llvm-project/flang/test/Evaluate/folding28.f90

48 lines
2.4 KiB
Fortran

! RUN: %python %S/test_folding.py %s %flang_fc1
! Tests folding of SQRT()
module m
implicit none
! +Inf
real(8), parameter :: inf8 = z'7ff0000000000000'
logical, parameter :: test_inf8 = sqrt(inf8) == inf8
! max finite
real(8), parameter :: h8 = huge(1.0_8), h8z = z'7fefffffffffffff'
logical, parameter :: test_h8 = h8 == h8z
real(8), parameter :: sqrt_h8 = sqrt(h8), sqrt_h8z = z'5fefffffffffffff'
logical, parameter :: test_sqrt_h8 = sqrt_h8 == sqrt_h8z
real(8), parameter :: sqr_sqrt_h8 = sqrt_h8 * sqrt_h8, sqr_sqrt_h8z = z'7feffffffffffffe'
logical, parameter :: test_sqr_sqrt_h8 = sqr_sqrt_h8 == sqr_sqrt_h8z
! -0 (sqrt is -0)
real(8), parameter :: n08 = z'8000000000000000'
real(8), parameter :: sqrt_n08 = sqrt(n08)
!WARN: division by zero
real(8), parameter :: inf_n08 = 1.0_8 / sqrt_n08, inf_n08z = z'fff0000000000000'
logical, parameter :: test_n08 = inf_n08 == inf_n08z
! min normal
real(8), parameter :: t8 = tiny(1.0_8), t8z = z'0010000000000000'
logical, parameter :: test_t8 = t8 == t8z
real(8), parameter :: sqrt_t8 = sqrt(t8), sqrt_t8z = z'2000000000000000'
logical, parameter :: test_sqrt_t8 = sqrt_t8 == sqrt_t8z
real(8), parameter :: sqr_sqrt_t8 = sqrt_t8 * sqrt_t8
logical, parameter :: test_sqr_sqrt_t8 = sqr_sqrt_t8 == t8
! max subnormal
real(8), parameter :: maxs8 = z'000fffffffffffff'
real(8), parameter :: sqrt_maxs8 = sqrt(maxs8), sqrt_maxs8z = z'1fffffffffffffff'
logical, parameter :: test_sqrt_maxs8 = sqrt_maxs8 == sqrt_maxs8z
! min subnormal
real(8), parameter :: mins8 = z'1'
real(8), parameter :: sqrt_mins8 = sqrt(mins8), sqrt_mins8z = z'1e60000000000000'
logical, parameter :: test_sqrt_mins8 = sqrt_mins8 == sqrt_mins8z
real(8), parameter :: sqr_sqrt_mins8 = sqrt_mins8 * sqrt_mins8
logical, parameter :: test_sqr_sqrt_mins8 = sqr_sqrt_mins8 == mins8
! regression tests: cases near 1.
real(4), parameter :: sqrt_under1 = sqrt(.96875)
logical, parameter :: test_sqrt_under1 = sqrt_under1 == .984250962734222412109375
! oddball case: the value before 1. is also its own sqrt, but not its own square
real(4), parameter :: before_1 = z'3f7fffff' ! .999999940395355224609375
real(4), parameter :: sqrt_before_1 = sqrt(before_1)
logical, parameter :: test_before_1 = sqrt_before_1 == before_1
real(4), parameter :: sq_sqrt_before_1 = sqrt_before_1 * sqrt_before_1
logical, parameter :: test_sq_before_1 = sq_sqrt_before_1 < before_1
end module