llvm-project/llvm/lib/Target/X86/X86MCInstLower.cpp

2664 lines
98 KiB
C++

//===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains code to lower X86 MachineInstrs to their corresponding
// MCInst records.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/X86ATTInstPrinter.h"
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86InstComments.h"
#include "MCTargetDesc/X86ShuffleDecode.h"
#include "MCTargetDesc/X86TargetStreamer.h"
#include "X86AsmPrinter.h"
#include "X86RegisterInfo.h"
#include "X86ShuffleDecodeConstantPool.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Mangler.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
using namespace llvm;
namespace {
/// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
class X86MCInstLower {
MCContext &Ctx;
const MachineFunction &MF;
const TargetMachine &TM;
const MCAsmInfo &MAI;
X86AsmPrinter &AsmPrinter;
public:
X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter);
Optional<MCOperand> LowerMachineOperand(const MachineInstr *MI,
const MachineOperand &MO) const;
void Lower(const MachineInstr *MI, MCInst &OutMI) const;
MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const;
MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
private:
MachineModuleInfoMachO &getMachOMMI() const;
};
} // end anonymous namespace
/// A RAII helper which defines a region of instructions which can't have
/// padding added between them for correctness.
struct NoAutoPaddingScope {
MCStreamer &OS;
const bool OldAllowAutoPadding;
NoAutoPaddingScope(MCStreamer &OS)
: OS(OS), OldAllowAutoPadding(OS.getAllowAutoPadding()) {
changeAndComment(false);
}
~NoAutoPaddingScope() { changeAndComment(OldAllowAutoPadding); }
void changeAndComment(bool b) {
if (b == OS.getAllowAutoPadding())
return;
OS.setAllowAutoPadding(b);
if (b)
OS.emitRawComment("autopadding");
else
OS.emitRawComment("noautopadding");
}
};
// Emit a minimal sequence of nops spanning NumBytes bytes.
static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
const MCSubtargetInfo &STI);
void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst,
const MCSubtargetInfo &STI,
MCCodeEmitter *CodeEmitter) {
if (InShadow) {
SmallString<256> Code;
SmallVector<MCFixup, 4> Fixups;
raw_svector_ostream VecOS(Code);
CodeEmitter->encodeInstruction(Inst, VecOS, Fixups, STI);
CurrentShadowSize += Code.size();
if (CurrentShadowSize >= RequiredShadowSize)
InShadow = false; // The shadow is big enough. Stop counting.
}
}
void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
MCStreamer &OutStreamer, const MCSubtargetInfo &STI) {
if (InShadow && CurrentShadowSize < RequiredShadowSize) {
InShadow = false;
EmitNops(OutStreamer, RequiredShadowSize - CurrentShadowSize,
MF->getSubtarget<X86Subtarget>().is64Bit(), STI);
}
}
void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) {
OutStreamer->emitInstruction(Inst, getSubtargetInfo());
SMShadowTracker.count(Inst, getSubtargetInfo(), CodeEmitter.get());
}
X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
X86AsmPrinter &asmprinter)
: Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()),
AsmPrinter(asmprinter) {}
MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
}
/// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
/// operand to an MCSymbol.
MCSymbol *X86MCInstLower::GetSymbolFromOperand(const MachineOperand &MO) const {
const Triple &TT = TM.getTargetTriple();
if (MO.isGlobal() && TT.isOSBinFormatELF())
return AsmPrinter.getSymbolPreferLocal(*MO.getGlobal());
const DataLayout &DL = MF.getDataLayout();
assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) &&
"Isn't a symbol reference");
MCSymbol *Sym = nullptr;
SmallString<128> Name;
StringRef Suffix;
switch (MO.getTargetFlags()) {
case X86II::MO_DLLIMPORT:
// Handle dllimport linkage.
Name += "__imp_";
break;
case X86II::MO_COFFSTUB:
Name += ".refptr.";
break;
case X86II::MO_DARWIN_NONLAZY:
case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
Suffix = "$non_lazy_ptr";
break;
}
if (!Suffix.empty())
Name += DL.getPrivateGlobalPrefix();
if (MO.isGlobal()) {
const GlobalValue *GV = MO.getGlobal();
AsmPrinter.getNameWithPrefix(Name, GV);
} else if (MO.isSymbol()) {
Mangler::getNameWithPrefix(Name, MO.getSymbolName(), DL);
} else if (MO.isMBB()) {
assert(Suffix.empty());
Sym = MO.getMBB()->getSymbol();
}
Name += Suffix;
if (!Sym)
Sym = Ctx.getOrCreateSymbol(Name);
// If the target flags on the operand changes the name of the symbol, do that
// before we return the symbol.
switch (MO.getTargetFlags()) {
default:
break;
case X86II::MO_COFFSTUB: {
MachineModuleInfoCOFF &MMICOFF =
MF.getMMI().getObjFileInfo<MachineModuleInfoCOFF>();
MachineModuleInfoImpl::StubValueTy &StubSym = MMICOFF.getGVStubEntry(Sym);
if (!StubSym.getPointer()) {
assert(MO.isGlobal() && "Extern symbol not handled yet");
StubSym = MachineModuleInfoImpl::StubValueTy(
AsmPrinter.getSymbol(MO.getGlobal()), true);
}
break;
}
case X86II::MO_DARWIN_NONLAZY:
case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
MachineModuleInfoImpl::StubValueTy &StubSym =
getMachOMMI().getGVStubEntry(Sym);
if (!StubSym.getPointer()) {
assert(MO.isGlobal() && "Extern symbol not handled yet");
StubSym = MachineModuleInfoImpl::StubValueTy(
AsmPrinter.getSymbol(MO.getGlobal()),
!MO.getGlobal()->hasInternalLinkage());
}
break;
}
}
return Sym;
}
MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
MCSymbol *Sym) const {
// FIXME: We would like an efficient form for this, so we don't have to do a
// lot of extra uniquing.
const MCExpr *Expr = nullptr;
MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
switch (MO.getTargetFlags()) {
default:
llvm_unreachable("Unknown target flag on GV operand");
case X86II::MO_NO_FLAG: // No flag.
// These affect the name of the symbol, not any suffix.
case X86II::MO_DARWIN_NONLAZY:
case X86II::MO_DLLIMPORT:
case X86II::MO_COFFSTUB:
break;
case X86II::MO_TLVP:
RefKind = MCSymbolRefExpr::VK_TLVP;
break;
case X86II::MO_TLVP_PIC_BASE:
Expr = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
// Subtract the pic base.
Expr = MCBinaryExpr::createSub(
Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
break;
case X86II::MO_SECREL:
RefKind = MCSymbolRefExpr::VK_SECREL;
break;
case X86II::MO_TLSGD:
RefKind = MCSymbolRefExpr::VK_TLSGD;
break;
case X86II::MO_TLSLD:
RefKind = MCSymbolRefExpr::VK_TLSLD;
break;
case X86II::MO_TLSLDM:
RefKind = MCSymbolRefExpr::VK_TLSLDM;
break;
case X86II::MO_GOTTPOFF:
RefKind = MCSymbolRefExpr::VK_GOTTPOFF;
break;
case X86II::MO_INDNTPOFF:
RefKind = MCSymbolRefExpr::VK_INDNTPOFF;
break;
case X86II::MO_TPOFF:
RefKind = MCSymbolRefExpr::VK_TPOFF;
break;
case X86II::MO_DTPOFF:
RefKind = MCSymbolRefExpr::VK_DTPOFF;
break;
case X86II::MO_NTPOFF:
RefKind = MCSymbolRefExpr::VK_NTPOFF;
break;
case X86II::MO_GOTNTPOFF:
RefKind = MCSymbolRefExpr::VK_GOTNTPOFF;
break;
case X86II::MO_GOTPCREL:
RefKind = MCSymbolRefExpr::VK_GOTPCREL;
break;
case X86II::MO_GOT:
RefKind = MCSymbolRefExpr::VK_GOT;
break;
case X86II::MO_GOTOFF:
RefKind = MCSymbolRefExpr::VK_GOTOFF;
break;
case X86II::MO_PLT:
RefKind = MCSymbolRefExpr::VK_PLT;
break;
case X86II::MO_ABS8:
RefKind = MCSymbolRefExpr::VK_X86_ABS8;
break;
case X86II::MO_PIC_BASE_OFFSET:
case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
Expr = MCSymbolRefExpr::create(Sym, Ctx);
// Subtract the pic base.
Expr = MCBinaryExpr::createSub(
Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
if (MO.isJTI()) {
assert(MAI.doesSetDirectiveSuppressReloc());
// If .set directive is supported, use it to reduce the number of
// relocations the assembler will generate for differences between
// local labels. This is only safe when the symbols are in the same
// section so we are restricting it to jumptable references.
MCSymbol *Label = Ctx.createTempSymbol();
AsmPrinter.OutStreamer->emitAssignment(Label, Expr);
Expr = MCSymbolRefExpr::create(Label, Ctx);
}
break;
}
if (!Expr)
Expr = MCSymbolRefExpr::create(Sym, RefKind, Ctx);
if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
Expr = MCBinaryExpr::createAdd(
Expr, MCConstantExpr::create(MO.getOffset(), Ctx), Ctx);
return MCOperand::createExpr(Expr);
}
/// Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
/// a short fixed-register form.
static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
unsigned ImmOp = Inst.getNumOperands() - 1;
assert(Inst.getOperand(0).isReg() &&
(Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) &&
((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
Inst.getNumOperands() == 2) &&
"Unexpected instruction!");
// Check whether the destination register can be fixed.
unsigned Reg = Inst.getOperand(0).getReg();
if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
return;
// If so, rewrite the instruction.
MCOperand Saved = Inst.getOperand(ImmOp);
Inst = MCInst();
Inst.setOpcode(Opcode);
Inst.addOperand(Saved);
}
/// If a movsx instruction has a shorter encoding for the used register
/// simplify the instruction to use it instead.
static void SimplifyMOVSX(MCInst &Inst) {
unsigned NewOpcode = 0;
unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg();
switch (Inst.getOpcode()) {
default:
llvm_unreachable("Unexpected instruction!");
case X86::MOVSX16rr8: // movsbw %al, %ax --> cbtw
if (Op0 == X86::AX && Op1 == X86::AL)
NewOpcode = X86::CBW;
break;
case X86::MOVSX32rr16: // movswl %ax, %eax --> cwtl
if (Op0 == X86::EAX && Op1 == X86::AX)
NewOpcode = X86::CWDE;
break;
case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq
if (Op0 == X86::RAX && Op1 == X86::EAX)
NewOpcode = X86::CDQE;
break;
}
if (NewOpcode != 0) {
Inst = MCInst();
Inst.setOpcode(NewOpcode);
}
}
/// Simplify things like MOV32rm to MOV32o32a.
static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
unsigned Opcode) {
// Don't make these simplifications in 64-bit mode; other assemblers don't
// perform them because they make the code larger.
if (Printer.getSubtarget().is64Bit())
return;
bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
unsigned AddrBase = IsStore;
unsigned RegOp = IsStore ? 0 : 5;
unsigned AddrOp = AddrBase + 3;
assert(
Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() &&
Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() &&
Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() &&
Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() &&
(Inst.getOperand(AddrOp).isExpr() || Inst.getOperand(AddrOp).isImm()) &&
"Unexpected instruction!");
// Check whether the destination register can be fixed.
unsigned Reg = Inst.getOperand(RegOp).getReg();
if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
return;
// Check whether this is an absolute address.
// FIXME: We know TLVP symbol refs aren't, but there should be a better way
// to do this here.
bool Absolute = true;
if (Inst.getOperand(AddrOp).isExpr()) {
const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
Absolute = false;
}
if (Absolute &&
(Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 ||
Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 ||
Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0))
return;
// If so, rewrite the instruction.
MCOperand Saved = Inst.getOperand(AddrOp);
MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg);
Inst = MCInst();
Inst.setOpcode(Opcode);
Inst.addOperand(Saved);
Inst.addOperand(Seg);
}
static unsigned getRetOpcode(const X86Subtarget &Subtarget) {
return Subtarget.is64Bit() ? X86::RETQ : X86::RETL;
}
Optional<MCOperand>
X86MCInstLower::LowerMachineOperand(const MachineInstr *MI,
const MachineOperand &MO) const {
switch (MO.getType()) {
default:
MI->print(errs());
llvm_unreachable("unknown operand type");
case MachineOperand::MO_Register:
// Ignore all implicit register operands.
if (MO.isImplicit())
return None;
return MCOperand::createReg(MO.getReg());
case MachineOperand::MO_Immediate:
return MCOperand::createImm(MO.getImm());
case MachineOperand::MO_MachineBasicBlock:
case MachineOperand::MO_GlobalAddress:
case MachineOperand::MO_ExternalSymbol:
return LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
case MachineOperand::MO_MCSymbol:
return LowerSymbolOperand(MO, MO.getMCSymbol());
case MachineOperand::MO_JumpTableIndex:
return LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
case MachineOperand::MO_ConstantPoolIndex:
return LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
case MachineOperand::MO_BlockAddress:
return LowerSymbolOperand(
MO, AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
case MachineOperand::MO_RegisterMask:
// Ignore call clobbers.
return None;
}
}
// Replace TAILJMP opcodes with their equivalent opcodes that have encoding
// information.
static unsigned convertTailJumpOpcode(unsigned Opcode) {
switch (Opcode) {
case X86::TAILJMPr:
Opcode = X86::JMP32r;
break;
case X86::TAILJMPm:
Opcode = X86::JMP32m;
break;
case X86::TAILJMPr64:
Opcode = X86::JMP64r;
break;
case X86::TAILJMPm64:
Opcode = X86::JMP64m;
break;
case X86::TAILJMPr64_REX:
Opcode = X86::JMP64r_REX;
break;
case X86::TAILJMPm64_REX:
Opcode = X86::JMP64m_REX;
break;
case X86::TAILJMPd:
case X86::TAILJMPd64:
Opcode = X86::JMP_1;
break;
case X86::TAILJMPd_CC:
case X86::TAILJMPd64_CC:
Opcode = X86::JCC_1;
break;
}
return Opcode;
}
void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
OutMI.setOpcode(MI->getOpcode());
for (const MachineOperand &MO : MI->operands())
if (auto MaybeMCOp = LowerMachineOperand(MI, MO))
OutMI.addOperand(MaybeMCOp.getValue());
// Handle a few special cases to eliminate operand modifiers.
switch (OutMI.getOpcode()) {
case X86::LEA64_32r:
case X86::LEA64r:
case X86::LEA16r:
case X86::LEA32r:
// LEA should have a segment register, but it must be empty.
assert(OutMI.getNumOperands() == 1 + X86::AddrNumOperands &&
"Unexpected # of LEA operands");
assert(OutMI.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 &&
"LEA has segment specified!");
break;
// Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
// if one of the registers is extended, but other isn't.
case X86::VMOVZPQILo2PQIrr:
case X86::VMOVAPDrr:
case X86::VMOVAPDYrr:
case X86::VMOVAPSrr:
case X86::VMOVAPSYrr:
case X86::VMOVDQArr:
case X86::VMOVDQAYrr:
case X86::VMOVDQUrr:
case X86::VMOVDQUYrr:
case X86::VMOVUPDrr:
case X86::VMOVUPDYrr:
case X86::VMOVUPSrr:
case X86::VMOVUPSYrr: {
if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
unsigned NewOpc;
switch (OutMI.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr; break;
case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break;
case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break;
case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break;
case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break;
case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break;
case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break;
case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
}
OutMI.setOpcode(NewOpc);
}
break;
}
case X86::VMOVSDrr:
case X86::VMOVSSrr: {
if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
unsigned NewOpc;
switch (OutMI.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
}
OutMI.setOpcode(NewOpc);
}
break;
}
case X86::VPCMPBZ128rmi: case X86::VPCMPBZ128rmik:
case X86::VPCMPBZ128rri: case X86::VPCMPBZ128rrik:
case X86::VPCMPBZ256rmi: case X86::VPCMPBZ256rmik:
case X86::VPCMPBZ256rri: case X86::VPCMPBZ256rrik:
case X86::VPCMPBZrmi: case X86::VPCMPBZrmik:
case X86::VPCMPBZrri: case X86::VPCMPBZrrik:
case X86::VPCMPDZ128rmi: case X86::VPCMPDZ128rmik:
case X86::VPCMPDZ128rmib: case X86::VPCMPDZ128rmibk:
case X86::VPCMPDZ128rri: case X86::VPCMPDZ128rrik:
case X86::VPCMPDZ256rmi: case X86::VPCMPDZ256rmik:
case X86::VPCMPDZ256rmib: case X86::VPCMPDZ256rmibk:
case X86::VPCMPDZ256rri: case X86::VPCMPDZ256rrik:
case X86::VPCMPDZrmi: case X86::VPCMPDZrmik:
case X86::VPCMPDZrmib: case X86::VPCMPDZrmibk:
case X86::VPCMPDZrri: case X86::VPCMPDZrrik:
case X86::VPCMPQZ128rmi: case X86::VPCMPQZ128rmik:
case X86::VPCMPQZ128rmib: case X86::VPCMPQZ128rmibk:
case X86::VPCMPQZ128rri: case X86::VPCMPQZ128rrik:
case X86::VPCMPQZ256rmi: case X86::VPCMPQZ256rmik:
case X86::VPCMPQZ256rmib: case X86::VPCMPQZ256rmibk:
case X86::VPCMPQZ256rri: case X86::VPCMPQZ256rrik:
case X86::VPCMPQZrmi: case X86::VPCMPQZrmik:
case X86::VPCMPQZrmib: case X86::VPCMPQZrmibk:
case X86::VPCMPQZrri: case X86::VPCMPQZrrik:
case X86::VPCMPWZ128rmi: case X86::VPCMPWZ128rmik:
case X86::VPCMPWZ128rri: case X86::VPCMPWZ128rrik:
case X86::VPCMPWZ256rmi: case X86::VPCMPWZ256rmik:
case X86::VPCMPWZ256rri: case X86::VPCMPWZ256rrik:
case X86::VPCMPWZrmi: case X86::VPCMPWZrmik:
case X86::VPCMPWZrri: case X86::VPCMPWZrrik: {
// Turn immediate 0 into the VPCMPEQ instruction.
if (OutMI.getOperand(OutMI.getNumOperands() - 1).getImm() == 0) {
unsigned NewOpc;
switch (OutMI.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VPCMPBZ128rmi: NewOpc = X86::VPCMPEQBZ128rm; break;
case X86::VPCMPBZ128rmik: NewOpc = X86::VPCMPEQBZ128rmk; break;
case X86::VPCMPBZ128rri: NewOpc = X86::VPCMPEQBZ128rr; break;
case X86::VPCMPBZ128rrik: NewOpc = X86::VPCMPEQBZ128rrk; break;
case X86::VPCMPBZ256rmi: NewOpc = X86::VPCMPEQBZ256rm; break;
case X86::VPCMPBZ256rmik: NewOpc = X86::VPCMPEQBZ256rmk; break;
case X86::VPCMPBZ256rri: NewOpc = X86::VPCMPEQBZ256rr; break;
case X86::VPCMPBZ256rrik: NewOpc = X86::VPCMPEQBZ256rrk; break;
case X86::VPCMPBZrmi: NewOpc = X86::VPCMPEQBZrm; break;
case X86::VPCMPBZrmik: NewOpc = X86::VPCMPEQBZrmk; break;
case X86::VPCMPBZrri: NewOpc = X86::VPCMPEQBZrr; break;
case X86::VPCMPBZrrik: NewOpc = X86::VPCMPEQBZrrk; break;
case X86::VPCMPDZ128rmi: NewOpc = X86::VPCMPEQDZ128rm; break;
case X86::VPCMPDZ128rmib: NewOpc = X86::VPCMPEQDZ128rmb; break;
case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPEQDZ128rmbk; break;
case X86::VPCMPDZ128rmik: NewOpc = X86::VPCMPEQDZ128rmk; break;
case X86::VPCMPDZ128rri: NewOpc = X86::VPCMPEQDZ128rr; break;
case X86::VPCMPDZ128rrik: NewOpc = X86::VPCMPEQDZ128rrk; break;
case X86::VPCMPDZ256rmi: NewOpc = X86::VPCMPEQDZ256rm; break;
case X86::VPCMPDZ256rmib: NewOpc = X86::VPCMPEQDZ256rmb; break;
case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPEQDZ256rmbk; break;
case X86::VPCMPDZ256rmik: NewOpc = X86::VPCMPEQDZ256rmk; break;
case X86::VPCMPDZ256rri: NewOpc = X86::VPCMPEQDZ256rr; break;
case X86::VPCMPDZ256rrik: NewOpc = X86::VPCMPEQDZ256rrk; break;
case X86::VPCMPDZrmi: NewOpc = X86::VPCMPEQDZrm; break;
case X86::VPCMPDZrmib: NewOpc = X86::VPCMPEQDZrmb; break;
case X86::VPCMPDZrmibk: NewOpc = X86::VPCMPEQDZrmbk; break;
case X86::VPCMPDZrmik: NewOpc = X86::VPCMPEQDZrmk; break;
case X86::VPCMPDZrri: NewOpc = X86::VPCMPEQDZrr; break;
case X86::VPCMPDZrrik: NewOpc = X86::VPCMPEQDZrrk; break;
case X86::VPCMPQZ128rmi: NewOpc = X86::VPCMPEQQZ128rm; break;
case X86::VPCMPQZ128rmib: NewOpc = X86::VPCMPEQQZ128rmb; break;
case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPEQQZ128rmbk; break;
case X86::VPCMPQZ128rmik: NewOpc = X86::VPCMPEQQZ128rmk; break;
case X86::VPCMPQZ128rri: NewOpc = X86::VPCMPEQQZ128rr; break;
case X86::VPCMPQZ128rrik: NewOpc = X86::VPCMPEQQZ128rrk; break;
case X86::VPCMPQZ256rmi: NewOpc = X86::VPCMPEQQZ256rm; break;
case X86::VPCMPQZ256rmib: NewOpc = X86::VPCMPEQQZ256rmb; break;
case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPEQQZ256rmbk; break;
case X86::VPCMPQZ256rmik: NewOpc = X86::VPCMPEQQZ256rmk; break;
case X86::VPCMPQZ256rri: NewOpc = X86::VPCMPEQQZ256rr; break;
case X86::VPCMPQZ256rrik: NewOpc = X86::VPCMPEQQZ256rrk; break;
case X86::VPCMPQZrmi: NewOpc = X86::VPCMPEQQZrm; break;
case X86::VPCMPQZrmib: NewOpc = X86::VPCMPEQQZrmb; break;
case X86::VPCMPQZrmibk: NewOpc = X86::VPCMPEQQZrmbk; break;
case X86::VPCMPQZrmik: NewOpc = X86::VPCMPEQQZrmk; break;
case X86::VPCMPQZrri: NewOpc = X86::VPCMPEQQZrr; break;
case X86::VPCMPQZrrik: NewOpc = X86::VPCMPEQQZrrk; break;
case X86::VPCMPWZ128rmi: NewOpc = X86::VPCMPEQWZ128rm; break;
case X86::VPCMPWZ128rmik: NewOpc = X86::VPCMPEQWZ128rmk; break;
case X86::VPCMPWZ128rri: NewOpc = X86::VPCMPEQWZ128rr; break;
case X86::VPCMPWZ128rrik: NewOpc = X86::VPCMPEQWZ128rrk; break;
case X86::VPCMPWZ256rmi: NewOpc = X86::VPCMPEQWZ256rm; break;
case X86::VPCMPWZ256rmik: NewOpc = X86::VPCMPEQWZ256rmk; break;
case X86::VPCMPWZ256rri: NewOpc = X86::VPCMPEQWZ256rr; break;
case X86::VPCMPWZ256rrik: NewOpc = X86::VPCMPEQWZ256rrk; break;
case X86::VPCMPWZrmi: NewOpc = X86::VPCMPEQWZrm; break;
case X86::VPCMPWZrmik: NewOpc = X86::VPCMPEQWZrmk; break;
case X86::VPCMPWZrri: NewOpc = X86::VPCMPEQWZrr; break;
case X86::VPCMPWZrrik: NewOpc = X86::VPCMPEQWZrrk; break;
}
OutMI.setOpcode(NewOpc);
OutMI.erase(&OutMI.getOperand(OutMI.getNumOperands() - 1));
break;
}
// Turn immediate 6 into the VPCMPGT instruction.
if (OutMI.getOperand(OutMI.getNumOperands() - 1).getImm() == 6) {
unsigned NewOpc;
switch (OutMI.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VPCMPBZ128rmi: NewOpc = X86::VPCMPGTBZ128rm; break;
case X86::VPCMPBZ128rmik: NewOpc = X86::VPCMPGTBZ128rmk; break;
case X86::VPCMPBZ128rri: NewOpc = X86::VPCMPGTBZ128rr; break;
case X86::VPCMPBZ128rrik: NewOpc = X86::VPCMPGTBZ128rrk; break;
case X86::VPCMPBZ256rmi: NewOpc = X86::VPCMPGTBZ256rm; break;
case X86::VPCMPBZ256rmik: NewOpc = X86::VPCMPGTBZ256rmk; break;
case X86::VPCMPBZ256rri: NewOpc = X86::VPCMPGTBZ256rr; break;
case X86::VPCMPBZ256rrik: NewOpc = X86::VPCMPGTBZ256rrk; break;
case X86::VPCMPBZrmi: NewOpc = X86::VPCMPGTBZrm; break;
case X86::VPCMPBZrmik: NewOpc = X86::VPCMPGTBZrmk; break;
case X86::VPCMPBZrri: NewOpc = X86::VPCMPGTBZrr; break;
case X86::VPCMPBZrrik: NewOpc = X86::VPCMPGTBZrrk; break;
case X86::VPCMPDZ128rmi: NewOpc = X86::VPCMPGTDZ128rm; break;
case X86::VPCMPDZ128rmib: NewOpc = X86::VPCMPGTDZ128rmb; break;
case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPGTDZ128rmbk; break;
case X86::VPCMPDZ128rmik: NewOpc = X86::VPCMPGTDZ128rmk; break;
case X86::VPCMPDZ128rri: NewOpc = X86::VPCMPGTDZ128rr; break;
case X86::VPCMPDZ128rrik: NewOpc = X86::VPCMPGTDZ128rrk; break;
case X86::VPCMPDZ256rmi: NewOpc = X86::VPCMPGTDZ256rm; break;
case X86::VPCMPDZ256rmib: NewOpc = X86::VPCMPGTDZ256rmb; break;
case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPGTDZ256rmbk; break;
case X86::VPCMPDZ256rmik: NewOpc = X86::VPCMPGTDZ256rmk; break;
case X86::VPCMPDZ256rri: NewOpc = X86::VPCMPGTDZ256rr; break;
case X86::VPCMPDZ256rrik: NewOpc = X86::VPCMPGTDZ256rrk; break;
case X86::VPCMPDZrmi: NewOpc = X86::VPCMPGTDZrm; break;
case X86::VPCMPDZrmib: NewOpc = X86::VPCMPGTDZrmb; break;
case X86::VPCMPDZrmibk: NewOpc = X86::VPCMPGTDZrmbk; break;
case X86::VPCMPDZrmik: NewOpc = X86::VPCMPGTDZrmk; break;
case X86::VPCMPDZrri: NewOpc = X86::VPCMPGTDZrr; break;
case X86::VPCMPDZrrik: NewOpc = X86::VPCMPGTDZrrk; break;
case X86::VPCMPQZ128rmi: NewOpc = X86::VPCMPGTQZ128rm; break;
case X86::VPCMPQZ128rmib: NewOpc = X86::VPCMPGTQZ128rmb; break;
case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPGTQZ128rmbk; break;
case X86::VPCMPQZ128rmik: NewOpc = X86::VPCMPGTQZ128rmk; break;
case X86::VPCMPQZ128rri: NewOpc = X86::VPCMPGTQZ128rr; break;
case X86::VPCMPQZ128rrik: NewOpc = X86::VPCMPGTQZ128rrk; break;
case X86::VPCMPQZ256rmi: NewOpc = X86::VPCMPGTQZ256rm; break;
case X86::VPCMPQZ256rmib: NewOpc = X86::VPCMPGTQZ256rmb; break;
case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPGTQZ256rmbk; break;
case X86::VPCMPQZ256rmik: NewOpc = X86::VPCMPGTQZ256rmk; break;
case X86::VPCMPQZ256rri: NewOpc = X86::VPCMPGTQZ256rr; break;
case X86::VPCMPQZ256rrik: NewOpc = X86::VPCMPGTQZ256rrk; break;
case X86::VPCMPQZrmi: NewOpc = X86::VPCMPGTQZrm; break;
case X86::VPCMPQZrmib: NewOpc = X86::VPCMPGTQZrmb; break;
case X86::VPCMPQZrmibk: NewOpc = X86::VPCMPGTQZrmbk; break;
case X86::VPCMPQZrmik: NewOpc = X86::VPCMPGTQZrmk; break;
case X86::VPCMPQZrri: NewOpc = X86::VPCMPGTQZrr; break;
case X86::VPCMPQZrrik: NewOpc = X86::VPCMPGTQZrrk; break;
case X86::VPCMPWZ128rmi: NewOpc = X86::VPCMPGTWZ128rm; break;
case X86::VPCMPWZ128rmik: NewOpc = X86::VPCMPGTWZ128rmk; break;
case X86::VPCMPWZ128rri: NewOpc = X86::VPCMPGTWZ128rr; break;
case X86::VPCMPWZ128rrik: NewOpc = X86::VPCMPGTWZ128rrk; break;
case X86::VPCMPWZ256rmi: NewOpc = X86::VPCMPGTWZ256rm; break;
case X86::VPCMPWZ256rmik: NewOpc = X86::VPCMPGTWZ256rmk; break;
case X86::VPCMPWZ256rri: NewOpc = X86::VPCMPGTWZ256rr; break;
case X86::VPCMPWZ256rrik: NewOpc = X86::VPCMPGTWZ256rrk; break;
case X86::VPCMPWZrmi: NewOpc = X86::VPCMPGTWZrm; break;
case X86::VPCMPWZrmik: NewOpc = X86::VPCMPGTWZrmk; break;
case X86::VPCMPWZrri: NewOpc = X86::VPCMPGTWZrr; break;
case X86::VPCMPWZrrik: NewOpc = X86::VPCMPGTWZrrk; break;
}
OutMI.setOpcode(NewOpc);
OutMI.erase(&OutMI.getOperand(OutMI.getNumOperands() - 1));
break;
}
break;
}
// CALL64r, CALL64pcrel32 - These instructions used to have
// register inputs modeled as normal uses instead of implicit uses. As such,
// they we used to truncate off all but the first operand (the callee). This
// issue seems to have been fixed at some point. This assert verifies that.
case X86::CALL64r:
case X86::CALL64pcrel32:
assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!");
break;
case X86::EH_RETURN:
case X86::EH_RETURN64: {
OutMI = MCInst();
OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
break;
}
case X86::CLEANUPRET: {
// Replace CLEANUPRET with the appropriate RET.
OutMI = MCInst();
OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
break;
}
case X86::CATCHRET: {
// Replace CATCHRET with the appropriate RET.
const X86Subtarget &Subtarget = AsmPrinter.getSubtarget();
unsigned ReturnReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
OutMI = MCInst();
OutMI.setOpcode(getRetOpcode(Subtarget));
OutMI.addOperand(MCOperand::createReg(ReturnReg));
break;
}
// TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump
// instruction.
case X86::TAILJMPr:
case X86::TAILJMPr64:
case X86::TAILJMPr64_REX:
case X86::TAILJMPd:
case X86::TAILJMPd64:
assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!");
OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
break;
case X86::TAILJMPd_CC:
case X86::TAILJMPd64_CC:
assert(OutMI.getNumOperands() == 2 && "Unexpected number of operands!");
OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
break;
case X86::TAILJMPm:
case X86::TAILJMPm64:
case X86::TAILJMPm64_REX:
assert(OutMI.getNumOperands() == X86::AddrNumOperands &&
"Unexpected number of operands!");
OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
break;
case X86::DEC16r:
case X86::DEC32r:
case X86::INC16r:
case X86::INC32r:
// If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions.
if (!AsmPrinter.getSubtarget().is64Bit()) {
unsigned Opcode;
switch (OutMI.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::DEC16r: Opcode = X86::DEC16r_alt; break;
case X86::DEC32r: Opcode = X86::DEC32r_alt; break;
case X86::INC16r: Opcode = X86::INC16r_alt; break;
case X86::INC32r: Opcode = X86::INC32r_alt; break;
}
OutMI.setOpcode(Opcode);
}
break;
// We don't currently select the correct instruction form for instructions
// which have a short %eax, etc. form. Handle this by custom lowering, for
// now.
//
// Note, we are currently not handling the following instructions:
// MOV64ao8, MOV64o8a
// XCHG16ar, XCHG32ar, XCHG64ar
case X86::MOV8mr_NOREX:
case X86::MOV8mr:
case X86::MOV8rm_NOREX:
case X86::MOV8rm:
case X86::MOV16mr:
case X86::MOV16rm:
case X86::MOV32mr:
case X86::MOV32rm: {
unsigned NewOpc;
switch (OutMI.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::MOV8mr_NOREX:
case X86::MOV8mr: NewOpc = X86::MOV8o32a; break;
case X86::MOV8rm_NOREX:
case X86::MOV8rm: NewOpc = X86::MOV8ao32; break;
case X86::MOV16mr: NewOpc = X86::MOV16o32a; break;
case X86::MOV16rm: NewOpc = X86::MOV16ao32; break;
case X86::MOV32mr: NewOpc = X86::MOV32o32a; break;
case X86::MOV32rm: NewOpc = X86::MOV32ao32; break;
}
SimplifyShortMoveForm(AsmPrinter, OutMI, NewOpc);
break;
}
case X86::ADC8ri: case X86::ADC16ri: case X86::ADC32ri: case X86::ADC64ri32:
case X86::ADD8ri: case X86::ADD16ri: case X86::ADD32ri: case X86::ADD64ri32:
case X86::AND8ri: case X86::AND16ri: case X86::AND32ri: case X86::AND64ri32:
case X86::CMP8ri: case X86::CMP16ri: case X86::CMP32ri: case X86::CMP64ri32:
case X86::OR8ri: case X86::OR16ri: case X86::OR32ri: case X86::OR64ri32:
case X86::SBB8ri: case X86::SBB16ri: case X86::SBB32ri: case X86::SBB64ri32:
case X86::SUB8ri: case X86::SUB16ri: case X86::SUB32ri: case X86::SUB64ri32:
case X86::TEST8ri:case X86::TEST16ri:case X86::TEST32ri:case X86::TEST64ri32:
case X86::XOR8ri: case X86::XOR16ri: case X86::XOR32ri: case X86::XOR64ri32: {
unsigned NewOpc;
switch (OutMI.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::ADC8ri: NewOpc = X86::ADC8i8; break;
case X86::ADC16ri: NewOpc = X86::ADC16i16; break;
case X86::ADC32ri: NewOpc = X86::ADC32i32; break;
case X86::ADC64ri32: NewOpc = X86::ADC64i32; break;
case X86::ADD8ri: NewOpc = X86::ADD8i8; break;
case X86::ADD16ri: NewOpc = X86::ADD16i16; break;
case X86::ADD32ri: NewOpc = X86::ADD32i32; break;
case X86::ADD64ri32: NewOpc = X86::ADD64i32; break;
case X86::AND8ri: NewOpc = X86::AND8i8; break;
case X86::AND16ri: NewOpc = X86::AND16i16; break;
case X86::AND32ri: NewOpc = X86::AND32i32; break;
case X86::AND64ri32: NewOpc = X86::AND64i32; break;
case X86::CMP8ri: NewOpc = X86::CMP8i8; break;
case X86::CMP16ri: NewOpc = X86::CMP16i16; break;
case X86::CMP32ri: NewOpc = X86::CMP32i32; break;
case X86::CMP64ri32: NewOpc = X86::CMP64i32; break;
case X86::OR8ri: NewOpc = X86::OR8i8; break;
case X86::OR16ri: NewOpc = X86::OR16i16; break;
case X86::OR32ri: NewOpc = X86::OR32i32; break;
case X86::OR64ri32: NewOpc = X86::OR64i32; break;
case X86::SBB8ri: NewOpc = X86::SBB8i8; break;
case X86::SBB16ri: NewOpc = X86::SBB16i16; break;
case X86::SBB32ri: NewOpc = X86::SBB32i32; break;
case X86::SBB64ri32: NewOpc = X86::SBB64i32; break;
case X86::SUB8ri: NewOpc = X86::SUB8i8; break;
case X86::SUB16ri: NewOpc = X86::SUB16i16; break;
case X86::SUB32ri: NewOpc = X86::SUB32i32; break;
case X86::SUB64ri32: NewOpc = X86::SUB64i32; break;
case X86::TEST8ri: NewOpc = X86::TEST8i8; break;
case X86::TEST16ri: NewOpc = X86::TEST16i16; break;
case X86::TEST32ri: NewOpc = X86::TEST32i32; break;
case X86::TEST64ri32: NewOpc = X86::TEST64i32; break;
case X86::XOR8ri: NewOpc = X86::XOR8i8; break;
case X86::XOR16ri: NewOpc = X86::XOR16i16; break;
case X86::XOR32ri: NewOpc = X86::XOR32i32; break;
case X86::XOR64ri32: NewOpc = X86::XOR64i32; break;
}
SimplifyShortImmForm(OutMI, NewOpc);
break;
}
// Try to shrink some forms of movsx.
case X86::MOVSX16rr8:
case X86::MOVSX32rr16:
case X86::MOVSX64rr32:
SimplifyMOVSX(OutMI);
break;
case X86::VCMPPDrri:
case X86::VCMPPDYrri:
case X86::VCMPPSrri:
case X86::VCMPPSYrri:
case X86::VCMPSDrr:
case X86::VCMPSSrr: {
// Swap the operands if it will enable a 2 byte VEX encoding.
// FIXME: Change the immediate to improve opportunities?
if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg()) &&
X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
unsigned Imm = MI->getOperand(3).getImm() & 0x7;
switch (Imm) {
default: break;
case 0x00: // EQUAL
case 0x03: // UNORDERED
case 0x04: // NOT EQUAL
case 0x07: // ORDERED
std::swap(OutMI.getOperand(1), OutMI.getOperand(2));
break;
}
}
break;
}
case X86::VMOVHLPSrr:
case X86::VUNPCKHPDrr:
// These are not truly commutable so hide them from the default case.
break;
default: {
// If the instruction is a commutable arithmetic instruction we might be
// able to commute the operands to get a 2 byte VEX prefix.
uint64_t TSFlags = MI->getDesc().TSFlags;
if (MI->getDesc().isCommutable() &&
(TSFlags & X86II::EncodingMask) == X86II::VEX &&
(TSFlags & X86II::OpMapMask) == X86II::TB &&
(TSFlags & X86II::FormMask) == X86II::MRMSrcReg &&
!(TSFlags & X86II::VEX_W) && (TSFlags & X86II::VEX_4V) &&
OutMI.getNumOperands() == 3) {
if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg()) &&
X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg()))
std::swap(OutMI.getOperand(1), OutMI.getOperand(2));
}
break;
}
}
}
void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering,
const MachineInstr &MI) {
NoAutoPaddingScope NoPadScope(*OutStreamer);
bool Is64Bits = MI.getOpcode() == X86::TLS_addr64 ||
MI.getOpcode() == X86::TLS_base_addr64;
MCContext &Ctx = OutStreamer->getContext();
MCSymbolRefExpr::VariantKind SRVK;
switch (MI.getOpcode()) {
case X86::TLS_addr32:
case X86::TLS_addr64:
SRVK = MCSymbolRefExpr::VK_TLSGD;
break;
case X86::TLS_base_addr32:
SRVK = MCSymbolRefExpr::VK_TLSLDM;
break;
case X86::TLS_base_addr64:
SRVK = MCSymbolRefExpr::VK_TLSLD;
break;
default:
llvm_unreachable("unexpected opcode");
}
const MCSymbolRefExpr *Sym = MCSymbolRefExpr::create(
MCInstLowering.GetSymbolFromOperand(MI.getOperand(3)), SRVK, Ctx);
// As of binutils 2.32, ld has a bogus TLS relaxation error when the GD/LD
// code sequence using R_X86_64_GOTPCREL (instead of R_X86_64_GOTPCRELX) is
// attempted to be relaxed to IE/LE (binutils PR24784). Work around the bug by
// only using GOT when GOTPCRELX is enabled.
// TODO Delete the workaround when GOTPCRELX becomes commonplace.
bool UseGot = MMI->getModule()->getRtLibUseGOT() &&
Ctx.getAsmInfo()->canRelaxRelocations();
if (Is64Bits) {
bool NeedsPadding = SRVK == MCSymbolRefExpr::VK_TLSGD;
if (NeedsPadding)
EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
EmitAndCountInstruction(MCInstBuilder(X86::LEA64r)
.addReg(X86::RDI)
.addReg(X86::RIP)
.addImm(1)
.addReg(0)
.addExpr(Sym)
.addReg(0));
const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("__tls_get_addr");
if (NeedsPadding) {
if (!UseGot)
EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX));
}
if (UseGot) {
const MCExpr *Expr = MCSymbolRefExpr::create(
TlsGetAddr, MCSymbolRefExpr::VK_GOTPCREL, Ctx);
EmitAndCountInstruction(MCInstBuilder(X86::CALL64m)
.addReg(X86::RIP)
.addImm(1)
.addReg(0)
.addExpr(Expr)
.addReg(0));
} else {
EmitAndCountInstruction(
MCInstBuilder(X86::CALL64pcrel32)
.addExpr(MCSymbolRefExpr::create(TlsGetAddr,
MCSymbolRefExpr::VK_PLT, Ctx)));
}
} else {
if (SRVK == MCSymbolRefExpr::VK_TLSGD && !UseGot) {
EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
.addReg(X86::EAX)
.addReg(0)
.addImm(1)
.addReg(X86::EBX)
.addExpr(Sym)
.addReg(0));
} else {
EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
.addReg(X86::EAX)
.addReg(X86::EBX)
.addImm(1)
.addReg(0)
.addExpr(Sym)
.addReg(0));
}
const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("___tls_get_addr");
if (UseGot) {
const MCExpr *Expr =
MCSymbolRefExpr::create(TlsGetAddr, MCSymbolRefExpr::VK_GOT, Ctx);
EmitAndCountInstruction(MCInstBuilder(X86::CALL32m)
.addReg(X86::EBX)
.addImm(1)
.addReg(0)
.addExpr(Expr)
.addReg(0));
} else {
EmitAndCountInstruction(
MCInstBuilder(X86::CALLpcrel32)
.addExpr(MCSymbolRefExpr::create(TlsGetAddr,
MCSymbolRefExpr::VK_PLT, Ctx)));
}
}
}
/// Return the longest nop which can be efficiently decoded for the given
/// target cpu. 15-bytes is the longest single NOP instruction, but some
/// platforms can't decode the longest forms efficiently.
static unsigned MaxLongNopLength(const MCSubtargetInfo &STI) {
uint64_t MaxNopLength = 10;
if (STI.getFeatureBits()[X86::ProcIntelSLM])
MaxNopLength = 7;
else if (STI.getFeatureBits()[X86::FeatureFast15ByteNOP])
MaxNopLength = 15;
else if (STI.getFeatureBits()[X86::FeatureFast11ByteNOP])
MaxNopLength = 11;
return MaxNopLength;
}
/// Emit the largest nop instruction smaller than or equal to \p NumBytes
/// bytes. Return the size of nop emitted.
static unsigned EmitNop(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
const MCSubtargetInfo &STI) {
if (!Is64Bit) {
// TODO Do additional checking if the CPU supports multi-byte nops.
OS.emitInstruction(MCInstBuilder(X86::NOOP), STI);
return 1;
}
// Cap a single nop emission at the profitable value for the target
NumBytes = std::min(NumBytes, MaxLongNopLength(STI));
unsigned NopSize;
unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg;
IndexReg = Displacement = SegmentReg = 0;
BaseReg = X86::RAX;
ScaleVal = 1;
switch (NumBytes) {
case 0:
llvm_unreachable("Zero nops?");
break;
case 1:
NopSize = 1;
Opc = X86::NOOP;
break;
case 2:
NopSize = 2;
Opc = X86::XCHG16ar;
break;
case 3:
NopSize = 3;
Opc = X86::NOOPL;
break;
case 4:
NopSize = 4;
Opc = X86::NOOPL;
Displacement = 8;
break;
case 5:
NopSize = 5;
Opc = X86::NOOPL;
Displacement = 8;
IndexReg = X86::RAX;
break;
case 6:
NopSize = 6;
Opc = X86::NOOPW;
Displacement = 8;
IndexReg = X86::RAX;
break;
case 7:
NopSize = 7;
Opc = X86::NOOPL;
Displacement = 512;
break;
case 8:
NopSize = 8;
Opc = X86::NOOPL;
Displacement = 512;
IndexReg = X86::RAX;
break;
case 9:
NopSize = 9;
Opc = X86::NOOPW;
Displacement = 512;
IndexReg = X86::RAX;
break;
default:
NopSize = 10;
Opc = X86::NOOPW;
Displacement = 512;
IndexReg = X86::RAX;
SegmentReg = X86::CS;
break;
}
unsigned NumPrefixes = std::min(NumBytes - NopSize, 5U);
NopSize += NumPrefixes;
for (unsigned i = 0; i != NumPrefixes; ++i)
OS.emitBytes("\x66");
switch (Opc) {
default: llvm_unreachable("Unexpected opcode");
case X86::NOOP:
OS.emitInstruction(MCInstBuilder(Opc), STI);
break;
case X86::XCHG16ar:
OS.emitInstruction(MCInstBuilder(Opc).addReg(X86::AX).addReg(X86::AX), STI);
break;
case X86::NOOPL:
case X86::NOOPW:
OS.emitInstruction(MCInstBuilder(Opc)
.addReg(BaseReg)
.addImm(ScaleVal)
.addReg(IndexReg)
.addImm(Displacement)
.addReg(SegmentReg),
STI);
break;
}
assert(NopSize <= NumBytes && "We overemitted?");
return NopSize;
}
/// Emit the optimal amount of multi-byte nops on X86.
static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
const MCSubtargetInfo &STI) {
unsigned NopsToEmit = NumBytes;
(void)NopsToEmit;
while (NumBytes) {
NumBytes -= EmitNop(OS, NumBytes, Is64Bit, STI);
assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!");
}
}
void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI,
X86MCInstLower &MCIL) {
assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64");
NoAutoPaddingScope NoPadScope(*OutStreamer);
StatepointOpers SOpers(&MI);
if (unsigned PatchBytes = SOpers.getNumPatchBytes()) {
EmitNops(*OutStreamer, PatchBytes, Subtarget->is64Bit(),
getSubtargetInfo());
} else {
// Lower call target and choose correct opcode
const MachineOperand &CallTarget = SOpers.getCallTarget();
MCOperand CallTargetMCOp;
unsigned CallOpcode;
switch (CallTarget.getType()) {
case MachineOperand::MO_GlobalAddress:
case MachineOperand::MO_ExternalSymbol:
CallTargetMCOp = MCIL.LowerSymbolOperand(
CallTarget, MCIL.GetSymbolFromOperand(CallTarget));
CallOpcode = X86::CALL64pcrel32;
// Currently, we only support relative addressing with statepoints.
// Otherwise, we'll need a scratch register to hold the target
// address. You'll fail asserts during load & relocation if this
// symbol is to far away. (TODO: support non-relative addressing)
break;
case MachineOperand::MO_Immediate:
CallTargetMCOp = MCOperand::createImm(CallTarget.getImm());
CallOpcode = X86::CALL64pcrel32;
// Currently, we only support relative addressing with statepoints.
// Otherwise, we'll need a scratch register to hold the target
// immediate. You'll fail asserts during load & relocation if this
// address is to far away. (TODO: support non-relative addressing)
break;
case MachineOperand::MO_Register:
// FIXME: Add retpoline support and remove this.
if (Subtarget->useIndirectThunkCalls())
report_fatal_error("Lowering register statepoints with thunks not "
"yet implemented.");
CallTargetMCOp = MCOperand::createReg(CallTarget.getReg());
CallOpcode = X86::CALL64r;
break;
default:
llvm_unreachable("Unsupported operand type in statepoint call target");
break;
}
// Emit call
MCInst CallInst;
CallInst.setOpcode(CallOpcode);
CallInst.addOperand(CallTargetMCOp);
OutStreamer->emitInstruction(CallInst, getSubtargetInfo());
}
// Record our statepoint node in the same section used by STACKMAP
// and PATCHPOINT
auto &Ctx = OutStreamer->getContext();
MCSymbol *MILabel = Ctx.createTempSymbol();
OutStreamer->emitLabel(MILabel);
SM.recordStatepoint(*MILabel, MI);
}
void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI,
X86MCInstLower &MCIL) {
// FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>,
// <opcode>, <operands>
NoAutoPaddingScope NoPadScope(*OutStreamer);
Register DefRegister = FaultingMI.getOperand(0).getReg();
FaultMaps::FaultKind FK =
static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(1).getImm());
MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol();
unsigned Opcode = FaultingMI.getOperand(3).getImm();
unsigned OperandsBeginIdx = 4;
auto &Ctx = OutStreamer->getContext();
MCSymbol *FaultingLabel = Ctx.createTempSymbol();
OutStreamer->emitLabel(FaultingLabel);
assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!");
FM.recordFaultingOp(FK, FaultingLabel, HandlerLabel);
MCInst MI;
MI.setOpcode(Opcode);
if (DefRegister != X86::NoRegister)
MI.addOperand(MCOperand::createReg(DefRegister));
for (auto I = FaultingMI.operands_begin() + OperandsBeginIdx,
E = FaultingMI.operands_end();
I != E; ++I)
if (auto MaybeOperand = MCIL.LowerMachineOperand(&FaultingMI, *I))
MI.addOperand(MaybeOperand.getValue());
OutStreamer->AddComment("on-fault: " + HandlerLabel->getName());
OutStreamer->emitInstruction(MI, getSubtargetInfo());
}
void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI,
X86MCInstLower &MCIL) {
bool Is64Bits = Subtarget->is64Bit();
MCContext &Ctx = OutStreamer->getContext();
MCSymbol *fentry = Ctx.getOrCreateSymbol("__fentry__");
const MCSymbolRefExpr *Op =
MCSymbolRefExpr::create(fentry, MCSymbolRefExpr::VK_None, Ctx);
EmitAndCountInstruction(
MCInstBuilder(Is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32)
.addExpr(Op));
}
void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI,
X86MCInstLower &MCIL) {
// PATCHABLE_OP minsize, opcode, operands
NoAutoPaddingScope NoPadScope(*OutStreamer);
unsigned MinSize = MI.getOperand(0).getImm();
unsigned Opcode = MI.getOperand(1).getImm();
MCInst MCI;
MCI.setOpcode(Opcode);
for (auto &MO : make_range(MI.operands_begin() + 2, MI.operands_end()))
if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
MCI.addOperand(MaybeOperand.getValue());
SmallString<256> Code;
SmallVector<MCFixup, 4> Fixups;
raw_svector_ostream VecOS(Code);
CodeEmitter->encodeInstruction(MCI, VecOS, Fixups, getSubtargetInfo());
if (Code.size() < MinSize) {
if (MinSize == 2 && Opcode == X86::PUSH64r) {
// This is an optimization that lets us get away without emitting a nop in
// many cases.
//
// NB! In some cases the encoding for PUSH64r (e.g. PUSH64r %r9) takes two
// bytes too, so the check on MinSize is important.
MCI.setOpcode(X86::PUSH64rmr);
} else {
unsigned NopSize = EmitNop(*OutStreamer, MinSize, Subtarget->is64Bit(),
getSubtargetInfo());
assert(NopSize == MinSize && "Could not implement MinSize!");
(void)NopSize;
}
}
OutStreamer->emitInstruction(MCI, getSubtargetInfo());
}
// Lower a stackmap of the form:
// <id>, <shadowBytes>, ...
void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
auto &Ctx = OutStreamer->getContext();
MCSymbol *MILabel = Ctx.createTempSymbol();
OutStreamer->emitLabel(MILabel);
SM.recordStackMap(*MILabel, MI);
unsigned NumShadowBytes = MI.getOperand(1).getImm();
SMShadowTracker.reset(NumShadowBytes);
}
// Lower a patchpoint of the form:
// [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI,
X86MCInstLower &MCIL) {
assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64");
SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
NoAutoPaddingScope NoPadScope(*OutStreamer);
auto &Ctx = OutStreamer->getContext();
MCSymbol *MILabel = Ctx.createTempSymbol();
OutStreamer->emitLabel(MILabel);
SM.recordPatchPoint(*MILabel, MI);
PatchPointOpers opers(&MI);
unsigned ScratchIdx = opers.getNextScratchIdx();
unsigned EncodedBytes = 0;
const MachineOperand &CalleeMO = opers.getCallTarget();
// Check for null target. If target is non-null (i.e. is non-zero or is
// symbolic) then emit a call.
if (!(CalleeMO.isImm() && !CalleeMO.getImm())) {
MCOperand CalleeMCOp;
switch (CalleeMO.getType()) {
default:
/// FIXME: Add a verifier check for bad callee types.
llvm_unreachable("Unrecognized callee operand type.");
case MachineOperand::MO_Immediate:
if (CalleeMO.getImm())
CalleeMCOp = MCOperand::createImm(CalleeMO.getImm());
break;
case MachineOperand::MO_ExternalSymbol:
case MachineOperand::MO_GlobalAddress:
CalleeMCOp = MCIL.LowerSymbolOperand(CalleeMO,
MCIL.GetSymbolFromOperand(CalleeMO));
break;
}
// Emit MOV to materialize the target address and the CALL to target.
// This is encoded with 12-13 bytes, depending on which register is used.
Register ScratchReg = MI.getOperand(ScratchIdx).getReg();
if (X86II::isX86_64ExtendedReg(ScratchReg))
EncodedBytes = 13;
else
EncodedBytes = 12;
EmitAndCountInstruction(
MCInstBuilder(X86::MOV64ri).addReg(ScratchReg).addOperand(CalleeMCOp));
// FIXME: Add retpoline support and remove this.
if (Subtarget->useIndirectThunkCalls())
report_fatal_error(
"Lowering patchpoint with thunks not yet implemented.");
EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg));
}
// Emit padding.
unsigned NumBytes = opers.getNumPatchBytes();
assert(NumBytes >= EncodedBytes &&
"Patchpoint can't request size less than the length of a call.");
EmitNops(*OutStreamer, NumBytes - EncodedBytes, Subtarget->is64Bit(),
getSubtargetInfo());
}
void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr &MI,
X86MCInstLower &MCIL) {
assert(Subtarget->is64Bit() && "XRay custom events only supports X86-64");
NoAutoPaddingScope NoPadScope(*OutStreamer);
// We want to emit the following pattern, which follows the x86 calling
// convention to prepare for the trampoline call to be patched in.
//
// .p2align 1, ...
// .Lxray_event_sled_N:
// jmp +N // jump across the instrumentation sled
// ... // set up arguments in register
// callq __xray_CustomEvent@plt // force dependency to symbol
// ...
// <jump here>
//
// After patching, it would look something like:
//
// nopw (2-byte nop)
// ...
// callq __xrayCustomEvent // already lowered
// ...
//
// ---
// First we emit the label and the jump.
auto CurSled = OutContext.createTempSymbol("xray_event_sled_", true);
OutStreamer->AddComment("# XRay Custom Event Log");
OutStreamer->emitCodeAlignment(2);
OutStreamer->emitLabel(CurSled);
// Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
// an operand (computed as an offset from the jmp instruction).
// FIXME: Find another less hacky way do force the relative jump.
OutStreamer->emitBinaryData("\xeb\x0f");
// The default C calling convention will place two arguments into %rcx and
// %rdx -- so we only work with those.
const Register DestRegs[] = {X86::RDI, X86::RSI};
bool UsedMask[] = {false, false};
// Filled out in loop.
Register SrcRegs[] = {0, 0};
// Then we put the operands in the %rdi and %rsi registers. We spill the
// values in the register before we clobber them, and mark them as used in
// UsedMask. In case the arguments are already in the correct register, we use
// emit nops appropriately sized to keep the sled the same size in every
// situation.
for (unsigned I = 0; I < MI.getNumOperands(); ++I)
if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
assert(Op->isReg() && "Only support arguments in registers");
SrcRegs[I] = getX86SubSuperRegister(Op->getReg(), 64);
if (SrcRegs[I] != DestRegs[I]) {
UsedMask[I] = true;
EmitAndCountInstruction(
MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
} else {
EmitNops(*OutStreamer, 4, Subtarget->is64Bit(), getSubtargetInfo());
}
}
// Now that the register values are stashed, mov arguments into place.
// FIXME: This doesn't work if one of the later SrcRegs is equal to an
// earlier DestReg. We will have already overwritten over the register before
// we can copy from it.
for (unsigned I = 0; I < MI.getNumOperands(); ++I)
if (SrcRegs[I] != DestRegs[I])
EmitAndCountInstruction(
MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
// We emit a hard dependency on the __xray_CustomEvent symbol, which is the
// name of the trampoline to be implemented by the XRay runtime.
auto TSym = OutContext.getOrCreateSymbol("__xray_CustomEvent");
MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
if (isPositionIndependent())
TOp.setTargetFlags(X86II::MO_PLT);
// Emit the call instruction.
EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
.addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
// Restore caller-saved and used registers.
for (unsigned I = sizeof UsedMask; I-- > 0;)
if (UsedMask[I])
EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
else
EmitNops(*OutStreamer, 1, Subtarget->is64Bit(), getSubtargetInfo());
OutStreamer->AddComment("xray custom event end.");
// Record the sled version. Older versions of this sled were spelled
// differently, so we let the runtime handle the different offsets we're
// using.
recordSled(CurSled, MI, SledKind::CUSTOM_EVENT, 1);
}
void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr &MI,
X86MCInstLower &MCIL) {
assert(Subtarget->is64Bit() && "XRay typed events only supports X86-64");
NoAutoPaddingScope NoPadScope(*OutStreamer);
// We want to emit the following pattern, which follows the x86 calling
// convention to prepare for the trampoline call to be patched in.
//
// .p2align 1, ...
// .Lxray_event_sled_N:
// jmp +N // jump across the instrumentation sled
// ... // set up arguments in register
// callq __xray_TypedEvent@plt // force dependency to symbol
// ...
// <jump here>
//
// After patching, it would look something like:
//
// nopw (2-byte nop)
// ...
// callq __xrayTypedEvent // already lowered
// ...
//
// ---
// First we emit the label and the jump.
auto CurSled = OutContext.createTempSymbol("xray_typed_event_sled_", true);
OutStreamer->AddComment("# XRay Typed Event Log");
OutStreamer->emitCodeAlignment(2);
OutStreamer->emitLabel(CurSled);
// Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
// an operand (computed as an offset from the jmp instruction).
// FIXME: Find another less hacky way do force the relative jump.
OutStreamer->emitBinaryData("\xeb\x14");
// An x86-64 convention may place three arguments into %rcx, %rdx, and R8,
// so we'll work with those. Or we may be called via SystemV, in which case
// we don't have to do any translation.
const Register DestRegs[] = {X86::RDI, X86::RSI, X86::RDX};
bool UsedMask[] = {false, false, false};
// Will fill out src regs in the loop.
Register SrcRegs[] = {0, 0, 0};
// Then we put the operands in the SystemV registers. We spill the values in
// the registers before we clobber them, and mark them as used in UsedMask.
// In case the arguments are already in the correct register, we emit nops
// appropriately sized to keep the sled the same size in every situation.
for (unsigned I = 0; I < MI.getNumOperands(); ++I)
if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
// TODO: Is register only support adequate?
assert(Op->isReg() && "Only supports arguments in registers");
SrcRegs[I] = getX86SubSuperRegister(Op->getReg(), 64);
if (SrcRegs[I] != DestRegs[I]) {
UsedMask[I] = true;
EmitAndCountInstruction(
MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
} else {
EmitNops(*OutStreamer, 4, Subtarget->is64Bit(), getSubtargetInfo());
}
}
// In the above loop we only stash all of the destination registers or emit
// nops if the arguments are already in the right place. Doing the actually
// moving is postponed until after all the registers are stashed so nothing
// is clobbers. We've already added nops to account for the size of mov and
// push if the register is in the right place, so we only have to worry about
// emitting movs.
// FIXME: This doesn't work if one of the later SrcRegs is equal to an
// earlier DestReg. We will have already overwritten over the register before
// we can copy from it.
for (unsigned I = 0; I < MI.getNumOperands(); ++I)
if (UsedMask[I])
EmitAndCountInstruction(
MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
// We emit a hard dependency on the __xray_TypedEvent symbol, which is the
// name of the trampoline to be implemented by the XRay runtime.
auto TSym = OutContext.getOrCreateSymbol("__xray_TypedEvent");
MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
if (isPositionIndependent())
TOp.setTargetFlags(X86II::MO_PLT);
// Emit the call instruction.
EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
.addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
// Restore caller-saved and used registers.
for (unsigned I = sizeof UsedMask; I-- > 0;)
if (UsedMask[I])
EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
else
EmitNops(*OutStreamer, 1, Subtarget->is64Bit(), getSubtargetInfo());
OutStreamer->AddComment("xray typed event end.");
// Record the sled version.
recordSled(CurSled, MI, SledKind::TYPED_EVENT, 0);
}
void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI,
X86MCInstLower &MCIL) {
NoAutoPaddingScope NoPadScope(*OutStreamer);
const Function &F = MF->getFunction();
if (F.hasFnAttribute("patchable-function-entry")) {
unsigned Num;
if (F.getFnAttribute("patchable-function-entry")
.getValueAsString()
.getAsInteger(10, Num))
return;
EmitNops(*OutStreamer, Num, Subtarget->is64Bit(), getSubtargetInfo());
return;
}
// We want to emit the following pattern:
//
// .p2align 1, ...
// .Lxray_sled_N:
// jmp .tmpN
// # 9 bytes worth of noops
//
// We need the 9 bytes because at runtime, we'd be patching over the full 11
// bytes with the following pattern:
//
// mov %r10, <function id, 32-bit> // 6 bytes
// call <relative offset, 32-bits> // 5 bytes
//
auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
OutStreamer->emitCodeAlignment(2);
OutStreamer->emitLabel(CurSled);
// Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
// an operand (computed as an offset from the jmp instruction).
// FIXME: Find another less hacky way do force the relative jump.
OutStreamer->emitBytes("\xeb\x09");
EmitNops(*OutStreamer, 9, Subtarget->is64Bit(), getSubtargetInfo());
recordSled(CurSled, MI, SledKind::FUNCTION_ENTER);
}
void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI,
X86MCInstLower &MCIL) {
NoAutoPaddingScope NoPadScope(*OutStreamer);
// Since PATCHABLE_RET takes the opcode of the return statement as an
// argument, we use that to emit the correct form of the RET that we want.
// i.e. when we see this:
//
// PATCHABLE_RET X86::RET ...
//
// We should emit the RET followed by sleds.
//
// .p2align 1, ...
// .Lxray_sled_N:
// ret # or equivalent instruction
// # 10 bytes worth of noops
//
// This just makes sure that the alignment for the next instruction is 2.
auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
OutStreamer->emitCodeAlignment(2);
OutStreamer->emitLabel(CurSled);
unsigned OpCode = MI.getOperand(0).getImm();
MCInst Ret;
Ret.setOpcode(OpCode);
for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end()))
if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
Ret.addOperand(MaybeOperand.getValue());
OutStreamer->emitInstruction(Ret, getSubtargetInfo());
EmitNops(*OutStreamer, 10, Subtarget->is64Bit(), getSubtargetInfo());
recordSled(CurSled, MI, SledKind::FUNCTION_EXIT);
}
void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI,
X86MCInstLower &MCIL) {
NoAutoPaddingScope NoPadScope(*OutStreamer);
// Like PATCHABLE_RET, we have the actual instruction in the operands to this
// instruction so we lower that particular instruction and its operands.
// Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how
// we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to
// the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual
// tail call much like how we have it in PATCHABLE_RET.
auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
OutStreamer->emitCodeAlignment(2);
OutStreamer->emitLabel(CurSled);
auto Target = OutContext.createTempSymbol();
// Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
// an operand (computed as an offset from the jmp instruction).
// FIXME: Find another less hacky way do force the relative jump.
OutStreamer->emitBytes("\xeb\x09");
EmitNops(*OutStreamer, 9, Subtarget->is64Bit(), getSubtargetInfo());
OutStreamer->emitLabel(Target);
recordSled(CurSled, MI, SledKind::TAIL_CALL);
unsigned OpCode = MI.getOperand(0).getImm();
OpCode = convertTailJumpOpcode(OpCode);
MCInst TC;
TC.setOpcode(OpCode);
// Before emitting the instruction, add a comment to indicate that this is
// indeed a tail call.
OutStreamer->AddComment("TAILCALL");
for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end()))
if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
TC.addOperand(MaybeOperand.getValue());
OutStreamer->emitInstruction(TC, getSubtargetInfo());
}
// Returns instruction preceding MBBI in MachineFunction.
// If MBBI is the first instruction of the first basic block, returns null.
static MachineBasicBlock::const_iterator
PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) {
const MachineBasicBlock *MBB = MBBI->getParent();
while (MBBI == MBB->begin()) {
if (MBB == &MBB->getParent()->front())
return MachineBasicBlock::const_iterator();
MBB = MBB->getPrevNode();
MBBI = MBB->end();
}
--MBBI;
return MBBI;
}
static const Constant *getConstantFromPool(const MachineInstr &MI,
const MachineOperand &Op) {
if (!Op.isCPI() || Op.getOffset() != 0)
return nullptr;
ArrayRef<MachineConstantPoolEntry> Constants =
MI.getParent()->getParent()->getConstantPool()->getConstants();
const MachineConstantPoolEntry &ConstantEntry = Constants[Op.getIndex()];
// Bail if this is a machine constant pool entry, we won't be able to dig out
// anything useful.
if (ConstantEntry.isMachineConstantPoolEntry())
return nullptr;
const Constant *C = ConstantEntry.Val.ConstVal;
assert((!C || ConstantEntry.getType() == C->getType()) &&
"Expected a constant of the same type!");
return C;
}
static std::string getShuffleComment(const MachineInstr *MI, unsigned SrcOp1Idx,
unsigned SrcOp2Idx, ArrayRef<int> Mask) {
std::string Comment;
// Compute the name for a register. This is really goofy because we have
// multiple instruction printers that could (in theory) use different
// names. Fortunately most people use the ATT style (outside of Windows)
// and they actually agree on register naming here. Ultimately, this is
// a comment, and so its OK if it isn't perfect.
auto GetRegisterName = [](unsigned RegNum) -> StringRef {
return X86ATTInstPrinter::getRegisterName(RegNum);
};
const MachineOperand &DstOp = MI->getOperand(0);
const MachineOperand &SrcOp1 = MI->getOperand(SrcOp1Idx);
const MachineOperand &SrcOp2 = MI->getOperand(SrcOp2Idx);
StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem";
StringRef Src1Name =
SrcOp1.isReg() ? GetRegisterName(SrcOp1.getReg()) : "mem";
StringRef Src2Name =
SrcOp2.isReg() ? GetRegisterName(SrcOp2.getReg()) : "mem";
// One source operand, fix the mask to print all elements in one span.
SmallVector<int, 8> ShuffleMask(Mask.begin(), Mask.end());
if (Src1Name == Src2Name)
for (int i = 0, e = ShuffleMask.size(); i != e; ++i)
if (ShuffleMask[i] >= e)
ShuffleMask[i] -= e;
raw_string_ostream CS(Comment);
CS << DstName;
// Handle AVX512 MASK/MASXZ write mask comments.
// MASK: zmmX {%kY}
// MASKZ: zmmX {%kY} {z}
if (SrcOp1Idx > 1) {
assert((SrcOp1Idx == 2 || SrcOp1Idx == 3) && "Unexpected writemask");
const MachineOperand &WriteMaskOp = MI->getOperand(SrcOp1Idx - 1);
if (WriteMaskOp.isReg()) {
CS << " {%" << GetRegisterName(WriteMaskOp.getReg()) << "}";
if (SrcOp1Idx == 2) {
CS << " {z}";
}
}
}
CS << " = ";
for (int i = 0, e = ShuffleMask.size(); i != e; ++i) {
if (i != 0)
CS << ",";
if (ShuffleMask[i] == SM_SentinelZero) {
CS << "zero";
continue;
}
// Otherwise, it must come from src1 or src2. Print the span of elements
// that comes from this src.
bool isSrc1 = ShuffleMask[i] < (int)e;
CS << (isSrc1 ? Src1Name : Src2Name) << '[';
bool IsFirst = true;
while (i != e && ShuffleMask[i] != SM_SentinelZero &&
(ShuffleMask[i] < (int)e) == isSrc1) {
if (!IsFirst)
CS << ',';
else
IsFirst = false;
if (ShuffleMask[i] == SM_SentinelUndef)
CS << "u";
else
CS << ShuffleMask[i] % (int)e;
++i;
}
CS << ']';
--i; // For loop increments element #.
}
CS.flush();
return Comment;
}
static void printConstant(const APInt &Val, raw_ostream &CS) {
if (Val.getBitWidth() <= 64) {
CS << Val.getZExtValue();
} else {
// print multi-word constant as (w0,w1)
CS << "(";
for (int i = 0, N = Val.getNumWords(); i < N; ++i) {
if (i > 0)
CS << ",";
CS << Val.getRawData()[i];
}
CS << ")";
}
}
static void printConstant(const APFloat &Flt, raw_ostream &CS) {
SmallString<32> Str;
// Force scientific notation to distinquish from integers.
Flt.toString(Str, 0, 0);
CS << Str;
}
static void printConstant(const Constant *COp, raw_ostream &CS) {
if (isa<UndefValue>(COp)) {
CS << "u";
} else if (auto *CI = dyn_cast<ConstantInt>(COp)) {
printConstant(CI->getValue(), CS);
} else if (auto *CF = dyn_cast<ConstantFP>(COp)) {
printConstant(CF->getValueAPF(), CS);
} else {
CS << "?";
}
}
void X86AsmPrinter::EmitSEHInstruction(const MachineInstr *MI) {
assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
assert(getSubtarget().isOSWindows() && "SEH_ instruction Windows only");
// Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86.
if (EmitFPOData) {
X86TargetStreamer *XTS =
static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer());
switch (MI->getOpcode()) {
case X86::SEH_PushReg:
XTS->emitFPOPushReg(MI->getOperand(0).getImm());
break;
case X86::SEH_StackAlloc:
XTS->emitFPOStackAlloc(MI->getOperand(0).getImm());
break;
case X86::SEH_StackAlign:
XTS->emitFPOStackAlign(MI->getOperand(0).getImm());
break;
case X86::SEH_SetFrame:
assert(MI->getOperand(1).getImm() == 0 &&
".cv_fpo_setframe takes no offset");
XTS->emitFPOSetFrame(MI->getOperand(0).getImm());
break;
case X86::SEH_EndPrologue:
XTS->emitFPOEndPrologue();
break;
case X86::SEH_SaveReg:
case X86::SEH_SaveXMM:
case X86::SEH_PushFrame:
llvm_unreachable("SEH_ directive incompatible with FPO");
break;
default:
llvm_unreachable("expected SEH_ instruction");
}
return;
}
// Otherwise, use the .seh_ directives for all other Windows platforms.
switch (MI->getOpcode()) {
case X86::SEH_PushReg:
OutStreamer->EmitWinCFIPushReg(MI->getOperand(0).getImm());
break;
case X86::SEH_SaveReg:
OutStreamer->EmitWinCFISaveReg(MI->getOperand(0).getImm(),
MI->getOperand(1).getImm());
break;
case X86::SEH_SaveXMM:
OutStreamer->EmitWinCFISaveXMM(MI->getOperand(0).getImm(),
MI->getOperand(1).getImm());
break;
case X86::SEH_StackAlloc:
OutStreamer->EmitWinCFIAllocStack(MI->getOperand(0).getImm());
break;
case X86::SEH_SetFrame:
OutStreamer->EmitWinCFISetFrame(MI->getOperand(0).getImm(),
MI->getOperand(1).getImm());
break;
case X86::SEH_PushFrame:
OutStreamer->EmitWinCFIPushFrame(MI->getOperand(0).getImm());
break;
case X86::SEH_EndPrologue:
OutStreamer->EmitWinCFIEndProlog();
break;
default:
llvm_unreachable("expected SEH_ instruction");
}
}
static unsigned getRegisterWidth(const MCOperandInfo &Info) {
if (Info.RegClass == X86::VR128RegClassID ||
Info.RegClass == X86::VR128XRegClassID)
return 128;
if (Info.RegClass == X86::VR256RegClassID ||
Info.RegClass == X86::VR256XRegClassID)
return 256;
if (Info.RegClass == X86::VR512RegClassID)
return 512;
llvm_unreachable("Unknown register class!");
}
void X86AsmPrinter::emitInstruction(const MachineInstr *MI) {
X86MCInstLower MCInstLowering(*MF, *this);
const X86RegisterInfo *RI =
MF->getSubtarget<X86Subtarget>().getRegisterInfo();
// Add a comment about EVEX-2-VEX compression for AVX-512 instrs that
// are compressed from EVEX encoding to VEX encoding.
if (TM.Options.MCOptions.ShowMCEncoding) {
if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX)
OutStreamer->AddComment("EVEX TO VEX Compression ", false);
}
switch (MI->getOpcode()) {
case TargetOpcode::DBG_VALUE:
llvm_unreachable("Should be handled target independently");
// Emit nothing here but a comment if we can.
case X86::Int_MemBarrier:
OutStreamer->emitRawComment("MEMBARRIER");
return;
case X86::EH_RETURN:
case X86::EH_RETURN64: {
// Lower these as normal, but add some comments.
Register Reg = MI->getOperand(0).getReg();
OutStreamer->AddComment(StringRef("eh_return, addr: %") +
X86ATTInstPrinter::getRegisterName(Reg));
break;
}
case X86::CLEANUPRET: {
// Lower these as normal, but add some comments.
OutStreamer->AddComment("CLEANUPRET");
break;
}
case X86::CATCHRET: {
// Lower these as normal, but add some comments.
OutStreamer->AddComment("CATCHRET");
break;
}
case X86::ENDBR32:
case X86::ENDBR64: {
// CurrentPatchableFunctionEntrySym can be CurrentFnBegin only for
// -fpatchable-function-entry=N,0. The entry MBB is guaranteed to be
// non-empty. If MI is the initial ENDBR, place the
// __patchable_function_entries label after ENDBR.
if (CurrentPatchableFunctionEntrySym &&
CurrentPatchableFunctionEntrySym == CurrentFnBegin &&
MI == &MF->front().front()) {
MCInst Inst;
MCInstLowering.Lower(MI, Inst);
EmitAndCountInstruction(Inst);
CurrentPatchableFunctionEntrySym = createTempSymbol("patch");
OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
return;
}
break;
}
case X86::TAILJMPr:
case X86::TAILJMPm:
case X86::TAILJMPd:
case X86::TAILJMPd_CC:
case X86::TAILJMPr64:
case X86::TAILJMPm64:
case X86::TAILJMPd64:
case X86::TAILJMPd64_CC:
case X86::TAILJMPr64_REX:
case X86::TAILJMPm64_REX:
// Lower these as normal, but add some comments.
OutStreamer->AddComment("TAILCALL");
break;
case X86::TLS_addr32:
case X86::TLS_addr64:
case X86::TLS_base_addr32:
case X86::TLS_base_addr64:
return LowerTlsAddr(MCInstLowering, *MI);
// Loading/storing mask pairs requires two kmov operations. The second one of these
// needs a 2 byte displacement relative to the specified address (with 32 bit spill
// size). The pairs of 1bit masks up to 16 bit masks all use the same spill size,
// they all are stored using MASKPAIR16STORE, loaded using MASKPAIR16LOAD.
//
// The displacement value might wrap around in theory, thus the asserts in both
// cases.
case X86::MASKPAIR16LOAD: {
int64_t Disp = MI->getOperand(1 + X86::AddrDisp).getImm();
assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
Register Reg = MI->getOperand(0).getReg();
Register Reg0 = RI->getSubReg(Reg, X86::sub_mask_0);
Register Reg1 = RI->getSubReg(Reg, X86::sub_mask_1);
// Load the first mask register
MCInstBuilder MIB = MCInstBuilder(X86::KMOVWkm);
MIB.addReg(Reg0);
for (int i = 0; i < X86::AddrNumOperands; ++i) {
auto Op = MCInstLowering.LowerMachineOperand(MI, MI->getOperand(1 + i));
MIB.addOperand(Op.getValue());
}
EmitAndCountInstruction(MIB);
// Load the second mask register of the pair
MIB = MCInstBuilder(X86::KMOVWkm);
MIB.addReg(Reg1);
for (int i = 0; i < X86::AddrNumOperands; ++i) {
if (i == X86::AddrDisp) {
MIB.addImm(Disp + 2);
} else {
auto Op = MCInstLowering.LowerMachineOperand(MI, MI->getOperand(1 + i));
MIB.addOperand(Op.getValue());
}
}
EmitAndCountInstruction(MIB);
return;
}
case X86::MASKPAIR16STORE: {
int64_t Disp = MI->getOperand(X86::AddrDisp).getImm();
assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
Register Reg = MI->getOperand(X86::AddrNumOperands).getReg();
Register Reg0 = RI->getSubReg(Reg, X86::sub_mask_0);
Register Reg1 = RI->getSubReg(Reg, X86::sub_mask_1);
// Store the first mask register
MCInstBuilder MIB = MCInstBuilder(X86::KMOVWmk);
for (int i = 0; i < X86::AddrNumOperands; ++i)
MIB.addOperand(MCInstLowering.LowerMachineOperand(MI, MI->getOperand(i)).getValue());
MIB.addReg(Reg0);
EmitAndCountInstruction(MIB);
// Store the second mask register of the pair
MIB = MCInstBuilder(X86::KMOVWmk);
for (int i = 0; i < X86::AddrNumOperands; ++i) {
if (i == X86::AddrDisp) {
MIB.addImm(Disp + 2);
} else {
auto Op = MCInstLowering.LowerMachineOperand(MI, MI->getOperand(0 + i));
MIB.addOperand(Op.getValue());
}
}
MIB.addReg(Reg1);
EmitAndCountInstruction(MIB);
return;
}
case X86::MOVPC32r: {
// This is a pseudo op for a two instruction sequence with a label, which
// looks like:
// call "L1$pb"
// "L1$pb":
// popl %esi
// Emit the call.
MCSymbol *PICBase = MF->getPICBaseSymbol();
// FIXME: We would like an efficient form for this, so we don't have to do a
// lot of extra uniquing.
EmitAndCountInstruction(
MCInstBuilder(X86::CALLpcrel32)
.addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
const X86FrameLowering *FrameLowering =
MF->getSubtarget<X86Subtarget>().getFrameLowering();
bool hasFP = FrameLowering->hasFP(*MF);
// TODO: This is needed only if we require precise CFA.
bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() &&
!OutStreamer->getDwarfFrameInfos().back().End;
int stackGrowth = -RI->getSlotSize();
if (HasActiveDwarfFrame && !hasFP) {
OutStreamer->emitCFIAdjustCfaOffset(-stackGrowth);
}
// Emit the label.
OutStreamer->emitLabel(PICBase);
// popl $reg
EmitAndCountInstruction(
MCInstBuilder(X86::POP32r).addReg(MI->getOperand(0).getReg()));
if (HasActiveDwarfFrame && !hasFP) {
OutStreamer->emitCFIAdjustCfaOffset(stackGrowth);
}
return;
}
case X86::ADD32ri: {
// Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
break;
// Okay, we have something like:
// EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
// For this, we want to print something like:
// MYGLOBAL + (. - PICBASE)
// However, we can't generate a ".", so just emit a new label here and refer
// to it.
MCSymbol *DotSym = OutContext.createTempSymbol();
OutStreamer->emitLabel(DotSym);
// Now that we have emitted the label, lower the complex operand expression.
MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
const MCExpr *PICBase =
MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
DotExpr = MCBinaryExpr::createSub(DotExpr, PICBase, OutContext);
DotExpr = MCBinaryExpr::createAdd(
MCSymbolRefExpr::create(OpSym, OutContext), DotExpr, OutContext);
EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(DotExpr));
return;
}
case TargetOpcode::STATEPOINT:
return LowerSTATEPOINT(*MI, MCInstLowering);
case TargetOpcode::FAULTING_OP:
return LowerFAULTING_OP(*MI, MCInstLowering);
case TargetOpcode::FENTRY_CALL:
return LowerFENTRY_CALL(*MI, MCInstLowering);
case TargetOpcode::PATCHABLE_OP:
return LowerPATCHABLE_OP(*MI, MCInstLowering);
case TargetOpcode::STACKMAP:
return LowerSTACKMAP(*MI);
case TargetOpcode::PATCHPOINT:
return LowerPATCHPOINT(*MI, MCInstLowering);
case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
return LowerPATCHABLE_FUNCTION_ENTER(*MI, MCInstLowering);
case TargetOpcode::PATCHABLE_RET:
return LowerPATCHABLE_RET(*MI, MCInstLowering);
case TargetOpcode::PATCHABLE_TAIL_CALL:
return LowerPATCHABLE_TAIL_CALL(*MI, MCInstLowering);
case TargetOpcode::PATCHABLE_EVENT_CALL:
return LowerPATCHABLE_EVENT_CALL(*MI, MCInstLowering);
case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
return LowerPATCHABLE_TYPED_EVENT_CALL(*MI, MCInstLowering);
case X86::MORESTACK_RET:
EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
return;
case X86::MORESTACK_RET_RESTORE_R10:
// Return, then restore R10.
EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
EmitAndCountInstruction(
MCInstBuilder(X86::MOV64rr).addReg(X86::R10).addReg(X86::RAX));
return;
case X86::SEH_PushReg:
case X86::SEH_SaveReg:
case X86::SEH_SaveXMM:
case X86::SEH_StackAlloc:
case X86::SEH_StackAlign:
case X86::SEH_SetFrame:
case X86::SEH_PushFrame:
case X86::SEH_EndPrologue:
EmitSEHInstruction(MI);
return;
case X86::SEH_Epilogue: {
assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
MachineBasicBlock::const_iterator MBBI(MI);
// Check if preceded by a call and emit nop if so.
for (MBBI = PrevCrossBBInst(MBBI);
MBBI != MachineBasicBlock::const_iterator();
MBBI = PrevCrossBBInst(MBBI)) {
// Conservatively assume that pseudo instructions don't emit code and keep
// looking for a call. We may emit an unnecessary nop in some cases.
if (!MBBI->isPseudo()) {
if (MBBI->isCall())
EmitAndCountInstruction(MCInstBuilder(X86::NOOP));
break;
}
}
return;
}
// Lower PSHUFB and VPERMILP normally but add a comment if we can find
// a constant shuffle mask. We won't be able to do this at the MC layer
// because the mask isn't an immediate.
case X86::PSHUFBrm:
case X86::VPSHUFBrm:
case X86::VPSHUFBYrm:
case X86::VPSHUFBZ128rm:
case X86::VPSHUFBZ128rmk:
case X86::VPSHUFBZ128rmkz:
case X86::VPSHUFBZ256rm:
case X86::VPSHUFBZ256rmk:
case X86::VPSHUFBZ256rmkz:
case X86::VPSHUFBZrm:
case X86::VPSHUFBZrmk:
case X86::VPSHUFBZrmkz: {
if (!OutStreamer->isVerboseAsm())
break;
unsigned SrcIdx, MaskIdx;
switch (MI->getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::PSHUFBrm:
case X86::VPSHUFBrm:
case X86::VPSHUFBYrm:
case X86::VPSHUFBZ128rm:
case X86::VPSHUFBZ256rm:
case X86::VPSHUFBZrm:
SrcIdx = 1; MaskIdx = 5; break;
case X86::VPSHUFBZ128rmkz:
case X86::VPSHUFBZ256rmkz:
case X86::VPSHUFBZrmkz:
SrcIdx = 2; MaskIdx = 6; break;
case X86::VPSHUFBZ128rmk:
case X86::VPSHUFBZ256rmk:
case X86::VPSHUFBZrmk:
SrcIdx = 3; MaskIdx = 7; break;
}
assert(MI->getNumOperands() >= 6 &&
"We should always have at least 6 operands!");
const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
if (auto *C = getConstantFromPool(*MI, MaskOp)) {
unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
SmallVector<int, 64> Mask;
DecodePSHUFBMask(C, Width, Mask);
if (!Mask.empty())
OutStreamer->AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
}
break;
}
case X86::VPERMILPSrm:
case X86::VPERMILPSYrm:
case X86::VPERMILPSZ128rm:
case X86::VPERMILPSZ128rmk:
case X86::VPERMILPSZ128rmkz:
case X86::VPERMILPSZ256rm:
case X86::VPERMILPSZ256rmk:
case X86::VPERMILPSZ256rmkz:
case X86::VPERMILPSZrm:
case X86::VPERMILPSZrmk:
case X86::VPERMILPSZrmkz:
case X86::VPERMILPDrm:
case X86::VPERMILPDYrm:
case X86::VPERMILPDZ128rm:
case X86::VPERMILPDZ128rmk:
case X86::VPERMILPDZ128rmkz:
case X86::VPERMILPDZ256rm:
case X86::VPERMILPDZ256rmk:
case X86::VPERMILPDZ256rmkz:
case X86::VPERMILPDZrm:
case X86::VPERMILPDZrmk:
case X86::VPERMILPDZrmkz: {
if (!OutStreamer->isVerboseAsm())
break;
unsigned SrcIdx, MaskIdx;
unsigned ElSize;
switch (MI->getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VPERMILPSrm:
case X86::VPERMILPSYrm:
case X86::VPERMILPSZ128rm:
case X86::VPERMILPSZ256rm:
case X86::VPERMILPSZrm:
SrcIdx = 1; MaskIdx = 5; ElSize = 32; break;
case X86::VPERMILPSZ128rmkz:
case X86::VPERMILPSZ256rmkz:
case X86::VPERMILPSZrmkz:
SrcIdx = 2; MaskIdx = 6; ElSize = 32; break;
case X86::VPERMILPSZ128rmk:
case X86::VPERMILPSZ256rmk:
case X86::VPERMILPSZrmk:
SrcIdx = 3; MaskIdx = 7; ElSize = 32; break;
case X86::VPERMILPDrm:
case X86::VPERMILPDYrm:
case X86::VPERMILPDZ128rm:
case X86::VPERMILPDZ256rm:
case X86::VPERMILPDZrm:
SrcIdx = 1; MaskIdx = 5; ElSize = 64; break;
case X86::VPERMILPDZ128rmkz:
case X86::VPERMILPDZ256rmkz:
case X86::VPERMILPDZrmkz:
SrcIdx = 2; MaskIdx = 6; ElSize = 64; break;
case X86::VPERMILPDZ128rmk:
case X86::VPERMILPDZ256rmk:
case X86::VPERMILPDZrmk:
SrcIdx = 3; MaskIdx = 7; ElSize = 64; break;
}
assert(MI->getNumOperands() >= 6 &&
"We should always have at least 6 operands!");
const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
if (auto *C = getConstantFromPool(*MI, MaskOp)) {
unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
SmallVector<int, 16> Mask;
DecodeVPERMILPMask(C, ElSize, Width, Mask);
if (!Mask.empty())
OutStreamer->AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
}
break;
}
case X86::VPERMIL2PDrm:
case X86::VPERMIL2PSrm:
case X86::VPERMIL2PDYrm:
case X86::VPERMIL2PSYrm: {
if (!OutStreamer->isVerboseAsm())
break;
assert(MI->getNumOperands() >= 8 &&
"We should always have at least 8 operands!");
const MachineOperand &CtrlOp = MI->getOperand(MI->getNumOperands() - 1);
if (!CtrlOp.isImm())
break;
unsigned ElSize;
switch (MI->getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VPERMIL2PSrm: case X86::VPERMIL2PSYrm: ElSize = 32; break;
case X86::VPERMIL2PDrm: case X86::VPERMIL2PDYrm: ElSize = 64; break;
}
const MachineOperand &MaskOp = MI->getOperand(6);
if (auto *C = getConstantFromPool(*MI, MaskOp)) {
unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
SmallVector<int, 16> Mask;
DecodeVPERMIL2PMask(C, (unsigned)CtrlOp.getImm(), ElSize, Width, Mask);
if (!Mask.empty())
OutStreamer->AddComment(getShuffleComment(MI, 1, 2, Mask));
}
break;
}
case X86::VPPERMrrm: {
if (!OutStreamer->isVerboseAsm())
break;
assert(MI->getNumOperands() >= 7 &&
"We should always have at least 7 operands!");
const MachineOperand &MaskOp = MI->getOperand(6);
if (auto *C = getConstantFromPool(*MI, MaskOp)) {
unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
SmallVector<int, 16> Mask;
DecodeVPPERMMask(C, Width, Mask);
if (!Mask.empty())
OutStreamer->AddComment(getShuffleComment(MI, 1, 2, Mask));
}
break;
}
case X86::MMX_MOVQ64rm: {
if (!OutStreamer->isVerboseAsm())
break;
if (MI->getNumOperands() <= 4)
break;
if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
std::string Comment;
raw_string_ostream CS(Comment);
const MachineOperand &DstOp = MI->getOperand(0);
CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
if (auto *CF = dyn_cast<ConstantFP>(C)) {
CS << "0x" << CF->getValueAPF().bitcastToAPInt().toString(16, false);
OutStreamer->AddComment(CS.str());
}
}
break;
}
#define MOV_CASE(Prefix, Suffix) \
case X86::Prefix##MOVAPD##Suffix##rm: \
case X86::Prefix##MOVAPS##Suffix##rm: \
case X86::Prefix##MOVUPD##Suffix##rm: \
case X86::Prefix##MOVUPS##Suffix##rm: \
case X86::Prefix##MOVDQA##Suffix##rm: \
case X86::Prefix##MOVDQU##Suffix##rm:
#define MOV_AVX512_CASE(Suffix) \
case X86::VMOVDQA64##Suffix##rm: \
case X86::VMOVDQA32##Suffix##rm: \
case X86::VMOVDQU64##Suffix##rm: \
case X86::VMOVDQU32##Suffix##rm: \
case X86::VMOVDQU16##Suffix##rm: \
case X86::VMOVDQU8##Suffix##rm: \
case X86::VMOVAPS##Suffix##rm: \
case X86::VMOVAPD##Suffix##rm: \
case X86::VMOVUPS##Suffix##rm: \
case X86::VMOVUPD##Suffix##rm:
#define CASE_ALL_MOV_RM() \
MOV_CASE(, ) /* SSE */ \
MOV_CASE(V, ) /* AVX-128 */ \
MOV_CASE(V, Y) /* AVX-256 */ \
MOV_AVX512_CASE(Z) \
MOV_AVX512_CASE(Z256) \
MOV_AVX512_CASE(Z128)
// For loads from a constant pool to a vector register, print the constant
// loaded.
CASE_ALL_MOV_RM()
case X86::VBROADCASTF128:
case X86::VBROADCASTI128:
case X86::VBROADCASTF32X4Z256rm:
case X86::VBROADCASTF32X4rm:
case X86::VBROADCASTF32X8rm:
case X86::VBROADCASTF64X2Z128rm:
case X86::VBROADCASTF64X2rm:
case X86::VBROADCASTF64X4rm:
case X86::VBROADCASTI32X4Z256rm:
case X86::VBROADCASTI32X4rm:
case X86::VBROADCASTI32X8rm:
case X86::VBROADCASTI64X2Z128rm:
case X86::VBROADCASTI64X2rm:
case X86::VBROADCASTI64X4rm:
if (!OutStreamer->isVerboseAsm())
break;
if (MI->getNumOperands() <= 4)
break;
if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
int NumLanes = 1;
// Override NumLanes for the broadcast instructions.
switch (MI->getOpcode()) {
case X86::VBROADCASTF128: NumLanes = 2; break;
case X86::VBROADCASTI128: NumLanes = 2; break;
case X86::VBROADCASTF32X4Z256rm: NumLanes = 2; break;
case X86::VBROADCASTF32X4rm: NumLanes = 4; break;
case X86::VBROADCASTF32X8rm: NumLanes = 2; break;
case X86::VBROADCASTF64X2Z128rm: NumLanes = 2; break;
case X86::VBROADCASTF64X2rm: NumLanes = 4; break;
case X86::VBROADCASTF64X4rm: NumLanes = 2; break;
case X86::VBROADCASTI32X4Z256rm: NumLanes = 2; break;
case X86::VBROADCASTI32X4rm: NumLanes = 4; break;
case X86::VBROADCASTI32X8rm: NumLanes = 2; break;
case X86::VBROADCASTI64X2Z128rm: NumLanes = 2; break;
case X86::VBROADCASTI64X2rm: NumLanes = 4; break;
case X86::VBROADCASTI64X4rm: NumLanes = 2; break;
}
std::string Comment;
raw_string_ostream CS(Comment);
const MachineOperand &DstOp = MI->getOperand(0);
CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
CS << "[";
for (int l = 0; l != NumLanes; ++l) {
for (int i = 0, NumElements = CDS->getNumElements(); i < NumElements;
++i) {
if (i != 0 || l != 0)
CS << ",";
if (CDS->getElementType()->isIntegerTy())
printConstant(CDS->getElementAsAPInt(i), CS);
else if (CDS->getElementType()->isHalfTy() ||
CDS->getElementType()->isFloatTy() ||
CDS->getElementType()->isDoubleTy())
printConstant(CDS->getElementAsAPFloat(i), CS);
else
CS << "?";
}
}
CS << "]";
OutStreamer->AddComment(CS.str());
} else if (auto *CV = dyn_cast<ConstantVector>(C)) {
CS << "<";
for (int l = 0; l != NumLanes; ++l) {
for (int i = 0, NumOperands = CV->getNumOperands(); i < NumOperands;
++i) {
if (i != 0 || l != 0)
CS << ",";
printConstant(CV->getOperand(i), CS);
}
}
CS << ">";
OutStreamer->AddComment(CS.str());
}
}
break;
case X86::MOVDDUPrm:
case X86::VMOVDDUPrm:
case X86::VMOVDDUPZ128rm:
case X86::VBROADCASTSSrm:
case X86::VBROADCASTSSYrm:
case X86::VBROADCASTSSZ128rm:
case X86::VBROADCASTSSZ256rm:
case X86::VBROADCASTSSZrm:
case X86::VBROADCASTSDYrm:
case X86::VBROADCASTSDZ256rm:
case X86::VBROADCASTSDZrm:
case X86::VPBROADCASTBrm:
case X86::VPBROADCASTBYrm:
case X86::VPBROADCASTBZ128rm:
case X86::VPBROADCASTBZ256rm:
case X86::VPBROADCASTBZrm:
case X86::VPBROADCASTDrm:
case X86::VPBROADCASTDYrm:
case X86::VPBROADCASTDZ128rm:
case X86::VPBROADCASTDZ256rm:
case X86::VPBROADCASTDZrm:
case X86::VPBROADCASTQrm:
case X86::VPBROADCASTQYrm:
case X86::VPBROADCASTQZ128rm:
case X86::VPBROADCASTQZ256rm:
case X86::VPBROADCASTQZrm:
case X86::VPBROADCASTWrm:
case X86::VPBROADCASTWYrm:
case X86::VPBROADCASTWZ128rm:
case X86::VPBROADCASTWZ256rm:
case X86::VPBROADCASTWZrm:
if (!OutStreamer->isVerboseAsm())
break;
if (MI->getNumOperands() <= 4)
break;
if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
int NumElts;
switch (MI->getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::MOVDDUPrm: NumElts = 2; break;
case X86::VMOVDDUPrm: NumElts = 2; break;
case X86::VMOVDDUPZ128rm: NumElts = 2; break;
case X86::VBROADCASTSSrm: NumElts = 4; break;
case X86::VBROADCASTSSYrm: NumElts = 8; break;
case X86::VBROADCASTSSZ128rm: NumElts = 4; break;
case X86::VBROADCASTSSZ256rm: NumElts = 8; break;
case X86::VBROADCASTSSZrm: NumElts = 16; break;
case X86::VBROADCASTSDYrm: NumElts = 4; break;
case X86::VBROADCASTSDZ256rm: NumElts = 4; break;
case X86::VBROADCASTSDZrm: NumElts = 8; break;
case X86::VPBROADCASTBrm: NumElts = 16; break;
case X86::VPBROADCASTBYrm: NumElts = 32; break;
case X86::VPBROADCASTBZ128rm: NumElts = 16; break;
case X86::VPBROADCASTBZ256rm: NumElts = 32; break;
case X86::VPBROADCASTBZrm: NumElts = 64; break;
case X86::VPBROADCASTDrm: NumElts = 4; break;
case X86::VPBROADCASTDYrm: NumElts = 8; break;
case X86::VPBROADCASTDZ128rm: NumElts = 4; break;
case X86::VPBROADCASTDZ256rm: NumElts = 8; break;
case X86::VPBROADCASTDZrm: NumElts = 16; break;
case X86::VPBROADCASTQrm: NumElts = 2; break;
case X86::VPBROADCASTQYrm: NumElts = 4; break;
case X86::VPBROADCASTQZ128rm: NumElts = 2; break;
case X86::VPBROADCASTQZ256rm: NumElts = 4; break;
case X86::VPBROADCASTQZrm: NumElts = 8; break;
case X86::VPBROADCASTWrm: NumElts = 8; break;
case X86::VPBROADCASTWYrm: NumElts = 16; break;
case X86::VPBROADCASTWZ128rm: NumElts = 8; break;
case X86::VPBROADCASTWZ256rm: NumElts = 16; break;
case X86::VPBROADCASTWZrm: NumElts = 32; break;
}
std::string Comment;
raw_string_ostream CS(Comment);
const MachineOperand &DstOp = MI->getOperand(0);
CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
CS << "[";
for (int i = 0; i != NumElts; ++i) {
if (i != 0)
CS << ",";
printConstant(C, CS);
}
CS << "]";
OutStreamer->AddComment(CS.str());
}
}
MCInst TmpInst;
MCInstLowering.Lower(MI, TmpInst);
// Stackmap shadows cannot include branch targets, so we can count the bytes
// in a call towards the shadow, but must ensure that the no thread returns
// in to the stackmap shadow. The only way to achieve this is if the call
// is at the end of the shadow.
if (MI->isCall()) {
// Count then size of the call towards the shadow
SMShadowTracker.count(TmpInst, getSubtargetInfo(), CodeEmitter.get());
// Then flush the shadow so that we fill with nops before the call, not
// after it.
SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
// Then emit the call
OutStreamer->emitInstruction(TmpInst, getSubtargetInfo());
return;
}
EmitAndCountInstruction(TmpInst);
}