forked from OSchip/llvm-project
338 lines
12 KiB
C++
338 lines
12 KiB
C++
// MallocOverflowSecurityChecker.cpp - Check for malloc overflows -*- C++ -*-=//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This checker detects a common memory allocation security flaw.
|
|
// Suppose 'unsigned int n' comes from an untrusted source. If the
|
|
// code looks like 'malloc (n * 4)', and an attacker can make 'n' be
|
|
// say MAX_UINT/4+2, then instead of allocating the correct 'n' 4-byte
|
|
// elements, this will actually allocate only two because of overflow.
|
|
// Then when the rest of the program attempts to store values past the
|
|
// second element, these values will actually overwrite other items in
|
|
// the heap, probably allowing the attacker to execute arbitrary code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ClangSACheckers.h"
|
|
#include "clang/AST/EvaluatedExprVisitor.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
|
|
#include "clang/StaticAnalyzer/Core/Checker.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
using llvm::APInt;
|
|
using llvm::APSInt;
|
|
|
|
namespace {
|
|
struct MallocOverflowCheck {
|
|
const BinaryOperator *mulop;
|
|
const Expr *variable;
|
|
APSInt maxVal;
|
|
|
|
MallocOverflowCheck(const BinaryOperator *m, const Expr *v, APSInt val)
|
|
: mulop(m), variable(v), maxVal(val) {}
|
|
};
|
|
|
|
class MallocOverflowSecurityChecker : public Checker<check::ASTCodeBody> {
|
|
public:
|
|
void checkASTCodeBody(const Decl *D, AnalysisManager &mgr,
|
|
BugReporter &BR) const;
|
|
|
|
void CheckMallocArgument(
|
|
SmallVectorImpl<MallocOverflowCheck> &PossibleMallocOverflows,
|
|
const Expr *TheArgument, ASTContext &Context) const;
|
|
|
|
void OutputPossibleOverflows(
|
|
SmallVectorImpl<MallocOverflowCheck> &PossibleMallocOverflows,
|
|
const Decl *D, BugReporter &BR, AnalysisManager &mgr) const;
|
|
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
// Return true for computations which evaluate to zero: e.g., mult by 0.
|
|
static inline bool EvaluatesToZero(APSInt &Val, BinaryOperatorKind op) {
|
|
return (op == BO_Mul) && (Val == 0);
|
|
}
|
|
|
|
void MallocOverflowSecurityChecker::CheckMallocArgument(
|
|
SmallVectorImpl<MallocOverflowCheck> &PossibleMallocOverflows,
|
|
const Expr *TheArgument,
|
|
ASTContext &Context) const {
|
|
|
|
/* Look for a linear combination with a single variable, and at least
|
|
one multiplication.
|
|
Reject anything that applies to the variable: an explicit cast,
|
|
conditional expression, an operation that could reduce the range
|
|
of the result, or anything too complicated :-). */
|
|
const Expr *e = TheArgument;
|
|
const BinaryOperator * mulop = nullptr;
|
|
APSInt maxVal;
|
|
|
|
for (;;) {
|
|
maxVal = 0;
|
|
e = e->IgnoreParenImpCasts();
|
|
if (const BinaryOperator *binop = dyn_cast<BinaryOperator>(e)) {
|
|
BinaryOperatorKind opc = binop->getOpcode();
|
|
// TODO: ignore multiplications by 1, reject if multiplied by 0.
|
|
if (mulop == nullptr && opc == BO_Mul)
|
|
mulop = binop;
|
|
if (opc != BO_Mul && opc != BO_Add && opc != BO_Sub && opc != BO_Shl)
|
|
return;
|
|
|
|
const Expr *lhs = binop->getLHS();
|
|
const Expr *rhs = binop->getRHS();
|
|
if (rhs->isEvaluatable(Context)) {
|
|
e = lhs;
|
|
maxVal = rhs->EvaluateKnownConstInt(Context);
|
|
if (EvaluatesToZero(maxVal, opc))
|
|
return;
|
|
} else if ((opc == BO_Add || opc == BO_Mul) &&
|
|
lhs->isEvaluatable(Context)) {
|
|
maxVal = lhs->EvaluateKnownConstInt(Context);
|
|
if (EvaluatesToZero(maxVal, opc))
|
|
return;
|
|
e = rhs;
|
|
} else
|
|
return;
|
|
}
|
|
else if (isa<DeclRefExpr>(e) || isa<MemberExpr>(e))
|
|
break;
|
|
else
|
|
return;
|
|
}
|
|
|
|
if (mulop == nullptr)
|
|
return;
|
|
|
|
// We've found the right structure of malloc argument, now save
|
|
// the data so when the body of the function is completely available
|
|
// we can check for comparisons.
|
|
|
|
// TODO: Could push this into the innermost scope where 'e' is
|
|
// defined, rather than the whole function.
|
|
PossibleMallocOverflows.push_back(MallocOverflowCheck(mulop, e, maxVal));
|
|
}
|
|
|
|
namespace {
|
|
// A worker class for OutputPossibleOverflows.
|
|
class CheckOverflowOps :
|
|
public EvaluatedExprVisitor<CheckOverflowOps> {
|
|
public:
|
|
typedef SmallVectorImpl<MallocOverflowCheck> theVecType;
|
|
|
|
private:
|
|
theVecType &toScanFor;
|
|
ASTContext &Context;
|
|
|
|
bool isIntZeroExpr(const Expr *E) const {
|
|
if (!E->getType()->isIntegralOrEnumerationType())
|
|
return false;
|
|
llvm::APSInt Result;
|
|
if (E->EvaluateAsInt(Result, Context))
|
|
return Result == 0;
|
|
return false;
|
|
}
|
|
|
|
const Decl *getDecl(const DeclRefExpr *DR) { return DR->getDecl(); }
|
|
|
|
const Decl *getDecl(const MemberExpr *ME) { return ME->getMemberDecl(); }
|
|
|
|
template <typename T1>
|
|
void Erase(const T1 *DR, std::function<bool(theVecType::iterator)> pred) {
|
|
theVecType::iterator i = toScanFor.end();
|
|
theVecType::iterator e = toScanFor.begin();
|
|
while (i != e) {
|
|
--i;
|
|
if (const T1 *DR_i = dyn_cast<T1>(i->variable)) {
|
|
if ((getDecl(DR_i) == getDecl(DR)) && pred(i))
|
|
i = toScanFor.erase(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CheckExpr(const Expr *E_p) {
|
|
auto PredTrue = [](theVecType::iterator) -> bool { return true; };
|
|
const Expr *E = E_p->IgnoreParenImpCasts();
|
|
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E))
|
|
Erase<DeclRefExpr>(DR, PredTrue);
|
|
else if (const auto *ME = dyn_cast<MemberExpr>(E)) {
|
|
Erase<MemberExpr>(ME, PredTrue);
|
|
}
|
|
}
|
|
|
|
// Check if the argument to malloc is assigned a value
|
|
// which cannot cause an overflow.
|
|
// e.g., malloc (mul * x) and,
|
|
// case 1: mul = <constant value>
|
|
// case 2: mul = a/b, where b > x
|
|
void CheckAssignmentExpr(BinaryOperator *AssignEx) {
|
|
bool assignKnown = false;
|
|
bool numeratorKnown = false, denomKnown = false;
|
|
APSInt denomVal;
|
|
denomVal = 0;
|
|
|
|
// Erase if the multiplicand was assigned a constant value.
|
|
const Expr *rhs = AssignEx->getRHS();
|
|
if (rhs->isEvaluatable(Context))
|
|
assignKnown = true;
|
|
|
|
// Discard the report if the multiplicand was assigned a value,
|
|
// that can never overflow after multiplication. e.g., the assignment
|
|
// is a division operator and the denominator is > other multiplicand.
|
|
const Expr *rhse = rhs->IgnoreParenImpCasts();
|
|
if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(rhse)) {
|
|
if (BOp->getOpcode() == BO_Div) {
|
|
const Expr *denom = BOp->getRHS()->IgnoreParenImpCasts();
|
|
if (denom->EvaluateAsInt(denomVal, Context))
|
|
denomKnown = true;
|
|
const Expr *numerator = BOp->getLHS()->IgnoreParenImpCasts();
|
|
if (numerator->isEvaluatable(Context))
|
|
numeratorKnown = true;
|
|
}
|
|
}
|
|
if (!assignKnown && !denomKnown)
|
|
return;
|
|
auto denomExtVal = denomVal.getExtValue();
|
|
|
|
// Ignore negative denominator.
|
|
if (denomExtVal < 0)
|
|
return;
|
|
|
|
const Expr *lhs = AssignEx->getLHS();
|
|
const Expr *E = lhs->IgnoreParenImpCasts();
|
|
|
|
auto pred = [assignKnown, numeratorKnown,
|
|
denomExtVal](theVecType::iterator i) {
|
|
return assignKnown ||
|
|
(numeratorKnown && (denomExtVal >= i->maxVal.getExtValue()));
|
|
};
|
|
|
|
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E))
|
|
Erase<DeclRefExpr>(DR, pred);
|
|
else if (const auto *ME = dyn_cast<MemberExpr>(E))
|
|
Erase<MemberExpr>(ME, pred);
|
|
}
|
|
|
|
public:
|
|
void VisitBinaryOperator(BinaryOperator *E) {
|
|
if (E->isComparisonOp()) {
|
|
const Expr * lhs = E->getLHS();
|
|
const Expr * rhs = E->getRHS();
|
|
// Ignore comparisons against zero, since they generally don't
|
|
// protect against an overflow.
|
|
if (!isIntZeroExpr(lhs) && !isIntZeroExpr(rhs)) {
|
|
CheckExpr(lhs);
|
|
CheckExpr(rhs);
|
|
}
|
|
}
|
|
if (E->isAssignmentOp())
|
|
CheckAssignmentExpr(E);
|
|
EvaluatedExprVisitor<CheckOverflowOps>::VisitBinaryOperator(E);
|
|
}
|
|
|
|
/* We specifically ignore loop conditions, because they're typically
|
|
not error checks. */
|
|
void VisitWhileStmt(WhileStmt *S) {
|
|
return this->Visit(S->getBody());
|
|
}
|
|
void VisitForStmt(ForStmt *S) {
|
|
return this->Visit(S->getBody());
|
|
}
|
|
void VisitDoStmt(DoStmt *S) {
|
|
return this->Visit(S->getBody());
|
|
}
|
|
|
|
CheckOverflowOps(theVecType &v, ASTContext &ctx)
|
|
: EvaluatedExprVisitor<CheckOverflowOps>(ctx),
|
|
toScanFor(v), Context(ctx)
|
|
{ }
|
|
};
|
|
}
|
|
|
|
// OutputPossibleOverflows - We've found a possible overflow earlier,
|
|
// now check whether Body might contain a comparison which might be
|
|
// preventing the overflow.
|
|
// This doesn't do flow analysis, range analysis, or points-to analysis; it's
|
|
// just a dumb "is there a comparison" scan. The aim here is to
|
|
// detect the most blatent cases of overflow and educate the
|
|
// programmer.
|
|
void MallocOverflowSecurityChecker::OutputPossibleOverflows(
|
|
SmallVectorImpl<MallocOverflowCheck> &PossibleMallocOverflows,
|
|
const Decl *D, BugReporter &BR, AnalysisManager &mgr) const {
|
|
// By far the most common case: nothing to check.
|
|
if (PossibleMallocOverflows.empty())
|
|
return;
|
|
|
|
// Delete any possible overflows which have a comparison.
|
|
CheckOverflowOps c(PossibleMallocOverflows, BR.getContext());
|
|
c.Visit(mgr.getAnalysisDeclContext(D)->getBody());
|
|
|
|
// Output warnings for all overflows that are left.
|
|
for (CheckOverflowOps::theVecType::iterator
|
|
i = PossibleMallocOverflows.begin(),
|
|
e = PossibleMallocOverflows.end();
|
|
i != e;
|
|
++i) {
|
|
BR.EmitBasicReport(
|
|
D, this, "malloc() size overflow", categories::UnixAPI,
|
|
"the computation of the size of the memory allocation may overflow",
|
|
PathDiagnosticLocation::createOperatorLoc(i->mulop,
|
|
BR.getSourceManager()),
|
|
i->mulop->getSourceRange());
|
|
}
|
|
}
|
|
|
|
void MallocOverflowSecurityChecker::checkASTCodeBody(const Decl *D,
|
|
AnalysisManager &mgr,
|
|
BugReporter &BR) const {
|
|
|
|
CFG *cfg = mgr.getCFG(D);
|
|
if (!cfg)
|
|
return;
|
|
|
|
// A list of variables referenced in possibly overflowing malloc operands.
|
|
SmallVector<MallocOverflowCheck, 2> PossibleMallocOverflows;
|
|
|
|
for (CFG::iterator it = cfg->begin(), ei = cfg->end(); it != ei; ++it) {
|
|
CFGBlock *block = *it;
|
|
for (CFGBlock::iterator bi = block->begin(), be = block->end();
|
|
bi != be; ++bi) {
|
|
if (Optional<CFGStmt> CS = bi->getAs<CFGStmt>()) {
|
|
if (const CallExpr *TheCall = dyn_cast<CallExpr>(CS->getStmt())) {
|
|
// Get the callee.
|
|
const FunctionDecl *FD = TheCall->getDirectCallee();
|
|
|
|
if (!FD)
|
|
continue;
|
|
|
|
// Get the name of the callee. If it's a builtin, strip off the prefix.
|
|
IdentifierInfo *FnInfo = FD->getIdentifier();
|
|
if (!FnInfo)
|
|
continue;
|
|
|
|
if (FnInfo->isStr ("malloc") || FnInfo->isStr ("_MALLOC")) {
|
|
if (TheCall->getNumArgs() == 1)
|
|
CheckMallocArgument(PossibleMallocOverflows, TheCall->getArg(0),
|
|
mgr.getASTContext());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
OutputPossibleOverflows(PossibleMallocOverflows, D, BR, mgr);
|
|
}
|
|
|
|
void
|
|
ento::registerMallocOverflowSecurityChecker(CheckerManager &mgr) {
|
|
mgr.registerChecker<MallocOverflowSecurityChecker>();
|
|
}
|