forked from OSchip/llvm-project
1150 lines
40 KiB
C++
1150 lines
40 KiB
C++
//===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder ----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Builder implementation for CGRecordLayout objects.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGRecordLayout.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/Frontend/CodeGenOptions.h"
|
|
#include "CodeGenTypes.h"
|
|
#include "CGCXXABI.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
namespace {
|
|
|
|
class CGRecordLayoutBuilder {
|
|
public:
|
|
/// FieldTypes - Holds the LLVM types that the struct is created from.
|
|
///
|
|
SmallVector<llvm::Type *, 16> FieldTypes;
|
|
|
|
/// BaseSubobjectType - Holds the LLVM type for the non-virtual part
|
|
/// of the struct. For example, consider:
|
|
///
|
|
/// struct A { int i; };
|
|
/// struct B { void *v; };
|
|
/// struct C : virtual A, B { };
|
|
///
|
|
/// The LLVM type of C will be
|
|
/// %struct.C = type { i32 (...)**, %struct.A, i32, %struct.B }
|
|
///
|
|
/// And the LLVM type of the non-virtual base struct will be
|
|
/// %struct.C.base = type { i32 (...)**, %struct.A, i32 }
|
|
///
|
|
/// This only gets initialized if the base subobject type is
|
|
/// different from the complete-object type.
|
|
llvm::StructType *BaseSubobjectType;
|
|
|
|
/// FieldInfo - Holds a field and its corresponding LLVM field number.
|
|
llvm::DenseMap<const FieldDecl *, unsigned> Fields;
|
|
|
|
/// BitFieldInfo - Holds location and size information about a bit field.
|
|
llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
|
|
|
|
llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
|
|
llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
|
|
|
|
/// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
|
|
/// primary base classes for some other direct or indirect base class.
|
|
CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
|
|
|
|
/// LaidOutVirtualBases - A set of all laid out virtual bases, used to avoid
|
|
/// avoid laying out virtual bases more than once.
|
|
llvm::SmallPtrSet<const CXXRecordDecl *, 4> LaidOutVirtualBases;
|
|
|
|
/// IsZeroInitializable - Whether this struct can be C++
|
|
/// zero-initialized with an LLVM zeroinitializer.
|
|
bool IsZeroInitializable;
|
|
bool IsZeroInitializableAsBase;
|
|
|
|
/// Packed - Whether the resulting LLVM struct will be packed or not.
|
|
bool Packed;
|
|
|
|
/// IsMsStruct - Whether ms_struct is in effect or not
|
|
bool IsMsStruct;
|
|
|
|
private:
|
|
CodeGenTypes &Types;
|
|
|
|
/// LastLaidOutBaseInfo - Contains the offset and non-virtual size of the
|
|
/// last base laid out. Used so that we can replace the last laid out base
|
|
/// type with an i8 array if needed.
|
|
struct LastLaidOutBaseInfo {
|
|
CharUnits Offset;
|
|
CharUnits NonVirtualSize;
|
|
|
|
bool isValid() const { return !NonVirtualSize.isZero(); }
|
|
void invalidate() { NonVirtualSize = CharUnits::Zero(); }
|
|
|
|
} LastLaidOutBase;
|
|
|
|
/// Alignment - Contains the alignment of the RecordDecl.
|
|
CharUnits Alignment;
|
|
|
|
/// BitsAvailableInLastField - If a bit field spans only part of a LLVM field,
|
|
/// this will have the number of bits still available in the field.
|
|
char BitsAvailableInLastField;
|
|
|
|
/// NextFieldOffset - Holds the next field offset.
|
|
CharUnits NextFieldOffset;
|
|
|
|
/// LayoutUnionField - Will layout a field in an union and return the type
|
|
/// that the field will have.
|
|
llvm::Type *LayoutUnionField(const FieldDecl *Field,
|
|
const ASTRecordLayout &Layout);
|
|
|
|
/// LayoutUnion - Will layout a union RecordDecl.
|
|
void LayoutUnion(const RecordDecl *D);
|
|
|
|
/// LayoutField - try to layout all fields in the record decl.
|
|
/// Returns false if the operation failed because the struct is not packed.
|
|
bool LayoutFields(const RecordDecl *D);
|
|
|
|
/// Layout a single base, virtual or non-virtual
|
|
void LayoutBase(const CXXRecordDecl *base,
|
|
const CGRecordLayout &baseLayout,
|
|
CharUnits baseOffset);
|
|
|
|
/// LayoutVirtualBase - layout a single virtual base.
|
|
void LayoutVirtualBase(const CXXRecordDecl *base,
|
|
CharUnits baseOffset);
|
|
|
|
/// LayoutVirtualBases - layout the virtual bases of a record decl.
|
|
void LayoutVirtualBases(const CXXRecordDecl *RD,
|
|
const ASTRecordLayout &Layout);
|
|
|
|
/// MSLayoutVirtualBases - layout the virtual bases of a record decl,
|
|
/// like MSVC.
|
|
void MSLayoutVirtualBases(const CXXRecordDecl *RD,
|
|
const ASTRecordLayout &Layout);
|
|
|
|
/// LayoutNonVirtualBase - layout a single non-virtual base.
|
|
void LayoutNonVirtualBase(const CXXRecordDecl *base,
|
|
CharUnits baseOffset);
|
|
|
|
/// LayoutNonVirtualBases - layout the virtual bases of a record decl.
|
|
void LayoutNonVirtualBases(const CXXRecordDecl *RD,
|
|
const ASTRecordLayout &Layout);
|
|
|
|
/// ComputeNonVirtualBaseType - Compute the non-virtual base field types.
|
|
bool ComputeNonVirtualBaseType(const CXXRecordDecl *RD);
|
|
|
|
/// LayoutField - layout a single field. Returns false if the operation failed
|
|
/// because the current struct is not packed.
|
|
bool LayoutField(const FieldDecl *D, uint64_t FieldOffset);
|
|
|
|
/// LayoutBitField - layout a single bit field.
|
|
void LayoutBitField(const FieldDecl *D, uint64_t FieldOffset);
|
|
|
|
/// AppendField - Appends a field with the given offset and type.
|
|
void AppendField(CharUnits fieldOffset, llvm::Type *FieldTy);
|
|
|
|
/// AppendPadding - Appends enough padding bytes so that the total
|
|
/// struct size is a multiple of the field alignment.
|
|
void AppendPadding(CharUnits fieldOffset, CharUnits fieldAlignment);
|
|
|
|
/// ResizeLastBaseFieldIfNecessary - Fields and bases can be laid out in the
|
|
/// tail padding of a previous base. If this happens, the type of the previous
|
|
/// base needs to be changed to an array of i8. Returns true if the last
|
|
/// laid out base was resized.
|
|
bool ResizeLastBaseFieldIfNecessary(CharUnits offset);
|
|
|
|
/// getByteArrayType - Returns a byte array type with the given number of
|
|
/// elements.
|
|
llvm::Type *getByteArrayType(CharUnits NumBytes);
|
|
|
|
/// AppendBytes - Append a given number of bytes to the record.
|
|
void AppendBytes(CharUnits numBytes);
|
|
|
|
/// AppendTailPadding - Append enough tail padding so that the type will have
|
|
/// the passed size.
|
|
void AppendTailPadding(CharUnits RecordSize);
|
|
|
|
CharUnits getTypeAlignment(llvm::Type *Ty) const;
|
|
|
|
/// getAlignmentAsLLVMStruct - Returns the maximum alignment of all the
|
|
/// LLVM element types.
|
|
CharUnits getAlignmentAsLLVMStruct() const;
|
|
|
|
/// CheckZeroInitializable - Check if the given type contains a pointer
|
|
/// to data member.
|
|
void CheckZeroInitializable(QualType T);
|
|
|
|
public:
|
|
CGRecordLayoutBuilder(CodeGenTypes &Types)
|
|
: BaseSubobjectType(0),
|
|
IsZeroInitializable(true), IsZeroInitializableAsBase(true),
|
|
Packed(false), IsMsStruct(false),
|
|
Types(Types), BitsAvailableInLastField(0) { }
|
|
|
|
/// Layout - Will layout a RecordDecl.
|
|
void Layout(const RecordDecl *D);
|
|
};
|
|
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::Layout(const RecordDecl *D) {
|
|
Alignment = Types.getContext().getASTRecordLayout(D).getAlignment();
|
|
Packed = D->hasAttr<PackedAttr>();
|
|
|
|
IsMsStruct = D->hasAttr<MsStructAttr>();
|
|
|
|
if (D->isUnion()) {
|
|
LayoutUnion(D);
|
|
return;
|
|
}
|
|
|
|
if (LayoutFields(D))
|
|
return;
|
|
|
|
// We weren't able to layout the struct. Try again with a packed struct
|
|
Packed = true;
|
|
LastLaidOutBase.invalidate();
|
|
NextFieldOffset = CharUnits::Zero();
|
|
FieldTypes.clear();
|
|
Fields.clear();
|
|
BitFields.clear();
|
|
NonVirtualBases.clear();
|
|
VirtualBases.clear();
|
|
|
|
LayoutFields(D);
|
|
}
|
|
|
|
CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
|
|
const FieldDecl *FD,
|
|
uint64_t FieldOffset,
|
|
uint64_t FieldSize,
|
|
uint64_t ContainingTypeSizeInBits,
|
|
unsigned ContainingTypeAlign) {
|
|
llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
|
|
CharUnits TypeSizeInBytes =
|
|
CharUnits::fromQuantity(Types.getTargetData().getTypeAllocSize(Ty));
|
|
uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
|
|
|
|
bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
|
|
|
|
if (FieldSize > TypeSizeInBits) {
|
|
// We have a wide bit-field. The extra bits are only used for padding, so
|
|
// if we have a bitfield of type T, with size N:
|
|
//
|
|
// T t : N;
|
|
//
|
|
// We can just assume that it's:
|
|
//
|
|
// T t : sizeof(T);
|
|
//
|
|
FieldSize = TypeSizeInBits;
|
|
}
|
|
|
|
// in big-endian machines the first fields are in higher bit positions,
|
|
// so revert the offset. The byte offsets are reversed(back) later.
|
|
if (Types.getTargetData().isBigEndian()) {
|
|
FieldOffset = ((ContainingTypeSizeInBits)-FieldOffset-FieldSize);
|
|
}
|
|
|
|
// Compute the access components. The policy we use is to start by attempting
|
|
// to access using the width of the bit-field type itself and to always access
|
|
// at aligned indices of that type. If such an access would fail because it
|
|
// extends past the bound of the type, then we reduce size to the next smaller
|
|
// power of two and retry. The current algorithm assumes pow2 sized types,
|
|
// although this is easy to fix.
|
|
//
|
|
assert(llvm::isPowerOf2_32(TypeSizeInBits) && "Unexpected type size!");
|
|
CGBitFieldInfo::AccessInfo Components[3];
|
|
unsigned NumComponents = 0;
|
|
unsigned AccessedTargetBits = 0; // The number of target bits accessed.
|
|
unsigned AccessWidth = TypeSizeInBits; // The current access width to attempt.
|
|
|
|
// If requested, widen the initial bit-field access to be register sized. The
|
|
// theory is that this is most likely to allow multiple accesses into the same
|
|
// structure to be coalesced, and that the backend should be smart enough to
|
|
// narrow the store if no coalescing is ever done.
|
|
//
|
|
// The subsequent code will handle align these access to common boundaries and
|
|
// guaranteeing that we do not access past the end of the structure.
|
|
if (Types.getCodeGenOpts().UseRegisterSizedBitfieldAccess) {
|
|
if (AccessWidth < Types.getTarget().getRegisterWidth())
|
|
AccessWidth = Types.getTarget().getRegisterWidth();
|
|
}
|
|
|
|
// Round down from the field offset to find the first access position that is
|
|
// at an aligned offset of the initial access type.
|
|
uint64_t AccessStart = FieldOffset - (FieldOffset % AccessWidth);
|
|
|
|
// Adjust initial access size to fit within record.
|
|
while (AccessWidth > Types.getTarget().getCharWidth() &&
|
|
AccessStart + AccessWidth > ContainingTypeSizeInBits) {
|
|
AccessWidth >>= 1;
|
|
AccessStart = FieldOffset - (FieldOffset % AccessWidth);
|
|
}
|
|
|
|
while (AccessedTargetBits < FieldSize) {
|
|
// Check that we can access using a type of this size, without reading off
|
|
// the end of the structure. This can occur with packed structures and
|
|
// -fno-bitfield-type-align, for example.
|
|
if (AccessStart + AccessWidth > ContainingTypeSizeInBits) {
|
|
// If so, reduce access size to the next smaller power-of-two and retry.
|
|
AccessWidth >>= 1;
|
|
assert(AccessWidth >= Types.getTarget().getCharWidth()
|
|
&& "Cannot access under byte size!");
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, add an access component.
|
|
|
|
// First, compute the bits inside this access which are part of the
|
|
// target. We are reading bits [AccessStart, AccessStart + AccessWidth); the
|
|
// intersection with [FieldOffset, FieldOffset + FieldSize) gives the bits
|
|
// in the target that we are reading.
|
|
assert(FieldOffset < AccessStart + AccessWidth && "Invalid access start!");
|
|
assert(AccessStart < FieldOffset + FieldSize && "Invalid access start!");
|
|
uint64_t AccessBitsInFieldStart = std::max(AccessStart, FieldOffset);
|
|
uint64_t AccessBitsInFieldSize =
|
|
std::min(AccessWidth + AccessStart,
|
|
FieldOffset + FieldSize) - AccessBitsInFieldStart;
|
|
|
|
assert(NumComponents < 3 && "Unexpected number of components!");
|
|
CGBitFieldInfo::AccessInfo &AI = Components[NumComponents++];
|
|
AI.FieldIndex = 0;
|
|
// FIXME: We still follow the old access pattern of only using the field
|
|
// byte offset. We should switch this once we fix the struct layout to be
|
|
// pretty.
|
|
|
|
// on big-endian machines we reverted the bit offset because first fields are
|
|
// in higher bits. But this also reverts the bytes, so fix this here by reverting
|
|
// the byte offset on big-endian machines.
|
|
if (Types.getTargetData().isBigEndian()) {
|
|
AI.FieldByteOffset = Types.getContext().toCharUnitsFromBits(
|
|
ContainingTypeSizeInBits - AccessStart - AccessWidth);
|
|
} else {
|
|
AI.FieldByteOffset = Types.getContext().toCharUnitsFromBits(AccessStart);
|
|
}
|
|
AI.FieldBitStart = AccessBitsInFieldStart - AccessStart;
|
|
AI.AccessWidth = AccessWidth;
|
|
AI.AccessAlignment = Types.getContext().toCharUnitsFromBits(
|
|
llvm::MinAlign(ContainingTypeAlign, AccessStart));
|
|
AI.TargetBitOffset = AccessedTargetBits;
|
|
AI.TargetBitWidth = AccessBitsInFieldSize;
|
|
|
|
AccessStart += AccessWidth;
|
|
AccessedTargetBits += AI.TargetBitWidth;
|
|
}
|
|
|
|
assert(AccessedTargetBits == FieldSize && "Invalid bit-field access!");
|
|
return CGBitFieldInfo(FieldSize, NumComponents, Components, IsSigned);
|
|
}
|
|
|
|
CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
|
|
const FieldDecl *FD,
|
|
uint64_t FieldOffset,
|
|
uint64_t FieldSize) {
|
|
const RecordDecl *RD = FD->getParent();
|
|
const ASTRecordLayout &RL = Types.getContext().getASTRecordLayout(RD);
|
|
uint64_t ContainingTypeSizeInBits = Types.getContext().toBits(RL.getSize());
|
|
unsigned ContainingTypeAlign = Types.getContext().toBits(RL.getAlignment());
|
|
|
|
return MakeInfo(Types, FD, FieldOffset, FieldSize, ContainingTypeSizeInBits,
|
|
ContainingTypeAlign);
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::LayoutBitField(const FieldDecl *D,
|
|
uint64_t fieldOffset) {
|
|
uint64_t fieldSize = D->getBitWidthValue(Types.getContext());
|
|
|
|
if (fieldSize == 0)
|
|
return;
|
|
|
|
uint64_t nextFieldOffsetInBits = Types.getContext().toBits(NextFieldOffset);
|
|
CharUnits numBytesToAppend;
|
|
unsigned charAlign = Types.getContext().getTargetInfo().getCharAlign();
|
|
|
|
if (fieldOffset < nextFieldOffsetInBits && !BitsAvailableInLastField) {
|
|
assert(fieldOffset % charAlign == 0 &&
|
|
"Field offset not aligned correctly");
|
|
|
|
CharUnits fieldOffsetInCharUnits =
|
|
Types.getContext().toCharUnitsFromBits(fieldOffset);
|
|
|
|
// Try to resize the last base field.
|
|
if (ResizeLastBaseFieldIfNecessary(fieldOffsetInCharUnits))
|
|
nextFieldOffsetInBits = Types.getContext().toBits(NextFieldOffset);
|
|
}
|
|
|
|
if (fieldOffset < nextFieldOffsetInBits) {
|
|
assert(BitsAvailableInLastField && "Bitfield size mismatch!");
|
|
assert(!NextFieldOffset.isZero() && "Must have laid out at least one byte");
|
|
|
|
// The bitfield begins in the previous bit-field.
|
|
numBytesToAppend = Types.getContext().toCharUnitsFromBits(
|
|
llvm::RoundUpToAlignment(fieldSize - BitsAvailableInLastField,
|
|
charAlign));
|
|
} else {
|
|
assert(fieldOffset % charAlign == 0 &&
|
|
"Field offset not aligned correctly");
|
|
|
|
// Append padding if necessary.
|
|
AppendPadding(Types.getContext().toCharUnitsFromBits(fieldOffset),
|
|
CharUnits::One());
|
|
|
|
numBytesToAppend = Types.getContext().toCharUnitsFromBits(
|
|
llvm::RoundUpToAlignment(fieldSize, charAlign));
|
|
|
|
assert(!numBytesToAppend.isZero() && "No bytes to append!");
|
|
}
|
|
|
|
// Add the bit field info.
|
|
BitFields.insert(std::make_pair(D,
|
|
CGBitFieldInfo::MakeInfo(Types, D, fieldOffset, fieldSize)));
|
|
|
|
AppendBytes(numBytesToAppend);
|
|
|
|
BitsAvailableInLastField =
|
|
Types.getContext().toBits(NextFieldOffset) - (fieldOffset + fieldSize);
|
|
}
|
|
|
|
bool CGRecordLayoutBuilder::LayoutField(const FieldDecl *D,
|
|
uint64_t fieldOffset) {
|
|
// If the field is packed, then we need a packed struct.
|
|
if (!Packed && D->hasAttr<PackedAttr>())
|
|
return false;
|
|
|
|
if (D->isBitField()) {
|
|
// We must use packed structs for unnamed bit fields since they
|
|
// don't affect the struct alignment.
|
|
if (!Packed && !D->getDeclName())
|
|
return false;
|
|
|
|
LayoutBitField(D, fieldOffset);
|
|
return true;
|
|
}
|
|
|
|
CheckZeroInitializable(D->getType());
|
|
|
|
assert(fieldOffset % Types.getTarget().getCharWidth() == 0
|
|
&& "field offset is not on a byte boundary!");
|
|
CharUnits fieldOffsetInBytes
|
|
= Types.getContext().toCharUnitsFromBits(fieldOffset);
|
|
|
|
llvm::Type *Ty = Types.ConvertTypeForMem(D->getType());
|
|
CharUnits typeAlignment = getTypeAlignment(Ty);
|
|
|
|
// If the type alignment is larger then the struct alignment, we must use
|
|
// a packed struct.
|
|
if (typeAlignment > Alignment) {
|
|
assert(!Packed && "Alignment is wrong even with packed struct!");
|
|
return false;
|
|
}
|
|
|
|
if (!Packed) {
|
|
if (const RecordType *RT = D->getType()->getAs<RecordType>()) {
|
|
const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
|
|
if (const MaxFieldAlignmentAttr *MFAA =
|
|
RD->getAttr<MaxFieldAlignmentAttr>()) {
|
|
if (MFAA->getAlignment() != Types.getContext().toBits(typeAlignment))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Round up the field offset to the alignment of the field type.
|
|
CharUnits alignedNextFieldOffsetInBytes =
|
|
NextFieldOffset.RoundUpToAlignment(typeAlignment);
|
|
|
|
if (fieldOffsetInBytes < alignedNextFieldOffsetInBytes) {
|
|
// Try to resize the last base field.
|
|
if (ResizeLastBaseFieldIfNecessary(fieldOffsetInBytes)) {
|
|
alignedNextFieldOffsetInBytes =
|
|
NextFieldOffset.RoundUpToAlignment(typeAlignment);
|
|
}
|
|
}
|
|
|
|
if (fieldOffsetInBytes < alignedNextFieldOffsetInBytes) {
|
|
assert(!Packed && "Could not place field even with packed struct!");
|
|
return false;
|
|
}
|
|
|
|
AppendPadding(fieldOffsetInBytes, typeAlignment);
|
|
|
|
// Now append the field.
|
|
Fields[D] = FieldTypes.size();
|
|
AppendField(fieldOffsetInBytes, Ty);
|
|
|
|
LastLaidOutBase.invalidate();
|
|
return true;
|
|
}
|
|
|
|
llvm::Type *
|
|
CGRecordLayoutBuilder::LayoutUnionField(const FieldDecl *Field,
|
|
const ASTRecordLayout &Layout) {
|
|
if (Field->isBitField()) {
|
|
uint64_t FieldSize = Field->getBitWidthValue(Types.getContext());
|
|
|
|
// Ignore zero sized bit fields.
|
|
if (FieldSize == 0)
|
|
return 0;
|
|
|
|
llvm::Type *FieldTy = llvm::Type::getInt8Ty(Types.getLLVMContext());
|
|
CharUnits NumBytesToAppend = Types.getContext().toCharUnitsFromBits(
|
|
llvm::RoundUpToAlignment(FieldSize,
|
|
Types.getContext().getTargetInfo().getCharAlign()));
|
|
|
|
if (NumBytesToAppend > CharUnits::One())
|
|
FieldTy = llvm::ArrayType::get(FieldTy, NumBytesToAppend.getQuantity());
|
|
|
|
// Add the bit field info.
|
|
BitFields.insert(std::make_pair(Field,
|
|
CGBitFieldInfo::MakeInfo(Types, Field, 0, FieldSize)));
|
|
return FieldTy;
|
|
}
|
|
|
|
// This is a regular union field.
|
|
Fields[Field] = 0;
|
|
return Types.ConvertTypeForMem(Field->getType());
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::LayoutUnion(const RecordDecl *D) {
|
|
assert(D->isUnion() && "Can't call LayoutUnion on a non-union record!");
|
|
|
|
const ASTRecordLayout &layout = Types.getContext().getASTRecordLayout(D);
|
|
|
|
llvm::Type *unionType = 0;
|
|
CharUnits unionSize = CharUnits::Zero();
|
|
CharUnits unionAlign = CharUnits::Zero();
|
|
|
|
bool hasOnlyZeroSizedBitFields = true;
|
|
|
|
unsigned fieldNo = 0;
|
|
for (RecordDecl::field_iterator field = D->field_begin(),
|
|
fieldEnd = D->field_end(); field != fieldEnd; ++field, ++fieldNo) {
|
|
assert(layout.getFieldOffset(fieldNo) == 0 &&
|
|
"Union field offset did not start at the beginning of record!");
|
|
llvm::Type *fieldType = LayoutUnionField(*field, layout);
|
|
|
|
if (!fieldType)
|
|
continue;
|
|
|
|
hasOnlyZeroSizedBitFields = false;
|
|
|
|
CharUnits fieldAlign = CharUnits::fromQuantity(
|
|
Types.getTargetData().getABITypeAlignment(fieldType));
|
|
CharUnits fieldSize = CharUnits::fromQuantity(
|
|
Types.getTargetData().getTypeAllocSize(fieldType));
|
|
|
|
if (fieldAlign < unionAlign)
|
|
continue;
|
|
|
|
if (fieldAlign > unionAlign || fieldSize > unionSize) {
|
|
unionType = fieldType;
|
|
unionAlign = fieldAlign;
|
|
unionSize = fieldSize;
|
|
}
|
|
}
|
|
|
|
// Now add our field.
|
|
if (unionType) {
|
|
AppendField(CharUnits::Zero(), unionType);
|
|
|
|
if (getTypeAlignment(unionType) > layout.getAlignment()) {
|
|
// We need a packed struct.
|
|
Packed = true;
|
|
unionAlign = CharUnits::One();
|
|
}
|
|
}
|
|
if (unionAlign.isZero()) {
|
|
assert(hasOnlyZeroSizedBitFields &&
|
|
"0-align record did not have all zero-sized bit-fields!");
|
|
unionAlign = CharUnits::One();
|
|
}
|
|
|
|
// Append tail padding.
|
|
CharUnits recordSize = layout.getSize();
|
|
if (recordSize > unionSize)
|
|
AppendPadding(recordSize, unionAlign);
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::LayoutBase(const CXXRecordDecl *base,
|
|
const CGRecordLayout &baseLayout,
|
|
CharUnits baseOffset) {
|
|
ResizeLastBaseFieldIfNecessary(baseOffset);
|
|
|
|
AppendPadding(baseOffset, CharUnits::One());
|
|
|
|
const ASTRecordLayout &baseASTLayout
|
|
= Types.getContext().getASTRecordLayout(base);
|
|
|
|
LastLaidOutBase.Offset = NextFieldOffset;
|
|
LastLaidOutBase.NonVirtualSize = baseASTLayout.getNonVirtualSize();
|
|
|
|
// Fields and bases can be laid out in the tail padding of previous
|
|
// bases. If this happens, we need to allocate the base as an i8
|
|
// array; otherwise, we can use the subobject type. However,
|
|
// actually doing that would require knowledge of what immediately
|
|
// follows this base in the layout, so instead we do a conservative
|
|
// approximation, which is to use the base subobject type if it
|
|
// has the same LLVM storage size as the nvsize.
|
|
|
|
llvm::StructType *subobjectType = baseLayout.getBaseSubobjectLLVMType();
|
|
AppendField(baseOffset, subobjectType);
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::LayoutNonVirtualBase(const CXXRecordDecl *base,
|
|
CharUnits baseOffset) {
|
|
// Ignore empty bases.
|
|
if (base->isEmpty()) return;
|
|
|
|
const CGRecordLayout &baseLayout = Types.getCGRecordLayout(base);
|
|
if (IsZeroInitializableAsBase) {
|
|
assert(IsZeroInitializable &&
|
|
"class zero-initializable as base but not as complete object");
|
|
|
|
IsZeroInitializable = IsZeroInitializableAsBase =
|
|
baseLayout.isZeroInitializableAsBase();
|
|
}
|
|
|
|
LayoutBase(base, baseLayout, baseOffset);
|
|
NonVirtualBases[base] = (FieldTypes.size() - 1);
|
|
}
|
|
|
|
void
|
|
CGRecordLayoutBuilder::LayoutVirtualBase(const CXXRecordDecl *base,
|
|
CharUnits baseOffset) {
|
|
// Ignore empty bases.
|
|
if (base->isEmpty()) return;
|
|
|
|
const CGRecordLayout &baseLayout = Types.getCGRecordLayout(base);
|
|
if (IsZeroInitializable)
|
|
IsZeroInitializable = baseLayout.isZeroInitializableAsBase();
|
|
|
|
LayoutBase(base, baseLayout, baseOffset);
|
|
VirtualBases[base] = (FieldTypes.size() - 1);
|
|
}
|
|
|
|
void
|
|
CGRecordLayoutBuilder::MSLayoutVirtualBases(const CXXRecordDecl *RD,
|
|
const ASTRecordLayout &Layout) {
|
|
if (!RD->getNumVBases())
|
|
return;
|
|
|
|
// The vbases list is uniqued and ordered by a depth-first
|
|
// traversal, which is what we need here.
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
|
|
E = RD->vbases_end(); I != E; ++I) {
|
|
|
|
const CXXRecordDecl *BaseDecl =
|
|
cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
|
|
|
|
CharUnits vbaseOffset = Layout.getVBaseClassOffset(BaseDecl);
|
|
LayoutVirtualBase(BaseDecl, vbaseOffset);
|
|
}
|
|
}
|
|
|
|
/// LayoutVirtualBases - layout the non-virtual bases of a record decl.
|
|
void
|
|
CGRecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
|
|
const ASTRecordLayout &Layout) {
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
const CXXRecordDecl *BaseDecl =
|
|
cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
// We only want to lay out virtual bases that aren't indirect primary bases
|
|
// of some other base.
|
|
if (I->isVirtual() && !IndirectPrimaryBases.count(BaseDecl)) {
|
|
// Only lay out the base once.
|
|
if (!LaidOutVirtualBases.insert(BaseDecl))
|
|
continue;
|
|
|
|
CharUnits vbaseOffset = Layout.getVBaseClassOffset(BaseDecl);
|
|
LayoutVirtualBase(BaseDecl, vbaseOffset);
|
|
}
|
|
|
|
if (!BaseDecl->getNumVBases()) {
|
|
// This base isn't interesting since it doesn't have any virtual bases.
|
|
continue;
|
|
}
|
|
|
|
LayoutVirtualBases(BaseDecl, Layout);
|
|
}
|
|
}
|
|
|
|
void
|
|
CGRecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD,
|
|
const ASTRecordLayout &Layout) {
|
|
const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
|
|
|
|
// If we have a primary base, lay it out first.
|
|
if (PrimaryBase) {
|
|
if (!Layout.isPrimaryBaseVirtual())
|
|
LayoutNonVirtualBase(PrimaryBase, CharUnits::Zero());
|
|
else
|
|
LayoutVirtualBase(PrimaryBase, CharUnits::Zero());
|
|
|
|
// Otherwise, add a vtable / vf-table if the layout says to do so.
|
|
} else if (Types.getContext().getTargetInfo().getCXXABI() == CXXABI_Microsoft
|
|
? Layout.getVFPtrOffset() != CharUnits::fromQuantity(-1)
|
|
: RD->isDynamicClass()) {
|
|
llvm::Type *FunctionType =
|
|
llvm::FunctionType::get(llvm::Type::getInt32Ty(Types.getLLVMContext()),
|
|
/*isVarArg=*/true);
|
|
llvm::Type *VTableTy = FunctionType->getPointerTo();
|
|
|
|
assert(NextFieldOffset.isZero() &&
|
|
"VTable pointer must come first!");
|
|
AppendField(CharUnits::Zero(), VTableTy->getPointerTo());
|
|
}
|
|
|
|
// Layout the non-virtual bases.
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
if (I->isVirtual())
|
|
continue;
|
|
|
|
const CXXRecordDecl *BaseDecl =
|
|
cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
// We've already laid out the primary base.
|
|
if (BaseDecl == PrimaryBase && !Layout.isPrimaryBaseVirtual())
|
|
continue;
|
|
|
|
LayoutNonVirtualBase(BaseDecl, Layout.getBaseClassOffset(BaseDecl));
|
|
}
|
|
|
|
// Add a vb-table pointer if the layout insists.
|
|
if (Layout.getVBPtrOffset() != CharUnits::fromQuantity(-1)) {
|
|
CharUnits VBPtrOffset = Layout.getVBPtrOffset();
|
|
llvm::Type *Vbptr = llvm::Type::getInt32PtrTy(Types.getLLVMContext());
|
|
AppendPadding(VBPtrOffset, getTypeAlignment(Vbptr));
|
|
AppendField(VBPtrOffset, Vbptr);
|
|
}
|
|
}
|
|
|
|
bool
|
|
CGRecordLayoutBuilder::ComputeNonVirtualBaseType(const CXXRecordDecl *RD) {
|
|
const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(RD);
|
|
|
|
CharUnits NonVirtualSize = Layout.getNonVirtualSize();
|
|
CharUnits NonVirtualAlign = Layout.getNonVirtualAlign();
|
|
CharUnits AlignedNonVirtualTypeSize =
|
|
NonVirtualSize.RoundUpToAlignment(NonVirtualAlign);
|
|
|
|
// First check if we can use the same fields as for the complete class.
|
|
CharUnits RecordSize = Layout.getSize();
|
|
if (AlignedNonVirtualTypeSize == RecordSize)
|
|
return true;
|
|
|
|
// Check if we need padding.
|
|
CharUnits AlignedNextFieldOffset =
|
|
NextFieldOffset.RoundUpToAlignment(getAlignmentAsLLVMStruct());
|
|
|
|
if (AlignedNextFieldOffset > AlignedNonVirtualTypeSize) {
|
|
assert(!Packed && "cannot layout even as packed struct");
|
|
return false; // Needs packing.
|
|
}
|
|
|
|
bool needsPadding = (AlignedNonVirtualTypeSize != AlignedNextFieldOffset);
|
|
if (needsPadding) {
|
|
CharUnits NumBytes = AlignedNonVirtualTypeSize - AlignedNextFieldOffset;
|
|
FieldTypes.push_back(getByteArrayType(NumBytes));
|
|
}
|
|
|
|
BaseSubobjectType = llvm::StructType::create(Types.getLLVMContext(),
|
|
FieldTypes, "", Packed);
|
|
Types.addRecordTypeName(RD, BaseSubobjectType, ".base");
|
|
|
|
// Pull the padding back off.
|
|
if (needsPadding)
|
|
FieldTypes.pop_back();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CGRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
|
|
assert(!D->isUnion() && "Can't call LayoutFields on a union!");
|
|
assert(!Alignment.isZero() && "Did not set alignment!");
|
|
|
|
const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(D);
|
|
|
|
const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D);
|
|
if (RD)
|
|
LayoutNonVirtualBases(RD, Layout);
|
|
|
|
unsigned FieldNo = 0;
|
|
const FieldDecl *LastFD = 0;
|
|
|
|
for (RecordDecl::field_iterator Field = D->field_begin(),
|
|
FieldEnd = D->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
|
|
if (IsMsStruct) {
|
|
// Zero-length bitfields following non-bitfield members are
|
|
// ignored:
|
|
const FieldDecl *FD = (*Field);
|
|
if (Types.getContext().ZeroBitfieldFollowsNonBitfield(FD, LastFD)) {
|
|
--FieldNo;
|
|
continue;
|
|
}
|
|
LastFD = FD;
|
|
}
|
|
|
|
if (!LayoutField(*Field, Layout.getFieldOffset(FieldNo))) {
|
|
assert(!Packed &&
|
|
"Could not layout fields even with a packed LLVM struct!");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (RD) {
|
|
// We've laid out the non-virtual bases and the fields, now compute the
|
|
// non-virtual base field types.
|
|
if (!ComputeNonVirtualBaseType(RD)) {
|
|
assert(!Packed && "Could not layout even with a packed LLVM struct!");
|
|
return false;
|
|
}
|
|
|
|
// Lay out the virtual bases. The MS ABI uses a different
|
|
// algorithm here due to the lack of primary virtual bases.
|
|
if (Types.getContext().getTargetInfo().getCXXABI() != CXXABI_Microsoft) {
|
|
RD->getIndirectPrimaryBases(IndirectPrimaryBases);
|
|
if (Layout.isPrimaryBaseVirtual())
|
|
IndirectPrimaryBases.insert(Layout.getPrimaryBase());
|
|
|
|
LayoutVirtualBases(RD, Layout);
|
|
} else {
|
|
MSLayoutVirtualBases(RD, Layout);
|
|
}
|
|
}
|
|
|
|
// Append tail padding if necessary.
|
|
AppendTailPadding(Layout.getSize());
|
|
|
|
return true;
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::AppendTailPadding(CharUnits RecordSize) {
|
|
ResizeLastBaseFieldIfNecessary(RecordSize);
|
|
|
|
assert(NextFieldOffset <= RecordSize && "Size mismatch!");
|
|
|
|
CharUnits AlignedNextFieldOffset =
|
|
NextFieldOffset.RoundUpToAlignment(getAlignmentAsLLVMStruct());
|
|
|
|
if (AlignedNextFieldOffset == RecordSize) {
|
|
// We don't need any padding.
|
|
return;
|
|
}
|
|
|
|
CharUnits NumPadBytes = RecordSize - NextFieldOffset;
|
|
AppendBytes(NumPadBytes);
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::AppendField(CharUnits fieldOffset,
|
|
llvm::Type *fieldType) {
|
|
CharUnits fieldSize =
|
|
CharUnits::fromQuantity(Types.getTargetData().getTypeAllocSize(fieldType));
|
|
|
|
FieldTypes.push_back(fieldType);
|
|
|
|
NextFieldOffset = fieldOffset + fieldSize;
|
|
BitsAvailableInLastField = 0;
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::AppendPadding(CharUnits fieldOffset,
|
|
CharUnits fieldAlignment) {
|
|
assert(NextFieldOffset <= fieldOffset &&
|
|
"Incorrect field layout!");
|
|
|
|
// Do nothing if we're already at the right offset.
|
|
if (fieldOffset == NextFieldOffset) return;
|
|
|
|
// If we're not emitting a packed LLVM type, try to avoid adding
|
|
// unnecessary padding fields.
|
|
if (!Packed) {
|
|
// Round up the field offset to the alignment of the field type.
|
|
CharUnits alignedNextFieldOffset =
|
|
NextFieldOffset.RoundUpToAlignment(fieldAlignment);
|
|
assert(alignedNextFieldOffset <= fieldOffset);
|
|
|
|
// If that's the right offset, we're done.
|
|
if (alignedNextFieldOffset == fieldOffset) return;
|
|
}
|
|
|
|
// Otherwise we need explicit padding.
|
|
CharUnits padding = fieldOffset - NextFieldOffset;
|
|
AppendBytes(padding);
|
|
}
|
|
|
|
bool CGRecordLayoutBuilder::ResizeLastBaseFieldIfNecessary(CharUnits offset) {
|
|
// Check if we have a base to resize.
|
|
if (!LastLaidOutBase.isValid())
|
|
return false;
|
|
|
|
// This offset does not overlap with the tail padding.
|
|
if (offset >= NextFieldOffset)
|
|
return false;
|
|
|
|
// Restore the field offset and append an i8 array instead.
|
|
FieldTypes.pop_back();
|
|
NextFieldOffset = LastLaidOutBase.Offset;
|
|
AppendBytes(LastLaidOutBase.NonVirtualSize);
|
|
LastLaidOutBase.invalidate();
|
|
|
|
return true;
|
|
}
|
|
|
|
llvm::Type *CGRecordLayoutBuilder::getByteArrayType(CharUnits numBytes) {
|
|
assert(!numBytes.isZero() && "Empty byte arrays aren't allowed.");
|
|
|
|
llvm::Type *Ty = llvm::Type::getInt8Ty(Types.getLLVMContext());
|
|
if (numBytes > CharUnits::One())
|
|
Ty = llvm::ArrayType::get(Ty, numBytes.getQuantity());
|
|
|
|
return Ty;
|
|
}
|
|
|
|
void CGRecordLayoutBuilder::AppendBytes(CharUnits numBytes) {
|
|
if (numBytes.isZero())
|
|
return;
|
|
|
|
// Append the padding field
|
|
AppendField(NextFieldOffset, getByteArrayType(numBytes));
|
|
}
|
|
|
|
CharUnits CGRecordLayoutBuilder::getTypeAlignment(llvm::Type *Ty) const {
|
|
if (Packed)
|
|
return CharUnits::One();
|
|
|
|
return CharUnits::fromQuantity(Types.getTargetData().getABITypeAlignment(Ty));
|
|
}
|
|
|
|
CharUnits CGRecordLayoutBuilder::getAlignmentAsLLVMStruct() const {
|
|
if (Packed)
|
|
return CharUnits::One();
|
|
|
|
CharUnits maxAlignment = CharUnits::One();
|
|
for (size_t i = 0; i != FieldTypes.size(); ++i)
|
|
maxAlignment = std::max(maxAlignment, getTypeAlignment(FieldTypes[i]));
|
|
|
|
return maxAlignment;
|
|
}
|
|
|
|
/// Merge in whether a field of the given type is zero-initializable.
|
|
void CGRecordLayoutBuilder::CheckZeroInitializable(QualType T) {
|
|
// This record already contains a member pointer.
|
|
if (!IsZeroInitializableAsBase)
|
|
return;
|
|
|
|
// Can only have member pointers if we're compiling C++.
|
|
if (!Types.getContext().getLangOptions().CPlusPlus)
|
|
return;
|
|
|
|
const Type *elementType = T->getBaseElementTypeUnsafe();
|
|
|
|
if (const MemberPointerType *MPT = elementType->getAs<MemberPointerType>()) {
|
|
if (!Types.getCXXABI().isZeroInitializable(MPT))
|
|
IsZeroInitializable = IsZeroInitializableAsBase = false;
|
|
} else if (const RecordType *RT = elementType->getAs<RecordType>()) {
|
|
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
|
const CGRecordLayout &Layout = Types.getCGRecordLayout(RD);
|
|
if (!Layout.isZeroInitializable())
|
|
IsZeroInitializable = IsZeroInitializableAsBase = false;
|
|
}
|
|
}
|
|
|
|
CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D,
|
|
llvm::StructType *Ty) {
|
|
CGRecordLayoutBuilder Builder(*this);
|
|
|
|
Builder.Layout(D);
|
|
|
|
Ty->setBody(Builder.FieldTypes, Builder.Packed);
|
|
|
|
// If we're in C++, compute the base subobject type.
|
|
llvm::StructType *BaseTy = 0;
|
|
if (isa<CXXRecordDecl>(D)) {
|
|
BaseTy = Builder.BaseSubobjectType;
|
|
if (!BaseTy) BaseTy = Ty;
|
|
}
|
|
|
|
CGRecordLayout *RL =
|
|
new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable,
|
|
Builder.IsZeroInitializableAsBase);
|
|
|
|
RL->NonVirtualBases.swap(Builder.NonVirtualBases);
|
|
RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
|
|
|
|
// Add all the field numbers.
|
|
RL->FieldInfo.swap(Builder.Fields);
|
|
|
|
// Add bitfield info.
|
|
RL->BitFields.swap(Builder.BitFields);
|
|
|
|
// Dump the layout, if requested.
|
|
if (getContext().getLangOptions().DumpRecordLayouts) {
|
|
llvm::errs() << "\n*** Dumping IRgen Record Layout\n";
|
|
llvm::errs() << "Record: ";
|
|
D->dump();
|
|
llvm::errs() << "\nLayout: ";
|
|
RL->dump();
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// Verify that the computed LLVM struct size matches the AST layout size.
|
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
|
|
|
|
uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
|
|
assert(TypeSizeInBits == getTargetData().getTypeAllocSizeInBits(Ty) &&
|
|
"Type size mismatch!");
|
|
|
|
if (BaseTy) {
|
|
CharUnits NonVirtualSize = Layout.getNonVirtualSize();
|
|
CharUnits NonVirtualAlign = Layout.getNonVirtualAlign();
|
|
CharUnits AlignedNonVirtualTypeSize =
|
|
NonVirtualSize.RoundUpToAlignment(NonVirtualAlign);
|
|
|
|
uint64_t AlignedNonVirtualTypeSizeInBits =
|
|
getContext().toBits(AlignedNonVirtualTypeSize);
|
|
|
|
assert(AlignedNonVirtualTypeSizeInBits ==
|
|
getTargetData().getTypeAllocSizeInBits(BaseTy) &&
|
|
"Type size mismatch!");
|
|
}
|
|
|
|
// Verify that the LLVM and AST field offsets agree.
|
|
llvm::StructType *ST =
|
|
dyn_cast<llvm::StructType>(RL->getLLVMType());
|
|
const llvm::StructLayout *SL = getTargetData().getStructLayout(ST);
|
|
|
|
const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
|
|
RecordDecl::field_iterator it = D->field_begin();
|
|
const FieldDecl *LastFD = 0;
|
|
bool IsMsStruct = D->hasAttr<MsStructAttr>();
|
|
for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
|
|
const FieldDecl *FD = *it;
|
|
|
|
// For non-bit-fields, just check that the LLVM struct offset matches the
|
|
// AST offset.
|
|
if (!FD->isBitField()) {
|
|
unsigned FieldNo = RL->getLLVMFieldNo(FD);
|
|
assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
|
|
"Invalid field offset!");
|
|
LastFD = FD;
|
|
continue;
|
|
}
|
|
|
|
if (IsMsStruct) {
|
|
// Zero-length bitfields following non-bitfield members are
|
|
// ignored:
|
|
if (getContext().ZeroBitfieldFollowsNonBitfield(FD, LastFD)) {
|
|
--i;
|
|
continue;
|
|
}
|
|
LastFD = FD;
|
|
}
|
|
|
|
// Ignore unnamed bit-fields.
|
|
if (!FD->getDeclName()) {
|
|
LastFD = FD;
|
|
continue;
|
|
}
|
|
|
|
const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
|
|
for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
|
|
const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
|
|
|
|
// Verify that every component access is within the structure.
|
|
uint64_t FieldOffset = SL->getElementOffsetInBits(AI.FieldIndex);
|
|
uint64_t AccessBitOffset = FieldOffset +
|
|
getContext().toBits(AI.FieldByteOffset);
|
|
assert(AccessBitOffset + AI.AccessWidth <= TypeSizeInBits &&
|
|
"Invalid bit-field access (out of range)!");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return RL;
|
|
}
|
|
|
|
void CGRecordLayout::print(raw_ostream &OS) const {
|
|
OS << "<CGRecordLayout\n";
|
|
OS << " LLVMType:" << *CompleteObjectType << "\n";
|
|
if (BaseSubobjectType)
|
|
OS << " NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
|
|
OS << " IsZeroInitializable:" << IsZeroInitializable << "\n";
|
|
OS << " BitFields:[\n";
|
|
|
|
// Print bit-field infos in declaration order.
|
|
std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
|
|
for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
|
|
it = BitFields.begin(), ie = BitFields.end();
|
|
it != ie; ++it) {
|
|
const RecordDecl *RD = it->first->getParent();
|
|
unsigned Index = 0;
|
|
for (RecordDecl::field_iterator
|
|
it2 = RD->field_begin(); *it2 != it->first; ++it2)
|
|
++Index;
|
|
BFIs.push_back(std::make_pair(Index, &it->second));
|
|
}
|
|
llvm::array_pod_sort(BFIs.begin(), BFIs.end());
|
|
for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
|
|
OS.indent(4);
|
|
BFIs[i].second->print(OS);
|
|
OS << "\n";
|
|
}
|
|
|
|
OS << "]>\n";
|
|
}
|
|
|
|
void CGRecordLayout::dump() const {
|
|
print(llvm::errs());
|
|
}
|
|
|
|
void CGBitFieldInfo::print(raw_ostream &OS) const {
|
|
OS << "<CGBitFieldInfo";
|
|
OS << " Size:" << Size;
|
|
OS << " IsSigned:" << IsSigned << "\n";
|
|
|
|
OS.indent(4 + strlen("<CGBitFieldInfo"));
|
|
OS << " NumComponents:" << getNumComponents();
|
|
OS << " Components: [";
|
|
if (getNumComponents()) {
|
|
OS << "\n";
|
|
for (unsigned i = 0, e = getNumComponents(); i != e; ++i) {
|
|
const AccessInfo &AI = getComponent(i);
|
|
OS.indent(8);
|
|
OS << "<AccessInfo"
|
|
<< " FieldIndex:" << AI.FieldIndex
|
|
<< " FieldByteOffset:" << AI.FieldByteOffset.getQuantity()
|
|
<< " FieldBitStart:" << AI.FieldBitStart
|
|
<< " AccessWidth:" << AI.AccessWidth << "\n";
|
|
OS.indent(8 + strlen("<AccessInfo"));
|
|
OS << " AccessAlignment:" << AI.AccessAlignment.getQuantity()
|
|
<< " TargetBitOffset:" << AI.TargetBitOffset
|
|
<< " TargetBitWidth:" << AI.TargetBitWidth
|
|
<< ">\n";
|
|
}
|
|
OS.indent(4);
|
|
}
|
|
OS << "]>";
|
|
}
|
|
|
|
void CGBitFieldInfo::dump() const {
|
|
print(llvm::errs());
|
|
}
|