llvm-project/llvm/lib/DebugInfo/DWARF/DWARFContext.cpp

1978 lines
73 KiB
C++

//===- DWARFContext.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h"
#include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAddr.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugArangeSet.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAranges.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugMacro.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugRnglists.h"
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/DebugInfo/DWARF/DWARFGdbIndex.h"
#include "llvm/DebugInfo/DWARF/DWARFSection.h"
#include "llvm/DebugInfo/DWARF/DWARFUnitIndex.h"
#include "llvm/DebugInfo/DWARF/DWARFVerifier.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Object/Decompressor.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/RelocationResolver.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdint>
#include <deque>
#include <map>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
using namespace dwarf;
using namespace object;
#define DEBUG_TYPE "dwarf"
using DWARFLineTable = DWARFDebugLine::LineTable;
using FileLineInfoKind = DILineInfoSpecifier::FileLineInfoKind;
using FunctionNameKind = DILineInfoSpecifier::FunctionNameKind;
DWARFContext::DWARFContext(std::unique_ptr<const DWARFObject> DObj,
std::string DWPName,
std::function<void(Error)> RecoverableErrorHandler,
std::function<void(Error)> WarningHandler)
: DIContext(CK_DWARF), DWPName(std::move(DWPName)),
RecoverableErrorHandler(RecoverableErrorHandler),
WarningHandler(WarningHandler), DObj(std::move(DObj)) {}
DWARFContext::~DWARFContext() = default;
/// Dump the UUID load command.
static void dumpUUID(raw_ostream &OS, const ObjectFile &Obj) {
auto *MachO = dyn_cast<MachOObjectFile>(&Obj);
if (!MachO)
return;
for (auto LC : MachO->load_commands()) {
raw_ostream::uuid_t UUID;
if (LC.C.cmd == MachO::LC_UUID) {
if (LC.C.cmdsize < sizeof(UUID) + sizeof(LC.C)) {
OS << "error: UUID load command is too short.\n";
return;
}
OS << "UUID: ";
memcpy(&UUID, LC.Ptr+sizeof(LC.C), sizeof(UUID));
OS.write_uuid(UUID);
Triple T = MachO->getArchTriple();
OS << " (" << T.getArchName() << ')';
OS << ' ' << MachO->getFileName() << '\n';
}
}
}
using ContributionCollection =
std::vector<Optional<StrOffsetsContributionDescriptor>>;
// Collect all the contributions to the string offsets table from all units,
// sort them by their starting offsets and remove duplicates.
static ContributionCollection
collectContributionData(DWARFContext::unit_iterator_range Units) {
ContributionCollection Contributions;
for (const auto &U : Units)
if (const auto &C = U->getStringOffsetsTableContribution())
Contributions.push_back(C);
// Sort the contributions so that any invalid ones are placed at
// the start of the contributions vector. This way they are reported
// first.
llvm::sort(Contributions,
[](const Optional<StrOffsetsContributionDescriptor> &L,
const Optional<StrOffsetsContributionDescriptor> &R) {
if (L && R)
return L->Base < R->Base;
return R.hasValue();
});
// Uniquify contributions, as it is possible that units (specifically
// type units in dwo or dwp files) share contributions. We don't want
// to report them more than once.
Contributions.erase(
std::unique(Contributions.begin(), Contributions.end(),
[](const Optional<StrOffsetsContributionDescriptor> &L,
const Optional<StrOffsetsContributionDescriptor> &R) {
if (L && R)
return L->Base == R->Base && L->Size == R->Size;
return false;
}),
Contributions.end());
return Contributions;
}
static void dumpDWARFv5StringOffsetsSection(
raw_ostream &OS, DIDumpOptions DumpOpts, StringRef SectionName,
const DWARFObject &Obj, const DWARFSection &StringOffsetsSection,
StringRef StringSection, DWARFContext::unit_iterator_range Units,
bool LittleEndian) {
auto Contributions = collectContributionData(Units);
DWARFDataExtractor StrOffsetExt(Obj, StringOffsetsSection, LittleEndian, 0);
DataExtractor StrData(StringSection, LittleEndian, 0);
uint64_t SectionSize = StringOffsetsSection.Data.size();
uint64_t Offset = 0;
for (auto &Contribution : Contributions) {
// Report an ill-formed contribution.
if (!Contribution) {
OS << "error: invalid contribution to string offsets table in section ."
<< SectionName << ".\n";
return;
}
dwarf::DwarfFormat Format = Contribution->getFormat();
uint16_t Version = Contribution->getVersion();
uint64_t ContributionHeader = Contribution->Base;
// In DWARF v5 there is a contribution header that immediately precedes
// the string offsets base (the location we have previously retrieved from
// the CU DIE's DW_AT_str_offsets attribute). The header is located either
// 8 or 16 bytes before the base, depending on the contribution's format.
if (Version >= 5)
ContributionHeader -= Format == DWARF32 ? 8 : 16;
// Detect overlapping contributions.
if (Offset > ContributionHeader) {
DumpOpts.RecoverableErrorHandler(createStringError(
errc::invalid_argument,
"overlapping contributions to string offsets table in section .%s.",
SectionName.data()));
}
// Report a gap in the table.
if (Offset < ContributionHeader) {
OS << format("0x%8.8" PRIx64 ": Gap, length = ", Offset);
OS << (ContributionHeader - Offset) << "\n";
}
OS << format("0x%8.8" PRIx64 ": ", ContributionHeader);
// In DWARF v5 the contribution size in the descriptor does not equal
// the originally encoded length (it does not contain the length of the
// version field and the padding, a total of 4 bytes). Add them back in
// for reporting.
OS << "Contribution size = " << (Contribution->Size + (Version < 5 ? 0 : 4))
<< ", Format = " << (Format == DWARF32 ? "DWARF32" : "DWARF64")
<< ", Version = " << Version << "\n";
Offset = Contribution->Base;
unsigned EntrySize = Contribution->getDwarfOffsetByteSize();
while (Offset - Contribution->Base < Contribution->Size) {
OS << format("0x%8.8" PRIx64 ": ", Offset);
uint64_t StringOffset =
StrOffsetExt.getRelocatedValue(EntrySize, &Offset);
OS << format("%8.8" PRIx64 " ", StringOffset);
const char *S = StrData.getCStr(&StringOffset);
if (S)
OS << format("\"%s\"", S);
OS << "\n";
}
}
// Report a gap at the end of the table.
if (Offset < SectionSize) {
OS << format("0x%8.8" PRIx64 ": Gap, length = ", Offset);
OS << (SectionSize - Offset) << "\n";
}
}
// Dump a DWARF string offsets section. This may be a DWARF v5 formatted
// string offsets section, where each compile or type unit contributes a
// number of entries (string offsets), with each contribution preceded by
// a header containing size and version number. Alternatively, it may be a
// monolithic series of string offsets, as generated by the pre-DWARF v5
// implementation of split DWARF.
static void dumpStringOffsetsSection(raw_ostream &OS, DIDumpOptions DumpOpts,
StringRef SectionName,
const DWARFObject &Obj,
const DWARFSection &StringOffsetsSection,
StringRef StringSection,
DWARFContext::unit_iterator_range Units,
bool LittleEndian, unsigned MaxVersion) {
// If we have at least one (compile or type) unit with DWARF v5 or greater,
// we assume that the section is formatted like a DWARF v5 string offsets
// section.
if (MaxVersion >= 5)
dumpDWARFv5StringOffsetsSection(OS, DumpOpts, SectionName, Obj,
StringOffsetsSection, StringSection, Units,
LittleEndian);
else {
DataExtractor strOffsetExt(StringOffsetsSection.Data, LittleEndian, 0);
uint64_t offset = 0;
uint64_t size = StringOffsetsSection.Data.size();
// Ensure that size is a multiple of the size of an entry.
if (size & ((uint64_t)(sizeof(uint32_t) - 1))) {
OS << "error: size of ." << SectionName << " is not a multiple of "
<< sizeof(uint32_t) << ".\n";
size &= -(uint64_t)sizeof(uint32_t);
}
DataExtractor StrData(StringSection, LittleEndian, 0);
while (offset < size) {
OS << format("0x%8.8" PRIx64 ": ", offset);
uint64_t StringOffset = strOffsetExt.getU32(&offset);
OS << format("%8.8" PRIx64 " ", StringOffset);
const char *S = StrData.getCStr(&StringOffset);
if (S)
OS << format("\"%s\"", S);
OS << "\n";
}
}
}
// Dump the .debug_addr section.
static void dumpAddrSection(raw_ostream &OS, DWARFDataExtractor &AddrData,
DIDumpOptions DumpOpts, uint16_t Version,
uint8_t AddrSize) {
uint64_t Offset = 0;
while (AddrData.isValidOffset(Offset)) {
DWARFDebugAddrTable AddrTable;
uint64_t TableOffset = Offset;
if (Error Err = AddrTable.extract(AddrData, &Offset, Version, AddrSize,
DumpOpts.WarningHandler)) {
DumpOpts.RecoverableErrorHandler(std::move(Err));
// Keep going after an error, if we can, assuming that the length field
// could be read. If it couldn't, stop reading the section.
if (auto TableLength = AddrTable.getFullLength()) {
Offset = TableOffset + *TableLength;
continue;
}
break;
}
AddrTable.dump(OS, DumpOpts);
}
}
// Dump the .debug_rnglists or .debug_rnglists.dwo section (DWARF v5).
static void dumpRnglistsSection(
raw_ostream &OS, DWARFDataExtractor &rnglistData,
llvm::function_ref<Optional<object::SectionedAddress>(uint32_t)>
LookupPooledAddress,
DIDumpOptions DumpOpts) {
uint64_t Offset = 0;
while (rnglistData.isValidOffset(Offset)) {
llvm::DWARFDebugRnglistTable Rnglists;
uint64_t TableOffset = Offset;
if (Error Err = Rnglists.extract(rnglistData, &Offset)) {
DumpOpts.RecoverableErrorHandler(std::move(Err));
uint64_t Length = Rnglists.length();
// Keep going after an error, if we can, assuming that the length field
// could be read. If it couldn't, stop reading the section.
if (Length == 0)
break;
Offset = TableOffset + Length;
} else {
Rnglists.dump(OS, LookupPooledAddress, DumpOpts);
}
}
}
std::unique_ptr<DWARFDebugMacro>
DWARFContext::parseMacroOrMacinfo(MacroSecType SectionType) {
auto Macro = std::make_unique<DWARFDebugMacro>();
auto ParseAndDump = [&](DWARFDataExtractor &Data, bool IsMacro) {
if (Error Err = Macro->parse(getStringExtractor(), Data, IsMacro)) {
RecoverableErrorHandler(std::move(Err));
Macro = nullptr;
}
};
switch (SectionType) {
case MacinfoSection: {
DWARFDataExtractor Data(DObj->getMacinfoSection(), isLittleEndian(), 0);
ParseAndDump(Data, /*IsMacro=*/false);
break;
}
case MacinfoDwoSection: {
DWARFDataExtractor Data(DObj->getMacinfoDWOSection(), isLittleEndian(), 0);
ParseAndDump(Data, /*IsMacro=*/false);
break;
}
case MacroSection: {
DWARFDataExtractor Data(*DObj, DObj->getMacroSection(), isLittleEndian(),
0);
ParseAndDump(Data, /*IsMacro=*/true);
break;
}
}
return Macro;
}
static void dumpLoclistsSection(raw_ostream &OS, DIDumpOptions DumpOpts,
DWARFDataExtractor Data,
const MCRegisterInfo *MRI,
const DWARFObject &Obj,
Optional<uint64_t> DumpOffset) {
uint64_t Offset = 0;
while (Data.isValidOffset(Offset)) {
DWARFListTableHeader Header(".debug_loclists", "locations");
if (Error E = Header.extract(Data, &Offset)) {
DumpOpts.RecoverableErrorHandler(std::move(E));
return;
}
Header.dump(OS, DumpOpts);
uint64_t EndOffset = Header.length() + Header.getHeaderOffset();
Data.setAddressSize(Header.getAddrSize());
DWARFDebugLoclists Loc(Data, Header.getVersion());
if (DumpOffset) {
if (DumpOffset >= Offset && DumpOffset < EndOffset) {
Offset = *DumpOffset;
Loc.dumpLocationList(&Offset, OS, /*BaseAddr=*/None, MRI, Obj, nullptr,
DumpOpts, /*Indent=*/0);
OS << "\n";
return;
}
} else {
Loc.dumpRange(Offset, EndOffset - Offset, OS, MRI, Obj, DumpOpts);
}
Offset = EndOffset;
}
}
void DWARFContext::dump(
raw_ostream &OS, DIDumpOptions DumpOpts,
std::array<Optional<uint64_t>, DIDT_ID_Count> DumpOffsets) {
uint64_t DumpType = DumpOpts.DumpType;
StringRef Extension = sys::path::extension(DObj->getFileName());
bool IsDWO = (Extension == ".dwo") || (Extension == ".dwp");
// Print UUID header.
const auto *ObjFile = DObj->getFile();
if (DumpType & DIDT_UUID)
dumpUUID(OS, *ObjFile);
// Print a header for each explicitly-requested section.
// Otherwise just print one for non-empty sections.
// Only print empty .dwo section headers when dumping a .dwo file.
bool Explicit = DumpType != DIDT_All && !IsDWO;
bool ExplicitDWO = Explicit && IsDWO;
auto shouldDump = [&](bool Explicit, const char *Name, unsigned ID,
StringRef Section) -> Optional<uint64_t> * {
unsigned Mask = 1U << ID;
bool Should = (DumpType & Mask) && (Explicit || !Section.empty());
if (!Should)
return nullptr;
OS << "\n" << Name << " contents:\n";
return &DumpOffsets[ID];
};
// Dump individual sections.
if (shouldDump(Explicit, ".debug_abbrev", DIDT_ID_DebugAbbrev,
DObj->getAbbrevSection()))
getDebugAbbrev()->dump(OS);
if (shouldDump(ExplicitDWO, ".debug_abbrev.dwo", DIDT_ID_DebugAbbrev,
DObj->getAbbrevDWOSection()))
getDebugAbbrevDWO()->dump(OS);
auto dumpDebugInfo = [&](const char *Name, unit_iterator_range Units) {
OS << '\n' << Name << " contents:\n";
if (auto DumpOffset = DumpOffsets[DIDT_ID_DebugInfo])
for (const auto &U : Units)
U->getDIEForOffset(DumpOffset.getValue())
.dump(OS, 0, DumpOpts.noImplicitRecursion());
else
for (const auto &U : Units)
U->dump(OS, DumpOpts);
};
if ((DumpType & DIDT_DebugInfo)) {
if (Explicit || getNumCompileUnits())
dumpDebugInfo(".debug_info", info_section_units());
if (ExplicitDWO || getNumDWOCompileUnits())
dumpDebugInfo(".debug_info.dwo", dwo_info_section_units());
}
auto dumpDebugType = [&](const char *Name, unit_iterator_range Units) {
OS << '\n' << Name << " contents:\n";
for (const auto &U : Units)
if (auto DumpOffset = DumpOffsets[DIDT_ID_DebugTypes])
U->getDIEForOffset(*DumpOffset)
.dump(OS, 0, DumpOpts.noImplicitRecursion());
else
U->dump(OS, DumpOpts);
};
if ((DumpType & DIDT_DebugTypes)) {
if (Explicit || getNumTypeUnits())
dumpDebugType(".debug_types", types_section_units());
if (ExplicitDWO || getNumDWOTypeUnits())
dumpDebugType(".debug_types.dwo", dwo_types_section_units());
}
DIDumpOptions LLDumpOpts = DumpOpts;
if (LLDumpOpts.Verbose)
LLDumpOpts.DisplayRawContents = true;
if (const auto *Off = shouldDump(Explicit, ".debug_loc", DIDT_ID_DebugLoc,
DObj->getLocSection().Data)) {
getDebugLoc()->dump(OS, getRegisterInfo(), *DObj, LLDumpOpts, *Off);
}
if (const auto *Off =
shouldDump(Explicit, ".debug_loclists", DIDT_ID_DebugLoclists,
DObj->getLoclistsSection().Data)) {
DWARFDataExtractor Data(*DObj, DObj->getLoclistsSection(), isLittleEndian(),
0);
dumpLoclistsSection(OS, LLDumpOpts, Data, getRegisterInfo(), *DObj, *Off);
}
if (const auto *Off =
shouldDump(ExplicitDWO, ".debug_loclists.dwo", DIDT_ID_DebugLoclists,
DObj->getLoclistsDWOSection().Data)) {
DWARFDataExtractor Data(*DObj, DObj->getLoclistsDWOSection(),
isLittleEndian(), 0);
dumpLoclistsSection(OS, LLDumpOpts, Data, getRegisterInfo(), *DObj, *Off);
}
if (const auto *Off =
shouldDump(ExplicitDWO, ".debug_loc.dwo", DIDT_ID_DebugLoc,
DObj->getLocDWOSection().Data)) {
DWARFDataExtractor Data(*DObj, DObj->getLocDWOSection(), isLittleEndian(),
4);
DWARFDebugLoclists Loc(Data, /*Version=*/4);
if (*Off) {
uint64_t Offset = **Off;
Loc.dumpLocationList(&Offset, OS,
/*BaseAddr=*/None, getRegisterInfo(), *DObj, nullptr,
LLDumpOpts, /*Indent=*/0);
OS << "\n";
} else {
Loc.dumpRange(0, Data.getData().size(), OS, getRegisterInfo(), *DObj,
LLDumpOpts);
}
}
if (const auto *Off = shouldDump(Explicit, ".debug_frame", DIDT_ID_DebugFrame,
DObj->getFrameSection().Data))
getDebugFrame()->dump(OS, getRegisterInfo(), *Off);
if (const auto *Off = shouldDump(Explicit, ".eh_frame", DIDT_ID_DebugFrame,
DObj->getEHFrameSection().Data))
getEHFrame()->dump(OS, getRegisterInfo(), *Off);
if (shouldDump(Explicit, ".debug_macro", DIDT_ID_DebugMacro,
DObj->getMacroSection().Data)) {
if (auto Macro = getDebugMacro())
Macro->dump(OS);
}
if (shouldDump(Explicit, ".debug_macinfo", DIDT_ID_DebugMacro,
DObj->getMacinfoSection())) {
if (auto Macinfo = getDebugMacinfo())
Macinfo->dump(OS);
}
if (shouldDump(Explicit, ".debug_macinfo.dwo", DIDT_ID_DebugMacro,
DObj->getMacinfoDWOSection())) {
if (auto MacinfoDWO = getDebugMacinfoDWO())
MacinfoDWO->dump(OS);
}
if (shouldDump(Explicit, ".debug_aranges", DIDT_ID_DebugAranges,
DObj->getArangesSection())) {
uint64_t offset = 0;
DWARFDataExtractor arangesData(DObj->getArangesSection(), isLittleEndian(),
0);
DWARFDebugArangeSet set;
while (arangesData.isValidOffset(offset)) {
if (Error E = set.extract(arangesData, &offset)) {
RecoverableErrorHandler(std::move(E));
break;
}
set.dump(OS);
}
}
auto DumpLineSection = [&](DWARFDebugLine::SectionParser Parser,
DIDumpOptions DumpOpts,
Optional<uint64_t> DumpOffset) {
while (!Parser.done()) {
if (DumpOffset && Parser.getOffset() != *DumpOffset) {
Parser.skip(DumpOpts.WarningHandler, DumpOpts.WarningHandler);
continue;
}
OS << "debug_line[" << format("0x%8.8" PRIx64, Parser.getOffset())
<< "]\n";
OS.flush();
if (DumpOpts.Verbose) {
Parser.parseNext(DumpOpts.WarningHandler, DumpOpts.WarningHandler, &OS);
} else {
DWARFDebugLine::LineTable LineTable =
Parser.parseNext(DumpOpts.WarningHandler, DumpOpts.WarningHandler);
LineTable.dump(OS, DumpOpts);
}
OS.flush();
}
};
if (const auto *Off = shouldDump(Explicit, ".debug_line", DIDT_ID_DebugLine,
DObj->getLineSection().Data)) {
DWARFDataExtractor LineData(*DObj, DObj->getLineSection(), isLittleEndian(),
0);
DWARFDebugLine::SectionParser Parser(LineData, *this, compile_units(),
type_units());
DumpLineSection(Parser, DumpOpts, *Off);
}
if (const auto *Off =
shouldDump(ExplicitDWO, ".debug_line.dwo", DIDT_ID_DebugLine,
DObj->getLineDWOSection().Data)) {
DWARFDataExtractor LineData(*DObj, DObj->getLineDWOSection(),
isLittleEndian(), 0);
DWARFDebugLine::SectionParser Parser(LineData, *this, dwo_compile_units(),
dwo_type_units());
DumpLineSection(Parser, DumpOpts, *Off);
}
if (shouldDump(Explicit, ".debug_cu_index", DIDT_ID_DebugCUIndex,
DObj->getCUIndexSection())) {
getCUIndex().dump(OS);
}
if (shouldDump(Explicit, ".debug_tu_index", DIDT_ID_DebugTUIndex,
DObj->getTUIndexSection())) {
getTUIndex().dump(OS);
}
if (shouldDump(Explicit, ".debug_str", DIDT_ID_DebugStr,
DObj->getStrSection())) {
DataExtractor strData(DObj->getStrSection(), isLittleEndian(), 0);
uint64_t offset = 0;
uint64_t strOffset = 0;
while (const char *s = strData.getCStr(&offset)) {
OS << format("0x%8.8" PRIx64 ": \"%s\"\n", strOffset, s);
strOffset = offset;
}
}
if (shouldDump(ExplicitDWO, ".debug_str.dwo", DIDT_ID_DebugStr,
DObj->getStrDWOSection())) {
DataExtractor strDWOData(DObj->getStrDWOSection(), isLittleEndian(), 0);
uint64_t offset = 0;
uint64_t strDWOOffset = 0;
while (const char *s = strDWOData.getCStr(&offset)) {
OS << format("0x%8.8" PRIx64 ": \"%s\"\n", strDWOOffset, s);
strDWOOffset = offset;
}
}
if (shouldDump(Explicit, ".debug_line_str", DIDT_ID_DebugLineStr,
DObj->getLineStrSection())) {
DataExtractor strData(DObj->getLineStrSection(), isLittleEndian(), 0);
uint64_t offset = 0;
uint64_t strOffset = 0;
while (const char *s = strData.getCStr(&offset)) {
OS << format("0x%8.8" PRIx64 ": \"", strOffset);
OS.write_escaped(s);
OS << "\"\n";
strOffset = offset;
}
}
if (shouldDump(Explicit, ".debug_addr", DIDT_ID_DebugAddr,
DObj->getAddrSection().Data)) {
DWARFDataExtractor AddrData(*DObj, DObj->getAddrSection(),
isLittleEndian(), 0);
dumpAddrSection(OS, AddrData, DumpOpts, getMaxVersion(), getCUAddrSize());
}
if (shouldDump(Explicit, ".debug_ranges", DIDT_ID_DebugRanges,
DObj->getRangesSection().Data)) {
uint8_t savedAddressByteSize = getCUAddrSize();
DWARFDataExtractor rangesData(*DObj, DObj->getRangesSection(),
isLittleEndian(), savedAddressByteSize);
uint64_t offset = 0;
DWARFDebugRangeList rangeList;
while (rangesData.isValidOffset(offset)) {
if (Error E = rangeList.extract(rangesData, &offset)) {
DumpOpts.RecoverableErrorHandler(std::move(E));
break;
}
rangeList.dump(OS);
}
}
auto LookupPooledAddress = [&](uint32_t Index) -> Optional<SectionedAddress> {
const auto &CUs = compile_units();
auto I = CUs.begin();
if (I == CUs.end())
return None;
return (*I)->getAddrOffsetSectionItem(Index);
};
if (shouldDump(Explicit, ".debug_rnglists", DIDT_ID_DebugRnglists,
DObj->getRnglistsSection().Data)) {
DWARFDataExtractor RnglistData(*DObj, DObj->getRnglistsSection(),
isLittleEndian(), 0);
dumpRnglistsSection(OS, RnglistData, LookupPooledAddress, DumpOpts);
}
if (shouldDump(ExplicitDWO, ".debug_rnglists.dwo", DIDT_ID_DebugRnglists,
DObj->getRnglistsDWOSection().Data)) {
DWARFDataExtractor RnglistData(*DObj, DObj->getRnglistsDWOSection(),
isLittleEndian(), 0);
dumpRnglistsSection(OS, RnglistData, LookupPooledAddress, DumpOpts);
}
if (shouldDump(Explicit, ".debug_pubnames", DIDT_ID_DebugPubnames,
DObj->getPubnamesSection().Data))
DWARFDebugPubTable(*DObj, DObj->getPubnamesSection(), isLittleEndian(), false)
.dump(OS);
if (shouldDump(Explicit, ".debug_pubtypes", DIDT_ID_DebugPubtypes,
DObj->getPubtypesSection().Data))
DWARFDebugPubTable(*DObj, DObj->getPubtypesSection(), isLittleEndian(), false)
.dump(OS);
if (shouldDump(Explicit, ".debug_gnu_pubnames", DIDT_ID_DebugGnuPubnames,
DObj->getGnuPubnamesSection().Data))
DWARFDebugPubTable(*DObj, DObj->getGnuPubnamesSection(), isLittleEndian(),
true /* GnuStyle */)
.dump(OS);
if (shouldDump(Explicit, ".debug_gnu_pubtypes", DIDT_ID_DebugGnuPubtypes,
DObj->getGnuPubtypesSection().Data))
DWARFDebugPubTable(*DObj, DObj->getGnuPubtypesSection(), isLittleEndian(),
true /* GnuStyle */)
.dump(OS);
if (shouldDump(Explicit, ".debug_str_offsets", DIDT_ID_DebugStrOffsets,
DObj->getStrOffsetsSection().Data))
dumpStringOffsetsSection(OS, DumpOpts, "debug_str_offsets", *DObj,
DObj->getStrOffsetsSection(),
DObj->getStrSection(), normal_units(),
isLittleEndian(), getMaxVersion());
if (shouldDump(ExplicitDWO, ".debug_str_offsets.dwo", DIDT_ID_DebugStrOffsets,
DObj->getStrOffsetsDWOSection().Data))
dumpStringOffsetsSection(OS, DumpOpts, "debug_str_offsets.dwo", *DObj,
DObj->getStrOffsetsDWOSection(),
DObj->getStrDWOSection(), dwo_units(),
isLittleEndian(), getMaxDWOVersion());
if (shouldDump(Explicit, ".gdb_index", DIDT_ID_GdbIndex,
DObj->getGdbIndexSection())) {
getGdbIndex().dump(OS);
}
if (shouldDump(Explicit, ".apple_names", DIDT_ID_AppleNames,
DObj->getAppleNamesSection().Data))
getAppleNames().dump(OS);
if (shouldDump(Explicit, ".apple_types", DIDT_ID_AppleTypes,
DObj->getAppleTypesSection().Data))
getAppleTypes().dump(OS);
if (shouldDump(Explicit, ".apple_namespaces", DIDT_ID_AppleNamespaces,
DObj->getAppleNamespacesSection().Data))
getAppleNamespaces().dump(OS);
if (shouldDump(Explicit, ".apple_objc", DIDT_ID_AppleObjC,
DObj->getAppleObjCSection().Data))
getAppleObjC().dump(OS);
if (shouldDump(Explicit, ".debug_names", DIDT_ID_DebugNames,
DObj->getNamesSection().Data))
getDebugNames().dump(OS);
}
DWARFCompileUnit *DWARFContext::getDWOCompileUnitForHash(uint64_t Hash) {
parseDWOUnits(LazyParse);
if (const auto &CUI = getCUIndex()) {
if (const auto *R = CUI.getFromHash(Hash))
return dyn_cast_or_null<DWARFCompileUnit>(
DWOUnits.getUnitForIndexEntry(*R));
return nullptr;
}
// If there's no index, just search through the CUs in the DWO - there's
// probably only one unless this is something like LTO - though an in-process
// built/cached lookup table could be used in that case to improve repeated
// lookups of different CUs in the DWO.
for (const auto &DWOCU : dwo_compile_units()) {
// Might not have parsed DWO ID yet.
if (!DWOCU->getDWOId()) {
if (Optional<uint64_t> DWOId =
toUnsigned(DWOCU->getUnitDIE().find(DW_AT_GNU_dwo_id)))
DWOCU->setDWOId(*DWOId);
else
// No DWO ID?
continue;
}
if (DWOCU->getDWOId() == Hash)
return dyn_cast<DWARFCompileUnit>(DWOCU.get());
}
return nullptr;
}
DWARFDie DWARFContext::getDIEForOffset(uint64_t Offset) {
parseNormalUnits();
if (auto *CU = NormalUnits.getUnitForOffset(Offset))
return CU->getDIEForOffset(Offset);
return DWARFDie();
}
bool DWARFContext::verify(raw_ostream &OS, DIDumpOptions DumpOpts) {
bool Success = true;
DWARFVerifier verifier(OS, *this, DumpOpts);
Success &= verifier.handleDebugAbbrev();
if (DumpOpts.DumpType & DIDT_DebugInfo)
Success &= verifier.handleDebugInfo();
if (DumpOpts.DumpType & DIDT_DebugLine)
Success &= verifier.handleDebugLine();
Success &= verifier.handleAccelTables();
return Success;
}
const DWARFUnitIndex &DWARFContext::getCUIndex() {
if (CUIndex)
return *CUIndex;
DataExtractor CUIndexData(DObj->getCUIndexSection(), isLittleEndian(), 0);
CUIndex = std::make_unique<DWARFUnitIndex>(DW_SECT_INFO);
CUIndex->parse(CUIndexData);
return *CUIndex;
}
const DWARFUnitIndex &DWARFContext::getTUIndex() {
if (TUIndex)
return *TUIndex;
DataExtractor TUIndexData(DObj->getTUIndexSection(), isLittleEndian(), 0);
TUIndex = std::make_unique<DWARFUnitIndex>(DW_SECT_EXT_TYPES);
TUIndex->parse(TUIndexData);
return *TUIndex;
}
DWARFGdbIndex &DWARFContext::getGdbIndex() {
if (GdbIndex)
return *GdbIndex;
DataExtractor GdbIndexData(DObj->getGdbIndexSection(), true /*LE*/, 0);
GdbIndex = std::make_unique<DWARFGdbIndex>();
GdbIndex->parse(GdbIndexData);
return *GdbIndex;
}
const DWARFDebugAbbrev *DWARFContext::getDebugAbbrev() {
if (Abbrev)
return Abbrev.get();
DataExtractor abbrData(DObj->getAbbrevSection(), isLittleEndian(), 0);
Abbrev.reset(new DWARFDebugAbbrev());
Abbrev->extract(abbrData);
return Abbrev.get();
}
const DWARFDebugAbbrev *DWARFContext::getDebugAbbrevDWO() {
if (AbbrevDWO)
return AbbrevDWO.get();
DataExtractor abbrData(DObj->getAbbrevDWOSection(), isLittleEndian(), 0);
AbbrevDWO.reset(new DWARFDebugAbbrev());
AbbrevDWO->extract(abbrData);
return AbbrevDWO.get();
}
const DWARFDebugLoc *DWARFContext::getDebugLoc() {
if (Loc)
return Loc.get();
// Assume all units have the same address byte size.
auto LocData =
getNumCompileUnits()
? DWARFDataExtractor(*DObj, DObj->getLocSection(), isLittleEndian(),
getUnitAtIndex(0)->getAddressByteSize())
: DWARFDataExtractor("", isLittleEndian(), 0);
Loc.reset(new DWARFDebugLoc(std::move(LocData)));
return Loc.get();
}
const DWARFDebugAranges *DWARFContext::getDebugAranges() {
if (Aranges)
return Aranges.get();
Aranges.reset(new DWARFDebugAranges());
Aranges->generate(this);
return Aranges.get();
}
const DWARFDebugFrame *DWARFContext::getDebugFrame() {
if (DebugFrame)
return DebugFrame.get();
// There's a "bug" in the DWARFv3 standard with respect to the target address
// size within debug frame sections. While DWARF is supposed to be independent
// of its container, FDEs have fields with size being "target address size",
// which isn't specified in DWARF in general. It's only specified for CUs, but
// .eh_frame can appear without a .debug_info section. Follow the example of
// other tools (libdwarf) and extract this from the container (ObjectFile
// provides this information). This problem is fixed in DWARFv4
// See this dwarf-discuss discussion for more details:
// http://lists.dwarfstd.org/htdig.cgi/dwarf-discuss-dwarfstd.org/2011-December/001173.html
DWARFDataExtractor debugFrameData(*DObj, DObj->getFrameSection(),
isLittleEndian(), DObj->getAddressSize());
DebugFrame.reset(new DWARFDebugFrame(getArch(), false /* IsEH */));
DebugFrame->parse(debugFrameData);
return DebugFrame.get();
}
const DWARFDebugFrame *DWARFContext::getEHFrame() {
if (EHFrame)
return EHFrame.get();
DWARFDataExtractor debugFrameData(*DObj, DObj->getEHFrameSection(),
isLittleEndian(), DObj->getAddressSize());
DebugFrame.reset(new DWARFDebugFrame(getArch(), true /* IsEH */));
DebugFrame->parse(debugFrameData);
return DebugFrame.get();
}
const DWARFDebugMacro *DWARFContext::getDebugMacro() {
if (!Macro)
Macro = parseMacroOrMacinfo(MacroSection);
return Macro.get();
}
const DWARFDebugMacro *DWARFContext::getDebugMacinfo() {
if (!Macinfo)
Macinfo = parseMacroOrMacinfo(MacinfoSection);
return Macinfo.get();
}
const DWARFDebugMacro *DWARFContext::getDebugMacinfoDWO() {
if (!MacinfoDWO)
MacinfoDWO = parseMacroOrMacinfo(MacinfoDwoSection);
return MacinfoDWO.get();
}
template <typename T>
static T &getAccelTable(std::unique_ptr<T> &Cache, const DWARFObject &Obj,
const DWARFSection &Section, StringRef StringSection,
bool IsLittleEndian) {
if (Cache)
return *Cache;
DWARFDataExtractor AccelSection(Obj, Section, IsLittleEndian, 0);
DataExtractor StrData(StringSection, IsLittleEndian, 0);
Cache.reset(new T(AccelSection, StrData));
if (Error E = Cache->extract())
llvm::consumeError(std::move(E));
return *Cache;
}
const DWARFDebugNames &DWARFContext::getDebugNames() {
return getAccelTable(Names, *DObj, DObj->getNamesSection(),
DObj->getStrSection(), isLittleEndian());
}
const AppleAcceleratorTable &DWARFContext::getAppleNames() {
return getAccelTable(AppleNames, *DObj, DObj->getAppleNamesSection(),
DObj->getStrSection(), isLittleEndian());
}
const AppleAcceleratorTable &DWARFContext::getAppleTypes() {
return getAccelTable(AppleTypes, *DObj, DObj->getAppleTypesSection(),
DObj->getStrSection(), isLittleEndian());
}
const AppleAcceleratorTable &DWARFContext::getAppleNamespaces() {
return getAccelTable(AppleNamespaces, *DObj,
DObj->getAppleNamespacesSection(),
DObj->getStrSection(), isLittleEndian());
}
const AppleAcceleratorTable &DWARFContext::getAppleObjC() {
return getAccelTable(AppleObjC, *DObj, DObj->getAppleObjCSection(),
DObj->getStrSection(), isLittleEndian());
}
const DWARFDebugLine::LineTable *
DWARFContext::getLineTableForUnit(DWARFUnit *U) {
Expected<const DWARFDebugLine::LineTable *> ExpectedLineTable =
getLineTableForUnit(U, WarningHandler);
if (!ExpectedLineTable) {
WarningHandler(ExpectedLineTable.takeError());
return nullptr;
}
return *ExpectedLineTable;
}
Expected<const DWARFDebugLine::LineTable *> DWARFContext::getLineTableForUnit(
DWARFUnit *U, function_ref<void(Error)> RecoverableErrorHandler) {
if (!Line)
Line.reset(new DWARFDebugLine);
auto UnitDIE = U->getUnitDIE();
if (!UnitDIE)
return nullptr;
auto Offset = toSectionOffset(UnitDIE.find(DW_AT_stmt_list));
if (!Offset)
return nullptr; // No line table for this compile unit.
uint64_t stmtOffset = *Offset + U->getLineTableOffset();
// See if the line table is cached.
if (const DWARFLineTable *lt = Line->getLineTable(stmtOffset))
return lt;
// Make sure the offset is good before we try to parse.
if (stmtOffset >= U->getLineSection().Data.size())
return nullptr;
// We have to parse it first.
DWARFDataExtractor lineData(*DObj, U->getLineSection(), isLittleEndian(),
U->getAddressByteSize());
return Line->getOrParseLineTable(lineData, stmtOffset, *this, U,
RecoverableErrorHandler);
}
void DWARFContext::parseNormalUnits() {
if (!NormalUnits.empty())
return;
DObj->forEachInfoSections([&](const DWARFSection &S) {
NormalUnits.addUnitsForSection(*this, S, DW_SECT_INFO);
});
NormalUnits.finishedInfoUnits();
DObj->forEachTypesSections([&](const DWARFSection &S) {
NormalUnits.addUnitsForSection(*this, S, DW_SECT_EXT_TYPES);
});
}
void DWARFContext::parseDWOUnits(bool Lazy) {
if (!DWOUnits.empty())
return;
DObj->forEachInfoDWOSections([&](const DWARFSection &S) {
DWOUnits.addUnitsForDWOSection(*this, S, DW_SECT_INFO, Lazy);
});
DWOUnits.finishedInfoUnits();
DObj->forEachTypesDWOSections([&](const DWARFSection &S) {
DWOUnits.addUnitsForDWOSection(*this, S, DW_SECT_EXT_TYPES, Lazy);
});
}
DWARFCompileUnit *DWARFContext::getCompileUnitForOffset(uint64_t Offset) {
parseNormalUnits();
return dyn_cast_or_null<DWARFCompileUnit>(
NormalUnits.getUnitForOffset(Offset));
}
DWARFCompileUnit *DWARFContext::getCompileUnitForAddress(uint64_t Address) {
// First, get the offset of the compile unit.
uint64_t CUOffset = getDebugAranges()->findAddress(Address);
// Retrieve the compile unit.
return getCompileUnitForOffset(CUOffset);
}
DWARFContext::DIEsForAddress DWARFContext::getDIEsForAddress(uint64_t Address) {
DIEsForAddress Result;
DWARFCompileUnit *CU = getCompileUnitForAddress(Address);
if (!CU)
return Result;
Result.CompileUnit = CU;
Result.FunctionDIE = CU->getSubroutineForAddress(Address);
std::vector<DWARFDie> Worklist;
Worklist.push_back(Result.FunctionDIE);
while (!Worklist.empty()) {
DWARFDie DIE = Worklist.back();
Worklist.pop_back();
if (!DIE.isValid())
continue;
if (DIE.getTag() == DW_TAG_lexical_block &&
DIE.addressRangeContainsAddress(Address)) {
Result.BlockDIE = DIE;
break;
}
for (auto Child : DIE)
Worklist.push_back(Child);
}
return Result;
}
/// TODO: change input parameter from "uint64_t Address"
/// into "SectionedAddress Address"
static bool getFunctionNameAndStartLineForAddress(DWARFCompileUnit *CU,
uint64_t Address,
FunctionNameKind Kind,
std::string &FunctionName,
uint32_t &StartLine) {
// The address may correspond to instruction in some inlined function,
// so we have to build the chain of inlined functions and take the
// name of the topmost function in it.
SmallVector<DWARFDie, 4> InlinedChain;
CU->getInlinedChainForAddress(Address, InlinedChain);
if (InlinedChain.empty())
return false;
const DWARFDie &DIE = InlinedChain[0];
bool FoundResult = false;
const char *Name = nullptr;
if (Kind != FunctionNameKind::None && (Name = DIE.getSubroutineName(Kind))) {
FunctionName = Name;
FoundResult = true;
}
if (auto DeclLineResult = DIE.getDeclLine()) {
StartLine = DeclLineResult;
FoundResult = true;
}
return FoundResult;
}
static Optional<uint64_t> getTypeSize(DWARFDie Type, uint64_t PointerSize) {
if (auto SizeAttr = Type.find(DW_AT_byte_size))
if (Optional<uint64_t> Size = SizeAttr->getAsUnsignedConstant())
return Size;
switch (Type.getTag()) {
case DW_TAG_pointer_type:
case DW_TAG_reference_type:
case DW_TAG_rvalue_reference_type:
return PointerSize;
case DW_TAG_ptr_to_member_type: {
if (DWARFDie BaseType = Type.getAttributeValueAsReferencedDie(DW_AT_type))
if (BaseType.getTag() == DW_TAG_subroutine_type)
return 2 * PointerSize;
return PointerSize;
}
case DW_TAG_const_type:
case DW_TAG_volatile_type:
case DW_TAG_restrict_type:
case DW_TAG_typedef: {
if (DWARFDie BaseType = Type.getAttributeValueAsReferencedDie(DW_AT_type))
return getTypeSize(BaseType, PointerSize);
break;
}
case DW_TAG_array_type: {
DWARFDie BaseType = Type.getAttributeValueAsReferencedDie(DW_AT_type);
if (!BaseType)
return Optional<uint64_t>();
Optional<uint64_t> BaseSize = getTypeSize(BaseType, PointerSize);
if (!BaseSize)
return Optional<uint64_t>();
uint64_t Size = *BaseSize;
for (DWARFDie Child : Type) {
if (Child.getTag() != DW_TAG_subrange_type)
continue;
if (auto ElemCountAttr = Child.find(DW_AT_count))
if (Optional<uint64_t> ElemCount =
ElemCountAttr->getAsUnsignedConstant())
Size *= *ElemCount;
if (auto UpperBoundAttr = Child.find(DW_AT_upper_bound))
if (Optional<int64_t> UpperBound =
UpperBoundAttr->getAsSignedConstant()) {
int64_t LowerBound = 0;
if (auto LowerBoundAttr = Child.find(DW_AT_lower_bound))
LowerBound = LowerBoundAttr->getAsSignedConstant().getValueOr(0);
Size *= *UpperBound - LowerBound + 1;
}
}
return Size;
}
default:
break;
}
return Optional<uint64_t>();
}
static Optional<int64_t>
getExpressionFrameOffset(ArrayRef<uint8_t> Expr,
Optional<unsigned> FrameBaseReg) {
if (!Expr.empty() &&
(Expr[0] == DW_OP_fbreg ||
(FrameBaseReg && Expr[0] == DW_OP_breg0 + *FrameBaseReg))) {
unsigned Count;
int64_t Offset = decodeSLEB128(Expr.data() + 1, &Count, Expr.end());
// A single DW_OP_fbreg or DW_OP_breg.
if (Expr.size() == Count + 1)
return Offset;
// Same + DW_OP_deref (Fortran arrays look like this).
if (Expr.size() == Count + 2 && Expr[Count + 1] == DW_OP_deref)
return Offset;
// Fallthrough. Do not accept ex. (DW_OP_breg W29, DW_OP_stack_value)
}
return None;
}
void DWARFContext::addLocalsForDie(DWARFCompileUnit *CU, DWARFDie Subprogram,
DWARFDie Die, std::vector<DILocal> &Result) {
if (Die.getTag() == DW_TAG_variable ||
Die.getTag() == DW_TAG_formal_parameter) {
DILocal Local;
if (const char *Name = Subprogram.getSubroutineName(DINameKind::ShortName))
Local.FunctionName = Name;
Optional<unsigned> FrameBaseReg;
if (auto FrameBase = Subprogram.find(DW_AT_frame_base))
if (Optional<ArrayRef<uint8_t>> Expr = FrameBase->getAsBlock())
if (!Expr->empty() && (*Expr)[0] >= DW_OP_reg0 &&
(*Expr)[0] <= DW_OP_reg31) {
FrameBaseReg = (*Expr)[0] - DW_OP_reg0;
}
if (Expected<std::vector<DWARFLocationExpression>> Loc =
Die.getLocations(DW_AT_location)) {
for (const auto &Entry : *Loc) {
if (Optional<int64_t> FrameOffset =
getExpressionFrameOffset(Entry.Expr, FrameBaseReg)) {
Local.FrameOffset = *FrameOffset;
break;
}
}
} else {
// FIXME: missing DW_AT_location is OK here, but other errors should be
// reported to the user.
consumeError(Loc.takeError());
}
if (auto TagOffsetAttr = Die.find(DW_AT_LLVM_tag_offset))
Local.TagOffset = TagOffsetAttr->getAsUnsignedConstant();
if (auto Origin =
Die.getAttributeValueAsReferencedDie(DW_AT_abstract_origin))
Die = Origin;
if (auto NameAttr = Die.find(DW_AT_name))
if (Optional<const char *> Name = NameAttr->getAsCString())
Local.Name = *Name;
if (auto Type = Die.getAttributeValueAsReferencedDie(DW_AT_type))
Local.Size = getTypeSize(Type, getCUAddrSize());
if (auto DeclFileAttr = Die.find(DW_AT_decl_file)) {
if (const auto *LT = CU->getContext().getLineTableForUnit(CU))
LT->getFileNameByIndex(
DeclFileAttr->getAsUnsignedConstant().getValue(),
CU->getCompilationDir(),
DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath,
Local.DeclFile);
}
if (auto DeclLineAttr = Die.find(DW_AT_decl_line))
Local.DeclLine = DeclLineAttr->getAsUnsignedConstant().getValue();
Result.push_back(Local);
return;
}
if (Die.getTag() == DW_TAG_inlined_subroutine)
if (auto Origin =
Die.getAttributeValueAsReferencedDie(DW_AT_abstract_origin))
Subprogram = Origin;
for (auto Child : Die)
addLocalsForDie(CU, Subprogram, Child, Result);
}
std::vector<DILocal>
DWARFContext::getLocalsForAddress(object::SectionedAddress Address) {
std::vector<DILocal> Result;
DWARFCompileUnit *CU = getCompileUnitForAddress(Address.Address);
if (!CU)
return Result;
DWARFDie Subprogram = CU->getSubroutineForAddress(Address.Address);
if (Subprogram.isValid())
addLocalsForDie(CU, Subprogram, Subprogram, Result);
return Result;
}
DILineInfo DWARFContext::getLineInfoForAddress(object::SectionedAddress Address,
DILineInfoSpecifier Spec) {
DILineInfo Result;
DWARFCompileUnit *CU = getCompileUnitForAddress(Address.Address);
if (!CU)
return Result;
getFunctionNameAndStartLineForAddress(CU, Address.Address, Spec.FNKind,
Result.FunctionName, Result.StartLine);
if (Spec.FLIKind != FileLineInfoKind::None) {
if (const DWARFLineTable *LineTable = getLineTableForUnit(CU)) {
LineTable->getFileLineInfoForAddress(
{Address.Address, Address.SectionIndex}, CU->getCompilationDir(),
Spec.FLIKind, Result);
}
}
return Result;
}
DILineInfoTable DWARFContext::getLineInfoForAddressRange(
object::SectionedAddress Address, uint64_t Size, DILineInfoSpecifier Spec) {
DILineInfoTable Lines;
DWARFCompileUnit *CU = getCompileUnitForAddress(Address.Address);
if (!CU)
return Lines;
uint32_t StartLine = 0;
std::string FunctionName(DILineInfo::BadString);
getFunctionNameAndStartLineForAddress(CU, Address.Address, Spec.FNKind,
FunctionName, StartLine);
// If the Specifier says we don't need FileLineInfo, just
// return the top-most function at the starting address.
if (Spec.FLIKind == FileLineInfoKind::None) {
DILineInfo Result;
Result.FunctionName = FunctionName;
Result.StartLine = StartLine;
Lines.push_back(std::make_pair(Address.Address, Result));
return Lines;
}
const DWARFLineTable *LineTable = getLineTableForUnit(CU);
// Get the index of row we're looking for in the line table.
std::vector<uint32_t> RowVector;
if (!LineTable->lookupAddressRange({Address.Address, Address.SectionIndex},
Size, RowVector)) {
return Lines;
}
for (uint32_t RowIndex : RowVector) {
// Take file number and line/column from the row.
const DWARFDebugLine::Row &Row = LineTable->Rows[RowIndex];
DILineInfo Result;
LineTable->getFileNameByIndex(Row.File, CU->getCompilationDir(),
Spec.FLIKind, Result.FileName);
Result.FunctionName = FunctionName;
Result.Line = Row.Line;
Result.Column = Row.Column;
Result.StartLine = StartLine;
Lines.push_back(std::make_pair(Row.Address.Address, Result));
}
return Lines;
}
DIInliningInfo
DWARFContext::getInliningInfoForAddress(object::SectionedAddress Address,
DILineInfoSpecifier Spec) {
DIInliningInfo InliningInfo;
DWARFCompileUnit *CU = getCompileUnitForAddress(Address.Address);
if (!CU)
return InliningInfo;
const DWARFLineTable *LineTable = nullptr;
SmallVector<DWARFDie, 4> InlinedChain;
CU->getInlinedChainForAddress(Address.Address, InlinedChain);
if (InlinedChain.size() == 0) {
// If there is no DIE for address (e.g. it is in unavailable .dwo file),
// try to at least get file/line info from symbol table.
if (Spec.FLIKind != FileLineInfoKind::None) {
DILineInfo Frame;
LineTable = getLineTableForUnit(CU);
if (LineTable && LineTable->getFileLineInfoForAddress(
{Address.Address, Address.SectionIndex},
CU->getCompilationDir(), Spec.FLIKind, Frame))
InliningInfo.addFrame(Frame);
}
return InliningInfo;
}
uint32_t CallFile = 0, CallLine = 0, CallColumn = 0, CallDiscriminator = 0;
for (uint32_t i = 0, n = InlinedChain.size(); i != n; i++) {
DWARFDie &FunctionDIE = InlinedChain[i];
DILineInfo Frame;
// Get function name if necessary.
if (const char *Name = FunctionDIE.getSubroutineName(Spec.FNKind))
Frame.FunctionName = Name;
if (auto DeclLineResult = FunctionDIE.getDeclLine())
Frame.StartLine = DeclLineResult;
if (Spec.FLIKind != FileLineInfoKind::None) {
if (i == 0) {
// For the topmost frame, initialize the line table of this
// compile unit and fetch file/line info from it.
LineTable = getLineTableForUnit(CU);
// For the topmost routine, get file/line info from line table.
if (LineTable)
LineTable->getFileLineInfoForAddress(
{Address.Address, Address.SectionIndex}, CU->getCompilationDir(),
Spec.FLIKind, Frame);
} else {
// Otherwise, use call file, call line and call column from
// previous DIE in inlined chain.
if (LineTable)
LineTable->getFileNameByIndex(CallFile, CU->getCompilationDir(),
Spec.FLIKind, Frame.FileName);
Frame.Line = CallLine;
Frame.Column = CallColumn;
Frame.Discriminator = CallDiscriminator;
}
// Get call file/line/column of a current DIE.
if (i + 1 < n) {
FunctionDIE.getCallerFrame(CallFile, CallLine, CallColumn,
CallDiscriminator);
}
}
InliningInfo.addFrame(Frame);
}
return InliningInfo;
}
std::shared_ptr<DWARFContext>
DWARFContext::getDWOContext(StringRef AbsolutePath) {
if (auto S = DWP.lock()) {
DWARFContext *Ctxt = S->Context.get();
return std::shared_ptr<DWARFContext>(std::move(S), Ctxt);
}
std::weak_ptr<DWOFile> *Entry = &DWOFiles[AbsolutePath];
if (auto S = Entry->lock()) {
DWARFContext *Ctxt = S->Context.get();
return std::shared_ptr<DWARFContext>(std::move(S), Ctxt);
}
Expected<OwningBinary<ObjectFile>> Obj = [&] {
if (!CheckedForDWP) {
SmallString<128> DWPName;
auto Obj = object::ObjectFile::createObjectFile(
this->DWPName.empty()
? (DObj->getFileName() + ".dwp").toStringRef(DWPName)
: StringRef(this->DWPName));
if (Obj) {
Entry = &DWP;
return Obj;
} else {
CheckedForDWP = true;
// TODO: Should this error be handled (maybe in a high verbosity mode)
// before falling back to .dwo files?
consumeError(Obj.takeError());
}
}
return object::ObjectFile::createObjectFile(AbsolutePath);
}();
if (!Obj) {
// TODO: Actually report errors helpfully.
consumeError(Obj.takeError());
return nullptr;
}
auto S = std::make_shared<DWOFile>();
S->File = std::move(Obj.get());
S->Context = DWARFContext::create(*S->File.getBinary());
*Entry = S;
auto *Ctxt = S->Context.get();
return std::shared_ptr<DWARFContext>(std::move(S), Ctxt);
}
static Error createError(const Twine &Reason, llvm::Error E) {
return make_error<StringError>(Reason + toString(std::move(E)),
inconvertibleErrorCode());
}
/// SymInfo contains information about symbol: it's address
/// and section index which is -1LL for absolute symbols.
struct SymInfo {
uint64_t Address;
uint64_t SectionIndex;
};
/// Returns the address of symbol relocation used against and a section index.
/// Used for futher relocations computation. Symbol's section load address is
static Expected<SymInfo> getSymbolInfo(const object::ObjectFile &Obj,
const RelocationRef &Reloc,
const LoadedObjectInfo *L,
std::map<SymbolRef, SymInfo> &Cache) {
SymInfo Ret = {0, (uint64_t)-1LL};
object::section_iterator RSec = Obj.section_end();
object::symbol_iterator Sym = Reloc.getSymbol();
std::map<SymbolRef, SymInfo>::iterator CacheIt = Cache.end();
// First calculate the address of the symbol or section as it appears
// in the object file
if (Sym != Obj.symbol_end()) {
bool New;
std::tie(CacheIt, New) = Cache.insert({*Sym, {0, 0}});
if (!New)
return CacheIt->second;
Expected<uint64_t> SymAddrOrErr = Sym->getAddress();
if (!SymAddrOrErr)
return createError("failed to compute symbol address: ",
SymAddrOrErr.takeError());
// Also remember what section this symbol is in for later
auto SectOrErr = Sym->getSection();
if (!SectOrErr)
return createError("failed to get symbol section: ",
SectOrErr.takeError());
RSec = *SectOrErr;
Ret.Address = *SymAddrOrErr;
} else if (auto *MObj = dyn_cast<MachOObjectFile>(&Obj)) {
RSec = MObj->getRelocationSection(Reloc.getRawDataRefImpl());
Ret.Address = RSec->getAddress();
}
if (RSec != Obj.section_end())
Ret.SectionIndex = RSec->getIndex();
// If we are given load addresses for the sections, we need to adjust:
// SymAddr = (Address of Symbol Or Section in File) -
// (Address of Section in File) +
// (Load Address of Section)
// RSec is now either the section being targeted or the section
// containing the symbol being targeted. In either case,
// we need to perform the same computation.
if (L && RSec != Obj.section_end())
if (uint64_t SectionLoadAddress = L->getSectionLoadAddress(*RSec))
Ret.Address += SectionLoadAddress - RSec->getAddress();
if (CacheIt != Cache.end())
CacheIt->second = Ret;
return Ret;
}
static bool isRelocScattered(const object::ObjectFile &Obj,
const RelocationRef &Reloc) {
const MachOObjectFile *MachObj = dyn_cast<MachOObjectFile>(&Obj);
if (!MachObj)
return false;
// MachO also has relocations that point to sections and
// scattered relocations.
auto RelocInfo = MachObj->getRelocation(Reloc.getRawDataRefImpl());
return MachObj->isRelocationScattered(RelocInfo);
}
namespace {
struct DWARFSectionMap final : public DWARFSection {
RelocAddrMap Relocs;
};
class DWARFObjInMemory final : public DWARFObject {
bool IsLittleEndian;
uint8_t AddressSize;
StringRef FileName;
const object::ObjectFile *Obj = nullptr;
std::vector<SectionName> SectionNames;
using InfoSectionMap = MapVector<object::SectionRef, DWARFSectionMap,
std::map<object::SectionRef, unsigned>>;
InfoSectionMap InfoSections;
InfoSectionMap TypesSections;
InfoSectionMap InfoDWOSections;
InfoSectionMap TypesDWOSections;
DWARFSectionMap LocSection;
DWARFSectionMap LoclistsSection;
DWARFSectionMap LoclistsDWOSection;
DWARFSectionMap LineSection;
DWARFSectionMap RangesSection;
DWARFSectionMap RnglistsSection;
DWARFSectionMap StrOffsetsSection;
DWARFSectionMap LineDWOSection;
DWARFSectionMap FrameSection;
DWARFSectionMap EHFrameSection;
DWARFSectionMap LocDWOSection;
DWARFSectionMap StrOffsetsDWOSection;
DWARFSectionMap RangesDWOSection;
DWARFSectionMap RnglistsDWOSection;
DWARFSectionMap AddrSection;
DWARFSectionMap AppleNamesSection;
DWARFSectionMap AppleTypesSection;
DWARFSectionMap AppleNamespacesSection;
DWARFSectionMap AppleObjCSection;
DWARFSectionMap NamesSection;
DWARFSectionMap PubnamesSection;
DWARFSectionMap PubtypesSection;
DWARFSectionMap GnuPubnamesSection;
DWARFSectionMap GnuPubtypesSection;
DWARFSectionMap MacroSection;
DWARFSectionMap *mapNameToDWARFSection(StringRef Name) {
return StringSwitch<DWARFSectionMap *>(Name)
.Case("debug_loc", &LocSection)
.Case("debug_loclists", &LoclistsSection)
.Case("debug_loclists.dwo", &LoclistsDWOSection)
.Case("debug_line", &LineSection)
.Case("debug_frame", &FrameSection)
.Case("eh_frame", &EHFrameSection)
.Case("debug_str_offsets", &StrOffsetsSection)
.Case("debug_ranges", &RangesSection)
.Case("debug_rnglists", &RnglistsSection)
.Case("debug_loc.dwo", &LocDWOSection)
.Case("debug_line.dwo", &LineDWOSection)
.Case("debug_names", &NamesSection)
.Case("debug_rnglists.dwo", &RnglistsDWOSection)
.Case("debug_str_offsets.dwo", &StrOffsetsDWOSection)
.Case("debug_addr", &AddrSection)
.Case("apple_names", &AppleNamesSection)
.Case("debug_pubnames", &PubnamesSection)
.Case("debug_pubtypes", &PubtypesSection)
.Case("debug_gnu_pubnames", &GnuPubnamesSection)
.Case("debug_gnu_pubtypes", &GnuPubtypesSection)
.Case("apple_types", &AppleTypesSection)
.Case("apple_namespaces", &AppleNamespacesSection)
.Case("apple_namespac", &AppleNamespacesSection)
.Case("apple_objc", &AppleObjCSection)
.Case("debug_macro", &MacroSection)
.Default(nullptr);
}
StringRef AbbrevSection;
StringRef ArangesSection;
StringRef StrSection;
StringRef MacinfoSection;
StringRef MacinfoDWOSection;
StringRef AbbrevDWOSection;
StringRef StrDWOSection;
StringRef CUIndexSection;
StringRef GdbIndexSection;
StringRef TUIndexSection;
StringRef LineStrSection;
// A deque holding section data whose iterators are not invalidated when
// new decompressed sections are inserted at the end.
std::deque<SmallString<0>> UncompressedSections;
StringRef *mapSectionToMember(StringRef Name) {
if (DWARFSection *Sec = mapNameToDWARFSection(Name))
return &Sec->Data;
return StringSwitch<StringRef *>(Name)
.Case("debug_abbrev", &AbbrevSection)
.Case("debug_aranges", &ArangesSection)
.Case("debug_str", &StrSection)
.Case("debug_macinfo", &MacinfoSection)
.Case("debug_macinfo.dwo", &MacinfoDWOSection)
.Case("debug_abbrev.dwo", &AbbrevDWOSection)
.Case("debug_str.dwo", &StrDWOSection)
.Case("debug_cu_index", &CUIndexSection)
.Case("debug_tu_index", &TUIndexSection)
.Case("gdb_index", &GdbIndexSection)
.Case("debug_line_str", &LineStrSection)
// Any more debug info sections go here.
.Default(nullptr);
}
/// If Sec is compressed section, decompresses and updates its contents
/// provided by Data. Otherwise leaves it unchanged.
Error maybeDecompress(const object::SectionRef &Sec, StringRef Name,
StringRef &Data) {
if (!Decompressor::isCompressed(Sec))
return Error::success();
Expected<Decompressor> Decompressor =
Decompressor::create(Name, Data, IsLittleEndian, AddressSize == 8);
if (!Decompressor)
return Decompressor.takeError();
SmallString<0> Out;
if (auto Err = Decompressor->resizeAndDecompress(Out))
return Err;
UncompressedSections.push_back(std::move(Out));
Data = UncompressedSections.back();
return Error::success();
}
public:
DWARFObjInMemory(const StringMap<std::unique_ptr<MemoryBuffer>> &Sections,
uint8_t AddrSize, bool IsLittleEndian)
: IsLittleEndian(IsLittleEndian) {
for (const auto &SecIt : Sections) {
if (StringRef *SectionData = mapSectionToMember(SecIt.first()))
*SectionData = SecIt.second->getBuffer();
else if (SecIt.first() == "debug_info")
// Find debug_info and debug_types data by section rather than name as
// there are multiple, comdat grouped, of these sections.
InfoSections[SectionRef()].Data = SecIt.second->getBuffer();
else if (SecIt.first() == "debug_info.dwo")
InfoDWOSections[SectionRef()].Data = SecIt.second->getBuffer();
else if (SecIt.first() == "debug_types")
TypesSections[SectionRef()].Data = SecIt.second->getBuffer();
else if (SecIt.first() == "debug_types.dwo")
TypesDWOSections[SectionRef()].Data = SecIt.second->getBuffer();
}
}
DWARFObjInMemory(const object::ObjectFile &Obj, const LoadedObjectInfo *L,
function_ref<void(Error)> HandleError)
: IsLittleEndian(Obj.isLittleEndian()),
AddressSize(Obj.getBytesInAddress()), FileName(Obj.getFileName()),
Obj(&Obj) {
StringMap<unsigned> SectionAmountMap;
for (const SectionRef &Section : Obj.sections()) {
StringRef Name;
if (auto NameOrErr = Section.getName())
Name = *NameOrErr;
else
consumeError(NameOrErr.takeError());
++SectionAmountMap[Name];
SectionNames.push_back({ Name, true });
// Skip BSS and Virtual sections, they aren't interesting.
if (Section.isBSS() || Section.isVirtual())
continue;
// Skip sections stripped by dsymutil.
if (Section.isStripped())
continue;
StringRef Data;
Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
if (!SecOrErr) {
HandleError(createError("failed to get relocated section: ",
SecOrErr.takeError()));
continue;
}
// Try to obtain an already relocated version of this section.
// Else use the unrelocated section from the object file. We'll have to
// apply relocations ourselves later.
section_iterator RelocatedSection = *SecOrErr;
if (!L || !L->getLoadedSectionContents(*RelocatedSection, Data)) {
Expected<StringRef> E = Section.getContents();
if (E)
Data = *E;
else
// maybeDecompress below will error.
consumeError(E.takeError());
}
if (auto Err = maybeDecompress(Section, Name, Data)) {
HandleError(createError("failed to decompress '" + Name + "', ",
std::move(Err)));
continue;
}
// Compressed sections names in GNU style starts from ".z",
// at this point section is decompressed and we drop compression prefix.
Name = Name.substr(
Name.find_first_not_of("._z")); // Skip ".", "z" and "_" prefixes.
// Map platform specific debug section names to DWARF standard section
// names.
Name = Obj.mapDebugSectionName(Name);
if (StringRef *SectionData = mapSectionToMember(Name)) {
*SectionData = Data;
if (Name == "debug_ranges") {
// FIXME: Use the other dwo range section when we emit it.
RangesDWOSection.Data = Data;
}
} else if (Name == "debug_info") {
// Find debug_info and debug_types data by section rather than name as
// there are multiple, comdat grouped, of these sections.
InfoSections[Section].Data = Data;
} else if (Name == "debug_info.dwo") {
InfoDWOSections[Section].Data = Data;
} else if (Name == "debug_types") {
TypesSections[Section].Data = Data;
} else if (Name == "debug_types.dwo") {
TypesDWOSections[Section].Data = Data;
}
if (RelocatedSection == Obj.section_end())
continue;
StringRef RelSecName;
if (auto NameOrErr = RelocatedSection->getName())
RelSecName = *NameOrErr;
else
consumeError(NameOrErr.takeError());
// If the section we're relocating was relocated already by the JIT,
// then we used the relocated version above, so we do not need to process
// relocations for it now.
StringRef RelSecData;
if (L && L->getLoadedSectionContents(*RelocatedSection, RelSecData))
continue;
// In Mach-o files, the relocations do not need to be applied if
// there is no load offset to apply. The value read at the
// relocation point already factors in the section address
// (actually applying the relocations will produce wrong results
// as the section address will be added twice).
if (!L && isa<MachOObjectFile>(&Obj))
continue;
RelSecName = RelSecName.substr(
RelSecName.find_first_not_of("._z")); // Skip . and _ prefixes.
// TODO: Add support for relocations in other sections as needed.
// Record relocations for the debug_info and debug_line sections.
DWARFSectionMap *Sec = mapNameToDWARFSection(RelSecName);
RelocAddrMap *Map = Sec ? &Sec->Relocs : nullptr;
if (!Map) {
// Find debug_info and debug_types relocs by section rather than name
// as there are multiple, comdat grouped, of these sections.
if (RelSecName == "debug_info")
Map = &static_cast<DWARFSectionMap &>(InfoSections[*RelocatedSection])
.Relocs;
else if (RelSecName == "debug_info.dwo")
Map = &static_cast<DWARFSectionMap &>(
InfoDWOSections[*RelocatedSection])
.Relocs;
else if (RelSecName == "debug_types")
Map =
&static_cast<DWARFSectionMap &>(TypesSections[*RelocatedSection])
.Relocs;
else if (RelSecName == "debug_types.dwo")
Map = &static_cast<DWARFSectionMap &>(
TypesDWOSections[*RelocatedSection])
.Relocs;
else
continue;
}
if (Section.relocation_begin() == Section.relocation_end())
continue;
// Symbol to [address, section index] cache mapping.
std::map<SymbolRef, SymInfo> AddrCache;
bool (*Supports)(uint64_t);
RelocationResolver Resolver;
std::tie(Supports, Resolver) = getRelocationResolver(Obj);
for (const RelocationRef &Reloc : Section.relocations()) {
// FIXME: it's not clear how to correctly handle scattered
// relocations.
if (isRelocScattered(Obj, Reloc))
continue;
Expected<SymInfo> SymInfoOrErr =
getSymbolInfo(Obj, Reloc, L, AddrCache);
if (!SymInfoOrErr) {
HandleError(SymInfoOrErr.takeError());
continue;
}
// Check if Resolver can handle this relocation type early so as not to
// handle invalid cases in DWARFDataExtractor.
//
// TODO Don't store Resolver in every RelocAddrEntry.
if (Supports && Supports(Reloc.getType())) {
auto I = Map->try_emplace(
Reloc.getOffset(),
RelocAddrEntry{SymInfoOrErr->SectionIndex, Reloc,
SymInfoOrErr->Address,
Optional<object::RelocationRef>(), 0, Resolver});
// If we didn't successfully insert that's because we already had a
// relocation for that offset. Store it as a second relocation in the
// same RelocAddrEntry instead.
if (!I.second) {
RelocAddrEntry &entry = I.first->getSecond();
if (entry.Reloc2) {
HandleError(createError(
"At most two relocations per offset are supported"));
}
entry.Reloc2 = Reloc;
entry.SymbolValue2 = SymInfoOrErr->Address;
}
} else {
SmallString<32> Type;
Reloc.getTypeName(Type);
HandleError(
createError("failed to compute relocation: " + Type + ", ",
errorCodeToError(object_error::parse_failed)));
}
}
}
for (SectionName &S : SectionNames)
if (SectionAmountMap[S.Name] > 1)
S.IsNameUnique = false;
}
Optional<RelocAddrEntry> find(const DWARFSection &S,
uint64_t Pos) const override {
auto &Sec = static_cast<const DWARFSectionMap &>(S);
RelocAddrMap::const_iterator AI = Sec.Relocs.find(Pos);
if (AI == Sec.Relocs.end())
return None;
return AI->second;
}
const object::ObjectFile *getFile() const override { return Obj; }
ArrayRef<SectionName> getSectionNames() const override {
return SectionNames;
}
bool isLittleEndian() const override { return IsLittleEndian; }
StringRef getAbbrevDWOSection() const override { return AbbrevDWOSection; }
const DWARFSection &getLineDWOSection() const override {
return LineDWOSection;
}
const DWARFSection &getLocDWOSection() const override {
return LocDWOSection;
}
StringRef getStrDWOSection() const override { return StrDWOSection; }
const DWARFSection &getStrOffsetsDWOSection() const override {
return StrOffsetsDWOSection;
}
const DWARFSection &getRangesDWOSection() const override {
return RangesDWOSection;
}
const DWARFSection &getRnglistsDWOSection() const override {
return RnglistsDWOSection;
}
const DWARFSection &getLoclistsDWOSection() const override {
return LoclistsDWOSection;
}
const DWARFSection &getAddrSection() const override { return AddrSection; }
StringRef getCUIndexSection() const override { return CUIndexSection; }
StringRef getGdbIndexSection() const override { return GdbIndexSection; }
StringRef getTUIndexSection() const override { return TUIndexSection; }
// DWARF v5
const DWARFSection &getStrOffsetsSection() const override {
return StrOffsetsSection;
}
StringRef getLineStrSection() const override { return LineStrSection; }
// Sections for DWARF5 split dwarf proposal.
void forEachInfoDWOSections(
function_ref<void(const DWARFSection &)> F) const override {
for (auto &P : InfoDWOSections)
F(P.second);
}
void forEachTypesDWOSections(
function_ref<void(const DWARFSection &)> F) const override {
for (auto &P : TypesDWOSections)
F(P.second);
}
StringRef getAbbrevSection() const override { return AbbrevSection; }
const DWARFSection &getLocSection() const override { return LocSection; }
const DWARFSection &getLoclistsSection() const override { return LoclistsSection; }
StringRef getArangesSection() const override { return ArangesSection; }
const DWARFSection &getFrameSection() const override {
return FrameSection;
}
const DWARFSection &getEHFrameSection() const override {
return EHFrameSection;
}
const DWARFSection &getLineSection() const override { return LineSection; }
StringRef getStrSection() const override { return StrSection; }
const DWARFSection &getRangesSection() const override { return RangesSection; }
const DWARFSection &getRnglistsSection() const override {
return RnglistsSection;
}
const DWARFSection &getMacroSection() const override { return MacroSection; }
StringRef getMacinfoSection() const override { return MacinfoSection; }
StringRef getMacinfoDWOSection() const override { return MacinfoDWOSection; }
const DWARFSection &getPubnamesSection() const override { return PubnamesSection; }
const DWARFSection &getPubtypesSection() const override { return PubtypesSection; }
const DWARFSection &getGnuPubnamesSection() const override {
return GnuPubnamesSection;
}
const DWARFSection &getGnuPubtypesSection() const override {
return GnuPubtypesSection;
}
const DWARFSection &getAppleNamesSection() const override {
return AppleNamesSection;
}
const DWARFSection &getAppleTypesSection() const override {
return AppleTypesSection;
}
const DWARFSection &getAppleNamespacesSection() const override {
return AppleNamespacesSection;
}
const DWARFSection &getAppleObjCSection() const override {
return AppleObjCSection;
}
const DWARFSection &getNamesSection() const override {
return NamesSection;
}
StringRef getFileName() const override { return FileName; }
uint8_t getAddressSize() const override { return AddressSize; }
void forEachInfoSections(
function_ref<void(const DWARFSection &)> F) const override {
for (auto &P : InfoSections)
F(P.second);
}
void forEachTypesSections(
function_ref<void(const DWARFSection &)> F) const override {
for (auto &P : TypesSections)
F(P.second);
}
};
} // namespace
std::unique_ptr<DWARFContext>
DWARFContext::create(const object::ObjectFile &Obj, const LoadedObjectInfo *L,
std::string DWPName,
std::function<void(Error)> RecoverableErrorHandler,
std::function<void(Error)> WarningHandler) {
auto DObj =
std::make_unique<DWARFObjInMemory>(Obj, L, RecoverableErrorHandler);
return std::make_unique<DWARFContext>(std::move(DObj), std::move(DWPName),
RecoverableErrorHandler,
WarningHandler);
}
std::unique_ptr<DWARFContext>
DWARFContext::create(const StringMap<std::unique_ptr<MemoryBuffer>> &Sections,
uint8_t AddrSize, bool isLittleEndian,
std::function<void(Error)> RecoverableErrorHandler,
std::function<void(Error)> WarningHandler) {
auto DObj =
std::make_unique<DWARFObjInMemory>(Sections, AddrSize, isLittleEndian);
return std::make_unique<DWARFContext>(
std::move(DObj), "", RecoverableErrorHandler, WarningHandler);
}
Error DWARFContext::loadRegisterInfo(const object::ObjectFile &Obj) {
// Detect the architecture from the object file. We usually don't need OS
// info to lookup a target and create register info.
Triple TT;
TT.setArch(Triple::ArchType(Obj.getArch()));
TT.setVendor(Triple::UnknownVendor);
TT.setOS(Triple::UnknownOS);
std::string TargetLookupError;
const Target *TheTarget =
TargetRegistry::lookupTarget(TT.str(), TargetLookupError);
if (!TargetLookupError.empty())
return createStringError(errc::invalid_argument,
TargetLookupError.c_str());
RegInfo.reset(TheTarget->createMCRegInfo(TT.str()));
return Error::success();
}
uint8_t DWARFContext::getCUAddrSize() {
// In theory, different compile units may have different address byte
// sizes, but for simplicity we just use the address byte size of the
// first compile unit. In practice the address size field is repeated across
// various DWARF headers (at least in version 5) to make it easier to dump
// them independently, not to enable varying the address size.
unit_iterator_range CUs = compile_units();
return CUs.empty() ? 0 : (*CUs.begin())->getAddressByteSize();
}