = rewriter.create<mlir::LLVM::BitcastOp>(loc, baseTy, addr);
args.clear();
args.push_back(zero);
if (!coor.lenParams().empty()) {
// If type parameters are present, then we don't want to use a GEPOp
// as below, as the LLVM struct type cannot be statically defined.
TODO(loc, "derived type with type parameters");
}
// TODO: array offset subcomponents must be converted to LLVM's
// row-major layout here.
for (auto i = coor.subcomponentOffset(); i != coor.indicesOffset(); ++i)
args.push_back(operands[i]);
rewriter.replaceOpWithNewOp<mlir::LLVM::GEPOp>(coor, baseTy, casted,
args);
return mlir::success();
}
// The array was not boxed, so it must be contiguous. offset is therefore an
// element offset and the base type is kept in the GEP unless the element
// type size is itself dynamic.
mlir::Value base;
if (coor.subcomponent().empty()) {
// No subcomponent.
if (!coor.lenParams().empty()) {
// Type parameters. Adjust element size explicitly.
auto eleTy = fir::dyn_cast_ptrEleTy(coor.getType());
assert(eleTy && "result must be a reference-like type");
if (fir::characterWithDynamicLen(eleTy)) {
assert(coor.lenParams().size() == 1);
auto bitsInChar = lowerTy().getKindMap().getCharacterBitsize(
eleTy.cast<fir::CharacterType>().getFKind());
auto scaling = genConstantIndex(loc, idxTy, rewriter, bitsInChar / 8);
auto scaledBySize =
rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, offset, scaling);
auto length =
integerCast(loc, rewriter, idxTy,
adaptor.getOperands()[coor.lenParamsOffset()]);
offset = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, scaledBySize,
length);
} else {
TODO(loc, "compute size of derived type with type parameters");
}
}
// Cast the base address to a pointer to T.
base = rewriter.create<mlir::LLVM::BitcastOp>(loc, ty,
adaptor.getOperands()[0]);
} else {
// Operand #0 must have a pointer type. For subcomponent slicing, we
// want to cast away the array type and have a plain struct type.
mlir::Type ty0 = adaptor.getOperands()[0].getType();
auto ptrTy = ty0.dyn_cast<mlir::LLVM::LLVMPointerType>();
assert(ptrTy && "expected pointer type");
mlir::Type eleTy = ptrTy.getElementType();
while (auto arrTy = eleTy.dyn_cast<mlir::LLVM::LLVMArrayType>())
eleTy = arrTy.getElementType();
auto newTy = mlir::LLVM::LLVMPointerType::get(eleTy);
base = rewriter.create<mlir::LLVM::BitcastOp>(loc, newTy,
adaptor.getOperands()[0]);
}
llvm::SmallVector<mlir::Value> args = {offset};
for (auto i = coor.subcomponentOffset(); i != coor.indicesOffset(); ++i)
args.push_back(operands[i]);
rewriter.replaceOpWithNewOp<mlir::LLVM::GEPOp>(coor, ty, base, args);
return mlir::success();
}
};
} // namespace
/// Convert to (memory) reference to a reference to a subobject.
/// The coordinate_of op is a Swiss army knife operation that can be used on
/// (memory) references to records, arrays, complex, etc. as well as boxes.
/// With unboxed arrays, there is the restriction that the array have a static
/// shape in all but the last column.
struct CoordinateOpConversion
: public FIROpAndTypeConversion<fir::CoordinateOp> {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
mlir::LogicalResult
doRewrite(fir::CoordinateOp coor, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::ValueRange operands = adaptor.getOperands();
mlir::Location loc = coor.getLoc();
mlir::Value base = operands[0];
mlir::Type baseObjectTy = coor.getBaseType();
mlir::Type objectTy = fir::dyn_cast_ptrOrBoxEleTy(baseObjectTy);
assert(objectTy && "fir.coordinate_of expects a reference type");
// Complex type - basically, extract the real or imaginary part
if (fir::isa_complex(objectTy)) {
mlir::LLVM::ConstantOp c0 =
genConstantIndex(loc, lowerTy().indexType(), rewriter, 0);
llvm::SmallVector<mlir::Value> offs = {c0, operands[1]};
mlir::Value gep = genGEP(loc, ty, rewriter, base, offs);
rewriter.replaceOp(coor, gep);
return mlir::success();
}
// Boxed type - get the base pointer from the box
if (baseObjectTy.dyn_cast<fir::BoxType>())
return doRewriteBox(coor, ty, operands, loc, rewriter);
// Reference, pointer or a heap type
if (baseObjectTy.isa<fir::ReferenceType, fir::PointerType, fir::HeapType>())
return doRewriteRefOrPtr(coor, ty, operands, loc, rewriter);
return rewriter.notifyMatchFailure(
coor, "fir.coordinate_of base operand has unsupported type");
}
static unsigned getFieldNumber(fir::RecordType ty, mlir::Value op) {
return fir::hasDynamicSize(ty)
? op.getDefiningOp()
->getAttrOfType<mlir::IntegerAttr>("field")
.getInt()
: getIntValue(op);
}
static int64_t getIntValue(mlir::Value val) {
assert(val && val.dyn_cast<mlir::OpResult>() && "must not be null value");
mlir::Operation *defop = val.getDefiningOp();
if (auto constOp = mlir::dyn_cast<mlir::arith::ConstantIntOp>(defop))
return constOp.value();
if (auto llConstOp = mlir::dyn_cast<mlir::LLVM::ConstantOp>(defop))
if (auto attr = llConstOp.getValue().dyn_cast<mlir::IntegerAttr>())
return attr.getValue().getSExtValue();
fir::emitFatalError(val.getLoc(), "must be a constant");
}
static bool hasSubDimensions(mlir::Type type) {
return type.isa<fir::SequenceType, fir::RecordType, mlir::TupleType>();
}
/// Check whether this form of `!fir.coordinate_of` is supported. These
/// additional checks are required, because we are not yet able to convert
/// all valid forms of `!fir.coordinate_of`.
/// TODO: Either implement the unsupported cases or extend the verifier
/// in FIROps.cpp instead.
static bool supportedCoordinate(mlir::Type type, mlir::ValueRange coors) {
const std::size_t numOfCoors = coors.size();
std::size_t i = 0;
bool subEle = false;
bool ptrEle = false;
for (; i < numOfCoors; ++i) {
mlir::Value nxtOpnd = coors[i];
if (auto arrTy = type.dyn_cast<fir::SequenceType>()) {
subEle = true;
i += arrTy.getDimension() - 1;
type = arrTy.getEleTy();
} else if (auto recTy = type.dyn_cast<fir::RecordType>()) {
subEle = true;
type = recTy.getType(getFieldNumber(recTy, nxtOpnd));
} else if (auto tupTy = type.dyn_cast<mlir::TupleType>()) {
subEle = true;
type = tupTy.getType(getIntValue(nxtOpnd));
} else {
ptrEle = true;
}
}
if (ptrEle)
return (!subEle) && (numOfCoors == 1);
return subEle && (i >= numOfCoors);
}
/// Walk the abstract memory layout and determine if the path traverses any
/// array types with unknown shape. Return true iff all the array types have a
/// constant shape along the path.
static bool arraysHaveKnownShape(mlir::Type type, mlir::ValueRange coors) {
for (std::size_t i = 0, sz = coors.size(); i < sz; ++i) {
mlir::Value nxtOpnd = coors[i];
if (auto arrTy = type.dyn_cast<fir::SequenceType>()) {
if (fir::sequenceWithNonConstantShape(arrTy))
return false;
i += arrTy.getDimension() - 1;
type = arrTy.getEleTy();
} else if (auto strTy = type.dyn_cast<fir::RecordType>()) {
type = strTy.getType(getFieldNumber(strTy, nxtOpnd));
} else if (auto strTy = type.dyn_cast<mlir::TupleType>()) {
type = strTy.getType(getIntValue(nxtOpnd));
} else {
return true;
}
}
return true;
}
private:
mlir::LogicalResult
doRewriteBox(fir::CoordinateOp coor, mlir::Type ty, mlir::ValueRange operands,
mlir::Location loc,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::Type boxObjTy = coor.getBaseType();
assert(boxObjTy.dyn_cast<fir::BoxType>() && "This is not a `fir.box`");
mlir::Value boxBaseAddr = operands[0];
// 1. SPECIAL CASE (uses `fir.len_param_index`):
// %box = ... : !fir.box<!fir.type<derived{len1:i32}>>
// %lenp = fir.len_param_index len1, !fir.type<derived{len1:i32}>
// %addr = coordinate_of %box, %lenp
if (coor.getNumOperands() == 2) {
mlir::Operation *coordinateDef =
(*coor.getCoor().begin()).getDefiningOp();
if (mlir::isa_and_nonnull<fir::LenParamIndexOp>(coordinateDef))
TODO(loc,
"fir.coordinate_of - fir.len_param_index is not supported yet");
}
// 2. GENERAL CASE:
// 2.1. (`fir.array`)
// %box = ... : !fix.box<!fir.array<?xU>>
// %idx = ... : index
// %resultAddr = coordinate_of %box, %idx : !fir.ref<U>
// 2.2 (`fir.derived`)
// %box = ... : !fix.box<!fir.type<derived_type{field_1:i32}>>
// %idx = ... : i32
// %resultAddr = coordinate_of %box, %idx : !fir.ref<i32>
// 2.3 (`fir.derived` inside `fir.array`)
// %box = ... : !fir.box<!fir.array<10 x !fir.type<derived_1{field_1:f32,
// field_2:f32}>>> %idx1 = ... : index %idx2 = ... : i32 %resultAddr =
// coordinate_of %box, %idx1, %idx2 : !fir.ref<f32>
// 2.4. TODO: Either document or disable any other case that the following
// implementation might convert.
mlir::LLVM::ConstantOp c0 =
genConstantIndex(loc, lowerTy().indexType(), rewriter, 0);
mlir::Value resultAddr =
loadBaseAddrFromBox(loc, getBaseAddrTypeFromBox(boxBaseAddr.getType()),
boxBaseAddr, rewriter);
// Component Type
auto cpnTy = fir::dyn_cast_ptrOrBoxEleTy(boxObjTy);
mlir::Type voidPtrTy = ::getVoidPtrType(coor.getContext());
for (unsigned i = 1, last = operands.size(); i < last; ++i) {
if (auto arrTy = cpnTy.dyn_cast<fir::SequenceType>()) {
if (i != 1)
TODO(loc, "fir.array nested inside other array and/or derived type");
// Applies byte strides from the box. Ignore lower bound from box
// since fir.coordinate_of indexes are zero based. Lowering takes care
// of lower bound aspects. This both accounts for dynamically sized
// types and non contiguous arrays.
auto idxTy = lowerTy().indexType();
mlir::Value off = genConstantIndex(loc, idxTy, rewriter, 0);
for (unsigned index = i, lastIndex = i + arrTy.getDimension();
index < lastIndex; ++index) {
mlir::Value stride =
loadStrideFromBox(loc, operands[0], index - i, rewriter);
auto sc = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy,
operands[index], stride);
off = rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, sc, off);
}
auto voidPtrBase =
rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, resultAddr);
llvm::SmallVector<mlir::Value> args{off};
resultAddr = rewriter.create<mlir::LLVM::GEPOp>(loc, voidPtrTy,
voidPtrBase, args);
i += arrTy.getDimension() - 1;
cpnTy = arrTy.getEleTy();
} else if (auto recTy = cpnTy.dyn_cast<fir::RecordType>()) {
auto recRefTy =
mlir::LLVM::LLVMPointerType::get(lowerTy().convertType(recTy));
mlir::Value nxtOpnd = operands[i];
auto memObj =
rewriter.create<mlir::LLVM::BitcastOp>(loc, recRefTy, resultAddr);
llvm::SmallVector<mlir::Value> args = {c0, nxtOpnd};
cpnTy = recTy.getType(getFieldNumber(recTy, nxtOpnd));
auto llvmCurrentObjTy = lowerTy().convertType(cpnTy);
auto gep = rewriter.create<mlir::LLVM::GEPOp>(
loc, mlir::LLVM::LLVMPointerType::get(llvmCurrentObjTy), memObj,
args);
resultAddr =
rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, gep);
} else {
fir::emitFatalError(loc, "unexpected type in coordinate_of");
}
}
rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(coor, ty, resultAddr);
return mlir::success();
}
mlir::LogicalResult
doRewriteRefOrPtr(fir::CoordinateOp coor, mlir::Type ty,
mlir::ValueRange operands, mlir::Location loc,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::Type baseObjectTy = coor.getBaseType();
// Component Type
mlir::Type cpnTy = fir::dyn_cast_ptrOrBoxEleTy(baseObjectTy);
bool hasSubdimension = hasSubDimensions(cpnTy);
bool columnIsDeferred = !hasSubdimension;
if (!supportedCoordinate(cpnTy, operands.drop_front(1)))
TODO(loc, "unsupported combination of coordinate operands");
const bool hasKnownShape =
arraysHaveKnownShape(cpnTy, operands.drop_front(1));
// If only the column is `?`, then we can simply place the column value in
// the 0-th GEP position.
if (auto arrTy = cpnTy.dyn_cast<fir::SequenceType>()) {
if (!hasKnownShape) {
const unsigned sz = arrTy.getDimension();
if (arraysHaveKnownShape(arrTy.getEleTy(),
operands.drop_front(1 + sz))) {
fir::SequenceType::ShapeRef shape = arrTy.getShape();
bool allConst = true;
for (unsigned i = 0; i < sz - 1; ++i) {
if (shape[i] < 0) {
allConst = false;
break;
}
}
if (allConst)
columnIsDeferred = true;
}
}
}
if (fir::hasDynamicSize(fir::unwrapSequenceType(cpnTy)))
return mlir::emitError(
loc, "fir.coordinate_of with a dynamic element size is unsupported");
if (hasKnownShape || columnIsDeferred) {
llvm::SmallVector<mlir::Value> offs;
if (hasKnownShape && hasSubdimension) {
mlir::LLVM::ConstantOp c0 =
genConstantIndex(loc, lowerTy().indexType(), rewriter, 0);
offs.push_back(c0);
}
llvm::Optional<int> dims;
llvm::SmallVector<mlir::Value> arrIdx;
for (std::size_t i = 1, sz = operands.size(); i < sz; ++i) {
mlir::Value nxtOpnd = operands[i];
if (!cpnTy)
return mlir::emitError(loc, "invalid coordinate/check failed");
// check if the i-th coordinate relates to an array
if (dims.hasValue()) {
arrIdx.push_back(nxtOpnd);
int dimsLeft = *dims;
if (dimsLeft > 1) {
dims = dimsLeft - 1;
continue;
}
cpnTy = cpnTy.cast<fir::SequenceType>().getEleTy();
// append array range in reverse (FIR arrays are column-major)
offs.append(arrIdx.rbegin(), arrIdx.rend());
arrIdx.clear();
dims.reset();
continue;
}
if (auto arrTy = cpnTy.dyn_cast<fir::SequenceType>()) {
int d = arrTy.getDimension() - 1;
if (d > 0) {
dims = d;
arrIdx.push_back(nxtOpnd);
continue;
}
cpnTy = cpnTy.cast<fir::SequenceType>().getEleTy();
offs.push_back(nxtOpnd);
continue;
}
// check if the i-th coordinate relates to a field
if (auto recTy = cpnTy.dyn_cast<fir::RecordType>())
cpnTy = recTy.getType(getFieldNumber(recTy, nxtOpnd));
else if (auto tupTy = cpnTy.dyn_cast<mlir::TupleType>())
cpnTy = tupTy.getType(getIntValue(nxtOpnd));
else
cpnTy = nullptr;
offs.push_back(nxtOpnd);
}
if (dims.hasValue())
offs.append(arrIdx.rbegin(), arrIdx.rend());
mlir::Value base = operands[0];
mlir::Value retval = genGEP(loc, ty, rewriter, base, offs);
rewriter.replaceOp(coor, retval);
return mlir::success();
}
return mlir::emitError(
loc, "fir.coordinate_of base operand has unsupported type");
}
};
/// Convert `fir.field_index`. The conversion depends on whether the size of
/// the record is static or dynamic.
struct FieldIndexOpConversion : public FIROpConversion<fir::FieldIndexOp> {
using FIROpConversion::FIROpConversion;
// NB: most field references should be resolved by this point
mlir::LogicalResult
matchAndRewrite(fir::FieldIndexOp field, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto recTy = field.getOnType().cast<fir::RecordType>();
unsigned index = recTy.getFieldIndex(field.getFieldId());
if (!fir::hasDynamicSize(recTy)) {
// Derived type has compile-time constant layout. Return index of the
// component type in the parent type (to be used in GEP).
rewriter.replaceOp(field, mlir::ValueRange{genConstantOffset(
field.getLoc(), rewriter, index)});
return mlir::success();
}
// Derived type has compile-time constant layout. Call the compiler
// generated function to determine the byte offset of the field at runtime.
// This returns a non-constant.
mlir::FlatSymbolRefAttr symAttr = mlir::SymbolRefAttr::get(
field.getContext(), getOffsetMethodName(recTy, field.getFieldId()));
mlir::NamedAttribute callAttr = rewriter.getNamedAttr("callee", symAttr);
mlir::NamedAttribute fieldAttr = rewriter.getNamedAttr(
"field", mlir::IntegerAttr::get(lowerTy().indexType(), index));
rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
field, lowerTy().offsetType(), adaptor.getOperands(),
llvm::ArrayRef<mlir::NamedAttribute>{callAttr, fieldAttr});
return mlir::success();
}
// Re-Construct the name of the compiler generated method that calculates the
// offset
inline static std::string getOffsetMethodName(fir::RecordType recTy,
llvm::StringRef field) {
return recTy.getName().str() + "P." + field.str() + ".offset";
}
};
/// Convert `fir.end`
struct FirEndOpConversion : public FIROpConversion<fir::FirEndOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::FirEndOp firEnd, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(firEnd.getLoc(), "fir.end codegen");
return mlir::failure();
}
};
/// Lower `fir.gentypedesc` to a global constant.
struct GenTypeDescOpConversion : public FIROpConversion<fir::GenTypeDescOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::GenTypeDescOp gentypedesc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(gentypedesc.getLoc(), "fir.gentypedesc codegen");
return mlir::failure();
}
};
/// Lower `fir.has_value` operation to `llvm.return` operation.
struct HasValueOpConversion : public FIROpConversion<fir::HasValueOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::HasValueOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<mlir::LLVM::ReturnOp>(op,
adaptor.getOperands());
return mlir::success();
}
};
/// Lower `fir.global` operation to `llvm.global` operation.
/// `fir.insert_on_range` operations are replaced with constant dense attribute
/// if they are applied on the full range.
struct GlobalOpConversion : public FIROpConversion<fir::GlobalOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::GlobalOp global, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto tyAttr = convertType(global.getType());
if (global.getType().isa<fir::BoxType>())
tyAttr = tyAttr.cast<mlir::LLVM::LLVMPointerType>().getElementType();
auto loc = global.getLoc();
mlir::Attribute initAttr{};
if (global.getInitVal())
initAttr = global.getInitVal().getValue();
auto linkage = convertLinkage(global.getLinkName());
auto isConst = global.getConstant().hasValue();
auto g = rewriter.create<mlir::LLVM::GlobalOp>(
loc, tyAttr, isConst, linkage, global.getSymName(), initAttr);
auto &gr = g.getInitializerRegion();
rewriter.inlineRegionBefore(global.getRegion(), gr, gr.end());
if (!gr.empty()) {
// Replace insert_on_range with a constant dense attribute if the
// initialization is on the full range.
auto insertOnRangeOps = gr.front().getOps<fir::InsertOnRangeOp>();
for (auto insertOp : insertOnRangeOps) {
if (isFullRange(insertOp.getCoor(), insertOp.getType())) {
auto seqTyAttr = convertType(insertOp.getType());
auto *op = insertOp.getVal().getDefiningOp();
auto constant = mlir::dyn_cast<mlir::arith::ConstantOp>(op);
if (!constant) {
auto convertOp = mlir::dyn_cast<fir::ConvertOp>(op);
if (!convertOp)
continue;
constant = mlir::cast<mlir::arith::ConstantOp>(
convertOp.getValue().getDefiningOp());
}
mlir::Type vecType = mlir::VectorType::get(
insertOp.getType().getShape(), constant.getType());
auto denseAttr = mlir::DenseElementsAttr::get(
vecType.cast<mlir::ShapedType>(), constant.getValue());
rewriter.setInsertionPointAfter(insertOp);
rewriter.replaceOpWithNewOp<mlir::arith::ConstantOp>(
insertOp, seqTyAttr, denseAttr);
}
}
}
rewriter.eraseOp(global);
return mlir::success();
}
bool isFullRange(mlir::DenseIntElementsAttr indexes,
fir::SequenceType seqTy) const {
auto extents = seqTy.getShape();
if (indexes.size() / 2 != static_cast<int64_t>(extents.size()))
return false;
auto cur_index = indexes.value_begin<int64_t>();
for (unsigned i = 0; i < indexes.size(); i += 2) {
if (*(cur_index++) != 0)
return false;
if (*(cur_index++) != extents[i / 2] - 1)
return false;
}
return true;
}
// TODO: String comparaison should be avoided. Replace linkName with an
// enumeration.
mlir::LLVM::Linkage
convertLinkage(llvm::Optional<llvm::StringRef> optLinkage) const {
if (optLinkage.hasValue()) {
auto name = optLinkage.getValue();
if (name == "internal")
return mlir::LLVM::Linkage::Internal;
if (name == "linkonce")
return mlir::LLVM::Linkage::Linkonce;
if (name == "linkonce_odr")
return mlir::LLVM::Linkage::LinkonceODR;
if (name == "common")
return mlir::LLVM::Linkage::Common;
if (name == "weak")
return mlir::LLVM::Linkage::Weak;
}
return mlir::LLVM::Linkage::External;
}
};
/// `fir.load` --> `llvm.load`
struct LoadOpConversion : public FIROpConversion<fir::LoadOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::LoadOp load, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// fir.box is a special case because it is considered as an ssa values in
// fir, but it is lowered as a pointer to a descriptor. So fir.ref<fir.box>
// and fir.box end up being the same llvm types and loading a
// fir.ref<fir.box> is actually a no op in LLVM.
if (load.getType().isa<fir::BoxType>()) {
rewriter.replaceOp(load, adaptor.getOperands()[0]);
} else {
rewriter.replaceOpWithNewOp<mlir::LLVM::LoadOp>(
load, convertType(load.getType()), adaptor.getOperands(),
load->getAttrs());
}
return mlir::success();
}
};
/// Lower `fir.no_reassoc` to LLVM IR dialect.
/// TODO: how do we want to enforce this in LLVM-IR? Can we manipulate the fast
/// math flags?
struct NoReassocOpConversion : public FIROpConversion<fir::NoReassocOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::NoReassocOp noreassoc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOp(noreassoc, adaptor.getOperands()[0]);
return mlir::success();
}
};
static void genCondBrOp(mlir::Location loc, mlir::Value cmp, mlir::Block *dest,
llvm::Optional<mlir::ValueRange> destOps,
mlir::ConversionPatternRewriter &rewriter,
mlir::Block *newBlock) {
if (destOps.hasValue())
rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, dest, destOps.getValue(),
newBlock, mlir::ValueRange());
else
rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, dest, newBlock);
}
template <typename A, typename B>
static void genBrOp(A caseOp, mlir::Block *dest, llvm::Optional<B> destOps,
mlir::ConversionPatternRewriter &rewriter) {
if (destOps.hasValue())
rewriter.replaceOpWithNewOp<mlir::LLVM::BrOp>(caseOp, destOps.getValue(),
dest);
else
rewriter.replaceOpWithNewOp<mlir::LLVM::BrOp>(caseOp, llvm::None, dest);
}
static void genCaseLadderStep(mlir::Location loc, mlir::Value cmp,
mlir::Block *dest,
llvm::Optional<mlir::ValueRange> destOps,
mlir::ConversionPatternRewriter &rewriter) {
auto *thisBlock = rewriter.getInsertionBlock();
auto *newBlock = createBlock(rewriter, dest);
rewriter.setInsertionPointToEnd(thisBlock);
genCondBrOp(loc, cmp, dest, destOps, rewriter, newBlock);
rewriter.setInsertionPointToEnd(newBlock);
}
/// Conversion of `fir.select_case`
///
/// The `fir.select_case` operation is converted to a if-then-else ladder.
/// Depending on the case condition type, one or several comparison and
/// conditional branching can be generated.
///
/// A a point value case such as `case(4)`, a lower bound case such as
/// `case(5:)` or an upper bound case such as `case(:3)` are converted to a
/// simple comparison between the selector value and the constant value in the
/// case. The block associated with the case condition is then executed if
/// the comparison succeed otherwise it branch to the next block with the
/// comparison for the the next case conditon.
///
/// A closed interval case condition such as `case(7:10)` is converted with a
/// first comparison and conditional branching for the lower bound. If
/// successful, it branch to a second block with the comparison for the
/// upper bound in the same case condition.
///
/// TODO: lowering of CHARACTER type cases is not handled yet.
struct SelectCaseOpConversion : public FIROpConversion<fir::SelectCaseOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::SelectCaseOp caseOp, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
unsigned conds = caseOp.getNumConditions();
llvm::ArrayRef<mlir::Attribute> cases = caseOp.getCases().getValue();
// Type can be CHARACTER, INTEGER, or LOGICAL (C1145)
auto ty = caseOp.getSelector().getType();
if (ty.isa<fir::CharacterType>()) {
TODO(caseOp.getLoc(), "fir.select_case codegen with character type");
return mlir::failure();
}
mlir::Value selector = caseOp.getSelector(adaptor.getOperands());
auto loc = caseOp.getLoc();
for (unsigned t = 0; t != conds; ++t) {
mlir::Block *dest = caseOp.getSuccessor(t);
llvm::Optional<mlir::ValueRange> destOps =
caseOp.getSuccessorOperands(adaptor.getOperands(), t);
llvm::Optional<mlir::ValueRange> cmpOps =
*caseOp.getCompareOperands(adaptor.getOperands(), t);
mlir::Value caseArg = *(cmpOps.getValue().begin());
mlir::Attribute attr = cases[t];
if (attr.isa<fir::PointIntervalAttr>()) {
auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::eq, selector, caseArg);
genCaseLadderStep(loc, cmp, dest, destOps, rewriter);
continue;
}
if (attr.isa<fir::LowerBoundAttr>()) {
auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::sle, caseArg, selector);
genCaseLadderStep(loc, cmp, dest, destOps, rewriter);
continue;
}
if (attr.isa<fir::UpperBoundAttr>()) {
auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::sle, selector, caseArg);
genCaseLadderStep(loc, cmp, dest, destOps, rewriter);
continue;
}
if (attr.isa<fir::ClosedIntervalAttr>()) {
auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::sle, caseArg, selector);
auto *thisBlock = rewriter.getInsertionBlock();
auto *newBlock1 = createBlock(rewriter, dest);
auto *newBlock2 = createBlock(rewriter, dest);
rewriter.setInsertionPointToEnd(thisBlock);
rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, newBlock1, newBlock2);
rewriter.setInsertionPointToEnd(newBlock1);
mlir::Value caseArg0 = *(cmpOps.getValue().begin() + 1);
auto cmp0 = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::sle, selector, caseArg0);
genCondBrOp(loc, cmp0, dest, destOps, rewriter, newBlock2);
rewriter.setInsertionPointToEnd(newBlock2);
continue;
}
assert(attr.isa<mlir::UnitAttr>());
assert((t + 1 == conds) && "unit must be last");
genBrOp(caseOp, dest, destOps, rewriter);
}
return mlir::success();
}
};
template <typename OP>
static void selectMatchAndRewrite(fir::LLVMTypeConverter &lowering, OP select,
typename OP::Adaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) {
unsigned conds = select.getNumConditions();
auto cases = select.getCases().getValue();
mlir::Value selector = adaptor.getSelector();
auto loc = select.getLoc();
assert(conds > 0 && "select must have cases");
llvm::SmallVector<mlir::Block *> destinations;
llvm::SmallVector<mlir::ValueRange> destinationsOperands;
mlir::Block *defaultDestination;
mlir::ValueRange defaultOperands;
llvm::SmallVector<int32_t> caseValues;
for (unsigned t = 0; t != conds; ++t) {
mlir::Block *dest = select.getSuccessor(t);
auto destOps = select.getSuccessorOperands(adaptor.getOperands(), t);
const mlir::Attribute &attr = cases[t];
if (auto intAttr = attr.template dyn_cast<mlir::IntegerAttr>()) {
destinations.push_back(dest);
destinationsOperands.push_back(destOps.hasValue() ? *destOps
: mlir::ValueRange{});
caseValues.push_back(intAttr.getInt());
continue;
}
assert(attr.template dyn_cast_or_null<mlir::UnitAttr>());
assert((t + 1 == conds) && "unit must be last");
defaultDestination = dest;
defaultOperands = destOps.hasValue() ? *destOps : mlir::ValueRange{};
}
// LLVM::SwitchOp takes a i32 type for the selector.
if (select.getSelector().getType() != rewriter.getI32Type())
selector = rewriter.create<mlir::LLVM::TruncOp>(loc, rewriter.getI32Type(),
selector);
rewriter.replaceOpWithNewOp<mlir::LLVM::SwitchOp>(
select, selector,
/*defaultDestination=*/defaultDestination,
/*defaultOperands=*/defaultOperands,
/*caseValues=*/caseValues,
/*caseDestinations=*/destinations,
/*caseOperands=*/destinationsOperands,
/*branchWeights=*/llvm::ArrayRef<std::int32_t>());
}
/// conversion of fir::SelectOp to an if-then-else ladder
struct SelectOpConversion : public FIROpConversion<fir::SelectOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::SelectOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
selectMatchAndRewrite<fir::SelectOp>(lowerTy(), op, adaptor, rewriter);
return mlir::success();
}
};
/// conversion of fir::SelectRankOp to an if-then-else ladder
struct SelectRankOpConversion : public FIROpConversion<fir::SelectRankOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::SelectRankOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
selectMatchAndRewrite<fir::SelectRankOp>(lowerTy(), op, adaptor, rewriter);
return mlir::success();
}
};
/// Lower `fir.select_type` to LLVM IR dialect.
struct SelectTypeOpConversion : public FIROpConversion<fir::SelectTypeOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::SelectTypeOp select, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::emitError(select.getLoc(),
"fir.select_type should have already been converted");
return mlir::failure();
}
};
/// `fir.store` --> `llvm.store`
struct StoreOpConversion : public FIROpConversion<fir::StoreOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::StoreOp store, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
if (store.getValue().getType().isa<fir::BoxType>()) {
// fir.box value is actually in memory, load it first before storing it.
mlir::Location loc = store.getLoc();
mlir::Type boxPtrTy = adaptor.getOperands()[0].getType();
auto val = rewriter.create<mlir::LLVM::LoadOp>(
loc, boxPtrTy.cast<mlir::LLVM::LLVMPointerType>().getElementType(),
adaptor.getOperands()[0]);
rewriter.replaceOpWithNewOp<mlir::LLVM::StoreOp>(
store, val, adaptor.getOperands()[1]);
} else {
rewriter.replaceOpWithNewOp<mlir::LLVM::StoreOp>(
store, adaptor.getOperands()[0], adaptor.getOperands()[1]);
}
return mlir::success();
}
};
namespace {
/// Convert `fir.unboxchar` into two `llvm.extractvalue` instructions. One for
/// the character buffer and one for the buffer length.
struct UnboxCharOpConversion : public FIROpConversion<fir::UnboxCharOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::UnboxCharOp unboxchar, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto *ctx = unboxchar.getContext();
mlir::Type lenTy = convertType(unboxchar.getType(1));
mlir::Value tuple = adaptor.getOperands()[0];
mlir::Type tupleTy = tuple.getType();
mlir::Location loc = unboxchar.getLoc();
mlir::Value ptrToBuffer =
genExtractValueWithIndex(loc, tuple, tupleTy, rewriter, ctx, 0);
mlir::LLVM::ExtractValueOp len =
genExtractValueWithIndex(loc, tuple, tupleTy, rewriter, ctx, 1);
mlir::Value lenAfterCast = integerCast(loc, rewriter, lenTy, len);
rewriter.replaceOp(unboxchar,
llvm::ArrayRef<mlir::Value>{ptrToBuffer, lenAfterCast});
return mlir::success();
}
};
/// Lower `fir.unboxproc` operation. Unbox a procedure box value, yielding its
/// components.
/// TODO: Part of supporting Fortran 2003 procedure pointers.
struct UnboxProcOpConversion : public FIROpConversion<fir::UnboxProcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::UnboxProcOp unboxproc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(unboxproc.getLoc(), "fir.unboxproc codegen");
return mlir::failure();
}
};
/// convert to LLVM IR dialect `undef`
struct UndefOpConversion : public FIROpConversion<fir::UndefOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::UndefOp undef, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<mlir::LLVM::UndefOp>(
undef, convertType(undef.getType()));
return mlir::success();
}
};
struct ZeroOpConversion : public FIROpConversion<fir::ZeroOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::ZeroOp zero, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Type ty = convertType(zero.getType());
if (ty.isa<mlir::LLVM::LLVMPointerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::NullOp>(zero, ty);
} else if (ty.isa<mlir::IntegerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>(
zero, ty, mlir::IntegerAttr::get(zero.getType(), 0));
} else if (mlir::LLVM::isCompatibleFloatingPointType(ty)) {
rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>(
zero, ty, mlir::FloatAttr::get(zero.getType(), 0.0));
} else {
// TODO: create ConstantAggregateZero for FIR aggregate/array types.
return rewriter.notifyMatchFailure(
zero,
"conversion of fir.zero with aggregate type not implemented yet");
}
return mlir::success();
}
};
/// `fir.unreachable` --> `llvm.unreachable`
struct UnreachableOpConversion : public FIROpConversion<fir::UnreachableOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::UnreachableOp unreach, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<mlir::LLVM::UnreachableOp>(unreach);
return mlir::success();
}
};
/// `fir.is_present` -->
/// ```
/// %0 = llvm.mlir.constant(0 : i64)
/// %1 = llvm.ptrtoint %0
/// %2 = llvm.icmp "ne" %1, %0 : i64
/// ```
struct IsPresentOpConversion : public FIROpConversion<fir::IsPresentOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::IsPresentOp isPresent, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Type idxTy = lowerTy().indexType();
mlir::Location loc = isPresent.getLoc();
auto ptr = adaptor.getOperands()[0];
if (isPresent.getVal().getType().isa<fir::BoxCharType>()) {
auto structTy = ptr.getType().cast<mlir::LLVM::LLVMStructType>();
assert(!structTy.isOpaque() && !structTy.getBody().empty());
mlir::Type ty = structTy.getBody()[0];
mlir::MLIRContext *ctx = isPresent.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
ptr = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, ptr, c0);
}
mlir::LLVM::ConstantOp c0 =
genConstantIndex(isPresent.getLoc(), idxTy, rewriter, 0);
auto addr = rewriter.create<mlir::LLVM::PtrToIntOp>(loc, idxTy, ptr);
rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>(
isPresent, mlir::LLVM::ICmpPredicate::ne, addr, c0);
return mlir::success();
}
};
/// Create value signaling an absent optional argument in a call, e.g.
/// `fir.absent !fir.ref<i64>` --> `llvm.mlir.null : !llvm.ptr<i64>`
struct AbsentOpConversion : public FIROpConversion<fir::AbsentOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::AbsentOp absent, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Type ty = convertType(absent.getType());
mlir::Location loc = absent.getLoc();
if (absent.getType().isa<fir::BoxCharType>()) {
auto structTy = ty.cast<mlir::LLVM::LLVMStructType>();
assert(!structTy.isOpaque() && !structTy.getBody().empty());
auto undefStruct = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto nullField =
rewriter.create<mlir::LLVM::NullOp>(loc, structTy.getBody()[0]);
mlir::MLIRContext *ctx = absent.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
absent, ty, undefStruct, nullField, c0);
} else {
rewriter.replaceOpWithNewOp<mlir::LLVM::NullOp>(absent, ty);
}
return mlir::success();
}
};
//
// Primitive operations on Complex types
//
/// Generate inline code for complex addition/subtraction
template <typename LLVMOP, typename OPTY>
static mlir::LLVM::InsertValueOp
complexSum(OPTY sumop, mlir::ValueRange opnds,
mlir::ConversionPatternRewriter &rewriter,
fir::LLVMTypeConverter &lowering) {
mlir::Value a = opnds[0];
mlir::Value b = opnds[1];
auto loc = sumop.getLoc();
auto ctx = sumop.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
mlir::Type eleTy = lowering.convertType(getComplexEleTy(sumop.getType()));
mlir::Type ty = lowering.convertType(sumop.getType());
auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
auto rx = rewriter.create<LLVMOP>(loc, eleTy, x0, x1);
auto ry = rewriter.create<LLVMOP>(loc, eleTy, y0, y1);
auto r0 = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r0, rx, c0);
return rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ry, c1);
}
} // namespace
namespace {
struct AddcOpConversion : public FIROpConversion<fir::AddcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::AddcOp addc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// given: (x + iy) + (x' + iy')
// result: (x + x') + i(y + y')
auto r = complexSum<mlir::LLVM::FAddOp>(addc, adaptor.getOperands(),
rewriter, lowerTy());
rewriter.replaceOp(addc, r.getResult());
return mlir::success();
}
};
struct SubcOpConversion : public FIROpConversion<fir::SubcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::SubcOp subc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// given: (x + iy) - (x' + iy')
// result: (x - x') + i(y - y')
auto r = complexSum<mlir::LLVM::FSubOp>(subc, adaptor.getOperands(),
rewriter, lowerTy());
rewriter.replaceOp(subc, r.getResult());
return mlir::success();
}
};
/// Inlined complex multiply
struct MulcOpConversion : public FIROpConversion<fir::MulcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::MulcOp mulc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// TODO: Can we use a call to __muldc3 ?
// given: (x + iy) * (x' + iy')
// result: (xx'-yy')+i(xy'+yx')
mlir::Value a = adaptor.getOperands()[0];
mlir::Value b = adaptor.getOperands()[1];
auto loc = mulc.getLoc();
auto *ctx = mulc.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
mlir::Type eleTy = convertType(getComplexEleTy(mulc.getType()));
mlir::Type ty = convertType(mulc.getType());
auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
auto xx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, x1);
auto yx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, x1);
auto xy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, y1);
auto ri = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, xy, yx);
auto yy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, y1);
auto rr = rewriter.create<mlir::LLVM::FSubOp>(loc, eleTy, xx, yy);
auto ra = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, ra, rr, c0);
auto r0 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ri, c1);
rewriter.replaceOp(mulc, r0.getResult());
return mlir::success();
}
};
/// Inlined complex division
struct DivcOpConversion : public FIROpConversion<fir::DivcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::DivcOp divc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// TODO: Can we use a call to __divdc3 instead?
// Just generate inline code for now.
// given: (x + iy) / (x' + iy')
// result: ((xx'+yy')/d) + i((yx'-xy')/d) where d = x'x' + y'y'
mlir::Value a = adaptor.getOperands()[0];
mlir::Value b = adaptor.getOperands()[1];
auto loc = divc.getLoc();
auto *ctx = divc.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
mlir::Type eleTy = convertType(getComplexEleTy(divc.getType()));
mlir::Type ty = convertType(divc.getType());
auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
auto xx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, x1);
auto x1x1 = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x1, x1);
auto yx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, x1);
auto xy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, y1);
auto yy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, y1);
auto y1y1 = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y1, y1);
auto d = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, x1x1, y1y1);
auto rrn = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, xx, yy);
auto rin = rewriter.create<mlir::LLVM::FSubOp>(loc, eleTy, yx, xy);
auto rr = rewriter.create<mlir::LLVM::FDivOp>(loc, eleTy, rrn, d);
auto ri = rewriter.create<mlir::LLVM::FDivOp>(loc, eleTy, rin, d);
auto ra = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, ra, rr, c0);
auto r0 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ri, c1);
rewriter.replaceOp(divc, r0.getResult());
return mlir::success();
}
};
/// Inlined complex negation
struct NegcOpConversion : public FIROpConversion<fir::NegcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::NegcOp neg, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// given: -(x + iy)
// result: -x - iy
auto *ctxt = neg.getContext();
auto eleTy = convertType(getComplexEleTy(neg.getType()));
auto ty = convertType(neg.getType());
auto loc = neg.getLoc();
mlir::Value o0 = adaptor.getOperands()[0];
auto c0 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(1));
auto rp = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, o0, c0);
auto ip = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, o0, c1);
auto nrp = rewriter.create<mlir::LLVM::FNegOp>(loc, eleTy, rp);
auto nip = rewriter.create<mlir::LLVM::FNegOp>(loc, eleTy, ip);
auto r = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, o0, nrp, c0);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(neg, ty, r, nip, c1);
return mlir::success();
}
};
/// Conversion pattern for operation that must be dead. The information in these
/// operations is used by other operation. At this point they should not have
/// anymore uses.
/// These operations are normally dead after the pre-codegen pass.
template <typename FromOp>
struct MustBeDeadConversion : public FIROpConversion<FromOp> {
explicit MustBeDeadConversion(fir::LLVMTypeConverter &lowering,
const fir::FIRToLLVMPassOptions &options)
: FIROpConversion<FromOp>(lowering, options) {}
using OpAdaptor = typename FromOp::Adaptor;
mlir::LogicalResult
matchAndRewrite(FromOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const final {
if (!op->getUses().empty())
return rewriter.notifyMatchFailure(op, "op must be dead");
rewriter.eraseOp(op);
return mlir::success();
}
};
struct ShapeOpConversion : public MustBeDeadConversion<fir::ShapeOp> {
using MustBeDeadConversion::MustBeDeadConversion;
};
struct ShapeShiftOpConversion : public MustBeDeadConversion<fir::ShapeShiftOp> {
using MustBeDeadConversion::MustBeDeadConversion;
};
struct ShiftOpConversion : public MustBeDeadConversion<fir::ShiftOp> {
using MustBeDeadConversion::MustBeDeadConversion;
};
struct SliceOpConversion : public MustBeDeadConversion<fir::SliceOp> {
using MustBeDeadConversion::MustBeDeadConversion;
};
} // namespace
namespace {
/// Convert FIR dialect to LLVM dialect
///
/// This pass lowers all FIR dialect operations to LLVM IR dialect. An
/// MLIR pass is used to lower residual Std dialect to LLVM IR dialect.
///
/// This pass is not complete yet. We are upstreaming it in small patches.
class FIRToLLVMLowering : public fir::FIRToLLVMLoweringBase<FIRToLLVMLowering> {
public:
FIRToLLVMLowering() = default;
FIRToLLVMLowering(fir::FIRToLLVMPassOptions options) : options{options} {}
mlir::ModuleOp getModule() { return getOperation(); }
void runOnOperation() override final {
auto mod = getModule();
if (!forcedTargetTriple.empty())
fir::setTargetTriple(mod, forcedTargetTriple);
auto *context = getModule().getContext();
fir::LLVMTypeConverter typeConverter{getModule()};
mlir::RewritePatternSet pattern(context);
pattern.insert<
AbsentOpConversion, AddcOpConversion, AddrOfOpConversion,
AllocaOpConversion, AllocMemOpConversion, BoxAddrOpConversion,
BoxCharLenOpConversion, BoxDimsOpConversion, BoxEleSizeOpConversion,
BoxIsAllocOpConversion, BoxIsArrayOpConversion, BoxIsPtrOpConversion,
BoxProcHostOpConversion, BoxRankOpConversion, BoxTypeDescOpConversion,
CallOpConversion, CmpcOpConversion, ConstcOpConversion,
ConvertOpConversion, CoordinateOpConversion, DispatchOpConversion,
DispatchTableOpConversion, DTEntryOpConversion, DivcOpConversion,
EmboxOpConversion, EmboxCharOpConversion, EmboxProcOpConversion,
ExtractValueOpConversion, FieldIndexOpConversion, FirEndOpConversion,
FreeMemOpConversion, GenTypeDescOpConversion, GlobalLenOpConversion,
GlobalOpConversion, HasValueOpConversion, InsertOnRangeOpConversion,
InsertValueOpConversion, IsPresentOpConversion,
LenParamIndexOpConversion, LoadOpConversion, MulcOpConversion,
NegcOpConversion, NoReassocOpConversion, SelectCaseOpConversion,
SelectOpConversion, SelectRankOpConversion, SelectTypeOpConversion,
ShapeOpConversion, ShapeShiftOpConversion, ShiftOpConversion,
SliceOpConversion, StoreOpConversion, StringLitOpConversion,
SubcOpConversion, UnboxCharOpConversion, UnboxProcOpConversion,
UndefOpConversion, UnreachableOpConversion, XArrayCoorOpConversion,
XEmboxOpConversion, XReboxOpConversion, ZeroOpConversion>(typeConverter,
options);
mlir::populateFuncToLLVMConversionPatterns(typeConverter, pattern);
mlir::populateOpenMPToLLVMConversionPatterns(typeConverter, pattern);
mlir::arith::populateArithmeticToLLVMConversionPatterns(typeConverter,
pattern);
mlir::cf::populateControlFlowToLLVMConversionPatterns(typeConverter,
pattern);
mlir::ConversionTarget target{*context};
target.addLegalDialect<mlir::LLVM::LLVMDialect>();
// The OpenMP dialect is legal for Operations without regions, for those
// which contains regions it is legal if the region contains only the
// LLVM dialect. Add OpenMP dialect as a legal dialect for conversion and
// legalize conversion of OpenMP operations without regions.
mlir::configureOpenMPToLLVMConversionLegality(target, typeConverter);
target.addLegalDialect<mlir::omp::OpenMPDialect>();
// required NOPs for applying a full conversion
target.addLegalOp<mlir::ModuleOp>();
// apply the patterns
if (mlir::failed(mlir::applyFullConversion(getModule(), target,
std::move(pattern)))) {
signalPassFailure();
}
}
private:
fir::FIRToLLVMPassOptions options;
};
/// Lower from LLVM IR dialect to proper LLVM-IR and dump the module
struct LLVMIRLoweringPass
: public mlir::PassWrapper<LLVMIRLoweringPass,
mlir::OperationPass<mlir::ModuleOp>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(LLVMIRLoweringPass)
LLVMIRLoweringPass(llvm::raw_ostream &output, fir::LLVMIRLoweringPrinter p)
: output{output}, printer{p} {}
mlir::ModuleOp getModule() { return getOperation(); }
void runOnOperation() override final {
auto *ctx = getModule().getContext();
auto optName = getModule().getName();
llvm::LLVMContext llvmCtx;
if (auto llvmModule = mlir::translateModuleToLLVMIR(
getModule(), llvmCtx, optName ? *optName : "FIRModule")) {
printer(*llvmModule, output);
return;
}
mlir::emitError(mlir::UnknownLoc::get(ctx), "could not emit LLVM-IR\n");
signalPassFailure();
}
private:
llvm::raw_ostream &output;
fir::LLVMIRLoweringPrinter printer;
};
} // namespace
std::unique_ptr<mlir::Pass> fir::createFIRToLLVMPass() {
return std::make_unique<FIRToLLVMLowering>();
}
std::unique_ptr<mlir::Pass>
fir::createFIRToLLVMPass(fir::FIRToLLVMPassOptions options) {
return std::make_unique<FIRToLLVMLowering>(options);
}
std::unique_ptr<mlir::Pass>
fir::createLLVMDialectToLLVMPass(llvm::raw_ostream &output,
fir::LLVMIRLoweringPrinter printer) {
return std::make_unique<LLVMIRLoweringPass>(output, printer);
}