llvm-project/flang/lib/Lower/IterationSpace.cpp

941 lines
35 KiB
C++

//===-- IterationSpace.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/IterationSpace.h"
#include "flang/Evaluate/expression.h"
#include "flang/Lower/AbstractConverter.h"
#include "flang/Lower/Support/Utils.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "flang-lower-iteration-space"
namespace {
// Fortran::evaluate::Expr are functional values organized like an AST. A
// Fortran::evaluate::Expr is meant to be moved and cloned. Using the front end
// tools can often cause copies and extra wrapper classes to be added to any
// Fortran::evalute::Expr. These values should not be assumed or relied upon to
// have an *object* identity. They are deeply recursive, irregular structures
// built from a large number of classes which do not use inheritance and
// necessitate a large volume of boilerplate code as a result.
//
// Contrastingly, LLVM data structures make ubiquitous assumptions about an
// object's identity via pointers to the object. An object's location in memory
// is thus very often an identifying relation.
// This class defines a hash computation of a Fortran::evaluate::Expr tree value
// so it can be used with llvm::DenseMap. The Fortran::evaluate::Expr need not
// have the same address.
class HashEvaluateExpr {
public:
// A Se::Symbol is the only part of an Fortran::evaluate::Expr with an
// identity property.
static unsigned getHashValue(const Fortran::semantics::Symbol &x) {
return static_cast<unsigned>(reinterpret_cast<std::intptr_t>(&x));
}
template <typename A, bool COPY>
static unsigned getHashValue(const Fortran::common::Indirection<A, COPY> &x) {
return getHashValue(x.value());
}
template <typename A>
static unsigned getHashValue(const std::optional<A> &x) {
if (x.has_value())
return getHashValue(x.value());
return 0u;
}
static unsigned getHashValue(const Fortran::evaluate::Subscript &x) {
return std::visit([&](const auto &v) { return getHashValue(v); }, x.u);
}
static unsigned getHashValue(const Fortran::evaluate::Triplet &x) {
return getHashValue(x.lower()) - getHashValue(x.upper()) * 5u -
getHashValue(x.stride()) * 11u;
}
static unsigned getHashValue(const Fortran::evaluate::Component &x) {
return getHashValue(x.base()) * 83u - getHashValue(x.GetLastSymbol());
}
static unsigned getHashValue(const Fortran::evaluate::ArrayRef &x) {
unsigned subs = 1u;
for (const Fortran::evaluate::Subscript &v : x.subscript())
subs -= getHashValue(v);
return getHashValue(x.base()) * 89u - subs;
}
static unsigned getHashValue(const Fortran::evaluate::CoarrayRef &x) {
unsigned subs = 1u;
for (const Fortran::evaluate::Subscript &v : x.subscript())
subs -= getHashValue(v);
unsigned cosubs = 3u;
for (const Fortran::evaluate::Expr<Fortran::evaluate::SubscriptInteger> &v :
x.cosubscript())
cosubs -= getHashValue(v);
unsigned syms = 7u;
for (const Fortran::evaluate::SymbolRef &v : x.base())
syms += getHashValue(v);
return syms * 97u - subs - cosubs + getHashValue(x.stat()) + 257u +
getHashValue(x.team());
}
static unsigned getHashValue(const Fortran::evaluate::NamedEntity &x) {
if (x.IsSymbol())
return getHashValue(x.GetFirstSymbol()) * 11u;
return getHashValue(x.GetComponent()) * 13u;
}
static unsigned getHashValue(const Fortran::evaluate::DataRef &x) {
return std::visit([&](const auto &v) { return getHashValue(v); }, x.u);
}
static unsigned getHashValue(const Fortran::evaluate::ComplexPart &x) {
return getHashValue(x.complex()) - static_cast<unsigned>(x.part());
}
template <Fortran::common::TypeCategory TC1, int KIND,
Fortran::common::TypeCategory TC2>
static unsigned getHashValue(
const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>, TC2>
&x) {
return getHashValue(x.left()) - (static_cast<unsigned>(TC1) + 2u) -
(static_cast<unsigned>(KIND) + 5u);
}
template <int KIND>
static unsigned
getHashValue(const Fortran::evaluate::ComplexComponent<KIND> &x) {
return getHashValue(x.left()) -
(static_cast<unsigned>(x.isImaginaryPart) + 1u) * 3u;
}
template <typename T>
static unsigned getHashValue(const Fortran::evaluate::Parentheses<T> &x) {
return getHashValue(x.left()) * 17u;
}
template <Fortran::common::TypeCategory TC, int KIND>
static unsigned getHashValue(
const Fortran::evaluate::Negate<Fortran::evaluate::Type<TC, KIND>> &x) {
return getHashValue(x.left()) - (static_cast<unsigned>(TC) + 5u) -
(static_cast<unsigned>(KIND) + 7u);
}
template <Fortran::common::TypeCategory TC, int KIND>
static unsigned getHashValue(
const Fortran::evaluate::Add<Fortran::evaluate::Type<TC, KIND>> &x) {
return (getHashValue(x.left()) + getHashValue(x.right())) * 23u +
static_cast<unsigned>(TC) + static_cast<unsigned>(KIND);
}
template <Fortran::common::TypeCategory TC, int KIND>
static unsigned getHashValue(
const Fortran::evaluate::Subtract<Fortran::evaluate::Type<TC, KIND>> &x) {
return (getHashValue(x.left()) - getHashValue(x.right())) * 19u +
static_cast<unsigned>(TC) + static_cast<unsigned>(KIND);
}
template <Fortran::common::TypeCategory TC, int KIND>
static unsigned getHashValue(
const Fortran::evaluate::Multiply<Fortran::evaluate::Type<TC, KIND>> &x) {
return (getHashValue(x.left()) + getHashValue(x.right())) * 29u +
static_cast<unsigned>(TC) + static_cast<unsigned>(KIND);
}
template <Fortran::common::TypeCategory TC, int KIND>
static unsigned getHashValue(
const Fortran::evaluate::Divide<Fortran::evaluate::Type<TC, KIND>> &x) {
return (getHashValue(x.left()) - getHashValue(x.right())) * 31u +
static_cast<unsigned>(TC) + static_cast<unsigned>(KIND);
}
template <Fortran::common::TypeCategory TC, int KIND>
static unsigned getHashValue(
const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &x) {
return (getHashValue(x.left()) - getHashValue(x.right())) * 37u +
static_cast<unsigned>(TC) + static_cast<unsigned>(KIND);
}
template <Fortran::common::TypeCategory TC, int KIND>
static unsigned getHashValue(
const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> &x) {
return (getHashValue(x.left()) + getHashValue(x.right())) * 41u +
static_cast<unsigned>(TC) + static_cast<unsigned>(KIND) +
static_cast<unsigned>(x.ordering) * 7u;
}
template <Fortran::common::TypeCategory TC, int KIND>
static unsigned getHashValue(
const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>>
&x) {
return (getHashValue(x.left()) - getHashValue(x.right())) * 43u +
static_cast<unsigned>(TC) + static_cast<unsigned>(KIND);
}
template <int KIND>
static unsigned
getHashValue(const Fortran::evaluate::ComplexConstructor<KIND> &x) {
return (getHashValue(x.left()) - getHashValue(x.right())) * 47u +
static_cast<unsigned>(KIND);
}
template <int KIND>
static unsigned getHashValue(const Fortran::evaluate::Concat<KIND> &x) {
return (getHashValue(x.left()) - getHashValue(x.right())) * 53u +
static_cast<unsigned>(KIND);
}
template <int KIND>
static unsigned getHashValue(const Fortran::evaluate::SetLength<KIND> &x) {
return (getHashValue(x.left()) - getHashValue(x.right())) * 59u +
static_cast<unsigned>(KIND);
}
static unsigned getHashValue(const Fortran::semantics::SymbolRef &sym) {
return getHashValue(sym.get());
}
static unsigned getHashValue(const Fortran::evaluate::Substring &x) {
return 61u * std::visit([&](const auto &p) { return getHashValue(p); },
x.parent()) -
getHashValue(x.lower()) - (getHashValue(x.lower()) + 1u);
}
static unsigned
getHashValue(const Fortran::evaluate::StaticDataObject::Pointer &x) {
return llvm::hash_value(x->name());
}
static unsigned getHashValue(const Fortran::evaluate::SpecificIntrinsic &x) {
return llvm::hash_value(x.name);
}
template <typename A>
static unsigned getHashValue(const Fortran::evaluate::Constant<A> &x) {
// FIXME: Should hash the content.
return 103u;
}
static unsigned getHashValue(const Fortran::evaluate::ActualArgument &x) {
if (const Fortran::evaluate::Symbol *sym = x.GetAssumedTypeDummy())
return getHashValue(*sym);
return getHashValue(*x.UnwrapExpr());
}
static unsigned
getHashValue(const Fortran::evaluate::ProcedureDesignator &x) {
return std::visit([&](const auto &v) { return getHashValue(v); }, x.u);
}
static unsigned getHashValue(const Fortran::evaluate::ProcedureRef &x) {
unsigned args = 13u;
for (const std::optional<Fortran::evaluate::ActualArgument> &v :
x.arguments())
args -= getHashValue(v);
return getHashValue(x.proc()) * 101u - args;
}
template <typename A>
static unsigned
getHashValue(const Fortran::evaluate::ArrayConstructor<A> &x) {
// FIXME: hash the contents.
return 127u;
}
static unsigned getHashValue(const Fortran::evaluate::ImpliedDoIndex &x) {
return llvm::hash_value(toStringRef(x.name).str()) * 131u;
}
static unsigned getHashValue(const Fortran::evaluate::TypeParamInquiry &x) {
return getHashValue(x.base()) * 137u - getHashValue(x.parameter()) * 3u;
}
static unsigned getHashValue(const Fortran::evaluate::DescriptorInquiry &x) {
return getHashValue(x.base()) * 139u -
static_cast<unsigned>(x.field()) * 13u +
static_cast<unsigned>(x.dimension());
}
static unsigned
getHashValue(const Fortran::evaluate::StructureConstructor &x) {
// FIXME: hash the contents.
return 149u;
}
template <int KIND>
static unsigned getHashValue(const Fortran::evaluate::Not<KIND> &x) {
return getHashValue(x.left()) * 61u + static_cast<unsigned>(KIND);
}
template <int KIND>
static unsigned
getHashValue(const Fortran::evaluate::LogicalOperation<KIND> &x) {
unsigned result = getHashValue(x.left()) + getHashValue(x.right());
return result * 67u + static_cast<unsigned>(x.logicalOperator) * 5u;
}
template <Fortran::common::TypeCategory TC, int KIND>
static unsigned getHashValue(
const Fortran::evaluate::Relational<Fortran::evaluate::Type<TC, KIND>>
&x) {
return (getHashValue(x.left()) + getHashValue(x.right())) * 71u +
static_cast<unsigned>(TC) + static_cast<unsigned>(KIND) +
static_cast<unsigned>(x.opr) * 11u;
}
template <typename A>
static unsigned getHashValue(const Fortran::evaluate::Expr<A> &x) {
return std::visit([&](const auto &v) { return getHashValue(v); }, x.u);
}
static unsigned getHashValue(
const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &x) {
return std::visit([&](const auto &v) { return getHashValue(v); }, x.u);
}
template <typename A>
static unsigned getHashValue(const Fortran::evaluate::Designator<A> &x) {
return std::visit([&](const auto &v) { return getHashValue(v); }, x.u);
}
template <int BITS>
static unsigned
getHashValue(const Fortran::evaluate::value::Integer<BITS> &x) {
return static_cast<unsigned>(x.ToSInt());
}
static unsigned getHashValue(const Fortran::evaluate::NullPointer &x) {
return ~179u;
}
};
} // namespace
unsigned Fortran::lower::getHashValue(
const Fortran::lower::ExplicitIterSpace::ArrayBases &x) {
return std::visit(
[&](const auto *p) { return HashEvaluateExpr::getHashValue(*p); }, x);
}
unsigned Fortran::lower::getHashValue(Fortran::lower::FrontEndExpr x) {
return HashEvaluateExpr::getHashValue(*x);
}
namespace {
// Define the is equals test for using Fortran::evaluate::Expr values with
// llvm::DenseMap.
class IsEqualEvaluateExpr {
public:
// A Se::Symbol is the only part of an Fortran::evaluate::Expr with an
// identity property.
static bool isEqual(const Fortran::semantics::Symbol &x,
const Fortran::semantics::Symbol &y) {
return isEqual(&x, &y);
}
static bool isEqual(const Fortran::semantics::Symbol *x,
const Fortran::semantics::Symbol *y) {
return x == y;
}
template <typename A, bool COPY>
static bool isEqual(const Fortran::common::Indirection<A, COPY> &x,
const Fortran::common::Indirection<A, COPY> &y) {
return isEqual(x.value(), y.value());
}
template <typename A>
static bool isEqual(const std::optional<A> &x, const std::optional<A> &y) {
if (x.has_value() && y.has_value())
return isEqual(x.value(), y.value());
return !x.has_value() && !y.has_value();
}
template <typename A>
static bool isEqual(const std::vector<A> &x, const std::vector<A> &y) {
if (x.size() != y.size())
return false;
const std::size_t size = x.size();
for (std::remove_const_t<decltype(size)> i = 0; i < size; ++i)
if (!isEqual(x[i], y[i]))
return false;
return true;
}
static bool isEqual(const Fortran::evaluate::Subscript &x,
const Fortran::evaluate::Subscript &y) {
return std::visit(
[&](const auto &v, const auto &w) { return isEqual(v, w); }, x.u, y.u);
}
static bool isEqual(const Fortran::evaluate::Triplet &x,
const Fortran::evaluate::Triplet &y) {
return isEqual(x.lower(), y.lower()) && isEqual(x.upper(), y.upper()) &&
isEqual(x.stride(), y.stride());
}
static bool isEqual(const Fortran::evaluate::Component &x,
const Fortran::evaluate::Component &y) {
return isEqual(x.base(), y.base()) &&
isEqual(x.GetLastSymbol(), y.GetLastSymbol());
}
static bool isEqual(const Fortran::evaluate::ArrayRef &x,
const Fortran::evaluate::ArrayRef &y) {
return isEqual(x.base(), y.base()) && isEqual(x.subscript(), y.subscript());
}
static bool isEqual(const Fortran::evaluate::CoarrayRef &x,
const Fortran::evaluate::CoarrayRef &y) {
return isEqual(x.base(), y.base()) &&
isEqual(x.subscript(), y.subscript()) &&
isEqual(x.cosubscript(), y.cosubscript()) &&
isEqual(x.stat(), y.stat()) && isEqual(x.team(), y.team());
}
static bool isEqual(const Fortran::evaluate::NamedEntity &x,
const Fortran::evaluate::NamedEntity &y) {
if (x.IsSymbol() && y.IsSymbol())
return isEqual(x.GetFirstSymbol(), y.GetFirstSymbol());
return !x.IsSymbol() && !y.IsSymbol() &&
isEqual(x.GetComponent(), y.GetComponent());
}
static bool isEqual(const Fortran::evaluate::DataRef &x,
const Fortran::evaluate::DataRef &y) {
return std::visit(
[&](const auto &v, const auto &w) { return isEqual(v, w); }, x.u, y.u);
}
static bool isEqual(const Fortran::evaluate::ComplexPart &x,
const Fortran::evaluate::ComplexPart &y) {
return isEqual(x.complex(), y.complex()) && x.part() == y.part();
}
template <typename A, Fortran::common::TypeCategory TC2>
static bool isEqual(const Fortran::evaluate::Convert<A, TC2> &x,
const Fortran::evaluate::Convert<A, TC2> &y) {
return isEqual(x.left(), y.left());
}
template <int KIND>
static bool isEqual(const Fortran::evaluate::ComplexComponent<KIND> &x,
const Fortran::evaluate::ComplexComponent<KIND> &y) {
return isEqual(x.left(), y.left()) &&
x.isImaginaryPart == y.isImaginaryPart;
}
template <typename T>
static bool isEqual(const Fortran::evaluate::Parentheses<T> &x,
const Fortran::evaluate::Parentheses<T> &y) {
return isEqual(x.left(), y.left());
}
template <typename A>
static bool isEqual(const Fortran::evaluate::Negate<A> &x,
const Fortran::evaluate::Negate<A> &y) {
return isEqual(x.left(), y.left());
}
template <typename A>
static bool isBinaryEqual(const A &x, const A &y) {
return isEqual(x.left(), y.left()) && isEqual(x.right(), y.right());
}
template <typename A>
static bool isEqual(const Fortran::evaluate::Add<A> &x,
const Fortran::evaluate::Add<A> &y) {
return isBinaryEqual(x, y);
}
template <typename A>
static bool isEqual(const Fortran::evaluate::Subtract<A> &x,
const Fortran::evaluate::Subtract<A> &y) {
return isBinaryEqual(x, y);
}
template <typename A>
static bool isEqual(const Fortran::evaluate::Multiply<A> &x,
const Fortran::evaluate::Multiply<A> &y) {
return isBinaryEqual(x, y);
}
template <typename A>
static bool isEqual(const Fortran::evaluate::Divide<A> &x,
const Fortran::evaluate::Divide<A> &y) {
return isBinaryEqual(x, y);
}
template <typename A>
static bool isEqual(const Fortran::evaluate::Power<A> &x,
const Fortran::evaluate::Power<A> &y) {
return isBinaryEqual(x, y);
}
template <typename A>
static bool isEqual(const Fortran::evaluate::Extremum<A> &x,
const Fortran::evaluate::Extremum<A> &y) {
return isBinaryEqual(x, y);
}
template <typename A>
static bool isEqual(const Fortran::evaluate::RealToIntPower<A> &x,
const Fortran::evaluate::RealToIntPower<A> &y) {
return isBinaryEqual(x, y);
}
template <int KIND>
static bool isEqual(const Fortran::evaluate::ComplexConstructor<KIND> &x,
const Fortran::evaluate::ComplexConstructor<KIND> &y) {
return isBinaryEqual(x, y);
}
template <int KIND>
static bool isEqual(const Fortran::evaluate::Concat<KIND> &x,
const Fortran::evaluate::Concat<KIND> &y) {
return isBinaryEqual(x, y);
}
template <int KIND>
static bool isEqual(const Fortran::evaluate::SetLength<KIND> &x,
const Fortran::evaluate::SetLength<KIND> &y) {
return isBinaryEqual(x, y);
}
static bool isEqual(const Fortran::semantics::SymbolRef &x,
const Fortran::semantics::SymbolRef &y) {
return isEqual(x.get(), y.get());
}
static bool isEqual(const Fortran::evaluate::Substring &x,
const Fortran::evaluate::Substring &y) {
return std::visit(
[&](const auto &p, const auto &q) { return isEqual(p, q); },
x.parent(), y.parent()) &&
isEqual(x.lower(), y.lower()) && isEqual(x.lower(), y.lower());
}
static bool isEqual(const Fortran::evaluate::StaticDataObject::Pointer &x,
const Fortran::evaluate::StaticDataObject::Pointer &y) {
return x->name() == y->name();
}
static bool isEqual(const Fortran::evaluate::SpecificIntrinsic &x,
const Fortran::evaluate::SpecificIntrinsic &y) {
return x.name == y.name;
}
template <typename A>
static bool isEqual(const Fortran::evaluate::Constant<A> &x,
const Fortran::evaluate::Constant<A> &y) {
return x == y;
}
static bool isEqual(const Fortran::evaluate::ActualArgument &x,
const Fortran::evaluate::ActualArgument &y) {
if (const Fortran::evaluate::Symbol *xs = x.GetAssumedTypeDummy()) {
if (const Fortran::evaluate::Symbol *ys = y.GetAssumedTypeDummy())
return isEqual(*xs, *ys);
return false;
}
return !y.GetAssumedTypeDummy() &&
isEqual(*x.UnwrapExpr(), *y.UnwrapExpr());
}
static bool isEqual(const Fortran::evaluate::ProcedureDesignator &x,
const Fortran::evaluate::ProcedureDesignator &y) {
return std::visit(
[&](const auto &v, const auto &w) { return isEqual(v, w); }, x.u, y.u);
}
static bool isEqual(const Fortran::evaluate::ProcedureRef &x,
const Fortran::evaluate::ProcedureRef &y) {
return isEqual(x.proc(), y.proc()) && isEqual(x.arguments(), y.arguments());
}
template <typename A>
static bool isEqual(const Fortran::evaluate::ArrayConstructor<A> &x,
const Fortran::evaluate::ArrayConstructor<A> &y) {
llvm::report_fatal_error("not implemented");
}
static bool isEqual(const Fortran::evaluate::ImpliedDoIndex &x,
const Fortran::evaluate::ImpliedDoIndex &y) {
return toStringRef(x.name) == toStringRef(y.name);
}
static bool isEqual(const Fortran::evaluate::TypeParamInquiry &x,
const Fortran::evaluate::TypeParamInquiry &y) {
return isEqual(x.base(), y.base()) && isEqual(x.parameter(), y.parameter());
}
static bool isEqual(const Fortran::evaluate::DescriptorInquiry &x,
const Fortran::evaluate::DescriptorInquiry &y) {
return isEqual(x.base(), y.base()) && x.field() == y.field() &&
x.dimension() == y.dimension();
}
static bool isEqual(const Fortran::evaluate::StructureConstructor &x,
const Fortran::evaluate::StructureConstructor &y) {
llvm::report_fatal_error("not implemented");
}
template <int KIND>
static bool isEqual(const Fortran::evaluate::Not<KIND> &x,
const Fortran::evaluate::Not<KIND> &y) {
return isEqual(x.left(), y.left());
}
template <int KIND>
static bool isEqual(const Fortran::evaluate::LogicalOperation<KIND> &x,
const Fortran::evaluate::LogicalOperation<KIND> &y) {
return isEqual(x.left(), y.left()) && isEqual(x.right(), x.right());
}
template <typename A>
static bool isEqual(const Fortran::evaluate::Relational<A> &x,
const Fortran::evaluate::Relational<A> &y) {
return isEqual(x.left(), y.left()) && isEqual(x.right(), y.right());
}
template <typename A>
static bool isEqual(const Fortran::evaluate::Expr<A> &x,
const Fortran::evaluate::Expr<A> &y) {
return std::visit(
[&](const auto &v, const auto &w) { return isEqual(v, w); }, x.u, y.u);
}
static bool
isEqual(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &x,
const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &y) {
return std::visit(
[&](const auto &v, const auto &w) { return isEqual(v, w); }, x.u, y.u);
}
template <typename A>
static bool isEqual(const Fortran::evaluate::Designator<A> &x,
const Fortran::evaluate::Designator<A> &y) {
return std::visit(
[&](const auto &v, const auto &w) { return isEqual(v, w); }, x.u, y.u);
}
template <int BITS>
static bool isEqual(const Fortran::evaluate::value::Integer<BITS> &x,
const Fortran::evaluate::value::Integer<BITS> &y) {
return x == y;
}
static bool isEqual(const Fortran::evaluate::NullPointer &x,
const Fortran::evaluate::NullPointer &y) {
return true;
}
template <typename A, typename B,
std::enable_if_t<!std::is_same_v<A, B>, bool> = true>
static bool isEqual(const A &, const B &) {
return false;
}
};
} // namespace
bool Fortran::lower::isEqual(
const Fortran::lower::ExplicitIterSpace::ArrayBases &x,
const Fortran::lower::ExplicitIterSpace::ArrayBases &y) {
return std::visit(
Fortran::common::visitors{
// Fortran::semantics::Symbol * are the exception here. These pointers
// have identity; if two Symbol * values are the same (different) then
// they are the same (different) logical symbol.
[&](Fortran::lower::FrontEndSymbol p,
Fortran::lower::FrontEndSymbol q) { return p == q; },
[&](const auto *p, const auto *q) {
if constexpr (std::is_same_v<decltype(p), decltype(q)>) {
LLVM_DEBUG(llvm::dbgs()
<< "is equal: " << p << ' ' << q << ' '
<< IsEqualEvaluateExpr::isEqual(*p, *q) << '\n');
return IsEqualEvaluateExpr::isEqual(*p, *q);
} else {
// Different subtree types are never equal.
return false;
}
}},
x, y);
}
bool Fortran::lower::isEqual(Fortran::lower::FrontEndExpr x,
Fortran::lower::FrontEndExpr y) {
auto empty = llvm::DenseMapInfo<Fortran::lower::FrontEndExpr>::getEmptyKey();
auto tombstone =
llvm::DenseMapInfo<Fortran::lower::FrontEndExpr>::getTombstoneKey();
if (x == empty || y == empty || x == tombstone || y == tombstone)
return x == y;
return x == y || IsEqualEvaluateExpr::isEqual(*x, *y);
}
namespace {
/// This class can recover the base array in an expression that contains
/// explicit iteration space symbols. Most of the class can be ignored as it is
/// boilerplate Fortran::evaluate::Expr traversal.
class ArrayBaseFinder {
public:
using RT = bool;
ArrayBaseFinder(llvm::ArrayRef<Fortran::lower::FrontEndSymbol> syms)
: controlVars(syms.begin(), syms.end()) {}
template <typename T>
void operator()(const T &x) {
(void)find(x);
}
/// Get the list of bases.
llvm::ArrayRef<Fortran::lower::ExplicitIterSpace::ArrayBases>
getBases() const {
LLVM_DEBUG(llvm::dbgs()
<< "number of array bases found: " << bases.size() << '\n');
return bases;
}
private:
// First, the cases that are of interest.
RT find(const Fortran::semantics::Symbol &symbol) {
if (symbol.Rank() > 0) {
bases.push_back(&symbol);
return true;
}
return {};
}
RT find(const Fortran::evaluate::Component &x) {
auto found = find(x.base());
if (!found && x.base().Rank() == 0 && x.Rank() > 0) {
bases.push_back(&x);
return true;
}
return found;
}
RT find(const Fortran::evaluate::ArrayRef &x) {
for (const auto &sub : x.subscript())
(void)find(sub);
if (x.base().IsSymbol()) {
if (x.Rank() > 0 || intersection(x.subscript())) {
bases.push_back(&x);
return true;
}
return {};
}
auto found = find(x.base());
if (!found && ((x.base().Rank() == 0 && x.Rank() > 0) ||
intersection(x.subscript()))) {
bases.push_back(&x);
return true;
}
return found;
}
RT find(const Fortran::evaluate::Triplet &x) {
if (const auto *lower = x.GetLower())
(void)find(*lower);
if (const auto *upper = x.GetUpper())
(void)find(*upper);
return find(x.GetStride());
}
RT find(const Fortran::evaluate::IndirectSubscriptIntegerExpr &x) {
return find(x.value());
}
RT find(const Fortran::evaluate::Subscript &x) { return find(x.u); }
RT find(const Fortran::evaluate::DataRef &x) { return find(x.u); }
RT find(const Fortran::evaluate::CoarrayRef &x) {
assert(false && "coarray reference");
return {};
}
template <typename A>
bool intersection(const A &subscripts) {
return Fortran::lower::symbolsIntersectSubscripts(controlVars, subscripts);
}
// The rest is traversal boilerplate and can be ignored.
RT find(const Fortran::evaluate::Substring &x) { return find(x.parent()); }
template <typename A>
RT find(const Fortran::semantics::SymbolRef x) {
return find(*x);
}
RT find(const Fortran::evaluate::NamedEntity &x) {
if (x.IsSymbol())
return find(x.GetFirstSymbol());
return find(x.GetComponent());
}
template <typename A, bool C>
RT find(const Fortran::common::Indirection<A, C> &x) {
return find(x.value());
}
template <typename A>
RT find(const std::unique_ptr<A> &x) {
return find(x.get());
}
template <typename A>
RT find(const std::shared_ptr<A> &x) {
return find(x.get());
}
template <typename A>
RT find(const A *x) {
if (x)
return find(*x);
return {};
}
template <typename A>
RT find(const std::optional<A> &x) {
if (x)
return find(*x);
return {};
}
template <typename... A>
RT find(const std::variant<A...> &u) {
return std::visit([&](const auto &v) { return find(v); }, u);
}
template <typename A>
RT find(const std::vector<A> &x) {
for (auto &v : x)
(void)find(v);
return {};
}
RT find(const Fortran::evaluate::BOZLiteralConstant &) { return {}; }
RT find(const Fortran::evaluate::NullPointer &) { return {}; }
template <typename T>
RT find(const Fortran::evaluate::Constant<T> &x) {
return {};
}
RT find(const Fortran::evaluate::StaticDataObject &) { return {}; }
RT find(const Fortran::evaluate::ImpliedDoIndex &) { return {}; }
RT find(const Fortran::evaluate::BaseObject &x) {
(void)find(x.u);
return {};
}
RT find(const Fortran::evaluate::TypeParamInquiry &) { return {}; }
RT find(const Fortran::evaluate::ComplexPart &x) { return {}; }
template <typename T>
RT find(const Fortran::evaluate::Designator<T> &x) {
return find(x.u);
}
template <typename T>
RT find(const Fortran::evaluate::Variable<T> &x) {
return find(x.u);
}
RT find(const Fortran::evaluate::DescriptorInquiry &) { return {}; }
RT find(const Fortran::evaluate::SpecificIntrinsic &) { return {}; }
RT find(const Fortran::evaluate::ProcedureDesignator &x) { return {}; }
RT find(const Fortran::evaluate::ProcedureRef &x) {
(void)find(x.proc());
if (x.IsElemental())
(void)find(x.arguments());
return {};
}
RT find(const Fortran::evaluate::ActualArgument &x) {
if (const auto *sym = x.GetAssumedTypeDummy())
(void)find(*sym);
else
(void)find(x.UnwrapExpr());
return {};
}
template <typename T>
RT find(const Fortran::evaluate::FunctionRef<T> &x) {
(void)find(static_cast<const Fortran::evaluate::ProcedureRef &>(x));
return {};
}
template <typename T>
RT find(const Fortran::evaluate::ArrayConstructorValue<T> &) {
return {};
}
template <typename T>
RT find(const Fortran::evaluate::ArrayConstructorValues<T> &) {
return {};
}
template <typename T>
RT find(const Fortran::evaluate::ImpliedDo<T> &) {
return {};
}
RT find(const Fortran::semantics::ParamValue &) { return {}; }
RT find(const Fortran::semantics::DerivedTypeSpec &) { return {}; }
RT find(const Fortran::evaluate::StructureConstructor &) { return {}; }
template <typename D, typename R, typename O>
RT find(const Fortran::evaluate::Operation<D, R, O> &op) {
(void)find(op.left());
return false;
}
template <typename D, typename R, typename LO, typename RO>
RT find(const Fortran::evaluate::Operation<D, R, LO, RO> &op) {
(void)find(op.left());
(void)find(op.right());
return false;
}
RT find(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &x) {
(void)find(x.u);
return {};
}
template <typename T>
RT find(const Fortran::evaluate::Expr<T> &x) {
(void)find(x.u);
return {};
}
llvm::SmallVector<Fortran::lower::ExplicitIterSpace::ArrayBases> bases;
llvm::SmallVector<Fortran::lower::FrontEndSymbol> controlVars;
};
} // namespace
void Fortran::lower::ExplicitIterSpace::leave() {
ccLoopNest.pop_back();
--forallContextOpen;
conditionalCleanup();
}
void Fortran::lower::ExplicitIterSpace::addSymbol(
Fortran::lower::FrontEndSymbol sym) {
assert(!symbolStack.empty());
symbolStack.back().push_back(sym);
}
void Fortran::lower::ExplicitIterSpace::exprBase(Fortran::lower::FrontEndExpr x,
bool lhs) {
ArrayBaseFinder finder(collectAllSymbols());
finder(*x);
llvm::ArrayRef<Fortran::lower::ExplicitIterSpace::ArrayBases> bases =
finder.getBases();
if (rhsBases.empty())
endAssign();
if (lhs) {
if (bases.empty()) {
lhsBases.push_back(llvm::None);
return;
}
assert(bases.size() >= 1 && "must detect an array reference on lhs");
if (bases.size() > 1)
rhsBases.back().append(bases.begin(), bases.end() - 1);
lhsBases.push_back(bases.back());
return;
}
rhsBases.back().append(bases.begin(), bases.end());
}
void Fortran::lower::ExplicitIterSpace::endAssign() { rhsBases.emplace_back(); }
void Fortran::lower::ExplicitIterSpace::pushLevel() {
symbolStack.push_back(llvm::SmallVector<Fortran::lower::FrontEndSymbol>{});
}
void Fortran::lower::ExplicitIterSpace::popLevel() { symbolStack.pop_back(); }
void Fortran::lower::ExplicitIterSpace::conditionalCleanup() {
if (forallContextOpen == 0) {
// Exiting the outermost FORALL context.
// Cleanup any residual mask buffers.
outermostContext().finalize();
// Clear and reset all the cached information.
symbolStack.clear();
lhsBases.clear();
rhsBases.clear();
loadBindings.clear();
ccLoopNest.clear();
innerArgs.clear();
outerLoop = llvm::None;
clearLoops();
counter = 0;
}
}
llvm::Optional<size_t>
Fortran::lower::ExplicitIterSpace::findArgPosition(fir::ArrayLoadOp load) {
if (lhsBases[counter].hasValue()) {
auto ld = loadBindings.find(lhsBases[counter].getValue());
llvm::Optional<size_t> optPos;
if (ld != loadBindings.end() && ld->second == load)
optPos = static_cast<size_t>(0u);
assert(optPos.hasValue() && "load does not correspond to lhs");
return optPos;
}
return llvm::None;
}
llvm::SmallVector<Fortran::lower::FrontEndSymbol>
Fortran::lower::ExplicitIterSpace::collectAllSymbols() {
llvm::SmallVector<Fortran::lower::FrontEndSymbol> result;
for (llvm::SmallVector<FrontEndSymbol> vec : symbolStack)
result.append(vec.begin(), vec.end());
return result;
}
llvm::raw_ostream &
Fortran::lower::operator<<(llvm::raw_ostream &s,
const Fortran::lower::ImplicitIterSpace &e) {
for (const llvm::SmallVector<
Fortran::lower::ImplicitIterSpace::FrontEndMaskExpr> &xs :
e.getMasks()) {
s << "{ ";
for (const Fortran::lower::ImplicitIterSpace::FrontEndMaskExpr &x : xs)
x->AsFortran(s << '(') << "), ";
s << "}\n";
}
return s;
}
llvm::raw_ostream &
Fortran::lower::operator<<(llvm::raw_ostream &s,
const Fortran::lower::ExplicitIterSpace &e) {
auto dump = [&](const auto &u) {
std::visit(Fortran::common::visitors{
[&](const Fortran::semantics::Symbol *y) {
s << " " << *y << '\n';
},
[&](const Fortran::evaluate::ArrayRef *y) {
s << " ";
if (y->base().IsSymbol())
s << y->base().GetFirstSymbol();
else
s << y->base().GetComponent().GetLastSymbol();
s << '\n';
},
[&](const Fortran::evaluate::Component *y) {
s << " " << y->GetLastSymbol() << '\n';
}},
u);
};
s << "LHS bases:\n";
for (const llvm::Optional<Fortran::lower::ExplicitIterSpace::ArrayBases> &u :
e.lhsBases)
if (u.hasValue())
dump(u.getValue());
s << "RHS bases:\n";
for (const llvm::SmallVector<Fortran::lower::ExplicitIterSpace::ArrayBases>
&bases : e.rhsBases) {
for (const Fortran::lower::ExplicitIterSpace::ArrayBases &u : bases)
dump(u);
s << '\n';
}
return s;
}
void Fortran::lower::ImplicitIterSpace::dump() const {
llvm::errs() << *this << '\n';
}
void Fortran::lower::ExplicitIterSpace::dump() const {
llvm::errs() << *this << '\n';
}