llvm-project/lldb/tools/debugserver/source/RNBRemote.cpp

3355 lines
120 KiB
C++

//===-- RNBRemote.cpp -------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 12/12/07.
//
//===----------------------------------------------------------------------===//
#include "RNBRemote.h"
#include <errno.h>
#include <unistd.h>
#include <signal.h>
#include <mach/exception_types.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include "DNB.h"
#include "DNBLog.h"
#include "DNBThreadResumeActions.h"
#include "RNBContext.h"
#include "RNBServices.h"
#include "RNBSocket.h"
#include "Utility/StringExtractor.h"
#include <iomanip>
#include <sstream>
#include <TargetConditionals.h> // for endianness predefines
//----------------------------------------------------------------------
// std::iostream formatting macros
//----------------------------------------------------------------------
#define RAW_HEXBASE std::setfill('0') << std::hex << std::right
#define HEXBASE '0' << 'x' << RAW_HEXBASE
#define RAWHEX8(x) RAW_HEXBASE << std::setw(2) << ((uint32_t)((uint8_t)x))
#define RAWHEX16 RAW_HEXBASE << std::setw(4)
#define RAWHEX32 RAW_HEXBASE << std::setw(8)
#define RAWHEX64 RAW_HEXBASE << std::setw(16)
#define HEX8(x) HEXBASE << std::setw(2) << ((uint32_t)(x))
#define HEX16 HEXBASE << std::setw(4)
#define HEX32 HEXBASE << std::setw(8)
#define HEX64 HEXBASE << std::setw(16)
#define RAW_HEX(x) RAW_HEXBASE << std::setw(sizeof(x)*2) << (x)
#define HEX(x) HEXBASE << std::setw(sizeof(x)*2) << (x)
#define RAWHEX_SIZE(x, sz) RAW_HEXBASE << std::setw((sz)) << (x)
#define HEX_SIZE(x, sz) HEXBASE << std::setw((sz)) << (x)
#define STRING_WIDTH(w) std::setfill(' ') << std::setw(w)
#define LEFT_STRING_WIDTH(s, w) std::left << std::setfill(' ') << std::setw(w) << (s) << std::right
#define DECIMAL std::dec << std::setfill(' ')
#define DECIMAL_WIDTH(w) DECIMAL << std::setw(w)
#define FLOAT(n, d) std::setfill(' ') << std::setw((n)+(d)+1) << std::setprecision(d) << std::showpoint << std::fixed
#define INDENT_WITH_SPACES(iword_idx) std::setfill(' ') << std::setw((iword_idx)) << ""
#define INDENT_WITH_TABS(iword_idx) std::setfill('\t') << std::setw((iword_idx)) << ""
// Class to handle communications via gdb remote protocol.
extern void ASLLogCallback(void *baton, uint32_t flags, const char *format, va_list args);
RNBRemote::RNBRemote () :
m_ctx (),
m_comm (),
m_continue_thread(-1),
m_thread(-1),
m_mutex(),
m_packets_recvd(0),
m_packets(),
m_rx_packets(),
m_rx_partial_data(),
m_rx_pthread(0),
m_breakpoints(),
m_max_payload_size(DEFAULT_GDB_REMOTE_PROTOCOL_BUFSIZE - 4),
m_extended_mode(false),
m_noack_mode(false),
m_thread_suffix_supported (false),
m_use_native_regs (false)
{
DNBLogThreadedIf (LOG_RNB_REMOTE, "%s", __PRETTY_FUNCTION__);
CreatePacketTable ();
}
RNBRemote::~RNBRemote()
{
DNBLogThreadedIf (LOG_RNB_REMOTE, "%s", __PRETTY_FUNCTION__);
StopReadRemoteDataThread();
}
void
RNBRemote::CreatePacketTable ()
{
// Step required to add new packets:
// 1 - Add new enumeration to RNBRemote::PacketEnum
// 2 - Create a the RNBRemote::HandlePacket_ function if a new function is needed
// 3 - Register the Packet definition with any needed callbacks in this fucntion
// - If no response is needed for a command, then use NULL for the normal callback
// - If the packet is not supported while the target is running, use NULL for the async callback
// 4 - If the packet is a standard packet (starts with a '$' character
// followed by the payload and then '#' and checksum, then you are done
// else go on to step 5
// 5 - if the packet is a fixed length packet:
// - modify the switch statement for the first character in the payload
// in RNBRemote::CommDataReceived so it doesn't reject the new packet
// type as invalid
// - modify the switch statement for the first character in the payload
// in RNBRemote::GetPacketPayload and make sure the payload of the packet
// is returned correctly
std::vector <Packet> &t = m_packets;
t.push_back (Packet (ack, NULL, NULL, "+", "ACK"));
t.push_back (Packet (nack, NULL, NULL, "-", "!ACK"));
t.push_back (Packet (read_memory, &RNBRemote::HandlePacket_m, NULL, "m", "Read memory"));
t.push_back (Packet (read_register, &RNBRemote::HandlePacket_p, NULL, "p", "Read one register"));
t.push_back (Packet (read_general_regs, &RNBRemote::HandlePacket_g, NULL, "g", "Read registers"));
t.push_back (Packet (write_memory, &RNBRemote::HandlePacket_M, NULL, "M", "Write memory"));
t.push_back (Packet (write_register, &RNBRemote::HandlePacket_P, NULL, "P", "Write one register"));
t.push_back (Packet (write_general_regs, &RNBRemote::HandlePacket_G, NULL, "G", "Write registers"));
t.push_back (Packet (insert_mem_bp, &RNBRemote::HandlePacket_z, NULL, "Z0", "Insert memory breakpoint"));
t.push_back (Packet (remove_mem_bp, &RNBRemote::HandlePacket_z, NULL, "z0", "Remove memory breakpoint"));
t.push_back (Packet (single_step, &RNBRemote::HandlePacket_s, NULL, "s", "Single step"));
t.push_back (Packet (cont, &RNBRemote::HandlePacket_c, NULL, "c", "continue"));
t.push_back (Packet (single_step_with_sig, &RNBRemote::HandlePacket_S, NULL, "S", "Single step with signal"));
t.push_back (Packet (set_thread, &RNBRemote::HandlePacket_H, NULL, "H", "Set thread"));
t.push_back (Packet (halt, &RNBRemote::HandlePacket_last_signal, &RNBRemote::HandlePacket_stop_process, "\x03", "^C"));
// t.push_back (Packet (use_extended_mode, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "!", "Use extended mode"));
t.push_back (Packet (why_halted, &RNBRemote::HandlePacket_last_signal, NULL, "?", "Why did target halt"));
t.push_back (Packet (set_argv, &RNBRemote::HandlePacket_A, NULL, "A", "Set argv"));
// t.push_back (Packet (set_bp, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "B", "Set/clear breakpoint"));
t.push_back (Packet (continue_with_sig, &RNBRemote::HandlePacket_C, NULL, "C", "Continue with signal"));
t.push_back (Packet (detach, &RNBRemote::HandlePacket_D, NULL, "D", "Detach gdb from remote system"));
// t.push_back (Packet (step_inferior_one_cycle, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "i", "Step inferior by one clock cycle"));
// t.push_back (Packet (signal_and_step_inf_one_cycle, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "I", "Signal inferior, then step one clock cyle"));
t.push_back (Packet (kill, &RNBRemote::HandlePacket_k, NULL, "k", "Kill"));
// t.push_back (Packet (restart, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "R", "Restart inferior"));
// t.push_back (Packet (search_mem_backwards, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "t", "Search memory backwards"));
t.push_back (Packet (thread_alive_p, &RNBRemote::HandlePacket_T, NULL, "T", "Is thread alive"));
t.push_back (Packet (vattach, &RNBRemote::HandlePacket_v, NULL, "vAttach", "Attach to a new process"));
t.push_back (Packet (vattachwait, &RNBRemote::HandlePacket_v, NULL, "vAttachWait", "Wait for a process to start up then attach to it"));
t.push_back (Packet (vattachname, &RNBRemote::HandlePacket_v, NULL, "vAttachName", "Attach to an existing process by name"));
t.push_back (Packet (vcont_list_actions, &RNBRemote::HandlePacket_v, NULL, "vCont;", "Verbose resume with thread actions"));
t.push_back (Packet (vcont_list_actions, &RNBRemote::HandlePacket_v, NULL, "vCont?", "List valid continue-with-thread-actions actions"));
// The X packet doesn't currently work. If/when it does, remove the line above and uncomment out the line below
// t.push_back (Packet (write_data_to_memory, &RNBRemote::HandlePacket_X, NULL, "X", "Write data to memory"));
// t.push_back (Packet (insert_hardware_bp, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "Z1", "Insert hardware breakpoint"));
// t.push_back (Packet (remove_hardware_bp, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "z1", "Remove hardware breakpoint"));
// t.push_back (Packet (insert_write_watch_bp, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "Z2", "Insert write watchpoint"));
// t.push_back (Packet (remove_write_watch_bp, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "z2", "Remove write watchpoint"));
// t.push_back (Packet (insert_read_watch_bp, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "Z3", "Insert read watchpoint"));
// t.push_back (Packet (remove_read_watch_bp, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "z3", "Remove read watchpoint"));
// t.push_back (Packet (insert_access_watch_bp, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "Z4", "Insert access watchpoint"));
// t.push_back (Packet (remove_access_watch_bp, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "z4", "Remove access watchpoint"));
t.push_back (Packet (query_current_thread_id, &RNBRemote::HandlePacket_qC, NULL, "qC", "Query current thread ID"));
// t.push_back (Packet (query_memory_crc, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "qCRC:", "Compute CRC of memory region"));
t.push_back (Packet (query_thread_ids_first, &RNBRemote::HandlePacket_qThreadInfo, NULL, "qfThreadInfo", "Get list of active threads (first req)"));
t.push_back (Packet (query_thread_ids_subsequent, &RNBRemote::HandlePacket_qThreadInfo, NULL, "qsThreadInfo", "Get list of active threads (subsequent req)"));
// APPLE LOCAL: qThreadStopInfo
// syntax: qThreadStopInfoTTTT
// TTTT is hex thread ID
t.push_back (Packet (query_thread_stop_info, &RNBRemote::HandlePacket_qThreadStopInfo, NULL, "qThreadStopInfo", "Get detailed info on why the specified thread stopped"));
t.push_back (Packet (query_thread_extra_info, &RNBRemote::HandlePacket_qThreadExtraInfo,NULL, "qThreadExtraInfo", "Get printable status of a thread"));
// t.push_back (Packet (query_image_offsets, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "qOffsets", "Report offset of loaded program"));
t.push_back (Packet (query_launch_success, &RNBRemote::HandlePacket_qLaunchSuccess,NULL, "qLaunchSuccess", "Report the success or failure of the launch attempt"));
t.push_back (Packet (query_register_info, &RNBRemote::HandlePacket_qRegisterInfo, NULL, "qRegisterInfo", "Dynamically discover remote register context information."));
t.push_back (Packet (query_shlib_notify_info_addr, &RNBRemote::HandlePacket_qShlibInfoAddr,NULL, "qShlibInfoAddr", "Returns the address that contains info needed for getting shared library notifications"));
t.push_back (Packet (query_step_packet_supported, &RNBRemote::HandlePacket_qStepPacketSupported,NULL, "qStepPacketSupported", "Replys with OK if the 's' packet is supported."));
t.push_back (Packet (query_host_info, &RNBRemote::HandlePacket_qHostInfo, NULL, "qHostInfo", "Replies with multiple 'key:value;' tuples appended to each other."));
// t.push_back (Packet (query_symbol_lookup, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "qSymbol", "Notify that host debugger is ready to do symbol lookups"));
t.push_back (Packet (start_noack_mode, &RNBRemote::HandlePacket_QStartNoAckMode , NULL, "QStartNoAckMode", "Request that " DEBUGSERVER_PROGRAM_NAME " stop acking remote protocol packets"));
t.push_back (Packet (prefix_reg_packets_with_tid, &RNBRemote::HandlePacket_QThreadSuffixSupported , NULL, "QThreadSuffixSupported", "Check if thread specifc packets (register packets 'g', 'G', 'p', and 'P') support having the thread ID appended to the end of the command"));
t.push_back (Packet (set_logging_mode, &RNBRemote::HandlePacket_QSetLogging , NULL, "QSetLogging:", "Check if register packets ('g', 'G', 'p', and 'P' support having the thread ID prefix"));
t.push_back (Packet (set_max_packet_size, &RNBRemote::HandlePacket_QSetMaxPacketSize , NULL, "QSetMaxPacketSize:", "Tell " DEBUGSERVER_PROGRAM_NAME " the max sized packet gdb can handle"));
t.push_back (Packet (set_max_payload_size, &RNBRemote::HandlePacket_QSetMaxPayloadSize , NULL, "QSetMaxPayloadSize:", "Tell " DEBUGSERVER_PROGRAM_NAME " the max sized payload gdb can handle"));
t.push_back (Packet (set_environment_variable, &RNBRemote::HandlePacket_QEnvironment , NULL, "QEnvironment:", "Add an environment variable to the inferior's environment"));
t.push_back (Packet (set_disable_aslr, &RNBRemote::HandlePacket_QSetDisableASLR , NULL, "QSetDisableASLR:", "Set wether to disable ASLR when launching the process with the set argv ('A') packet"));
t.push_back (Packet (set_stdin, &RNBRemote::HandlePacket_QSetSTDIO , NULL, "QSetSTDIN:", "Set the standard input for a process to be launched with the 'A' packet"));
t.push_back (Packet (set_stdout, &RNBRemote::HandlePacket_QSetSTDIO , NULL, "QSetSTDOUT:", "Set the standard output for a process to be launched with the 'A' packet"));
t.push_back (Packet (set_stderr, &RNBRemote::HandlePacket_QSetSTDIO , NULL, "QSetSTDERR:", "Set the standard error for a process to be launched with the 'A' packet"));
t.push_back (Packet (set_working_dir, &RNBRemote::HandlePacket_QSetWorkingDir , NULL, "QSetWorkingDir:", "Set the working directory for a process to be launched with the 'A' packet"));
// t.push_back (Packet (pass_signals_to_inferior, &RNBRemote::HandlePacket_UNIMPLEMENTED, NULL, "QPassSignals:", "Specify which signals are passed to the inferior"));
t.push_back (Packet (allocate_memory, &RNBRemote::HandlePacket_AllocateMemory, NULL, "_M", "Allocate memory in the inferior process."));
t.push_back (Packet (deallocate_memory, &RNBRemote::HandlePacket_DeallocateMemory, NULL, "_m", "Deallocate memory in the inferior process."));
}
void
RNBRemote::FlushSTDIO ()
{
if (m_ctx.HasValidProcessID())
{
nub_process_t pid = m_ctx.ProcessID();
char buf[256];
nub_size_t count;
do
{
count = DNBProcessGetAvailableSTDOUT(pid, buf, sizeof(buf));
if (count > 0)
{
SendSTDOUTPacket (buf, count);
}
} while (count > 0);
do
{
count = DNBProcessGetAvailableSTDERR(pid, buf, sizeof(buf));
if (count > 0)
{
SendSTDERRPacket (buf, count);
}
} while (count > 0);
}
}
rnb_err_t
RNBRemote::SendHexEncodedBytePacket (const char *header, const void *buf, size_t buf_len, const char *footer)
{
std::ostringstream packet_sstrm;
// Append the header cstr if there was one
if (header && header[0])
packet_sstrm << header;
nub_size_t i;
const uint8_t *ubuf8 = (const uint8_t *)buf;
for (i=0; i<buf_len; i++)
{
packet_sstrm << RAWHEX8(ubuf8[i]);
}
// Append the footer cstr if there was one
if (footer && footer[0])
packet_sstrm << footer;
return SendPacket(packet_sstrm.str());
}
rnb_err_t
RNBRemote::SendSTDOUTPacket (char *buf, nub_size_t buf_size)
{
if (buf_size == 0)
return rnb_success;
return SendHexEncodedBytePacket("O", buf, buf_size, NULL);
}
rnb_err_t
RNBRemote::SendSTDERRPacket (char *buf, nub_size_t buf_size)
{
if (buf_size == 0)
return rnb_success;
return SendHexEncodedBytePacket("O", buf, buf_size, NULL);
}
rnb_err_t
RNBRemote::SendPacket (const std::string &s)
{
DNBLogThreadedIf (LOG_RNB_MAX, "%8d RNBRemote::%s (%s) called", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, s.c_str());
std::string sendpacket = "$" + s + "#";
int cksum = 0;
char hexbuf[5];
if (m_noack_mode)
{
sendpacket += "00";
}
else
{
for (int i = 0; i != s.size(); ++i)
cksum += s[i];
snprintf (hexbuf, sizeof hexbuf, "%02x", cksum & 0xff);
sendpacket += hexbuf;
}
rnb_err_t err = m_comm.Write (sendpacket.c_str(), sendpacket.size());
if (err != rnb_success)
return err;
if (m_noack_mode)
return rnb_success;
std::string reply;
RNBRemote::Packet packet;
err = GetPacket (reply, packet, true);
if (err != rnb_success)
{
DNBLogThreadedIf (LOG_RNB_REMOTE, "%8d RNBRemote::%s (%s) got error trying to get reply...", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, sendpacket.c_str());
return err;
}
DNBLogThreadedIf (LOG_RNB_MAX, "%8d RNBRemote::%s (%s) got reply: '%s'", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, sendpacket.c_str(), reply.c_str());
if (packet.type == ack)
return rnb_success;
// Should we try to resend the packet at this layer?
// if (packet.command == nack)
return rnb_err;
}
/* Get a packet via gdb remote protocol.
Strip off the prefix/suffix, verify the checksum to make sure
a valid packet was received, send an ACK if they match. */
rnb_err_t
RNBRemote::GetPacketPayload (std::string &return_packet)
{
//DNBLogThreadedIf (LOG_RNB_MAX, "%8u RNBRemote::%s called", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__);
PThreadMutex::Locker locker(m_mutex);
if (m_rx_packets.empty())
{
// Only reset the remote command available event if we have no more packets
m_ctx.Events().ResetEvents ( RNBContext::event_read_packet_available );
//DNBLogThreadedIf (LOG_RNB_MAX, "%8u RNBRemote::%s error: no packets available...", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__);
return rnb_err;
}
//DNBLogThreadedIf (LOG_RNB_MAX, "%8u RNBRemote::%s has %u queued packets", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, m_rx_packets.size());
return_packet.swap(m_rx_packets.front());
m_rx_packets.pop_front();
locker.Reset(); // Release our lock on the mutex
if (m_rx_packets.empty())
{
// Reset the remote command available event if we have no more packets
m_ctx.Events().ResetEvents ( RNBContext::event_read_packet_available );
}
//DNBLogThreadedIf (LOG_RNB_MEDIUM, "%8u RNBRemote::%s: '%s'", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, return_packet.c_str());
switch (return_packet[0])
{
case '+':
case '-':
case '\x03':
break;
case '$':
{
int packet_checksum = 0;
if (!m_noack_mode)
{
for (int i = return_packet.size() - 2; i < return_packet.size(); ++i)
{
char checksum_char = tolower (return_packet[i]);
if (!isxdigit (checksum_char))
{
m_comm.Write ("-", 1);
DNBLogThreadedIf (LOG_RNB_REMOTE, "%8u RNBRemote::%s error: packet with invalid checksum characters: %s", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, return_packet.c_str());
return rnb_err;
}
}
packet_checksum = strtol (&return_packet[return_packet.size() - 2], NULL, 16);
}
return_packet.erase(0,1); // Strip the leading '$'
return_packet.erase(return_packet.size() - 3);// Strip the #XX checksum
if (!m_noack_mode)
{
// Compute the checksum
int computed_checksum = 0;
for (std::string::iterator it = return_packet.begin ();
it != return_packet.end ();
++it)
{
computed_checksum += *it;
}
if (packet_checksum == (computed_checksum & 0xff))
{
//DNBLogThreadedIf (LOG_RNB_MEDIUM, "%8u RNBRemote::%s sending ACK for '%s'", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, return_packet.c_str());
m_comm.Write ("+", 1);
}
else
{
DNBLogThreadedIf (LOG_RNB_MEDIUM, "%8u RNBRemote::%s sending ACK for '%s' (error: packet checksum mismatch (0x%2.2x != 0x%2.2x))",
(uint32_t)m_comm.Timer().ElapsedMicroSeconds(true),
__FUNCTION__,
return_packet.c_str(),
packet_checksum,
computed_checksum);
m_comm.Write ("-", 1);
return rnb_err;
}
}
}
break;
default:
DNBLogThreadedIf (LOG_RNB_REMOTE, "%8u RNBRemote::%s tossing unexpected packet???? %s", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, return_packet.c_str());
if (!m_noack_mode)
m_comm.Write ("-", 1);
return rnb_err;
}
return rnb_success;
}
rnb_err_t
RNBRemote::HandlePacket_UNIMPLEMENTED (const char* p)
{
DNBLogThreadedIf (LOG_RNB_MAX, "%8u RNBRemote::%s(\"%s\")", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, p ? p : "NULL");
return SendPacket ("");
}
rnb_err_t
RNBRemote::HandlePacket_ILLFORMED (const char *file, int line, const char *p, const char *description)
{
DNBLogThreadedIf (LOG_RNB_PACKETS, "%8u %s:%i ILLFORMED: '%s' (%s)", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), file, line, __FUNCTION__, p);
return SendPacket ("E03");
}
rnb_err_t
RNBRemote::GetPacket (std::string &packet_payload, RNBRemote::Packet& packet_info, bool wait)
{
std::string payload;
rnb_err_t err = GetPacketPayload (payload);
if (err != rnb_success)
{
PThreadEvent& events = m_ctx.Events();
nub_event_t set_events = events.GetEventBits();
// TODO: add timeout version of GetPacket?? We would then need to pass
// that timeout value along to DNBProcessTimedWaitForEvent.
if (!wait || ((set_events & RNBContext::event_read_thread_running) == 0))
return err;
const nub_event_t events_to_wait_for = RNBContext::event_read_packet_available | RNBContext::event_read_thread_exiting;
set_events = 0;
while ((set_events = events.WaitForSetEvents(events_to_wait_for)) != 0)
{
if (set_events & RNBContext::event_read_packet_available)
{
// Try the queue again now that we got an event
err = GetPacketPayload (payload);
if (err == rnb_success)
break;
}
if (set_events & RNBContext::event_read_thread_exiting)
err = rnb_not_connected;
if (err == rnb_not_connected)
return err;
} while (err == rnb_err);
if (set_events == 0)
err = rnb_not_connected;
}
if (err == rnb_success)
{
Packet::iterator it;
for (it = m_packets.begin (); it != m_packets.end (); ++it)
{
if (payload.compare (0, it->abbrev.size(), it->abbrev) == 0)
break;
}
// A packet we don't have an entry for. This can happen when we
// get a packet that we don't know about or support. We just reply
// accordingly and go on.
if (it == m_packets.end ())
{
DNBLogThreadedIf (LOG_RNB_PACKETS, "unimplemented packet: '%s'", payload.c_str());
HandlePacket_UNIMPLEMENTED(payload.c_str());
return rnb_err;
}
else
{
packet_info = *it;
packet_payload = payload;
}
}
return err;
}
rnb_err_t
RNBRemote::HandleAsyncPacket(PacketEnum *type)
{
DNBLogThreadedIf (LOG_RNB_REMOTE, "%8u RNBRemote::%s", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__);
static DNBTimer g_packetTimer(true);
rnb_err_t err = rnb_err;
std::string packet_data;
RNBRemote::Packet packet_info;
err = GetPacket (packet_data, packet_info, false);
if (err == rnb_success)
{
if (!packet_data.empty() && isprint(packet_data[0]))
DNBLogThreadedIf (LOG_RNB_REMOTE | LOG_RNB_PACKETS, "HandleAsyncPacket (\"%s\");", packet_data.c_str());
else
DNBLogThreadedIf (LOG_RNB_REMOTE | LOG_RNB_PACKETS, "HandleAsyncPacket (%s);", packet_info.printable_name.c_str());
HandlePacketCallback packet_callback = packet_info.async;
if (packet_callback != NULL)
{
if (type != NULL)
*type = packet_info.type;
return (this->*packet_callback)(packet_data.c_str());
}
}
return err;
}
rnb_err_t
RNBRemote::HandleReceivedPacket(PacketEnum *type)
{
static DNBTimer g_packetTimer(true);
// DNBLogThreadedIf (LOG_RNB_REMOTE, "%8u RNBRemote::%s", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__);
rnb_err_t err = rnb_err;
std::string packet_data;
RNBRemote::Packet packet_info;
err = GetPacket (packet_data, packet_info, false);
if (err == rnb_success)
{
DNBLogThreadedIf (LOG_RNB_REMOTE, "HandleReceivedPacket (\"%s\");", packet_data.c_str());
HandlePacketCallback packet_callback = packet_info.normal;
if (packet_callback != NULL)
{
if (type != NULL)
*type = packet_info.type;
return (this->*packet_callback)(packet_data.c_str());
}
else
{
// Do not fall through to end of this function, if we have valid
// packet_info and it has a NULL callback, then we need to respect
// that it may not want any response or anything to be done.
return err;
}
}
return rnb_err;
}
void
RNBRemote::CommDataReceived(const std::string& new_data)
{
// DNBLogThreadedIf (LOG_RNB_REMOTE, "%8d RNBRemote::%s called", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__);
{
// Put the packet data into the buffer in a thread safe fashion
PThreadMutex::Locker locker(m_mutex);
std::string data;
// See if we have any left over data from a previous call to this
// function?
if (!m_rx_partial_data.empty())
{
// We do, so lets start with that data
data.swap(m_rx_partial_data);
}
// Append the new incoming data
data += new_data;
// Parse up the packets into gdb remote packets
uint32_t idx = 0;
const size_t data_size = data.size();
while (idx < data_size)
{
// end_idx must be one past the last valid packet byte. Start
// it off with an invalid value that is the same as the current
// index.
size_t end_idx = idx;
switch (data[idx])
{
case '+': // Look for ack
case '-': // Look for cancel
case '\x03': // ^C to halt target
end_idx = idx + 1; // The command is one byte long...
break;
case '$':
// Look for a standard gdb packet?
end_idx = data.find('#', idx + 1);
if (end_idx == std::string::npos || end_idx + 2 > data_size)
{
end_idx = std::string::npos;
}
else
{
// Add two for the checksum bytes and 1 to point to the
// byte just past the end of this packet
end_idx += 2 + 1;
}
break;
default:
break;
}
if (end_idx == std::string::npos)
{
// Not all data may be here for the packet yet, save it for
// next time through this function.
m_rx_partial_data += data.substr(idx);
//DNBLogThreadedIf (LOG_RNB_MAX, "%8d RNBRemote::%s saving data for later[%u, npos): '%s'",(uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, idx, m_rx_partial_data.c_str());
idx = end_idx;
}
else
if (idx < end_idx)
{
m_packets_recvd++;
// Hack to get rid of initial '+' ACK???
if (m_packets_recvd == 1 && (end_idx == idx + 1) && data[idx] == '+')
{
//DNBLogThreadedIf (LOG_RNB_REMOTE, "%8d RNBRemote::%s throwing first ACK away....[%u, npos): '+'",(uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, idx);
}
else
{
// We have a valid packet...
m_rx_packets.push_back(data.substr(idx, end_idx - idx));
DNBLogThreadedIf (LOG_RNB_PACKETS, "getpkt: %s", m_rx_packets.back().c_str());
}
idx = end_idx;
}
else
{
DNBLogThreadedIf (LOG_RNB_MAX, "%8d RNBRemote::%s tossing junk byte at %c",(uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, data[idx]);
idx = idx + 1;
}
}
}
if (!m_rx_packets.empty())
{
// Let the main thread know we have received a packet
//DNBLogThreadedIf (LOG_RNB_EVENTS, "%8d RNBRemote::%s called events.SetEvent(RNBContext::event_read_packet_available)", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__);
PThreadEvent& events = m_ctx.Events();
events.SetEvents (RNBContext::event_read_packet_available);
}
}
rnb_err_t
RNBRemote::GetCommData ()
{
// DNBLogThreadedIf (LOG_RNB_REMOTE, "%8d RNBRemote::%s called", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__);
std::string comm_data;
rnb_err_t err = m_comm.Read (comm_data);
if (err == rnb_success)
{
if (!comm_data.empty())
CommDataReceived (comm_data);
}
return err;
}
void
RNBRemote::StartReadRemoteDataThread()
{
DNBLogThreadedIf (LOG_RNB_REMOTE, "%8u RNBRemote::%s called", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__);
PThreadEvent& events = m_ctx.Events();
if ((events.GetEventBits() & RNBContext::event_read_thread_running) == 0)
{
events.ResetEvents (RNBContext::event_read_thread_exiting);
int err = ::pthread_create (&m_rx_pthread, NULL, ThreadFunctionReadRemoteData, this);
if (err == 0)
{
// Our thread was successfully kicked off, wait for it to
// set the started event so we can safely continue
events.WaitForSetEvents (RNBContext::event_read_thread_running);
}
else
{
events.ResetEvents (RNBContext::event_read_thread_running);
events.SetEvents (RNBContext::event_read_thread_exiting);
}
}
}
void
RNBRemote::StopReadRemoteDataThread()
{
DNBLogThreadedIf (LOG_RNB_REMOTE, "%8u RNBRemote::%s called", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__);
PThreadEvent& events = m_ctx.Events();
if ((events.GetEventBits() & RNBContext::event_read_thread_running) == RNBContext::event_read_thread_running)
{
m_comm.Disconnect(true);
struct timespec timeout_abstime;
DNBTimer::OffsetTimeOfDay(&timeout_abstime, 2, 0);
// Wait for 2 seconds for the remote data thread to exit
if (events.WaitForSetEvents(RNBContext::event_read_thread_exiting, &timeout_abstime) == 0)
{
// Kill the remote data thread???
}
}
}
void*
RNBRemote::ThreadFunctionReadRemoteData(void *arg)
{
// Keep a shared pointer reference so this doesn't go away on us before the thread is killed.
DNBLogThreadedIf(LOG_RNB_REMOTE, "RNBRemote::%s (%p): thread starting...", __FUNCTION__, arg);
RNBRemoteSP remoteSP(g_remoteSP);
if (remoteSP.get() != NULL)
{
RNBRemote* remote = remoteSP.get();
PThreadEvent& events = remote->Context().Events();
events.SetEvents (RNBContext::event_read_thread_running);
// START: main receive remote command thread loop
bool done = false;
while (!done)
{
rnb_err_t err = remote->GetCommData();
switch (err)
{
case rnb_success:
break;
default:
case rnb_err:
DNBLogThreadedIf (LOG_RNB_REMOTE, "RNBSocket::GetCommData returned error %u", err);
done = true;
break;
case rnb_not_connected:
DNBLogThreadedIf (LOG_RNB_REMOTE, "RNBSocket::GetCommData returned not connected...");
done = true;
break;
}
}
// START: main receive remote command thread loop
events.ResetEvents (RNBContext::event_read_thread_running);
events.SetEvents (RNBContext::event_read_thread_exiting);
}
DNBLogThreadedIf(LOG_RNB_REMOTE, "RNBRemote::%s (%p): thread exiting...", __FUNCTION__, arg);
return NULL;
}
/* Read the bytes in STR which are GDB Remote Protocol binary encoded bytes
(8-bit bytes).
This encoding uses 0x7d ('}') as an escape character for 0x7d ('}'),
0x23 ('#'), and 0x24 ('$').
LEN is the number of bytes to be processed. If a character is escaped,
it is 2 characters for LEN. A LEN of -1 means encode-until-nul-byte
(end of string). */
std::vector<uint8_t>
decode_binary_data (const char *str, int len)
{
std::vector<uint8_t> bytes;
if (len == 0)
{
return bytes;
}
if (len == -1)
len = strlen (str);
while (len--)
{
unsigned char c = *str;
if (c == 0x7d && len > 0)
{
len--;
str++;
c ^= 0x20;
}
bytes.push_back (c);
}
return bytes;
}
typedef struct register_map_entry
{
uint32_t gdb_regnum; // gdb register number
uint32_t gdb_size; // gdb register size in bytes (can be greater than or less than to debugnub size...)
const char * gdb_name; // gdb register name
DNBRegisterInfo nub_info; // debugnub register info
const uint8_t* fail_value; // Value to print if case we fail to reg this register (if this is NULL, we will return an error)
int expedite; // expedite delivery of this register in last stop reply packets
} register_map_entry_t;
// If the notion of registers differs from what is handed out by the
// architecture, then flavors can be defined here.
static const uint32_t MAX_REGISTER_BYTE_SIZE = 16;
static const uint8_t k_zero_bytes[MAX_REGISTER_BYTE_SIZE] = {0};
static std::vector<register_map_entry_t> g_dynamic_register_map;
static register_map_entry_t *g_reg_entries = NULL;
static size_t g_num_reg_entries = 0;
static void
RegisterEntryNotAvailable (register_map_entry_t *reg_entry)
{
reg_entry->fail_value = k_zero_bytes;
reg_entry->nub_info.set = INVALID_NUB_REGNUM;
reg_entry->nub_info.reg = INVALID_NUB_REGNUM;
reg_entry->nub_info.name = NULL;
reg_entry->nub_info.alt = NULL;
reg_entry->nub_info.type = InvalidRegType;
reg_entry->nub_info.format = InvalidRegFormat;
reg_entry->nub_info.size = 0;
reg_entry->nub_info.offset = 0;
reg_entry->nub_info.reg_gcc = INVALID_NUB_REGNUM;
reg_entry->nub_info.reg_dwarf = INVALID_NUB_REGNUM;
reg_entry->nub_info.reg_generic = INVALID_NUB_REGNUM;
reg_entry->nub_info.reg_gdb = INVALID_NUB_REGNUM;
}
//----------------------------------------------------------------------
// ARM regiseter sets as gdb knows them
//----------------------------------------------------------------------
register_map_entry_t
g_gdb_register_map_arm[] =
{
{ 0, 4, "r0", {0}, NULL, 1},
{ 1, 4, "r1", {0}, NULL, 1},
{ 2, 4, "r2", {0}, NULL, 1},
{ 3, 4, "r3", {0}, NULL, 1},
{ 4, 4, "r4", {0}, NULL, 1},
{ 5, 4, "r5", {0}, NULL, 1},
{ 6, 4, "r6", {0}, NULL, 1},
{ 7, 4, "r7", {0}, NULL, 1},
{ 8, 4, "r8", {0}, NULL, 1},
{ 9, 4, "r9", {0}, NULL, 1},
{ 10, 4, "r10", {0}, NULL, 1},
{ 11, 4, "r11", {0}, NULL, 1},
{ 12, 4, "r12", {0}, NULL, 1},
{ 13, 4, "sp", {0}, NULL, 1},
{ 14, 4, "lr", {0}, NULL, 1},
{ 15, 4, "pc", {0}, NULL, 1},
{ 16, 12, "f0", {0}, k_zero_bytes, 0},
{ 17, 12, "f1", {0}, k_zero_bytes, 0},
{ 18, 12, "f2", {0}, k_zero_bytes, 0},
{ 19, 12, "f3", {0}, k_zero_bytes, 0},
{ 20, 12, "f4", {0}, k_zero_bytes, 0},
{ 21, 12, "f5", {0}, k_zero_bytes, 0},
{ 22, 12, "f6", {0}, k_zero_bytes, 0},
{ 23, 12, "f7", {0}, k_zero_bytes, 0},
{ 24, 4, "fps", {0}, NULL, 0},
{ 25, 4,"cpsr", {0}, NULL, 1},
{ 26, 4, "s0", {0}, NULL, 0},
{ 27, 4, "s1", {0}, NULL, 0},
{ 28, 4, "s2", {0}, NULL, 0},
{ 29, 4, "s3", {0}, NULL, 0},
{ 30, 4, "s4", {0}, NULL, 0},
{ 31, 4, "s5", {0}, NULL, 0},
{ 32, 4, "s6", {0}, NULL, 0},
{ 33, 4, "s7", {0}, NULL, 0},
{ 34, 4, "s8", {0}, NULL, 0},
{ 35, 4, "s9", {0}, NULL, 0},
{ 36, 4, "s10", {0}, NULL, 0},
{ 37, 4, "s11", {0}, NULL, 0},
{ 38, 4, "s12", {0}, NULL, 0},
{ 39, 4, "s13", {0}, NULL, 0},
{ 40, 4, "s14", {0}, NULL, 0},
{ 41, 4, "s15", {0}, NULL, 0},
{ 42, 4, "s16", {0}, NULL, 0},
{ 43, 4, "s17", {0}, NULL, 0},
{ 44, 4, "s18", {0}, NULL, 0},
{ 45, 4, "s19", {0}, NULL, 0},
{ 46, 4, "s20", {0}, NULL, 0},
{ 47, 4, "s21", {0}, NULL, 0},
{ 48, 4, "s22", {0}, NULL, 0},
{ 49, 4, "s23", {0}, NULL, 0},
{ 50, 4, "s24", {0}, NULL, 0},
{ 51, 4, "s25", {0}, NULL, 0},
{ 52, 4, "s26", {0}, NULL, 0},
{ 53, 4, "s27", {0}, NULL, 0},
{ 54, 4, "s28", {0}, NULL, 0},
{ 55, 4, "s29", {0}, NULL, 0},
{ 56, 4, "s30", {0}, NULL, 0},
{ 57, 4, "s31", {0}, NULL, 0},
{ 58, 4, "fpscr", {0}, NULL, 0}
};
register_map_entry_t
g_gdb_register_map_i386[] =
{
{ 0, 4, "eax" , {0}, NULL, 0 },
{ 1, 4, "ecx" , {0}, NULL, 0 },
{ 2, 4, "edx" , {0}, NULL, 0 },
{ 3, 4, "ebx" , {0}, NULL, 0 },
{ 4, 4, "esp" , {0}, NULL, 1 },
{ 5, 4, "ebp" , {0}, NULL, 1 },
{ 6, 4, "esi" , {0}, NULL, 0 },
{ 7, 4, "edi" , {0}, NULL, 0 },
{ 8, 4, "eip" , {0}, NULL, 1 },
{ 9, 4, "eflags" , {0}, NULL, 0 },
{ 10, 4, "cs" , {0}, NULL, 0 },
{ 11, 4, "ss" , {0}, NULL, 0 },
{ 12, 4, "ds" , {0}, NULL, 0 },
{ 13, 4, "es" , {0}, NULL, 0 },
{ 14, 4, "fs" , {0}, NULL, 0 },
{ 15, 4, "gs" , {0}, NULL, 0 },
{ 16, 10, "stmm0" , {0}, NULL, 0 },
{ 17, 10, "stmm1" , {0}, NULL, 0 },
{ 18, 10, "stmm2" , {0}, NULL, 0 },
{ 19, 10, "stmm3" , {0}, NULL, 0 },
{ 20, 10, "stmm4" , {0}, NULL, 0 },
{ 21, 10, "stmm5" , {0}, NULL, 0 },
{ 22, 10, "stmm6" , {0}, NULL, 0 },
{ 23, 10, "stmm7" , {0}, NULL, 0 },
{ 24, 4, "fctrl" , {0}, NULL, 0 },
{ 25, 4, "fstat" , {0}, NULL, 0 },
{ 26, 4, "ftag" , {0}, NULL, 0 },
{ 27, 4, "fiseg" , {0}, NULL, 0 },
{ 28, 4, "fioff" , {0}, NULL, 0 },
{ 29, 4, "foseg" , {0}, NULL, 0 },
{ 30, 4, "fooff" , {0}, NULL, 0 },
{ 31, 4, "fop" , {0}, NULL, 0 },
{ 32, 16, "xmm0" , {0}, NULL, 0 },
{ 33, 16, "xmm1" , {0}, NULL, 0 },
{ 34, 16, "xmm2" , {0}, NULL, 0 },
{ 35, 16, "xmm3" , {0}, NULL, 0 },
{ 36, 16, "xmm4" , {0}, NULL, 0 },
{ 37, 16, "xmm5" , {0}, NULL, 0 },
{ 38, 16, "xmm6" , {0}, NULL, 0 },
{ 39, 16, "xmm7" , {0}, NULL, 0 },
{ 40, 4, "mxcsr" , {0}, NULL, 0 },
};
register_map_entry_t
g_gdb_register_map_x86_64[] =
{
{ 0, 8, "rax" , {0}, NULL, 0 },
{ 1, 8, "rbx" , {0}, NULL, 0 },
{ 2, 8, "rcx" , {0}, NULL, 0 },
{ 3, 8, "rdx" , {0}, NULL, 0 },
{ 4, 8, "rsi" , {0}, NULL, 0 },
{ 5, 8, "rdi" , {0}, NULL, 0 },
{ 6, 8, "rbp" , {0}, NULL, 1 },
{ 7, 8, "rsp" , {0}, NULL, 1 },
{ 8, 8, "r8" , {0}, NULL, 0 },
{ 9, 8, "r9" , {0}, NULL, 0 },
{ 10, 8, "r10" , {0}, NULL, 0 },
{ 11, 8, "r11" , {0}, NULL, 0 },
{ 12, 8, "r12" , {0}, NULL, 0 },
{ 13, 8, "r13" , {0}, NULL, 0 },
{ 14, 8, "r14" , {0}, NULL, 0 },
{ 15, 8, "r15" , {0}, NULL, 0 },
{ 16, 8, "rip" , {0}, NULL, 1 },
{ 17, 4, "rflags", {0}, NULL, 0 },
{ 18, 4, "cs" , {0}, NULL, 0 },
{ 19, 4, "ss" , {0}, NULL, 0 },
{ 20, 4, "ds" , {0}, NULL, 0 },
{ 21, 4, "es" , {0}, NULL, 0 },
{ 22, 4, "fs" , {0}, NULL, 0 },
{ 23, 4, "gs" , {0}, NULL, 0 },
{ 24, 10, "stmm0" , {0}, NULL, 0 },
{ 25, 10, "stmm1" , {0}, NULL, 0 },
{ 26, 10, "stmm2" , {0}, NULL, 0 },
{ 27, 10, "stmm3" , {0}, NULL, 0 },
{ 28, 10, "stmm4" , {0}, NULL, 0 },
{ 29, 10, "stmm5" , {0}, NULL, 0 },
{ 30, 10, "stmm6" , {0}, NULL, 0 },
{ 31, 10, "stmm7" , {0}, NULL, 0 },
{ 32, 4, "fctrl" , {0}, NULL, 0 },
{ 33, 4, "fstat" , {0}, NULL, 0 },
{ 34, 4, "ftag" , {0}, NULL, 0 },
{ 35, 4, "fiseg" , {0}, NULL, 0 },
{ 36, 4, "fioff" , {0}, NULL, 0 },
{ 37, 4, "foseg" , {0}, NULL, 0 },
{ 38, 4, "fooff" , {0}, NULL, 0 },
{ 39, 4, "fop" , {0}, NULL, 0 },
{ 40, 16, "xmm0" , {0}, NULL, 0 },
{ 41, 16, "xmm1" , {0}, NULL, 0 },
{ 42, 16, "xmm2" , {0}, NULL, 0 },
{ 43, 16, "xmm3" , {0}, NULL, 0 },
{ 44, 16, "xmm4" , {0}, NULL, 0 },
{ 45, 16, "xmm5" , {0}, NULL, 0 },
{ 46, 16, "xmm6" , {0}, NULL, 0 },
{ 47, 16, "xmm7" , {0}, NULL, 0 },
{ 48, 16, "xmm8" , {0}, NULL, 0 },
{ 49, 16, "xmm9" , {0}, NULL, 0 },
{ 50, 16, "xmm10" , {0}, NULL, 0 },
{ 51, 16, "xmm11" , {0}, NULL, 0 },
{ 52, 16, "xmm12" , {0}, NULL, 0 },
{ 53, 16, "xmm13" , {0}, NULL, 0 },
{ 54, 16, "xmm14" , {0}, NULL, 0 },
{ 55, 16, "xmm15" , {0}, NULL, 0 },
{ 56, 4, "mxcsr" , {0}, NULL, 0 }
};
void
RNBRemote::Initialize()
{
DNBInitialize();
}
bool
RNBRemote::InitializeRegisters ()
{
pid_t pid = m_ctx.ProcessID();
if (pid == INVALID_NUB_PROCESS)
return false;
if (m_use_native_regs)
{
DNBLogThreadedIf (LOG_RNB_PROC, "RNBRemote::%s() getting native registers from DNB interface", __FUNCTION__);
// Discover the registers by querying the DNB interface and letting it
// state the registers that it would like to export. This allows the
// registers to be discovered using multiple qRegisterInfo calls to get
// all register information after the architecture for the process is
// determined.
if (g_dynamic_register_map.empty())
{
nub_size_t num_reg_sets = 0;
const DNBRegisterSetInfo *reg_sets = DNBGetRegisterSetInfo (&num_reg_sets);
assert (num_reg_sets > 0 && reg_sets != NULL);
uint32_t regnum = 0;
for (nub_size_t set = 0; set < num_reg_sets; ++set)
{
if (reg_sets[set].registers == NULL)
continue;
for (uint32_t reg=0; reg < reg_sets[set].num_registers; ++reg)
{
register_map_entry_t reg_entry = {
regnum++, // register number starts at zero and goes up with no gaps
reg_sets[set].registers[reg].size, // register size in bytes
reg_sets[set].registers[reg].name, // register name
reg_sets[set].registers[reg], // DNBRegisterInfo
NULL, // Value to print if case we fail to reg this register (if this is NULL, we will return an error)
reg_sets[set].registers[reg].reg_generic != INVALID_NUB_REGNUM};
g_dynamic_register_map.push_back (reg_entry);
}
}
g_reg_entries = g_dynamic_register_map.data();
g_num_reg_entries = g_dynamic_register_map.size();
}
return true;
}
else
{
uint32_t cpu_type = DNBProcessGetCPUType (pid);
DNBLogThreadedIf (LOG_RNB_PROC, "RNBRemote::%s() getting gdb registers(%s)", __FUNCTION__, m_arch.c_str());
#if defined (__i386__) || defined (__x86_64__)
if (cpu_type == CPU_TYPE_X86_64)
{
const size_t num_regs = sizeof (g_gdb_register_map_x86_64) / sizeof (register_map_entry_t);
for (uint32_t i=0; i<num_regs; ++i)
{
if (!DNBGetRegisterInfoByName (g_gdb_register_map_x86_64[i].gdb_name, &g_gdb_register_map_x86_64[i].nub_info))
{
RegisterEntryNotAvailable (&g_gdb_register_map_x86_64[i]);
assert (g_gdb_register_map_x86_64[i].gdb_size < MAX_REGISTER_BYTE_SIZE);
}
}
g_reg_entries = g_gdb_register_map_x86_64;
g_num_reg_entries = sizeof (g_gdb_register_map_x86_64) / sizeof (register_map_entry_t);
return true;
}
else if (cpu_type == CPU_TYPE_I386)
{
const size_t num_regs = sizeof (g_gdb_register_map_i386) / sizeof (register_map_entry_t);
for (uint32_t i=0; i<num_regs; ++i)
{
if (!DNBGetRegisterInfoByName (g_gdb_register_map_i386[i].gdb_name, &g_gdb_register_map_i386[i].nub_info))
{
RegisterEntryNotAvailable (&g_gdb_register_map_i386[i]);
assert (g_gdb_register_map_i386[i].gdb_size <= MAX_REGISTER_BYTE_SIZE);
}
}
g_reg_entries = g_gdb_register_map_i386;
g_num_reg_entries = sizeof (g_gdb_register_map_i386) / sizeof (register_map_entry_t);
return true;
}
#elif defined (__arm__)
if (cpu_type == CPU_TYPE_ARM)
{
const size_t num_regs = sizeof (g_gdb_register_map_arm) / sizeof (register_map_entry_t);
for (uint32_t i=0; i<num_regs; ++i)
{
if (!DNBGetRegisterInfoByName (g_gdb_register_map_arm[i].gdb_name, &g_gdb_register_map_arm[i].nub_info))
{
RegisterEntryNotAvailable (&g_gdb_register_map_arm[i]);
assert (g_gdb_register_map_arm[i].gdb_size <= MAX_REGISTER_BYTE_SIZE);
}
}
g_reg_entries = g_gdb_register_map_arm;
g_num_reg_entries = sizeof (g_gdb_register_map_arm) / sizeof (register_map_entry_t);
return true;
}
#endif
}
return false;
}
/* The inferior has stopped executing; send a packet
to gdb to let it know. */
void
RNBRemote::NotifyThatProcessStopped (void)
{
RNBRemote::HandlePacket_last_signal (NULL);
return;
}
/* `A arglen,argnum,arg,...'
Update the inferior context CTX with the program name and arg
list.
The documentation for this packet is underwhelming but my best reading
of this is that it is a series of (len, position #, arg)'s, one for
each argument with "arg" ``hex encoded'' (two 0-9a-f chars?).
Why we need BOTH a "len" and a hex encoded "arg" is beyond me - either
is sufficient to get around the "," position separator escape issue.
e.g. our best guess for a valid 'A' packet for "gdb -q a.out" is
6,0,676462,4,1,2d71,10,2,612e6f7574
Note that "argnum" and "arglen" are numbers in base 10. Again, that's
not documented either way but I'm assuming it's so. */
rnb_err_t
RNBRemote::HandlePacket_A (const char *p)
{
if (p == NULL || *p == '\0')
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Null packet for 'A' pkt");
}
p++;
if (p == '\0' || !isdigit (*p))
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "arglen not specified on 'A' pkt");
}
/* I promise I don't modify it anywhere in this function. strtoul()'s
2nd arg has to be non-const which makes it problematic to step
through the string easily. */
char *buf = const_cast<char *>(p);
RNBContext& ctx = Context();
while (*buf != '\0')
{
int arglen, argnum;
std::string arg;
char *c;
errno = 0;
arglen = strtoul (buf, &c, 10);
if (errno != 0 && arglen == 0)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "arglen not a number on 'A' pkt");
}
if (*c != ',')
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "arglen not followed by comma on 'A' pkt");
}
buf = c + 1;
errno = 0;
argnum = strtoul (buf, &c, 10);
if (errno != 0 && argnum == 0)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "argnum not a number on 'A' pkt");
}
if (*c != ',')
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "arglen not followed by comma on 'A' pkt");
}
buf = c + 1;
c = buf;
buf = buf + arglen;
while (c < buf && *c != '\0' && c + 1 < buf && *(c + 1) != '\0')
{
char smallbuf[3];
smallbuf[0] = *c;
smallbuf[1] = *(c + 1);
smallbuf[2] = '\0';
errno = 0;
int ch = strtoul (smallbuf, NULL, 16);
if (errno != 0 && ch == 0)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "non-hex char in arg on 'A' pkt");
}
arg.push_back(ch);
c += 2;
}
ctx.PushArgument (arg.c_str());
if (*buf == ',')
buf++;
}
SendPacket ("OK");
return rnb_success;
}
/* `H c t'
Set the thread for subsequent actions; 'c' for step/continue ops,
'g' for other ops. -1 means all threads, 0 means any thread. */
rnb_err_t
RNBRemote::HandlePacket_H (const char *p)
{
p++; // skip 'H'
if (*p != 'c' && *p != 'g')
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Missing 'c' or 'g' type in H packet");
}
if (!m_ctx.HasValidProcessID())
{
// We allow gdb to connect to a server that hasn't started running
// the target yet. gdb still wants to ask questions about it and
// freaks out if it gets an error. So just return OK here.
}
errno = 0;
nub_thread_t tid = strtoul (p + 1, NULL, 16);
if (errno != 0 && tid == 0)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid thread number in H packet");
}
if (*p == 'c')
SetContinueThread (tid);
if (*p == 'g')
SetCurrentThread (tid);
return SendPacket ("OK");
}
rnb_err_t
RNBRemote::HandlePacket_qLaunchSuccess (const char *p)
{
if (m_ctx.HasValidProcessID() || m_ctx.LaunchStatus().Error() == 0)
return SendPacket("OK");
std::ostringstream ret_str;
std::string status_str;
ret_str << "E" << m_ctx.LaunchStatusAsString(status_str);
return SendPacket (ret_str.str());
}
rnb_err_t
RNBRemote::HandlePacket_qShlibInfoAddr (const char *p)
{
if (m_ctx.HasValidProcessID())
{
nub_addr_t shlib_info_addr = DNBProcessGetSharedLibraryInfoAddress(m_ctx.ProcessID());
if (shlib_info_addr != INVALID_NUB_ADDRESS)
{
std::ostringstream ostrm;
ostrm << RAW_HEXBASE << shlib_info_addr;
return SendPacket (ostrm.str ());
}
}
return SendPacket ("E44");
}
rnb_err_t
RNBRemote::HandlePacket_qStepPacketSupported (const char *p)
{
// Normally the "s" packet is mandatory, yet in gdb when using ARM, they
// get around the need for this packet by implementing software single
// stepping from gdb. Current versions of debugserver do support the "s"
// packet, yet some older versions do not. We need a way to tell if this
// packet is supported so we can disable software single stepping in gdb
// for remote targets (so the "s" packet will get used).
return SendPacket("OK");
}
rnb_err_t
RNBRemote::HandlePacket_qThreadStopInfo (const char *p)
{
p += strlen ("qThreadStopInfo");
nub_thread_t tid = strtoul(p, 0, 16);
return SendStopReplyPacketForThread (tid);
}
rnb_err_t
RNBRemote::HandlePacket_qThreadInfo (const char *p)
{
// We allow gdb to connect to a server that hasn't started running
// the target yet. gdb still wants to ask questions about it and
// freaks out if it gets an error. So just return OK here.
nub_process_t pid = m_ctx.ProcessID();
if (pid == INVALID_NUB_PROCESS)
return SendPacket ("OK");
// Only "qfThreadInfo" and "qsThreadInfo" get into this function so
// we only need to check the second byte to tell which is which
if (p[1] == 'f')
{
nub_size_t numthreads = DNBProcessGetNumThreads (pid);
std::ostringstream ostrm;
ostrm << "m";
bool first = true;
for (nub_size_t i = 0; i < numthreads; ++i)
{
if (first)
first = false;
else
ostrm << ",";
nub_thread_t th = DNBProcessGetThreadAtIndex (pid, i);
ostrm << std::hex << th;
}
return SendPacket (ostrm.str ());
}
else
{
return SendPacket ("l");
}
}
rnb_err_t
RNBRemote::HandlePacket_qThreadExtraInfo (const char *p)
{
// We allow gdb to connect to a server that hasn't started running
// the target yet. gdb still wants to ask questions about it and
// freaks out if it gets an error. So just return OK here.
nub_process_t pid = m_ctx.ProcessID();
if (pid == INVALID_NUB_PROCESS)
return SendPacket ("OK");
/* This is supposed to return a string like 'Runnable' or
'Blocked on Mutex'.
The returned string is formatted like the "A" packet - a
sequence of letters encoded in as 2-hex-chars-per-letter. */
p += strlen ("qThreadExtraInfo");
if (*p++ != ',')
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Illformed qThreadExtraInfo packet");
errno = 0;
nub_thread_t tid = strtoul (p, NULL, 16);
if (errno != 0 && tid == 0)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid thread number in qThreadExtraInfo packet");
}
const char * threadInfo = DNBThreadGetInfo(pid, tid);
if (threadInfo != NULL && threadInfo[0])
{
return SendHexEncodedBytePacket(NULL, threadInfo, strlen(threadInfo), NULL);
}
else
{
// "OK" == 4f6b
// Return "OK" as a ASCII hex byte stream if things go wrong
return SendPacket ("4f6b");
}
return SendPacket ("");
}
rnb_err_t
RNBRemote::HandlePacket_qC (const char *p)
{
nub_process_t pid;
std::ostringstream rep;
// If we haven't run the process yet, we tell the debugger the
// pid is 0. That way it can know to tell use to run later on.
if (m_ctx.HasValidProcessID())
pid = m_ctx.ProcessID();
else
pid = 0;
rep << "QC" << std::hex << pid;
return SendPacket (rep.str());
}
rnb_err_t
RNBRemote::HandlePacket_qRegisterInfo (const char *p)
{
if (g_num_reg_entries == 0)
InitializeRegisters ();
p += strlen ("qRegisterInfo");
nub_size_t num_reg_sets = 0;
const DNBRegisterSetInfo *reg_set_info = DNBGetRegisterSetInfo (&num_reg_sets);
uint32_t reg_num = strtoul(p, 0, 16);
if (reg_num < g_num_reg_entries)
{
const register_map_entry_t *reg_entry = &g_reg_entries[reg_num];
std::ostringstream ostrm;
ostrm << "name:" << reg_entry->gdb_name << ';';
if (reg_entry->nub_info.name && ::strcmp (reg_entry->gdb_name, reg_entry->nub_info.name))
ostrm << "alt-name:" << reg_entry->nub_info.name << ';';
else if (reg_entry->nub_info.alt && ::strcmp (reg_entry->gdb_name, reg_entry->nub_info.alt))
ostrm << "alt-name:" << reg_entry->nub_info.alt << ';';
ostrm << "bitsize:" << std::dec << reg_entry->gdb_size * 8 << ';';
ostrm << "offset:" << std::dec << reg_entry->nub_info.offset << ';';
switch (reg_entry->nub_info.type)
{
case Uint: ostrm << "encoding:uint;"; break;
case Sint: ostrm << "encoding:sint;"; break;
case IEEE754: ostrm << "encoding:ieee754;"; break;
case Vector: ostrm << "encoding:vector;"; break;
}
switch (reg_entry->nub_info.format)
{
case Binary: ostrm << "format:binary;"; break;
case Decimal: ostrm << "format:decimal;"; break;
case Hex: ostrm << "format:hex;"; break;
case Float: ostrm << "format:float;"; break;
case VectorOfSInt8: ostrm << "format:vector-sint8;"; break;
case VectorOfUInt8: ostrm << "format:vector-uint8;"; break;
case VectorOfSInt16: ostrm << "format:vector-sint16;"; break;
case VectorOfUInt16: ostrm << "format:vector-uint16;"; break;
case VectorOfSInt32: ostrm << "format:vector-sint32;"; break;
case VectorOfUInt32: ostrm << "format:vector-uint32;"; break;
case VectorOfFloat32: ostrm << "format:vector-float32;"; break;
case VectorOfUInt128: ostrm << "format:vector-uint128;"; break;
};
if (reg_set_info && reg_entry->nub_info.set < num_reg_sets)
ostrm << "set:" << reg_set_info[reg_entry->nub_info.set].name << ';';
if (g_reg_entries != g_dynamic_register_map.data())
{
if (reg_entry->nub_info.reg_gdb != INVALID_NUB_REGNUM && reg_entry->nub_info.reg_gdb != reg_num)
{
printf("register %s is getting gdb reg_num of %u when the register info says %u\n",
reg_entry->gdb_name, reg_num, reg_entry->nub_info.reg_gdb);
}
}
if (reg_entry->nub_info.reg_gcc != INVALID_NUB_REGNUM)
ostrm << "gcc:" << std::dec << reg_entry->nub_info.reg_gcc << ';';
if (reg_entry->nub_info.reg_dwarf != INVALID_NUB_REGNUM)
ostrm << "dwarf:" << std::dec << reg_entry->nub_info.reg_dwarf << ';';
switch (reg_entry->nub_info.reg_generic)
{
case GENERIC_REGNUM_FP: ostrm << "generic:fp;"; break;
case GENERIC_REGNUM_PC: ostrm << "generic:pc;"; break;
case GENERIC_REGNUM_SP: ostrm << "generic:sp;"; break;
case GENERIC_REGNUM_RA: ostrm << "generic:ra;"; break;
case GENERIC_REGNUM_FLAGS: ostrm << "generic:flags;"; break;
default: break;
}
return SendPacket (ostrm.str ());
}
return SendPacket ("E45");
}
/* This expects a packet formatted like
QSetLogging:bitmask=LOG_ALL|LOG_RNB_REMOTE;
with the "QSetLogging:" already removed from the start. Maybe in the
future this packet will include other keyvalue pairs like
QSetLogging:bitmask=LOG_ALL;mode=asl;
*/
rnb_err_t
set_logging (const char *p)
{
int bitmask = 0;
while (p && *p != '\0')
{
if (strncmp (p, "bitmask=", sizeof ("bitmask=") - 1) == 0)
{
p += sizeof ("bitmask=") - 1;
while (p && *p != '\0' && *p != ';')
{
if (*p == '|')
p++;
if (strncmp (p, "LOG_VERBOSE", sizeof ("LOG_VERBOSE") - 1) == 0)
{
p += sizeof ("LOG_VERBOSE") - 1;
bitmask |= LOG_VERBOSE;
}
else if (strncmp (p, "LOG_PROCESS", sizeof ("LOG_PROCESS") - 1) == 0)
{
p += sizeof ("LOG_PROCESS") - 1;
bitmask |= LOG_PROCESS;
}
else if (strncmp (p, "LOG_THREAD", sizeof ("LOG_THREAD") - 1) == 0)
{
p += sizeof ("LOG_THREAD") - 1;
bitmask |= LOG_THREAD;
}
else if (strncmp (p, "LOG_EXCEPTIONS", sizeof ("LOG_EXCEPTIONS") - 1) == 0)
{
p += sizeof ("LOG_EXCEPTIONS") - 1;
bitmask |= LOG_EXCEPTIONS;
}
else if (strncmp (p, "LOG_SHLIB", sizeof ("LOG_SHLIB") - 1) == 0)
{
p += sizeof ("LOG_SHLIB") - 1;
bitmask |= LOG_SHLIB;
}
else if (strncmp (p, "LOG_MEMORY", sizeof ("LOG_MEMORY") - 1) == 0)
{
p += sizeof ("LOG_MEMORY") - 1;
bitmask |= LOG_MEMORY;
}
else if (strncmp (p, "LOG_MEMORY_DATA_SHORT", sizeof ("LOG_MEMORY_DATA_SHORT") - 1) == 0)
{
p += sizeof ("LOG_MEMORY_DATA_SHORT") - 1;
bitmask |= LOG_MEMORY_DATA_SHORT;
}
else if (strncmp (p, "LOG_MEMORY_DATA_LONG", sizeof ("LOG_MEMORY_DATA_LONG") - 1) == 0)
{
p += sizeof ("LOG_MEMORY_DATA_LONG") - 1;
bitmask |= LOG_MEMORY_DATA_LONG;
}
else if (strncmp (p, "LOG_BREAKPOINTS", sizeof ("LOG_BREAKPOINTS") - 1) == 0)
{
p += sizeof ("LOG_BREAKPOINTS") - 1;
bitmask |= LOG_BREAKPOINTS;
}
else if (strncmp (p, "LOG_ALL", sizeof ("LOG_ALL") - 1) == 0)
{
p += sizeof ("LOG_ALL") - 1;
bitmask |= LOG_ALL;
}
else if (strncmp (p, "LOG_EVENTS", sizeof ("LOG_EVENTS") - 1) == 0)
{
p += sizeof ("LOG_EVENTS") - 1;
bitmask |= LOG_EVENTS;
}
else if (strncmp (p, "LOG_DEFAULT", sizeof ("LOG_DEFAULT") - 1) == 0)
{
p += sizeof ("LOG_DEFAULT") - 1;
bitmask |= LOG_DEFAULT;
}
else if (strncmp (p, "LOG_NONE", sizeof ("LOG_NONE") - 1) == 0)
{
p += sizeof ("LOG_NONE") - 1;
bitmask = 0;
}
else if (strncmp (p, "LOG_RNB_MINIMAL", sizeof ("LOG_RNB_MINIMAL") - 1) == 0)
{
p += sizeof ("LOG_RNB_MINIMAL") - 1;
bitmask |= LOG_RNB_MINIMAL;
}
else if (strncmp (p, "LOG_RNB_MEDIUM", sizeof ("LOG_RNB_MEDIUM") - 1) == 0)
{
p += sizeof ("LOG_RNB_MEDIUM") - 1;
bitmask |= LOG_RNB_MEDIUM;
}
else if (strncmp (p, "LOG_RNB_MAX", sizeof ("LOG_RNB_MAX") - 1) == 0)
{
p += sizeof ("LOG_RNB_MAX") - 1;
bitmask |= LOG_RNB_MAX;
}
else if (strncmp (p, "LOG_RNB_COMM", sizeof ("LOG_RNB_COMM") - 1) == 0)
{
p += sizeof ("LOG_RNB_COMM") - 1;
bitmask |= LOG_RNB_COMM;
}
else if (strncmp (p, "LOG_RNB_REMOTE", sizeof ("LOG_RNB_REMOTE") - 1) == 0)
{
p += sizeof ("LOG_RNB_REMOTE") - 1;
bitmask |= LOG_RNB_REMOTE;
}
else if (strncmp (p, "LOG_RNB_EVENTS", sizeof ("LOG_RNB_EVENTS") - 1) == 0)
{
p += sizeof ("LOG_RNB_EVENTS") - 1;
bitmask |= LOG_RNB_EVENTS;
}
else if (strncmp (p, "LOG_RNB_PROC", sizeof ("LOG_RNB_PROC") - 1) == 0)
{
p += sizeof ("LOG_RNB_PROC") - 1;
bitmask |= LOG_RNB_PROC;
}
else if (strncmp (p, "LOG_RNB_PACKETS", sizeof ("LOG_RNB_PACKETS") - 1) == 0)
{
p += sizeof ("LOG_RNB_PACKETS") - 1;
bitmask |= LOG_RNB_PACKETS;
}
else if (strncmp (p, "LOG_RNB_ALL", sizeof ("LOG_RNB_ALL") - 1) == 0)
{
p += sizeof ("LOG_RNB_ALL") - 1;
bitmask |= LOG_RNB_ALL;
}
else if (strncmp (p, "LOG_RNB_DEFAULT", sizeof ("LOG_RNB_DEFAULT") - 1) == 0)
{
p += sizeof ("LOG_RNB_DEFAULT") - 1;
bitmask |= LOG_RNB_DEFAULT;
}
else if (strncmp (p, "LOG_RNB_NONE", sizeof ("LOG_RNB_NONE") - 1) == 0)
{
p += sizeof ("LOG_RNB_NONE") - 1;
bitmask = 0;
}
else
{
/* Unrecognized logging bit; ignore it. */
const char *c = strchr (p, '|');
if (c)
{
p = c;
}
else
{
c = strchr (p, ';');
if (c)
{
p = c;
}
else
{
// Improperly terminated word; just go to end of str
p = strchr (p, '\0');
}
}
}
}
// Did we get a properly formatted logging bitmask?
if (*p == ';')
{
// Enable DNB logging
DNBLogSetLogCallback(ASLLogCallback, NULL);
DNBLogSetLogMask (bitmask);
p++;
}
}
// We're not going to support logging to a file for now. All logging
// goes through ASL.
#if 0
else if (strncmp (p, "mode=", sizeof ("mode=") - 1) == 0)
{
p += sizeof ("mode=") - 1;
if (strncmp (p, "asl;", sizeof ("asl;") - 1) == 0)
{
DNBLogToASL ();
p += sizeof ("asl;") - 1;
}
else if (strncmp (p, "file;", sizeof ("file;") - 1) == 0)
{
DNBLogToFile ();
p += sizeof ("file;") - 1;
}
else
{
// Ignore unknown argument
const char *c = strchr (p, ';');
if (c)
p = c + 1;
else
p = strchr (p, '\0');
}
}
else if (strncmp (p, "filename=", sizeof ("filename=") - 1) == 0)
{
p += sizeof ("filename=") - 1;
const char *c = strchr (p, ';');
if (c == NULL)
{
c = strchr (p, '\0');
continue;
}
char *fn = (char *) alloca (c - p + 1);
strncpy (fn, p, c - p);
fn[c - p] = '\0';
// A file name of "asl" is special and is another way to indicate
// that logging should be done via ASL, not by file.
if (strcmp (fn, "asl") == 0)
{
DNBLogToASL ();
}
else
{
FILE *f = fopen (fn, "w");
if (f)
{
DNBLogSetLogFile (f);
DNBEnableLogging (f, DNBLogGetLogMask ());
DNBLogToFile ();
}
}
p = c + 1;
}
#endif /* #if 0 to enforce ASL logging only. */
else
{
// Ignore unknown argument
const char *c = strchr (p, ';');
if (c)
p = c + 1;
else
p = strchr (p, '\0');
}
}
return rnb_success;
}
rnb_err_t
RNBRemote::HandlePacket_QThreadSuffixSupported (const char *p)
{
m_thread_suffix_supported = true;
return SendPacket ("OK");
}
rnb_err_t
RNBRemote::HandlePacket_QStartNoAckMode (const char *p)
{
// Send the OK packet first so the correct checksum is appended...
rnb_err_t result = SendPacket ("OK");
m_noack_mode = true;
return result;
}
rnb_err_t
RNBRemote::HandlePacket_QSetLogging (const char *p)
{
p += sizeof ("QSetLogging:") - 1;
rnb_err_t result = set_logging (p);
if (result == rnb_success)
return SendPacket ("OK");
else
return SendPacket ("E35");
}
rnb_err_t
RNBRemote::HandlePacket_QSetDisableASLR (const char *p)
{
extern int g_disable_aslr;
p += sizeof ("QSetDisableASLR:") - 1;
switch (*p)
{
case '0': g_disable_aslr = 0; break;
case '1': g_disable_aslr = 1; break;
default:
return SendPacket ("E56");
}
return SendPacket ("OK");
}
rnb_err_t
RNBRemote::HandlePacket_QSetSTDIO (const char *p)
{
// Only set stdin/out/err if we don't already have a process
if (!m_ctx.HasValidProcessID())
{
bool success = false;
// Check the seventh character since the packet will be one of:
// QSetSTDIN
// QSetSTDOUT
// QSetSTDERR
StringExtractor packet(p);
packet.SetFilePos (7);
char ch = packet.GetChar();
while (packet.GetChar() != ':')
/* Do nothing. */;
switch (ch)
{
case 'I': // STDIN
packet.GetHexByteString (m_ctx.GetSTDIN());
success = !m_ctx.GetSTDIN().empty();
break;
case 'O': // STDOUT
packet.GetHexByteString (m_ctx.GetSTDOUT());
success = !m_ctx.GetSTDOUT().empty();
break;
case 'E': // STDERR
packet.GetHexByteString (m_ctx.GetSTDERR());
success = !m_ctx.GetSTDERR().empty();
break;
default:
break;
}
if (success)
return SendPacket ("OK");
return SendPacket ("E57");
}
return SendPacket ("E58");
}
rnb_err_t
RNBRemote::HandlePacket_QSetWorkingDir (const char *p)
{
// Only set the working directory if we don't already have a process
if (!m_ctx.HasValidProcessID())
{
StringExtractor packet(p += sizeof ("QSetWorkingDir:") - 1);
if (packet.GetHexByteString (m_ctx.GetWorkingDir()))
{
struct stat working_dir_stat;
if (::stat(m_ctx.GetWorkingDirPath(), &working_dir_stat) == -1)
{
m_ctx.GetWorkingDir().clear();
return SendPacket ("E61"); // Working directory doesn't exist...
}
else if ((working_dir_stat.st_mode & S_IFMT) == S_IFDIR)
{
return SendPacket ("OK");
}
else
{
m_ctx.GetWorkingDir().clear();
return SendPacket ("E62"); // Working directory isn't a directory...
}
}
return SendPacket ("E59"); // Invalid path
}
return SendPacket ("E60"); // Already had a process, too late to set working dir
}
rnb_err_t
RNBRemote::HandlePacket_QSetMaxPayloadSize (const char *p)
{
/* The number of characters in a packet payload that gdb is
prepared to accept. The packet-start char, packet-end char,
2 checksum chars and terminating null character are not included
in this size. */
p += sizeof ("QSetMaxPayloadSize:") - 1;
errno = 0;
uint32_t size = strtoul (p, NULL, 16);
if (errno != 0 && size == 0)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid length in QSetMaxPayloadSize packet");
}
m_max_payload_size = size;
return SendPacket ("OK");
}
rnb_err_t
RNBRemote::HandlePacket_QSetMaxPacketSize (const char *p)
{
/* This tells us the largest packet that gdb can handle.
i.e. the size of gdb's packet-reading buffer.
QSetMaxPayloadSize is preferred because it is less ambiguous. */
p += sizeof ("QSetMaxPacketSize:") - 1;
errno = 0;
uint32_t size = strtoul (p, NULL, 16);
if (errno != 0 && size == 0)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid length in QSetMaxPacketSize packet");
}
m_max_payload_size = size - 5;
return SendPacket ("OK");
}
rnb_err_t
RNBRemote::HandlePacket_QEnvironment (const char *p)
{
/* This sets the environment for the target program. The packet is of the form:
QEnvironment:VARIABLE=VALUE
*/
DNBLogThreadedIf (LOG_RNB_REMOTE, "%8u RNBRemote::%s Handling QEnvironment: \"%s\"",
(uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, p);
p += sizeof ("QEnvironment:") - 1;
RNBContext& ctx = Context();
ctx.PushEnvironment (p);
return SendPacket ("OK");
}
void
append_hex_value (std::ostream& ostrm, const uint8_t* buf, size_t buf_size, bool swap)
{
int i;
if (swap)
{
for (i = buf_size-1; i >= 0; i--)
ostrm << RAWHEX8(buf[i]);
}
else
{
for (i = 0; i < buf_size; i++)
ostrm << RAWHEX8(buf[i]);
}
}
void
register_value_in_hex_fixed_width (std::ostream& ostrm,
nub_process_t pid,
nub_thread_t tid,
const register_map_entry_t* reg)
{
if (reg != NULL)
{
DNBRegisterValue val;
if (DNBThreadGetRegisterValueByID (pid, tid, reg->nub_info.set, reg->nub_info.reg, &val))
{
append_hex_value (ostrm, val.value.v_uint8, reg->gdb_size, false);
}
else
{
// If we fail to read a regiser value, check if it has a default
// fail value. If it does, return this instead in case some of
// the registers are not available on the current system.
if (reg->gdb_size > 0)
{
if (reg->fail_value != NULL)
{
append_hex_value (ostrm, reg->fail_value, reg->gdb_size, false);
}
else
{
std::basic_string<uint8_t> zeros(reg->gdb_size, '\0');
append_hex_value (ostrm, zeros.data(), zeros.size(), false);
}
}
}
}
}
void
gdb_regnum_with_fixed_width_hex_register_value (std::ostream& ostrm,
nub_process_t pid,
nub_thread_t tid,
const register_map_entry_t* reg)
{
// Output the register number as 'NN:VVVVVVVV;' where NN is a 2 bytes HEX
// gdb register number, and VVVVVVVV is the correct number of hex bytes
// as ASCII for the register value.
if (reg != NULL)
{
ostrm << RAWHEX8(reg->gdb_regnum) << ':';
register_value_in_hex_fixed_width (ostrm, pid, tid, reg);
ostrm << ';';
}
}
rnb_err_t
RNBRemote::SendStopReplyPacketForThread (nub_thread_t tid)
{
const nub_process_t pid = m_ctx.ProcessID();
if (pid == INVALID_NUB_PROCESS)
return SendPacket("E50");
struct DNBThreadStopInfo tid_stop_info;
/* Fill the remaining space in this packet with as many registers
as we can stuff in there. */
if (DNBThreadGetStopReason (pid, tid, &tid_stop_info))
{
std::ostringstream ostrm;
// Output the T packet with the thread
ostrm << 'T';
int signum = tid_stop_info.details.signal.signo;
DNBLogThreadedIf (LOG_RNB_PROC, "%8d %s got signal signo = %u, exc_type = %u", (uint32_t)m_comm.Timer().ElapsedMicroSeconds(true), __FUNCTION__, tid_stop_info.details.signal.signo, tid_stop_info.details.exception.type);
// Translate any mach exceptions to gdb versions, unless they are
// common exceptions like a breakpoint or a soft signal.
switch (tid_stop_info.details.exception.type)
{
default: signum = 0; break;
case EXC_BREAKPOINT: signum = SIGTRAP; break;
case EXC_BAD_ACCESS: signum = TARGET_EXC_BAD_ACCESS; break;
case EXC_BAD_INSTRUCTION: signum = TARGET_EXC_BAD_INSTRUCTION; break;
case EXC_ARITHMETIC: signum = TARGET_EXC_ARITHMETIC; break;
case EXC_EMULATION: signum = TARGET_EXC_EMULATION; break;
case EXC_SOFTWARE:
if (tid_stop_info.details.exception.data_count == 2 &&
tid_stop_info.details.exception.data[0] == EXC_SOFT_SIGNAL)
signum = tid_stop_info.details.exception.data[1];
else
signum = TARGET_EXC_SOFTWARE;
break;
}
ostrm << RAWHEX8(signum & 0xff);
ostrm << std::hex << "thread:" << tid << ';';
const char *thread_name = DNBThreadGetName (pid, tid);
if (thread_name && thread_name[0])
{
size_t thread_name_len = strlen(thread_name);
if (::strcspn (thread_name, "$#+-;:") == thread_name_len)
ostrm << std::hex << "name:" << thread_name << ';';
else
{
// the thread name contains special chars, send as hex bytes
ostrm << std::hex << "hexname:";
uint8_t *u_thread_name = (uint8_t *)thread_name;
for (int i = 0; i < thread_name_len; i++)
ostrm << RAWHEX8(u_thread_name[i]);
ostrm << ';';
}
}
thread_identifier_info_data_t thread_ident_info;
if (DNBThreadGetIdentifierInfo (pid, tid, &thread_ident_info))
{
if (thread_ident_info.dispatch_qaddr != 0)
ostrm << std::hex << "qaddr:" << thread_ident_info.dispatch_qaddr << ';';
}
if (g_num_reg_entries == 0)
InitializeRegisters ();
DNBRegisterValue reg_value;
for (uint32_t reg = 0; reg < g_num_reg_entries; reg++)
{
if (g_reg_entries[reg].expedite)
{
if (!DNBThreadGetRegisterValueByID (pid, tid, g_reg_entries[reg].nub_info.set, g_reg_entries[reg].nub_info.reg, &reg_value))
continue;
gdb_regnum_with_fixed_width_hex_register_value (ostrm, pid, tid, &g_reg_entries[reg]);
}
}
if (tid_stop_info.details.exception.type)
{
ostrm << "metype:" << std::hex << tid_stop_info.details.exception.type << ";";
ostrm << "mecount:" << std::hex << tid_stop_info.details.exception.data_count << ";";
for (int i = 0; i < tid_stop_info.details.exception.data_count; ++i)
ostrm << "medata:" << std::hex << tid_stop_info.details.exception.data[i] << ";";
}
return SendPacket (ostrm.str ());
}
return SendPacket("E51");
}
/* `?'
The stop reply packet - tell gdb what the status of the inferior is.
Often called the questionmark_packet. */
rnb_err_t
RNBRemote::HandlePacket_last_signal (const char *unused)
{
if (!m_ctx.HasValidProcessID())
{
// Inferior is not yet specified/running
return SendPacket ("E02");
}
nub_process_t pid = m_ctx.ProcessID();
nub_state_t pid_state = DNBProcessGetState (pid);
switch (pid_state)
{
case eStateAttaching:
case eStateLaunching:
case eStateRunning:
case eStateStepping:
return rnb_success; // Ignore
case eStateSuspended:
case eStateStopped:
case eStateCrashed:
{
nub_thread_t tid = DNBProcessGetCurrentThread (pid);
// Make sure we set the current thread so g and p packets return
// the data the gdb will expect.
SetCurrentThread (tid);
SendStopReplyPacketForThread (tid);
}
break;
case eStateInvalid:
case eStateUnloaded:
case eStateExited:
{
char pid_exited_packet[16] = "";
int pid_status = 0;
// Process exited with exit status
if (!DNBProcessGetExitStatus(pid, &pid_status))
pid_status = 0;
if (pid_status)
{
if (WIFEXITED (pid_status))
snprintf (pid_exited_packet, sizeof(pid_exited_packet), "W%02x", WEXITSTATUS (pid_status));
else if (WIFSIGNALED (pid_status))
snprintf (pid_exited_packet, sizeof(pid_exited_packet), "X%02x", WEXITSTATUS (pid_status));
else if (WIFSTOPPED (pid_status))
snprintf (pid_exited_packet, sizeof(pid_exited_packet), "S%02x", WSTOPSIG (pid_status));
}
// If we have an empty exit packet, lets fill one in to be safe.
if (!pid_exited_packet[0])
{
strncpy (pid_exited_packet, "W00", sizeof(pid_exited_packet)-1);
pid_exited_packet[sizeof(pid_exited_packet)-1] = '\0';
}
return SendPacket (pid_exited_packet);
}
break;
}
return rnb_success;
}
rnb_err_t
RNBRemote::HandlePacket_M (const char *p)
{
if (p == NULL || p[0] == '\0' || strlen (p) < 3)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Too short M packet");
}
char *c;
p++;
errno = 0;
nub_addr_t addr = strtoull (p, &c, 16);
if (errno != 0 && addr == 0)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid address in M packet");
}
if (*c != ',')
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Comma sep missing in M packet");
}
/* Advance 'p' to the length part of the packet. */
p += (c - p) + 1;
errno = 0;
uint32_t length = strtoul (p, &c, 16);
if (errno != 0 && length == 0)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid length in M packet");
}
if (length == 0)
{
return SendPacket ("OK");
}
if (*c != ':')
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Missing colon in M packet");
}
/* Advance 'p' to the data part of the packet. */
p += (c - p) + 1;
int datalen = strlen (p);
if (datalen & 0x1)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Uneven # of hex chars for data in M packet");
}
if (datalen == 0)
{
return SendPacket ("OK");
}
uint8_t *buf = (uint8_t *) alloca (datalen / 2);
uint8_t *i = buf;
while (*p != '\0' && *(p + 1) != '\0')
{
char hexbuf[3];
hexbuf[0] = *p;
hexbuf[1] = *(p + 1);
hexbuf[2] = '\0';
errno = 0;
uint8_t byte = strtoul (hexbuf, NULL, 16);
if (errno != 0 && byte == 0)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid hex byte in M packet");
}
*i++ = byte;
p += 2;
}
nub_size_t wrote = DNBProcessMemoryWrite (m_ctx.ProcessID(), addr, length, buf);
if (wrote != length)
return SendPacket ("E09");
else
return SendPacket ("OK");
}
rnb_err_t
RNBRemote::HandlePacket_m (const char *p)
{
if (p == NULL || p[0] == '\0' || strlen (p) < 3)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Too short m packet");
}
char *c;
p++;
errno = 0;
nub_addr_t addr = strtoull (p, &c, 16);
if (errno != 0 && addr == 0)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid address in m packet");
}
if (*c != ',')
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Comma sep missing in m packet");
}
/* Advance 'p' to the length part of the packet. */
p += (c - p) + 1;
errno = 0;
uint32_t length = strtoul (p, NULL, 16);
if (errno != 0 && length == 0)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid length in m packet");
}
if (length == 0)
{
return SendPacket ("");
}
uint8_t buf[length];
int bytes_read = DNBProcessMemoryRead (m_ctx.ProcessID(), addr, length, buf);
if (bytes_read == 0)
{
return SendPacket ("E08");
}
// "The reply may contain fewer bytes than requested if the server was able
// to read only part of the region of memory."
length = bytes_read;
std::ostringstream ostrm;
for (int i = 0; i < length; i++)
ostrm << RAWHEX8(buf[i]);
return SendPacket (ostrm.str ());
}
rnb_err_t
RNBRemote::HandlePacket_X (const char *p)
{
if (p == NULL || p[0] == '\0' || strlen (p) < 3)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Too short X packet");
}
char *c;
p++;
errno = 0;
nub_addr_t addr = strtoull (p, &c, 16);
if (errno != 0 && addr == 0)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid address in X packet");
}
if (*c != ',')
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Comma sep missing in X packet");
}
/* Advance 'p' to the length part of the packet. */
p += (c - p) + 1;
errno = 0;
int length = strtoul (p, NULL, 16);
if (errno != 0 && length == 0)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid length in m packet");
}
// I think gdb sends a zero length write request to test whether this
// packet is accepted.
if (length == 0)
{
return SendPacket ("OK");
}
std::vector<uint8_t> data = decode_binary_data (c, -1);
std::vector<uint8_t>::const_iterator it;
uint8_t *buf = (uint8_t *) alloca (data.size ());
uint8_t *i = buf;
for (it = data.begin (); it != data.end (); ++it)
{
*i++ = *it;
}
nub_size_t wrote = DNBProcessMemoryWrite (m_ctx.ProcessID(), addr, data.size(), buf);
if (wrote != data.size ())
return SendPacket ("E08");
return SendPacket ("OK");
}
/* `g' -- read registers
Get the contents of the registers for the current thread,
send them to gdb.
Should the setting of the Hg packet determine which thread's registers
are returned? */
rnb_err_t
RNBRemote::HandlePacket_g (const char *p)
{
std::ostringstream ostrm;
if (!m_ctx.HasValidProcessID())
{
return SendPacket ("E11");
}
if (g_num_reg_entries == 0)
InitializeRegisters ();
nub_process_t pid = m_ctx.ProcessID ();
nub_thread_t tid = ExtractThreadIDFromThreadSuffix (p + 1);
if (tid == INVALID_NUB_THREAD)
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "No thread specified in p packet");
if (m_use_native_regs)
{
// Get the register context size first by calling with NULL buffer
nub_size_t reg_ctx_size = DNBThreadGetRegisterContext(pid, tid, NULL, 0);
if (reg_ctx_size)
{
// Now allocate enough space for the entire register context
std::vector<uint8_t> reg_ctx;
reg_ctx.resize(reg_ctx_size);
// Now read the register context
reg_ctx_size = DNBThreadGetRegisterContext(pid, tid, &reg_ctx[0], reg_ctx.size());
if (reg_ctx_size)
{
append_hex_value (ostrm, reg_ctx.data(), reg_ctx.size(), false);
return SendPacket (ostrm.str ());
}
}
}
for (uint32_t reg = 0; reg < g_num_reg_entries; reg++)
register_value_in_hex_fixed_width (ostrm, pid, tid, &g_reg_entries[reg]);
return SendPacket (ostrm.str ());
}
/* `G XXX...' -- write registers
How is the thread for these specified, beyond "the current thread"?
Does gdb actually use the Hg packet to set this? */
rnb_err_t
RNBRemote::HandlePacket_G (const char *p)
{
if (!m_ctx.HasValidProcessID())
{
return SendPacket ("E11");
}
if (g_num_reg_entries == 0)
InitializeRegisters ();
StringExtractor packet(p);
packet.SetFilePos(1); // Skip the 'G'
nub_process_t pid = m_ctx.ProcessID();
nub_thread_t tid = ExtractThreadIDFromThreadSuffix (p);
if (tid == INVALID_NUB_THREAD)
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "No thread specified in p packet");
if (m_use_native_regs)
{
// Get the register context size first by calling with NULL buffer
nub_size_t reg_ctx_size = DNBThreadGetRegisterContext(pid, tid, NULL, 0);
if (reg_ctx_size)
{
// Now allocate enough space for the entire register context
std::vector<uint8_t> reg_ctx;
reg_ctx.resize(reg_ctx_size);
if (packet.GetHexBytes (&reg_ctx[0], reg_ctx.size(), 0xcc) == reg_ctx.size())
{
// Now write the register context
reg_ctx_size = DNBThreadSetRegisterContext(pid, tid, reg_ctx.data(), reg_ctx.size());
if (reg_ctx_size == reg_ctx.size())
return SendPacket ("OK");
else
return SendPacket ("E55");
}
}
}
DNBRegisterValue reg_value;
for (uint32_t reg = 0; reg < g_num_reg_entries; reg++)
{
const register_map_entry_t *reg_entry = &g_reg_entries[reg];
reg_value.info = reg_entry->nub_info;
if (packet.GetHexBytes (reg_value.value.v_sint8, reg_entry->gdb_size, 0xcc) != reg_entry->gdb_size)
break;
if (!DNBThreadSetRegisterValueByID (pid, tid, reg_entry->nub_info.set, reg_entry->nub_info.reg, &reg_value))
return SendPacket ("E15");
}
return SendPacket ("OK");
}
static bool
RNBRemoteShouldCancelCallback (void *not_used)
{
RNBRemoteSP remoteSP(g_remoteSP);
if (remoteSP.get() != NULL)
{
RNBRemote* remote = remoteSP.get();
if (remote->Comm().IsConnected())
return false;
else
return true;
}
return true;
}
// FORMAT: _MXXXXXX,PPP
// XXXXXX: big endian hex chars
// PPP: permissions can be any combo of r w x chars
//
// RESPONSE: XXXXXX
// XXXXXX: hex address of the newly allocated memory
// EXX: error code
//
// EXAMPLES:
// _M123000,rw
// _M123000,rwx
// _M123000,xw
rnb_err_t
RNBRemote::HandlePacket_AllocateMemory (const char *p)
{
StringExtractor packet (p);
packet.SetFilePos(2); // Skip the "_M"
nub_addr_t size = packet.GetHexMaxU64 (StringExtractor::BigEndian, 0);
if (size != 0)
{
if (packet.GetChar() == ',')
{
uint32_t permissions = 0;
char ch;
bool success = true;
while (success && (ch = packet.GetChar()) != '\0')
{
switch (ch)
{
case 'r': permissions |= eMemoryPermissionsReadable; break;
case 'w': permissions |= eMemoryPermissionsWritable; break;
case 'x': permissions |= eMemoryPermissionsExecutable; break;
default: success = false; break;
}
}
if (success)
{
nub_addr_t addr = DNBProcessMemoryAllocate (m_ctx.ProcessID(), size, permissions);
if (addr != INVALID_NUB_ADDRESS)
{
std::ostringstream ostrm;
ostrm << RAW_HEXBASE << addr;
return SendPacket (ostrm.str ());
}
}
}
}
return SendPacket ("E53");
}
// FORMAT: _mXXXXXX
// XXXXXX: address that was previosly allocated
//
// RESPONSE: XXXXXX
// OK: address was deallocated
// EXX: error code
//
// EXAMPLES:
// _m123000
rnb_err_t
RNBRemote::HandlePacket_DeallocateMemory (const char *p)
{
StringExtractor packet (p);
packet.SetFilePos(2); // Skip the "_m"
nub_addr_t addr = packet.GetHexMaxU64 (StringExtractor::BigEndian, INVALID_NUB_ADDRESS);
if (addr != INVALID_NUB_ADDRESS)
{
if (DNBProcessMemoryDeallocate (m_ctx.ProcessID(), addr))
return SendPacket ("OK");
}
return SendPacket ("E54");
}
/*
vAttach;pid
Attach to a new process with the specified process ID. pid is a hexadecimal integer
identifying the process. If the stub is currently controlling a process, it is
killed. The attached process is stopped.This packet is only available in extended
mode (see extended mode).
Reply:
"ENN" for an error
"Any Stop Reply Packet" for success
*/
rnb_err_t
RNBRemote::HandlePacket_v (const char *p)
{
if (strcmp (p, "vCont;c") == 0)
{
// Simple continue
return RNBRemote::HandlePacket_c("c");
}
else if (strcmp (p, "vCont;s") == 0)
{
// Simple step
return RNBRemote::HandlePacket_s("s");
}
else if (strstr (p, "vCont") == p)
{
rnb_err_t rnb_err = rnb_success;
typedef struct
{
nub_thread_t tid;
char action;
int signal;
} vcont_action_t;
DNBThreadResumeActions thread_actions;
char *c = (char *)(p += strlen("vCont"));
char *c_end = c + strlen(c);
if (*c == '?')
return SendPacket ("vCont;c;C;s;S");
while (c < c_end && *c == ';')
{
++c; // Skip the semi-colon
DNBThreadResumeAction thread_action;
thread_action.tid = INVALID_NUB_THREAD;
thread_action.state = eStateInvalid;
thread_action.signal = 0;
thread_action.addr = INVALID_NUB_ADDRESS;
char action = *c++;
switch (action)
{
case 'C':
errno = 0;
thread_action.signal = strtoul (c, &c, 16);
if (errno != 0)
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse signal in vCont packet");
// Fall through to next case...
case 'c':
// Continue
thread_action.state = eStateRunning;
break;
case 'S':
errno = 0;
thread_action.signal = strtoul (c, &c, 16);
if (errno != 0)
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse signal in vCont packet");
// Fall through to next case...
case 's':
// Step
thread_action.state = eStateStepping;
break;
break;
default:
rnb_err = HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Unsupported action in vCont packet");
break;
}
if (*c == ':')
{
errno = 0;
thread_action.tid = strtoul (++c, &c, 16);
if (errno != 0)
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse thread number in vCont packet");
}
thread_actions.Append (thread_action);
}
// If a default action for all other threads wasn't mentioned
// then we should stop the threads
thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0);
DNBProcessResume(m_ctx.ProcessID(), thread_actions.GetFirst (), thread_actions.GetSize());
return rnb_success;
}
else if (strstr (p, "vAttach") == p)
{
nub_process_t attach_pid = INVALID_NUB_PROCESS;
char err_str[1024]={'\0'};
if (strstr (p, "vAttachWait;") == p)
{
p += strlen("vAttachWait;");
std::string attach_name;
while (*p != '\0')
{
char smallbuf[3];
smallbuf[0] = *p;
smallbuf[1] = *(p + 1);
smallbuf[2] = '\0';
errno = 0;
int ch = strtoul (smallbuf, NULL, 16);
if (errno != 0 && ch == 0)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "non-hex char in arg on 'vAttachWait' pkt");
}
attach_name.push_back(ch);
p += 2;
}
attach_pid = DNBProcessAttachWait(attach_name.c_str (), m_ctx.LaunchFlavor(), NULL, 1000, err_str, sizeof(err_str), RNBRemoteShouldCancelCallback);
}
else if (strstr (p, "vAttachName;") == p)
{
p += strlen("vAttachName;");
std::string attach_name;
while (*p != '\0')
{
char smallbuf[3];
smallbuf[0] = *p;
smallbuf[1] = *(p + 1);
smallbuf[2] = '\0';
errno = 0;
int ch = strtoul (smallbuf, NULL, 16);
if (errno != 0 && ch == 0)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "non-hex char in arg on 'vAttachWait' pkt");
}
attach_name.push_back(ch);
p += 2;
}
attach_pid = DNBProcessAttachByName (attach_name.c_str(), NULL, err_str, sizeof(err_str));
}
else if (strstr (p, "vAttach;") == p)
{
p += strlen("vAttach;");
char *end = NULL;
attach_pid = strtoul (p, &end, 16); // PID will be in hex, so use base 16 to decode
if (p != end && *end == '\0')
{
// Wait at most 30 second for attach
struct timespec attach_timeout_abstime;
DNBTimer::OffsetTimeOfDay(&attach_timeout_abstime, 30, 0);
attach_pid = DNBProcessAttach(attach_pid, &attach_timeout_abstime, err_str, sizeof(err_str));
}
}
else
return HandlePacket_UNIMPLEMENTED(p);
if (attach_pid != INVALID_NUB_PROCESS)
{
if (m_ctx.ProcessID() != attach_pid)
m_ctx.SetProcessID(attach_pid);
// Send a stop reply packet to indicate we successfully attached!
NotifyThatProcessStopped ();
return rnb_success;
}
else
{
m_ctx.LaunchStatus().SetError(-1, DNBError::Generic);
if (err_str[0])
m_ctx.LaunchStatus().SetErrorString(err_str);
else
m_ctx.LaunchStatus().SetErrorString("attach failed");
return SendPacket ("E01"); // E01 is our magic error value for attach failed.
}
}
// All other failures come through here
return HandlePacket_UNIMPLEMENTED(p);
}
/* `T XX' -- status of thread
Check if the specified thread is alive.
The thread number is in hex? */
rnb_err_t
RNBRemote::HandlePacket_T (const char *p)
{
p++;
if (p == NULL || *p == '\0')
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "No thread specified in T packet");
}
if (!m_ctx.HasValidProcessID())
{
return SendPacket ("E15");
}
errno = 0;
nub_thread_t tid = strtoul (p, NULL, 16);
if (errno != 0 && tid == 0)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse thread number in T packet");
}
nub_state_t state = DNBThreadGetState (m_ctx.ProcessID(), tid);
if (state == eStateInvalid || state == eStateExited || state == eStateCrashed)
{
return SendPacket ("E16");
}
return SendPacket ("OK");
}
rnb_err_t
RNBRemote::HandlePacket_z (const char *p)
{
if (p == NULL || *p == '\0')
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "No thread specified in z packet");
if (!m_ctx.HasValidProcessID())
return SendPacket ("E15");
char packet_cmd = *p++;
char break_type = *p++;
if (*p++ != ',')
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Comma separator missing in z packet");
char *c = NULL;
nub_process_t pid = m_ctx.ProcessID();
errno = 0;
nub_addr_t addr = strtoull (p, &c, 16);
if (errno != 0 && addr == 0)
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid address in z packet");
p = c;
if (*p++ != ',')
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Comma separator missing in z packet");
errno = 0;
uint32_t byte_size = strtoul (p, &c, 16);
if (errno != 0 && byte_size == 0)
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Invalid length in z packet");
if (packet_cmd == 'Z')
{
// set
switch (break_type)
{
case '0': // set software breakpoint
case '1': // set hardware breakpoint
{
// gdb can send multiple Z packets for the same address and
// these calls must be ref counted.
bool hardware = (break_type == '1');
// Check if we currently have a breakpoint already set at this address
BreakpointMapIter pos = m_breakpoints.find(addr);
if (pos != m_breakpoints.end())
{
// We do already have a breakpoint at this address, increment
// its reference count and return OK
pos->second.Retain();
return SendPacket ("OK");
}
else
{
// We do NOT already have a breakpoint at this address, So lets
// create one.
nub_break_t break_id = DNBBreakpointSet (pid, addr, byte_size, hardware);
if (break_id != INVALID_NUB_BREAK_ID)
{
// We successfully created a breakpoint, now lets full out
// a ref count structure with the breakID and add it to our
// map.
Breakpoint rnbBreakpoint(break_id);
m_breakpoints[addr] = rnbBreakpoint;
return SendPacket ("OK");
}
else
{
// We failed to set the software breakpoint
return SendPacket ("E09");
}
}
}
break;
case '2': // set write watchpoint
case '3': // set read watchpoint
case '4': // set access watchpoint
{
bool hardware = true;
uint32_t watch_flags = 0;
if (break_type == '2')
watch_flags = WATCH_TYPE_WRITE;
else if (break_type == '3')
watch_flags = WATCH_TYPE_READ;
else
watch_flags = WATCH_TYPE_READ | WATCH_TYPE_WRITE;
// Check if we currently have a watchpoint already set at this address
BreakpointMapIter pos = m_watchpoints.find(addr);
if (pos != m_watchpoints.end())
{
// We do already have a watchpoint at this address, increment
// its reference count and return OK
pos->second.Retain();
return SendPacket ("OK");
}
else
{
// We do NOT already have a breakpoint at this address, So lets
// create one.
nub_watch_t watch_id = DNBWatchpointSet (pid, addr, byte_size, watch_flags, hardware);
if (watch_id != INVALID_NUB_BREAK_ID)
{
// We successfully created a watchpoint, now lets full out
// a ref count structure with the watch_id and add it to our
// map.
Breakpoint rnbWatchpoint(watch_id);
m_watchpoints[addr] = rnbWatchpoint;
return SendPacket ("OK");
}
else
{
// We failed to set the watchpoint
return SendPacket ("E09");
}
}
}
break;
default:
break;
}
}
else if (packet_cmd == 'z')
{
// remove
switch (break_type)
{
case '0': // remove software breakpoint
case '1': // remove hardware breakpoint
{
// gdb can send multiple z packets for the same address and
// these calls must be ref counted.
BreakpointMapIter pos = m_breakpoints.find(addr);
if (pos != m_breakpoints.end())
{
// We currently have a breakpoint at address ADDR. Decrement
// its reference count, and it that count is now zero we
// can clear the breakpoint.
pos->second.Release();
if (pos->second.RefCount() == 0)
{
if (DNBBreakpointClear (pid, pos->second.BreakID()))
{
m_breakpoints.erase(pos);
return SendPacket ("OK");
}
else
{
return SendPacket ("E08");
}
}
else
{
// We still have references to this breakpoint don't
// delete it, just decrementing the reference count
// is enough.
return SendPacket ("OK");
}
}
else
{
// We don't know about any breakpoints at this address
return SendPacket ("E08");
}
}
break;
case '2': // remove write watchpoint
case '3': // remove read watchpoint
case '4': // remove access watchpoint
{
// gdb can send multiple z packets for the same address and
// these calls must be ref counted.
BreakpointMapIter pos = m_watchpoints.find(addr);
if (pos != m_watchpoints.end())
{
// We currently have a watchpoint at address ADDR. Decrement
// its reference count, and it that count is now zero we
// can clear the watchpoint.
pos->second.Release();
if (pos->second.RefCount() == 0)
{
if (DNBWatchpointClear (pid, pos->second.BreakID()))
{
m_watchpoints.erase(pos);
return SendPacket ("OK");
}
else
{
return SendPacket ("E08");
}
}
else
{
// We still have references to this watchpoint don't
// delete it, just decrementing the reference count
// is enough.
return SendPacket ("OK");
}
}
else
{
// We don't know about any watchpoints at this address
return SendPacket ("E08");
}
}
break;
default:
break;
}
}
return HandlePacket_UNIMPLEMENTED(p);
}
// Extract the thread number from the thread suffix that might be appended to
// thread specific packets. This will only be enabled if m_thread_suffix_supported
// is true.
nub_thread_t
RNBRemote::ExtractThreadIDFromThreadSuffix (const char *p)
{
if (m_thread_suffix_supported)
{
nub_thread_t tid = INVALID_NUB_THREAD;
if (p)
{
const char *tid_cstr = strstr (p, "thread:");
if (tid_cstr)
{
tid_cstr += strlen ("thread:");
tid = strtoul(tid_cstr, NULL, 16);
}
}
return tid;
}
return GetCurrentThread();
}
/* `p XX'
print the contents of register X */
rnb_err_t
RNBRemote::HandlePacket_p (const char *p)
{
if (g_num_reg_entries == 0)
InitializeRegisters ();
if (p == NULL || *p == '\0')
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "No thread specified in p packet");
}
if (!m_ctx.HasValidProcessID())
{
return SendPacket ("E15");
}
nub_process_t pid = m_ctx.ProcessID();
errno = 0;
char *tid_cstr = NULL;
uint32_t reg = strtoul (p + 1, &tid_cstr, 16);
if (errno != 0 && reg == 0)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse register number in p packet");
}
nub_thread_t tid = ExtractThreadIDFromThreadSuffix (tid_cstr);
if (tid == INVALID_NUB_THREAD)
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "No thread specified in p packet");
const register_map_entry_t *reg_entry;
if (reg < g_num_reg_entries)
reg_entry = &g_reg_entries[reg];
else
reg_entry = NULL;
std::ostringstream ostrm;
if (reg_entry == NULL)
{
DNBLogError("RNBRemote::HandlePacket_p(%s): unknown register number %u requested\n", p, reg);
ostrm << "00000000";
}
else if (reg_entry->nub_info.reg == -1)
{
if (reg_entry->gdb_size > 0)
{
if (reg_entry->fail_value != NULL)
{
append_hex_value(ostrm, reg_entry->fail_value, reg_entry->gdb_size, false);
}
else
{
std::basic_string<uint8_t> zeros(reg_entry->gdb_size, '\0');
append_hex_value(ostrm, zeros.data(), zeros.size(), false);
}
}
}
else
{
register_value_in_hex_fixed_width (ostrm, pid, tid, reg_entry);
}
return SendPacket (ostrm.str());
}
/* `Pnn=rrrrr'
Set register number n to value r.
n and r are hex strings. */
rnb_err_t
RNBRemote::HandlePacket_P (const char *p)
{
if (g_num_reg_entries == 0)
InitializeRegisters ();
if (p == NULL || *p == '\0')
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Empty P packet");
}
if (!m_ctx.HasValidProcessID())
{
return SendPacket ("E28");
}
nub_process_t pid = m_ctx.ProcessID();
StringExtractor packet (p);
const char cmd_char = packet.GetChar();
// Register ID is always in big endian
const uint32_t reg = packet.GetHexMaxU32 (false, UINT32_MAX);
const char equal_char = packet.GetChar();
if (cmd_char != 'P')
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Improperly formed P packet");
if (reg == UINT32_MAX)
return SendPacket ("E29");
if (equal_char != '=')
return SendPacket ("E30");
const register_map_entry_t *reg_entry;
if (reg >= g_num_reg_entries)
return SendPacket("E47");
reg_entry = &g_reg_entries[reg];
if (reg_entry->nub_info.set == -1 && reg_entry->nub_info.reg == -1)
{
DNBLogError("RNBRemote::HandlePacket_P(%s): unknown register number %u requested\n", p, reg);
return SendPacket("E48");
}
DNBRegisterValue reg_value;
reg_value.info = reg_entry->nub_info;
packet.GetHexBytes (reg_value.value.v_sint8, reg_entry->gdb_size, 0xcc);
nub_thread_t tid = ExtractThreadIDFromThreadSuffix (p);
if (tid == INVALID_NUB_THREAD)
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "No thread specified in p packet");
if (!DNBThreadSetRegisterValueByID (pid, tid, reg_entry->nub_info.set, reg_entry->nub_info.reg, &reg_value))
{
return SendPacket ("E32");
}
return SendPacket ("OK");
}
/* `c [addr]'
Continue, optionally from a specified address. */
rnb_err_t
RNBRemote::HandlePacket_c (const char *p)
{
const nub_process_t pid = m_ctx.ProcessID();
if (pid == INVALID_NUB_PROCESS)
return SendPacket ("E23");
DNBThreadResumeAction action = { INVALID_NUB_THREAD, eStateRunning, 0, INVALID_NUB_ADDRESS };
if (*(p + 1) != '\0')
{
action.tid = GetContinueThread();
errno = 0;
action.addr = strtoull (p + 1, NULL, 16);
if (errno != 0 && action.addr == 0)
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse address in c packet");
}
DNBThreadResumeActions thread_actions;
thread_actions.Append(action);
thread_actions.SetDefaultThreadActionIfNeeded(eStateRunning, 0);
if (!DNBProcessResume (pid, thread_actions.GetFirst(), thread_actions.GetSize()))
return SendPacket ("E25");
// Don't send an "OK" packet; response is the stopped/exited message.
return rnb_success;
}
/* `C sig [;addr]'
Resume with signal sig, optionally at address addr. */
rnb_err_t
RNBRemote::HandlePacket_C (const char *p)
{
const nub_process_t pid = m_ctx.ProcessID();
if (pid == INVALID_NUB_PROCESS)
return SendPacket ("E36");
DNBThreadResumeAction action = { INVALID_NUB_THREAD, eStateRunning, 0, INVALID_NUB_ADDRESS };
int process_signo = -1;
if (*(p + 1) != '\0')
{
action.tid = GetContinueThread();
char *end = NULL;
errno = 0;
process_signo = strtoul (p + 1, &end, 16);
if (errno != 0)
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse signal in C packet");
else if (*end == ';')
{
errno = 0;
action.addr = strtoull (end + 1, NULL, 16);
if (errno != 0 && action.addr == 0)
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse address in C packet");
}
}
DNBThreadResumeActions thread_actions;
thread_actions.Append (action);
thread_actions.SetDefaultThreadActionIfNeeded (eStateRunning, action.signal);
if (!DNBProcessSignal(pid, process_signo))
return SendPacket ("E52");
if (!DNBProcessResume (pid, thread_actions.GetFirst(), thread_actions.GetSize()))
return SendPacket ("E38");
/* Don't send an "OK" packet; response is the stopped/exited message. */
return rnb_success;
}
//----------------------------------------------------------------------
// 'D' packet
// Detach from gdb.
//----------------------------------------------------------------------
rnb_err_t
RNBRemote::HandlePacket_D (const char *p)
{
// We are not supposed to send a response for deatch.
//SendPacket ("OK");
if (m_ctx.HasValidProcessID())
DNBProcessDetach(m_ctx.ProcessID());
return rnb_success;
}
/* `k'
Kill the inferior process. */
rnb_err_t
RNBRemote::HandlePacket_k (const char *p)
{
// No response to should be sent to the kill packet
if (m_ctx.HasValidProcessID())
DNBProcessKill (m_ctx.ProcessID());
SendPacket ("W09");
return rnb_success;
}
rnb_err_t
RNBRemote::HandlePacket_stop_process (const char *p)
{
DNBProcessSignal (m_ctx.ProcessID(), SIGSTOP);
//DNBProcessSignal (m_ctx.ProcessID(), SIGINT);
// Do not send any response packet! Wait for the stop reply packet to naturally happen
return rnb_success;
}
/* `s'
Step the inferior process. */
rnb_err_t
RNBRemote::HandlePacket_s (const char *p)
{
const nub_process_t pid = m_ctx.ProcessID();
if (pid == INVALID_NUB_PROCESS)
return SendPacket ("E32");
// Hardware supported stepping not supported on arm
nub_thread_t tid = GetContinueThread ();
if (tid == 0 || tid == -1)
tid = GetCurrentThread();
if (tid == INVALID_NUB_THREAD)
return SendPacket ("E33");
DNBThreadResumeActions thread_actions;
thread_actions.AppendAction(tid, eStateStepping);
// Make all other threads stop when we are stepping
thread_actions.SetDefaultThreadActionIfNeeded (eStateStopped, 0);
if (!DNBProcessResume (pid, thread_actions.GetFirst(), thread_actions.GetSize()))
return SendPacket ("E49");
// Don't send an "OK" packet; response is the stopped/exited message.
return rnb_success;
}
/* `S sig [;addr]'
Step with signal sig, optionally at address addr. */
rnb_err_t
RNBRemote::HandlePacket_S (const char *p)
{
const nub_process_t pid = m_ctx.ProcessID();
if (pid == INVALID_NUB_PROCESS)
return SendPacket ("E36");
DNBThreadResumeAction action = { INVALID_NUB_THREAD, eStateStepping, 0, INVALID_NUB_ADDRESS };
if (*(p + 1) != '\0')
{
char *end = NULL;
errno = 0;
action.signal = strtoul (p + 1, &end, 16);
if (errno != 0)
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse signal in S packet");
else if (*end == ';')
{
errno = 0;
action.addr = strtoull (end + 1, NULL, 16);
if (errno != 0 && action.addr == 0)
{
return HandlePacket_ILLFORMED (__FILE__, __LINE__, p, "Could not parse address in S packet");
}
}
}
action.tid = GetContinueThread ();
if (action.tid == 0 || action.tid == -1)
return SendPacket ("E40");
nub_state_t tstate = DNBThreadGetState (pid, action.tid);
if (tstate == eStateInvalid || tstate == eStateExited)
return SendPacket ("E37");
DNBThreadResumeActions thread_actions;
thread_actions.Append (action);
// Make all other threads stop when we are stepping
thread_actions.SetDefaultThreadActionIfNeeded(eStateStopped, 0);
if (!DNBProcessResume (pid, thread_actions.GetFirst(), thread_actions.GetSize()))
return SendPacket ("E39");
// Don't send an "OK" packet; response is the stopped/exited message.
return rnb_success;
}
rnb_err_t
RNBRemote::HandlePacket_qHostInfo (const char *p)
{
std::ostringstream strm;
uint32_t cputype, is_64_bit_capable;
size_t len = sizeof(cputype);
bool promoted_to_64 = false;
if (::sysctlbyname("hw.cputype", &cputype, &len, NULL, 0) == 0)
{
len = sizeof (is_64_bit_capable);
if (::sysctlbyname("hw.cpu64bit_capable", &is_64_bit_capable, &len, NULL, 0) == 0)
{
if (is_64_bit_capable && ((cputype & CPU_ARCH_ABI64) == 0))
{
promoted_to_64 = true;
cputype |= CPU_ARCH_ABI64;
}
}
strm << "cputype:" << std::dec << cputype << ';';
}
uint32_t cpusubtype;
len = sizeof(cpusubtype);
if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
{
if (promoted_to_64 &&
cputype == CPU_TYPE_X86_64 &&
cpusubtype == CPU_SUBTYPE_486)
cpusubtype = CPU_SUBTYPE_X86_64_ALL;
strm << "cpusubtype:" << std::dec << cpusubtype << ';';
}
char ostype[64];
len = sizeof(ostype);
if (::sysctlbyname("kern.ostype", &ostype, &len, NULL, 0) == 0)
{
len = strlen(ostype);
std::transform (ostype, ostype + len, ostype, tolower);
strm << "ostype:" << std::dec << ostype << ';';
}
strm << "vendor:apple;";
#if defined (__LITTLE_ENDIAN__)
strm << "endian:little;";
#elif defined (__BIG_ENDIAN__)
strm << "endian:big;";
#elif defined (__PDP_ENDIAN__)
strm << "endian:pdp;";
#endif
if (promoted_to_64)
strm << "ptrsize:8;";
else
strm << "ptrsize:" << std::dec << sizeof(void *) << ';';
return SendPacket (strm.str());
}