forked from OSchip/llvm-project
477 lines
14 KiB
C++
477 lines
14 KiB
C++
//===-- lib/Decimal/decimal-to-binary.cpp ---------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "big-radix-floating-point.h"
|
|
#include "flang/Common/bit-population-count.h"
|
|
#include "flang/Common/leading-zero-bit-count.h"
|
|
#include "flang/Decimal/binary-floating-point.h"
|
|
#include "flang/Decimal/decimal.h"
|
|
#include <cinttypes>
|
|
#include <cstring>
|
|
#include <ctype.h>
|
|
|
|
namespace Fortran::decimal {
|
|
|
|
template <int PREC, int LOG10RADIX>
|
|
bool BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ParseNumber(
|
|
const char *&p, bool &inexact, const char *end) {
|
|
SetToZero();
|
|
if (end && p >= end) {
|
|
return false;
|
|
}
|
|
// Skip leading spaces
|
|
for (; p != end && *p == ' '; ++p) {
|
|
}
|
|
if (p == end) {
|
|
return false;
|
|
}
|
|
const char *q{p};
|
|
isNegative_ = *q == '-';
|
|
if (*q == '-' || *q == '+') {
|
|
++q;
|
|
}
|
|
const char *start{q};
|
|
for (; q != end && *q == '0'; ++q) {
|
|
}
|
|
const char *firstDigit{q};
|
|
for (; q != end && *q >= '0' && *q <= '9'; ++q) {
|
|
}
|
|
const char *point{nullptr};
|
|
if (q != end && *q == '.') {
|
|
point = q;
|
|
for (++q; q != end && *q >= '0' && *q <= '9'; ++q) {
|
|
}
|
|
}
|
|
if (q == start || (q == start + 1 && start == point)) {
|
|
return false; // require at least one digit
|
|
}
|
|
// There's a valid number here; set the reference argument to point to
|
|
// the first character afterward, which might be an exponent part.
|
|
p = q;
|
|
// Strip off trailing zeroes
|
|
if (point) {
|
|
while (q[-1] == '0') {
|
|
--q;
|
|
}
|
|
if (q[-1] == '.') {
|
|
point = nullptr;
|
|
--q;
|
|
}
|
|
}
|
|
if (!point) {
|
|
while (q > firstDigit && q[-1] == '0') {
|
|
--q;
|
|
++exponent_;
|
|
}
|
|
}
|
|
// Trim any excess digits
|
|
const char *limit{firstDigit + maxDigits * log10Radix + (point != nullptr)};
|
|
if (q > limit) {
|
|
inexact = true;
|
|
if (point >= limit) {
|
|
q = point;
|
|
point = nullptr;
|
|
}
|
|
if (!point) {
|
|
exponent_ += q - limit;
|
|
}
|
|
q = limit;
|
|
}
|
|
if (point) {
|
|
exponent_ -= static_cast<int>(q - point - 1);
|
|
}
|
|
if (q == firstDigit) {
|
|
exponent_ = 0; // all zeros
|
|
}
|
|
// Rack the decimal digits up into big Digits.
|
|
for (auto times{radix}; q-- > firstDigit;) {
|
|
if (*q != '.') {
|
|
if (times == radix) {
|
|
digit_[digits_++] = *q - '0';
|
|
times = 10;
|
|
} else {
|
|
digit_[digits_ - 1] += times * (*q - '0');
|
|
times *= 10;
|
|
}
|
|
}
|
|
}
|
|
// Look for an optional exponent field.
|
|
if (p == end) {
|
|
return true;
|
|
}
|
|
q = p;
|
|
switch (*q) {
|
|
case 'e':
|
|
case 'E':
|
|
case 'd':
|
|
case 'D':
|
|
case 'q':
|
|
case 'Q': {
|
|
if (++q == end) {
|
|
break;
|
|
}
|
|
bool negExpo{*q == '-'};
|
|
if (*q == '-' || *q == '+') {
|
|
++q;
|
|
}
|
|
if (q != end && *q >= '0' && *q <= '9') {
|
|
int expo{0};
|
|
for (; q != end && *q == '0'; ++q) {
|
|
}
|
|
const char *expDig{q};
|
|
for (; q != end && *q >= '0' && *q <= '9'; ++q) {
|
|
expo = 10 * expo + *q - '0';
|
|
}
|
|
if (q >= expDig + 8) {
|
|
// There's a ridiculous number of nonzero exponent digits.
|
|
// The decimal->binary conversion routine will cope with
|
|
// returning 0 or Inf, but we must ensure that "expo" didn't
|
|
// overflow back around to something legal.
|
|
expo = 10 * Real::decimalRange;
|
|
exponent_ = 0;
|
|
}
|
|
p = q; // exponent is valid; advance the termination pointer
|
|
if (negExpo) {
|
|
exponent_ -= expo;
|
|
} else {
|
|
exponent_ += expo;
|
|
}
|
|
}
|
|
} break;
|
|
default:
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <int PREC, int LOG10RADIX>
|
|
void BigRadixFloatingPointNumber<PREC,
|
|
LOG10RADIX>::LoseLeastSignificantDigit() {
|
|
Digit LSD{digit_[0]};
|
|
for (int j{0}; j < digits_ - 1; ++j) {
|
|
digit_[j] = digit_[j + 1];
|
|
}
|
|
digit_[digits_ - 1] = 0;
|
|
bool incr{false};
|
|
switch (rounding_) {
|
|
case RoundNearest:
|
|
incr = LSD > radix / 2 || (LSD == radix / 2 && digit_[0] % 2 != 0);
|
|
break;
|
|
case RoundUp:
|
|
incr = LSD > 0 && !isNegative_;
|
|
break;
|
|
case RoundDown:
|
|
incr = LSD > 0 && isNegative_;
|
|
break;
|
|
case RoundToZero:
|
|
break;
|
|
case RoundCompatible:
|
|
incr = LSD >= radix / 2;
|
|
break;
|
|
}
|
|
for (int j{0}; (digit_[j] += incr) == radix; ++j) {
|
|
digit_[j] = 0;
|
|
}
|
|
}
|
|
|
|
// This local utility class represents an unrounded nonnegative
|
|
// binary floating-point value with an unbiased (i.e., signed)
|
|
// binary exponent, an integer value (not a fraction) with an implied
|
|
// binary point to its *right*, and some guard bits for rounding.
|
|
template <int PREC> class IntermediateFloat {
|
|
public:
|
|
static constexpr int precision{PREC};
|
|
using IntType = common::HostUnsignedIntType<precision>;
|
|
static constexpr IntType topBit{IntType{1} << (precision - 1)};
|
|
static constexpr IntType mask{topBit + (topBit - 1)};
|
|
|
|
IntermediateFloat() {}
|
|
IntermediateFloat(const IntermediateFloat &) = default;
|
|
|
|
// Assumes that exponent_ is valid on entry, and may increment it.
|
|
// Returns the number of guard_ bits that have been determined.
|
|
template <typename UINT> bool SetTo(UINT n) {
|
|
static constexpr int nBits{CHAR_BIT * sizeof n};
|
|
if constexpr (precision >= nBits) {
|
|
value_ = n;
|
|
guard_ = 0;
|
|
return 0;
|
|
} else {
|
|
int shift{common::BitsNeededFor(n) - precision};
|
|
if (shift <= 0) {
|
|
value_ = n;
|
|
guard_ = 0;
|
|
return 0;
|
|
} else {
|
|
value_ = n >> shift;
|
|
exponent_ += shift;
|
|
n <<= nBits - shift;
|
|
guard_ = (n >> (nBits - guardBits)) | ((n << guardBits) != 0);
|
|
return shift;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ShiftIn(int bit = 0) { value_ = value_ + value_ + bit; }
|
|
bool IsFull() const { return value_ >= topBit; }
|
|
void AdjustExponent(int by) { exponent_ += by; }
|
|
void SetGuard(int g) {
|
|
guard_ |= (static_cast<GuardType>(g & 6) << (guardBits - 3)) | (g & 1);
|
|
}
|
|
|
|
ConversionToBinaryResult<PREC> ToBinary(
|
|
bool isNegative, FortranRounding) const;
|
|
|
|
private:
|
|
static constexpr int guardBits{3}; // guard, round, sticky
|
|
using GuardType = int;
|
|
static constexpr GuardType oneHalf{GuardType{1} << (guardBits - 1)};
|
|
|
|
IntType value_{0};
|
|
GuardType guard_{0};
|
|
int exponent_{0};
|
|
};
|
|
|
|
template <int PREC>
|
|
ConversionToBinaryResult<PREC> IntermediateFloat<PREC>::ToBinary(
|
|
bool isNegative, FortranRounding rounding) const {
|
|
using Binary = BinaryFloatingPointNumber<PREC>;
|
|
// Create a fraction with a binary point to the left of the integer
|
|
// value_, and bias the exponent.
|
|
IntType fraction{value_};
|
|
GuardType guard{guard_};
|
|
int expo{exponent_ + Binary::exponentBias + (precision - 1)};
|
|
while (expo < 1 && (fraction > 0 || guard > oneHalf)) {
|
|
guard = (guard & 1) | (guard >> 1) |
|
|
((static_cast<GuardType>(fraction) & 1) << (guardBits - 1));
|
|
fraction >>= 1;
|
|
++expo;
|
|
}
|
|
int flags{Exact};
|
|
if (guard != 0) {
|
|
flags |= Inexact;
|
|
}
|
|
if (fraction == 0 && guard <= oneHalf) {
|
|
return {Binary{}, static_cast<enum ConversionResultFlags>(flags)};
|
|
}
|
|
// The value is nonzero; normalize it.
|
|
while (fraction < topBit && expo > 1) {
|
|
--expo;
|
|
fraction = fraction * 2 + (guard >> (guardBits - 2));
|
|
guard = (((guard >> (guardBits - 2)) & 1) << (guardBits - 1)) | (guard & 1);
|
|
}
|
|
// Apply rounding
|
|
bool incr{false};
|
|
switch (rounding) {
|
|
case RoundNearest:
|
|
incr = guard > oneHalf || (guard == oneHalf && (fraction & 1));
|
|
break;
|
|
case RoundUp:
|
|
incr = guard != 0 && !isNegative;
|
|
break;
|
|
case RoundDown:
|
|
incr = guard != 0 && isNegative;
|
|
break;
|
|
case RoundToZero:
|
|
break;
|
|
case RoundCompatible:
|
|
incr = guard >= oneHalf;
|
|
break;
|
|
}
|
|
if (incr) {
|
|
if (fraction == mask) {
|
|
// rounding causes a carry
|
|
++expo;
|
|
fraction = topBit;
|
|
} else {
|
|
++fraction;
|
|
}
|
|
}
|
|
if (expo == 1 && fraction < topBit) {
|
|
expo = 0; // subnormal
|
|
}
|
|
if (expo >= Binary::maxExponent) {
|
|
expo = Binary::maxExponent; // Inf
|
|
flags |= Overflow;
|
|
fraction = 0;
|
|
}
|
|
using Raw = typename Binary::RawType;
|
|
Raw raw = static_cast<Raw>(isNegative) << (Binary::bits - 1);
|
|
raw |= static_cast<Raw>(expo) << Binary::significandBits;
|
|
if constexpr (Binary::isImplicitMSB) {
|
|
fraction &= ~topBit;
|
|
}
|
|
raw |= fraction;
|
|
return {Binary(raw), static_cast<enum ConversionResultFlags>(flags)};
|
|
}
|
|
|
|
template <int PREC, int LOG10RADIX>
|
|
ConversionToBinaryResult<PREC>
|
|
BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ConvertToBinary() {
|
|
// On entry, *this holds a multi-precision integer value in a radix of a
|
|
// large power of ten. Its radix point is defined to be to the right of its
|
|
// digits, and "exponent_" is the power of ten by which it is to be scaled.
|
|
Normalize();
|
|
if (digits_ == 0) { // zero value
|
|
return {Real{SignBit()}};
|
|
}
|
|
// The value is not zero: x = D. * 10.**E
|
|
// Shift our perspective on the radix (& decimal) point so that
|
|
// it sits to the *left* of the digits: i.e., x = .D * 10.**E
|
|
exponent_ += digits_ * log10Radix;
|
|
// Sanity checks for ridiculous exponents
|
|
static constexpr int crazy{2 * Real::decimalRange + log10Radix};
|
|
if (exponent_ < -crazy) { // underflow to +/-0.
|
|
return {Real{SignBit()}, Inexact};
|
|
} else if (exponent_ > crazy) { // overflow to +/-Inf.
|
|
return {Real{Infinity()}, Overflow};
|
|
}
|
|
// Apply any negative decimal exponent by multiplication
|
|
// by a power of two, adjusting the binary exponent to compensate.
|
|
IntermediateFloat<PREC> f;
|
|
while (exponent_ < log10Radix) {
|
|
// x = 0.D * 10.**E * 2.**(f.ex) -> 512 * 0.D * 10.**E * 2.**(f.ex-9)
|
|
f.AdjustExponent(-9);
|
|
digitLimit_ = digits_;
|
|
if (int carry{MultiplyWithoutNormalization<512>()}) {
|
|
// x = c.D * 10.**E * 2.**(f.ex) -> .cD * 10.**(E+16) * 2.**(f.ex)
|
|
PushCarry(carry);
|
|
exponent_ += log10Radix;
|
|
}
|
|
}
|
|
// Apply any positive decimal exponent greater than
|
|
// is needed to treat the topmost digit as an integer
|
|
// part by multiplying by 10 or 10000 repeatedly.
|
|
while (exponent_ > log10Radix) {
|
|
digitLimit_ = digits_;
|
|
int carry;
|
|
if (exponent_ >= log10Radix + 4) {
|
|
// x = 0.D * 10.**E * 2.**(f.ex) -> 625 * .D * 10.**(E-4) * 2.**(f.ex+4)
|
|
exponent_ -= 4;
|
|
carry = MultiplyWithoutNormalization<(5 * 5 * 5 * 5)>();
|
|
f.AdjustExponent(4);
|
|
} else {
|
|
// x = 0.D * 10.**E * 2.**(f.ex) -> 5 * .D * 10.**(E-1) * 2.**(f.ex+1)
|
|
--exponent_;
|
|
carry = MultiplyWithoutNormalization<5>();
|
|
f.AdjustExponent(1);
|
|
}
|
|
if (carry != 0) {
|
|
// x = c.D * 10.**E * 2.**(f.ex) -> .cD * 10.**(E+16) * 2.**(f.ex)
|
|
PushCarry(carry);
|
|
exponent_ += log10Radix;
|
|
}
|
|
}
|
|
// So exponent_ is now log10Radix, meaning that the
|
|
// MSD can be taken as an integer part and transferred
|
|
// to the binary result.
|
|
// x = .jD * 10.**16 * 2.**(f.ex) -> .D * j * 2.**(f.ex)
|
|
int guardShift{f.SetTo(digit_[--digits_])};
|
|
// Transfer additional bits until the result is normal.
|
|
digitLimit_ = digits_;
|
|
while (!f.IsFull()) {
|
|
// x = ((b.D)/2) * j * 2.**(f.ex) -> .D * (2j + b) * 2.**(f.ex-1)
|
|
f.AdjustExponent(-1);
|
|
std::uint32_t carry = MultiplyWithoutNormalization<2>();
|
|
f.ShiftIn(carry);
|
|
}
|
|
// Get the next few bits for rounding. Allow for some guard bits
|
|
// that may have already been set in f.SetTo() above.
|
|
int guard{0};
|
|
if (guardShift == 0) {
|
|
guard = MultiplyWithoutNormalization<4>();
|
|
} else if (guardShift == 1) {
|
|
guard = MultiplyWithoutNormalization<2>();
|
|
}
|
|
guard = guard + guard + !IsZero();
|
|
f.SetGuard(guard);
|
|
return f.ToBinary(isNegative_, rounding_);
|
|
}
|
|
|
|
template <int PREC, int LOG10RADIX>
|
|
ConversionToBinaryResult<PREC>
|
|
BigRadixFloatingPointNumber<PREC, LOG10RADIX>::ConvertToBinary(
|
|
const char *&p, const char *limit) {
|
|
bool inexact{false};
|
|
if (ParseNumber(p, inexact, limit)) {
|
|
auto result{ConvertToBinary()};
|
|
if (inexact) {
|
|
result.flags =
|
|
static_cast<enum ConversionResultFlags>(result.flags | Inexact);
|
|
}
|
|
return result;
|
|
} else {
|
|
// Could not parse a decimal floating-point number. p has been
|
|
// advanced over any leading spaces.
|
|
if (toupper(p[0]) == 'N' && toupper(p[1]) == 'A' && toupper(p[2]) == 'N') {
|
|
// NaN
|
|
p += 3;
|
|
return {Real{NaN()}};
|
|
} else {
|
|
// Try to parse Inf, maybe with a sign
|
|
const char *q{p};
|
|
isNegative_ = *q == '-';
|
|
if (*q == '-' || *q == '+') {
|
|
++q;
|
|
}
|
|
if (toupper(q[0]) == 'I' && toupper(q[1]) == 'N' &&
|
|
toupper(q[2]) == 'F') {
|
|
p = q + 3;
|
|
return {Real{Infinity()}};
|
|
} else {
|
|
// Invalid input
|
|
return {Real{NaN()}, Invalid};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <int PREC>
|
|
ConversionToBinaryResult<PREC> ConvertToBinary(
|
|
const char *&p, enum FortranRounding rounding, const char *end) {
|
|
return BigRadixFloatingPointNumber<PREC>{rounding}.ConvertToBinary(p, end);
|
|
}
|
|
|
|
template ConversionToBinaryResult<8> ConvertToBinary<8>(
|
|
const char *&, enum FortranRounding, const char *end);
|
|
template ConversionToBinaryResult<11> ConvertToBinary<11>(
|
|
const char *&, enum FortranRounding, const char *end);
|
|
template ConversionToBinaryResult<24> ConvertToBinary<24>(
|
|
const char *&, enum FortranRounding, const char *end);
|
|
template ConversionToBinaryResult<53> ConvertToBinary<53>(
|
|
const char *&, enum FortranRounding, const char *end);
|
|
template ConversionToBinaryResult<64> ConvertToBinary<64>(
|
|
const char *&, enum FortranRounding, const char *end);
|
|
template ConversionToBinaryResult<113> ConvertToBinary<113>(
|
|
const char *&, enum FortranRounding, const char *end);
|
|
|
|
extern "C" {
|
|
enum ConversionResultFlags ConvertDecimalToFloat(
|
|
const char **p, float *f, enum FortranRounding rounding) {
|
|
auto result{Fortran::decimal::ConvertToBinary<24>(*p, rounding)};
|
|
std::memcpy(reinterpret_cast<void *>(f),
|
|
reinterpret_cast<const void *>(&result.binary), sizeof *f);
|
|
return result.flags;
|
|
}
|
|
enum ConversionResultFlags ConvertDecimalToDouble(
|
|
const char **p, double *d, enum FortranRounding rounding) {
|
|
auto result{Fortran::decimal::ConvertToBinary<53>(*p, rounding)};
|
|
std::memcpy(reinterpret_cast<void *>(d),
|
|
reinterpret_cast<const void *>(&result.binary), sizeof *d);
|
|
return result.flags;
|
|
}
|
|
enum ConversionResultFlags ConvertDecimalToLongDouble(
|
|
const char **p, long double *ld, enum FortranRounding rounding) {
|
|
auto result{Fortran::decimal::ConvertToBinary<64>(*p, rounding)};
|
|
std::memcpy(reinterpret_cast<void *>(ld),
|
|
reinterpret_cast<const void *>(&result.binary), sizeof *ld);
|
|
return result.flags;
|
|
}
|
|
}
|
|
} // namespace Fortran::decimal
|