llvm-project/llvm/lib/Target/PowerPC/PPC32ISelSimple.cpp

3966 lines
148 KiB
C++

//===-- PPC32ISelSimple.cpp - A simple instruction selector PowerPC32 -----===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "isel"
#include "PowerPC.h"
#include "PowerPCInstrBuilder.h"
#include "PowerPCInstrInfo.h"
#include "PPC32TargetMachine.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include <vector>
using namespace llvm;
namespace {
/// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
/// PPC Representation.
///
enum TypeClass {
cByte, cShort, cInt, cFP32, cFP64, cLong
};
}
/// getClass - Turn a primitive type into a "class" number which is based on the
/// size of the type, and whether or not it is floating point.
///
static inline TypeClass getClass(const Type *Ty) {
switch (Ty->getTypeID()) {
case Type::SByteTyID:
case Type::UByteTyID: return cByte; // Byte operands are class #0
case Type::ShortTyID:
case Type::UShortTyID: return cShort; // Short operands are class #1
case Type::IntTyID:
case Type::UIntTyID:
case Type::PointerTyID: return cInt; // Ints and pointers are class #2
case Type::FloatTyID: return cFP32; // Single float is #3
case Type::DoubleTyID: return cFP64; // Double Point is #4
case Type::LongTyID:
case Type::ULongTyID: return cLong; // Longs are class #5
default:
assert(0 && "Invalid type to getClass!");
return cByte; // not reached
}
}
// getClassB - Just like getClass, but treat boolean values as ints.
static inline TypeClass getClassB(const Type *Ty) {
if (Ty == Type::BoolTy) return cByte;
return getClass(Ty);
}
namespace {
struct PPC32ISel : public FunctionPass, InstVisitor<PPC32ISel> {
PPC32TargetMachine &TM;
MachineFunction *F; // The function we are compiling into
MachineBasicBlock *BB; // The current MBB we are compiling
int VarArgsFrameIndex; // FrameIndex for start of varargs area
/// CollapsedGepOp - This struct is for recording the intermediate results
/// used to calculate the base, index, and offset of a GEP instruction.
struct CollapsedGepOp {
ConstantSInt *offset; // the current offset into the struct/array
Value *index; // the index of the array element
ConstantUInt *size; // the size of each array element
CollapsedGepOp(ConstantSInt *o, Value *i, ConstantUInt *s) :
offset(o), index(i), size(s) {}
};
/// FoldedGEP - This struct is for recording the necessary information to
/// emit the GEP in a load or store instruction, used by emitGEPOperation.
struct FoldedGEP {
unsigned base;
unsigned index;
ConstantSInt *offset;
FoldedGEP() : base(0), index(0), offset(0) {}
FoldedGEP(unsigned b, unsigned i, ConstantSInt *o) :
base(b), index(i), offset(o) {}
};
/// RlwimiRec - This struct is for recording the arguments to a PowerPC
/// rlwimi instruction to be output for a particular Instruction::Or when
/// we recognize the pattern for rlwimi, starting with a shift or and.
struct RlwimiRec {
Value *Target, *Insert;
unsigned Shift, MB, ME;
RlwimiRec() : Target(0), Insert(0), Shift(0), MB(0), ME(0) {}
RlwimiRec(Value *tgt, Value *ins, unsigned s, unsigned b, unsigned e) :
Target(tgt), Insert(ins), Shift(s), MB(b), ME(e) {}
};
// External functions we may use in compiling the Module
Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__moddi3Fn, *__divdi3Fn,
*__umoddi3Fn, *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__fixunssfdiFn,
*__fixunsdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn;
// Mapping between Values and SSA Regs
std::map<Value*, unsigned> RegMap;
// MBBMap - Mapping between LLVM BB -> Machine BB
std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
// AllocaMap - Mapping from fixed sized alloca instructions to the
// FrameIndex for the alloca.
std::map<AllocaInst*, unsigned> AllocaMap;
// GEPMap - Mapping between basic blocks and GEP definitions
std::map<GetElementPtrInst*, FoldedGEP> GEPMap;
// RlwimiMap - Mapping between BinaryOperand (Or) instructions and info
// needed to properly emit a rlwimi instruction in its place.
std::map<Instruction *, RlwimiRec> InsertMap;
// A rlwimi instruction is the combination of at least three instructions.
// Keep a vector of instructions to skip around so that we do not try to
// emit instructions that were folded into a rlwimi.
std::vector<Instruction *> SkipList;
// A Reg to hold the base address used for global loads and stores, and a
// flag to set whether or not we need to emit it for this function.
unsigned GlobalBaseReg;
bool GlobalBaseInitialized;
PPC32ISel(TargetMachine &tm):TM(reinterpret_cast<PPC32TargetMachine&>(tm)),
F(0), BB(0) {}
bool doInitialization(Module &M) {
// Add external functions that we may call
Type *i = Type::IntTy;
Type *d = Type::DoubleTy;
Type *f = Type::FloatTy;
Type *l = Type::LongTy;
Type *ul = Type::ULongTy;
Type *voidPtr = PointerType::get(Type::SByteTy);
// float fmodf(float, float);
fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
// double fmod(double, double);
fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
// int __cmpdi2(long, long);
__cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0);
// long __moddi3(long, long);
__moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
// long __divdi3(long, long);
__divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
// unsigned long __umoddi3(unsigned long, unsigned long);
__umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
// unsigned long __udivdi3(unsigned long, unsigned long);
__udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
// long __fixsfdi(float)
__fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
// long __fixdfdi(double)
__fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
// unsigned long __fixunssfdi(float)
__fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0);
// unsigned long __fixunsdfdi(double)
__fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0);
// float __floatdisf(long)
__floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
// double __floatdidf(long)
__floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
// void* malloc(size_t)
mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
// void free(void*)
freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
return true;
}
/// runOnFunction - Top level implementation of instruction selection for
/// the entire function.
///
bool runOnFunction(Function &Fn) {
// First pass over the function, lower any unknown intrinsic functions
// with the IntrinsicLowering class.
LowerUnknownIntrinsicFunctionCalls(Fn);
F = &MachineFunction::construct(&Fn, TM);
// Create all of the machine basic blocks for the function...
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
BB = &F->front();
// Make sure we re-emit a set of the global base reg if necessary
GlobalBaseInitialized = false;
// Copy incoming arguments off of the stack...
LoadArgumentsToVirtualRegs(Fn);
// Instruction select everything except PHI nodes
visit(Fn);
// Select the PHI nodes
SelectPHINodes();
GEPMap.clear();
RegMap.clear();
MBBMap.clear();
InsertMap.clear();
AllocaMap.clear();
SkipList.clear();
F = 0;
// We always build a machine code representation for the function
return true;
}
virtual const char *getPassName() const {
return "PowerPC Simple Instruction Selection";
}
/// visitBasicBlock - This method is called when we are visiting a new basic
/// block. This simply creates a new MachineBasicBlock to emit code into
/// and adds it to the current MachineFunction. Subsequent visit* for
/// instructions will be invoked for all instructions in the basic block.
///
void visitBasicBlock(BasicBlock &LLVM_BB) {
BB = MBBMap[&LLVM_BB];
}
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
/// function, lowering any calls to unknown intrinsic functions into the
/// equivalent LLVM code.
///
void LowerUnknownIntrinsicFunctionCalls(Function &F);
/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
/// from the stack into virtual registers.
///
void LoadArgumentsToVirtualRegs(Function &F);
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
/// because we have to generate our sources into the source basic blocks,
/// not the current one.
///
void SelectPHINodes();
// Visitation methods for various instructions. These methods simply emit
// fixed PowerPC code for each instruction.
// Control flow operators.
void visitReturnInst(ReturnInst &RI);
void visitBranchInst(BranchInst &BI);
void visitUnreachableInst(UnreachableInst &UI) {}
struct ValueRecord {
Value *Val;
unsigned Reg;
const Type *Ty;
ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
};
void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
const std::vector<ValueRecord> &Args, bool isVarArg);
void visitCallInst(CallInst &I);
void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
// Arithmetic operators
void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
void visitMul(BinaryOperator &B);
void visitDiv(BinaryOperator &B) { visitDivRem(B); }
void visitRem(BinaryOperator &B) { visitDivRem(B); }
void visitDivRem(BinaryOperator &B);
// Bitwise operators
void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
// Comparison operators...
void visitSetCondInst(SetCondInst &I);
void EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
MachineBasicBlock *MBB,
MachineBasicBlock::iterator MBBI);
void visitSelectInst(SelectInst &SI);
// Memory Instructions
void visitLoadInst(LoadInst &I);
void visitStoreInst(StoreInst &I);
void visitGetElementPtrInst(GetElementPtrInst &I);
void visitAllocaInst(AllocaInst &I);
void visitMallocInst(MallocInst &I);
void visitFreeInst(FreeInst &I);
// Other operators
void visitShiftInst(ShiftInst &I);
void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
void visitCastInst(CastInst &I);
void visitVAArgInst(VAArgInst &I);
void visitInstruction(Instruction &I) {
std::cerr << "Cannot instruction select: " << I;
abort();
}
unsigned ExtendOrClear(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Value *Op0);
/// promote32 - Make a value 32-bits wide, and put it somewhere.
///
void promote32(unsigned targetReg, const ValueRecord &VR);
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
/// constant expression GEP support.
///
void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
GetElementPtrInst *GEPI, bool foldGEP);
/// emitCastOperation - Common code shared between visitCastInst and
/// constant expression cast support.
///
void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
Value *Src, const Type *DestTy, unsigned TargetReg);
/// emitBitfieldInsert - return true if we were able to fold the sequence of
/// instructions into a bitfield insert (rlwimi).
bool emitBitfieldInsert(User *OpUser, unsigned DestReg);
/// emitBitfieldExtract - return true if we were able to fold the sequence
/// of instructions into a bitfield extract (rlwinm).
bool emitBitfieldExtract(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
User *OpUser, unsigned DestReg);
/// emitBinaryConstOperation - Used by several functions to emit simple
/// arithmetic and logical operations with constants on a register rather
/// than a Value.
///
void emitBinaryConstOperation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
unsigned Op0Reg, ConstantInt *Op1,
unsigned Opcode, unsigned DestReg);
/// emitSimpleBinaryOperation - Implement simple binary operators for
/// integral types. OperatorClass is one of: 0 for Add, 1 for Sub,
/// 2 for And, 3 for Or, 4 for Xor.
///
void emitSimpleBinaryOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator IP,
BinaryOperator *BO, Value *Op0, Value *Op1,
unsigned OperatorClass, unsigned TargetReg);
/// emitBinaryFPOperation - This method handles emission of floating point
/// Add (0), Sub (1), Mul (2), and Div (3) operations.
void emitBinaryFPOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1,
unsigned OperatorClass, unsigned TargetReg);
void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1, unsigned TargetReg);
void doMultiply(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
unsigned DestReg, Value *Op0, Value *Op1);
/// doMultiplyConst - This method will multiply the value in Op0Reg by the
/// value of the ContantInt *CI
void doMultiplyConst(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
unsigned DestReg, Value *Op0, ConstantInt *CI);
void emitDivRemOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1, bool isDiv,
unsigned TargetReg);
/// emitSetCCOperation - Common code shared between visitSetCondInst and
/// constant expression support.
///
void emitSetCCOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1, unsigned Opcode,
unsigned TargetReg);
/// emitShiftOperation - Common code shared between visitShiftInst and
/// constant expression support.
///
void emitShiftOperation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Value *Op, Value *ShiftAmount, bool isLeftShift,
const Type *ResultTy, ShiftInst *SI,
unsigned DestReg);
/// emitSelectOperation - Common code shared between visitSelectInst and the
/// constant expression support.
///
void emitSelectOperation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Value *Cond, Value *TrueVal, Value *FalseVal,
unsigned DestReg);
/// getGlobalBaseReg - Output the instructions required to put the
/// base address to use for accessing globals into a register. Returns the
/// register containing the base address.
///
unsigned getGlobalBaseReg();
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void copyConstantToRegister(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MBBI,
Constant *C, unsigned Reg);
void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
unsigned LHS, unsigned RHS);
/// makeAnotherReg - This method returns the next register number we haven't
/// yet used.
///
/// Long values are handled somewhat specially. They are always allocated
/// as pairs of 32 bit integer values. The register number returned is the
/// high 32 bits of the long value, and the regNum+1 is the low 32 bits.
///
unsigned makeAnotherReg(const Type *Ty) {
assert(dynamic_cast<const PPC32RegisterInfo*>(TM.getRegisterInfo()) &&
"Current target doesn't have PPC reg info??");
const PPC32RegisterInfo *PPCRI =
static_cast<const PPC32RegisterInfo*>(TM.getRegisterInfo());
if (Ty == Type::LongTy || Ty == Type::ULongTy) {
const TargetRegisterClass *RC = PPCRI->getRegClassForType(Type::IntTy);
// Create the upper part
F->getSSARegMap()->createVirtualRegister(RC);
// Create the lower part.
return F->getSSARegMap()->createVirtualRegister(RC)-1;
}
// Add the mapping of regnumber => reg class to MachineFunction
const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty);
return F->getSSARegMap()->createVirtualRegister(RC);
}
/// getReg - This method turns an LLVM value into a register number.
///
unsigned getReg(Value &V) { return getReg(&V); } // Allow references
unsigned getReg(Value *V) {
// Just append to the end of the current bb.
MachineBasicBlock::iterator It = BB->end();
return getReg(V, BB, It);
}
unsigned getReg(Value *V, MachineBasicBlock *MBB,
MachineBasicBlock::iterator IPt);
/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
/// is okay to use as an immediate argument to a certain binary operation
bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode,
bool Shifted);
/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
/// that is to be statically allocated with the initial stack frame
/// adjustment.
unsigned getFixedSizedAllocaFI(AllocaInst *AI);
};
}
/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
/// instruction in the entry block, return it. Otherwise, return a null
/// pointer.
static AllocaInst *dyn_castFixedAlloca(Value *V) {
if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
BasicBlock *BB = AI->getParent();
if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
return AI;
}
return 0;
}
/// getReg - This method turns an LLVM value into a register number.
///
unsigned PPC32ISel::getReg(Value *V, MachineBasicBlock *MBB,
MachineBasicBlock::iterator IPt) {
if (Constant *C = dyn_cast<Constant>(V)) {
unsigned Reg = makeAnotherReg(V->getType());
copyConstantToRegister(MBB, IPt, C, Reg);
return Reg;
} else if (CastInst *CI = dyn_cast<CastInst>(V)) {
// Do not emit noop casts at all, unless it's a double -> float cast.
if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
return getReg(CI->getOperand(0), MBB, IPt);
} else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
unsigned Reg = makeAnotherReg(V->getType());
unsigned FI = getFixedSizedAllocaFI(AI);
addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false);
return Reg;
}
unsigned &Reg = RegMap[V];
if (Reg == 0) {
Reg = makeAnotherReg(V->getType());
RegMap[V] = Reg;
}
return Reg;
}
/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
/// is okay to use as an immediate argument to a certain binary operator.
/// The shifted argument determines if the immediate is suitable to be used with
/// the PowerPC instructions such as addis which concatenate 16 bits of the
/// immediate with 16 bits of zeroes.
///
bool PPC32ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode,
bool Shifted) {
ConstantSInt *Op1Cs;
ConstantUInt *Op1Cu;
// For shifted immediates, any value with the low halfword cleared may be used
if (Shifted) {
if (((int32_t)CI->getRawValue() & 0x0000FFFF) == 0)
return true;
else
return false;
}
// Treat subfic like addi for the purposes of constant validation
if (Opcode == 5) Opcode = 0;
// addi, subfic, compare, and non-indexed load take SIMM
bool cond1 = (Opcode < 2)
&& ((int32_t)CI->getRawValue() <= 32767)
&& ((int32_t)CI->getRawValue() >= -32768);
// ANDIo, ORI, and XORI take unsigned values
bool cond2 = (Opcode >= 2)
&& (Op1Cs = dyn_cast<ConstantSInt>(CI))
&& (Op1Cs->getValue() >= 0)
&& (Op1Cs->getValue() <= 65535);
// ANDIo, ORI, and XORI take UIMMs, so they can be larger
bool cond3 = (Opcode >= 2)
&& (Op1Cu = dyn_cast<ConstantUInt>(CI))
&& (Op1Cu->getValue() <= 65535);
if (cond1 || cond2 || cond3)
return true;
return false;
}
/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
/// that is to be statically allocated with the initial stack frame
/// adjustment.
unsigned PPC32ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
// Already computed this?
std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
if (I != AllocaMap.end() && I->first == AI) return I->second;
const Type *Ty = AI->getAllocatedType();
ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
unsigned TySize = TM.getTargetData().getTypeSize(Ty);
TySize *= CUI->getValue(); // Get total allocated size...
unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
// Create a new stack object using the frame manager...
int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
return FrameIdx;
}
/// getGlobalBaseReg - Output the instructions required to put the
/// base address to use for accessing globals into a register.
///
unsigned PPC32ISel::getGlobalBaseReg() {
if (!GlobalBaseInitialized) {
// Insert the set of GlobalBaseReg into the first MBB of the function
MachineBasicBlock &FirstMBB = F->front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
GlobalBaseReg = makeAnotherReg(Type::IntTy);
BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg).addReg(PPC::LR);
GlobalBaseInitialized = true;
}
return GlobalBaseReg;
}
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void PPC32ISel::copyConstantToRegister(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Constant *C, unsigned R) {
if (isa<UndefValue>(C)) {
BuildMI(*MBB, IP, PPC::IMPLICIT_DEF, 0, R);
if (getClassB(C->getType()) == cLong)
BuildMI(*MBB, IP, PPC::IMPLICIT_DEF, 0, R+1);
return;
}
if (C->getType()->isIntegral()) {
unsigned Class = getClassB(C->getType());
if (Class == cLong) {
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
uint64_t uval = CUI->getValue();
unsigned hiUVal = uval >> 32;
unsigned loUVal = uval;
ConstantUInt *CUHi = ConstantUInt::get(Type::UIntTy, hiUVal);
ConstantUInt *CULo = ConstantUInt::get(Type::UIntTy, loUVal);
copyConstantToRegister(MBB, IP, CUHi, R);
copyConstantToRegister(MBB, IP, CULo, R+1);
return;
} else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
int64_t sval = CSI->getValue();
int hiSVal = sval >> 32;
int loSVal = sval;
ConstantSInt *CSHi = ConstantSInt::get(Type::IntTy, hiSVal);
ConstantSInt *CSLo = ConstantSInt::get(Type::IntTy, loSVal);
copyConstantToRegister(MBB, IP, CSHi, R);
copyConstantToRegister(MBB, IP, CSLo, R+1);
return;
} else {
std::cerr << "Unhandled long constant type!\n";
abort();
}
}
assert(Class <= cInt && "Type not handled yet!");
// Handle bool
if (C->getType() == Type::BoolTy) {
BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True);
return;
}
// Handle int
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
unsigned uval = CUI->getValue();
if (uval < 32768) {
BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval);
} else {
unsigned Temp = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16);
BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval & 0xFFFF);
}
return;
} else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
int sval = CSI->getValue();
if (sval < 32768 && sval >= -32768) {
BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval);
} else {
unsigned Temp = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16);
BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval & 0xFFFF);
}
return;
}
std::cerr << "Unhandled integer constant!\n";
abort();
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
// We need to spill the constant to memory...
MachineConstantPool *CP = F->getConstantPool();
unsigned CPI = CP->getConstantPoolIndex(CFP);
const Type *Ty = CFP->getType();
assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
// Load addr of constant to reg; constant is located at base + distance
unsigned Reg1 = makeAnotherReg(Type::IntTy);
unsigned Opcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD;
// Move value at base + distance into return reg
BuildMI(*MBB, IP, PPC::ADDIS, 2, Reg1)
.addReg(getGlobalBaseReg()).addConstantPoolIndex(CPI);
BuildMI(*MBB, IP, Opcode, 2, R).addConstantPoolIndex(CPI).addReg(Reg1);
} else if (isa<ConstantPointerNull>(C)) {
// Copy zero (null pointer) to the register.
BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
// GV is located at base + distance
unsigned TmpReg = makeAnotherReg(GV->getType());
// Move value at base + distance into return reg
BuildMI(*MBB, IP, PPC::ADDIS, 2, TmpReg)
.addReg(getGlobalBaseReg()).addGlobalAddress(GV);
if (GV->hasWeakLinkage() || GV->isExternal()) {
BuildMI(*MBB, IP, PPC::LWZ, 2, R).addGlobalAddress(GV).addReg(TmpReg);
} else {
BuildMI(*MBB, IP, PPC::LA, 2, R).addReg(TmpReg).addGlobalAddress(GV);
}
} else {
std::cerr << "Offending constant: " << *C << "\n";
assert(0 && "Type not handled yet!");
}
}
/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
/// the stack into virtual registers.
void PPC32ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
unsigned ArgOffset = 24;
unsigned GPR_remaining = 8;
unsigned FPR_remaining = 13;
unsigned GPR_idx = 0, FPR_idx = 0;
static const unsigned GPR[] = {
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
static const unsigned FPR[] = {
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
};
MachineFrameInfo *MFI = F->getFrameInfo();
for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
I != E; ++I) {
bool ArgLive = !I->use_empty();
unsigned Reg = ArgLive ? getReg(*I) : 0;
int FI; // Frame object index
switch (getClassB(I->getType())) {
case cByte:
if (ArgLive) {
FI = MFI->CreateFixedObject(4, ArgOffset);
if (GPR_remaining > 0) {
F->addLiveIn(GPR[GPR_idx]);
BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
.addReg(GPR[GPR_idx]);
} else {
addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI);
}
}
break;
case cShort:
if (ArgLive) {
FI = MFI->CreateFixedObject(4, ArgOffset);
if (GPR_remaining > 0) {
F->addLiveIn(GPR[GPR_idx]);
BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
.addReg(GPR[GPR_idx]);
} else {
addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI);
}
}
break;
case cInt:
if (ArgLive) {
FI = MFI->CreateFixedObject(4, ArgOffset);
if (GPR_remaining > 0) {
F->addLiveIn(GPR[GPR_idx]);
BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
.addReg(GPR[GPR_idx]);
} else {
addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
}
}
break;
case cLong:
if (ArgLive) {
FI = MFI->CreateFixedObject(8, ArgOffset);
if (GPR_remaining > 1) {
F->addLiveIn(GPR[GPR_idx]);
F->addLiveIn(GPR[GPR_idx+1]);
BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
.addReg(GPR[GPR_idx]);
BuildMI(BB, PPC::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
.addReg(GPR[GPR_idx+1]);
} else {
addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg+1), FI, 4);
}
}
// longs require 4 additional bytes and use 2 GPRs
ArgOffset += 4;
if (GPR_remaining > 1) {
GPR_remaining--;
GPR_idx++;
}
break;
case cFP32:
if (ArgLive) {
FI = MFI->CreateFixedObject(4, ArgOffset);
if (FPR_remaining > 0) {
F->addLiveIn(FPR[FPR_idx]);
BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
FPR_remaining--;
FPR_idx++;
} else {
addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI);
}
}
break;
case cFP64:
if (ArgLive) {
FI = MFI->CreateFixedObject(8, ArgOffset);
if (FPR_remaining > 0) {
F->addLiveIn(FPR[FPR_idx]);
BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
FPR_remaining--;
FPR_idx++;
} else {
addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI);
}
}
// doubles require 4 additional bytes and use 2 GPRs of param space
ArgOffset += 4;
if (GPR_remaining > 0) {
GPR_remaining--;
GPR_idx++;
}
break;
default:
assert(0 && "Unhandled argument type!");
}
ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
if (GPR_remaining > 0) {
GPR_remaining--; // uses up 2 GPRs
GPR_idx++;
}
}
// If the function takes variable number of arguments, add a frame offset for
// the start of the first vararg value... this is used to expand
// llvm.va_start.
if (Fn.getFunctionType()->isVarArg())
VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
if (Fn.getReturnType() != Type::VoidTy)
switch (getClassB(Fn.getReturnType())) {
case cByte:
case cShort:
case cInt:
F->addLiveOut(PPC::R3);
break;
case cLong:
F->addLiveOut(PPC::R3);
F->addLiveOut(PPC::R4);
break;
case cFP32:
case cFP64:
F->addLiveOut(PPC::F1);
break;
}
}
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
/// because we have to generate our sources into the source basic blocks, not
/// the current one.
///
void PPC32ISel::SelectPHINodes() {
const TargetInstrInfo &TII = *TM.getInstrInfo();
const Function &LF = *F->getFunction(); // The LLVM function...
MachineBasicBlock::iterator MFLRIt = F->begin()->begin();
if (GlobalBaseInitialized) {
// If we emitted a MFLR for the global base reg, get an iterator to an
// instruction after it.
while (MFLRIt->getOpcode() != PPC::MFLR)
++MFLRIt;
++MFLRIt; // step one MI past it.
}
for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
const BasicBlock *BB = I;
MachineBasicBlock &MBB = *MBBMap[I];
// Loop over all of the PHI nodes in the LLVM basic block...
MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
for (BasicBlock::const_iterator I = BB->begin();
PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
// Create a new machine instr PHI node, and insert it.
unsigned PHIReg = getReg(*PN);
MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
PPC::PHI, PN->getNumOperands(), PHIReg);
MachineInstr *LongPhiMI = 0;
if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
LongPhiMI = BuildMI(MBB, PHIInsertPoint,
PPC::PHI, PN->getNumOperands(), PHIReg+1);
// PHIValues - Map of blocks to incoming virtual registers. We use this
// so that we only initialize one incoming value for a particular block,
// even if the block has multiple entries in the PHI node.
//
std::map<MachineBasicBlock*, unsigned> PHIValues;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
MachineBasicBlock *PredMBB = 0;
for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
PE = MBB.pred_end (); PI != PE; ++PI)
if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
PredMBB = *PI;
break;
}
assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
unsigned ValReg;
std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
PHIValues.lower_bound(PredMBB);
if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
// We already inserted an initialization of the register for this
// predecessor. Recycle it.
ValReg = EntryIt->second;
} else {
// Get the incoming value into a virtual register.
//
Value *Val = PN->getIncomingValue(i);
// If this is a constant or GlobalValue, we may have to insert code
// into the basic block to compute it into a virtual register.
if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
isa<GlobalValue>(Val)) {
// Simple constants get emitted at the end of the basic block,
// before any terminator instructions. We "know" that the code to
// move a constant into a register will never clobber any flags.
ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
} else {
// Because we don't want to clobber any values which might be in
// physical registers with the computation of this constant (which
// might be arbitrarily complex if it is a constant expression),
// just insert the computation at the top of the basic block.
MachineBasicBlock::iterator PI = PredMBB->begin();
// Skip over any PHI nodes though!
while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI)
++PI;
// If this is the entry block, and if the entry block contains a
// MFLR instruction, emit this operation after it. This is needed
// because global addresses use it.
if (PredMBB == F->begin())
PI = MFLRIt;
ValReg = getReg(Val, PredMBB, PI);
}
// Remember that we inserted a value for this PHI for this predecessor
PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
}
PhiMI->addRegOperand(ValReg);
PhiMI->addMachineBasicBlockOperand(PredMBB);
if (LongPhiMI) {
LongPhiMI->addRegOperand(ValReg+1);
LongPhiMI->addMachineBasicBlockOperand(PredMBB);
}
}
// Now that we emitted all of the incoming values for the PHI node, make
// sure to reposition the InsertPoint after the PHI that we just added.
// This is needed because we might have inserted a constant into this
// block, right after the PHI's which is before the old insert point!
PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
++PHIInsertPoint;
}
}
}
// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
// it into the conditional branch or select instruction which is the only user
// of the cc instruction. This is the case if the conditional branch is the
// only user of the setcc, and if the setcc is in the same basic block as the
// conditional branch.
//
static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
if (SCI->hasOneUse()) {
Instruction *User = cast<Instruction>(SCI->use_back());
if ((isa<BranchInst>(User) ||
(isa<SelectInst>(User) && User->getOperand(0) == V)) &&
SCI->getParent() == User->getParent())
return SCI;
}
return 0;
}
// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
// the load or store instruction that is the only user of the GEP.
//
static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
bool AllUsesAreMem = true;
for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
I != E; ++I) {
Instruction *User = cast<Instruction>(*I);
// If the GEP is the target of a store, but not the source, then we are ok
// to fold it.
if (isa<StoreInst>(User) &&
GEPI->getParent() == User->getParent() &&
User->getOperand(0) != GEPI &&
User->getOperand(1) == GEPI)
continue;
// If the GEP is the source of a load, then we're always ok to fold it
if (isa<LoadInst>(User) &&
GEPI->getParent() == User->getParent() &&
User->getOperand(0) == GEPI)
continue;
// if we got to this point, than the instruction was not a load or store
// that we are capable of folding the GEP into.
AllUsesAreMem = false;
break;
}
if (AllUsesAreMem)
return GEPI;
}
return 0;
}
// Return a fixed numbering for setcc instructions which does not depend on the
// order of the opcodes.
//
static unsigned getSetCCNumber(unsigned Opcode) {
switch (Opcode) {
default: assert(0 && "Unknown setcc instruction!");
case Instruction::SetEQ: return 0;
case Instruction::SetNE: return 1;
case Instruction::SetLT: return 2;
case Instruction::SetGE: return 3;
case Instruction::SetGT: return 4;
case Instruction::SetLE: return 5;
}
}
static unsigned getPPCOpcodeForSetCCOpcode(unsigned Opcode) {
switch (Opcode) {
default: assert(0 && "Unknown setcc instruction!");
case Instruction::SetEQ: return PPC::BEQ;
case Instruction::SetNE: return PPC::BNE;
case Instruction::SetLT: return PPC::BLT;
case Instruction::SetGE: return PPC::BGE;
case Instruction::SetGT: return PPC::BGT;
case Instruction::SetLE: return PPC::BLE;
}
}
/// emitUCOM - emits an unordered FP compare.
void PPC32ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
unsigned LHS, unsigned RHS) {
BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS);
}
unsigned PPC32ISel::ExtendOrClear(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Value *Op0) {
const Type *CompTy = Op0->getType();
unsigned Reg = getReg(Op0, MBB, IP);
unsigned Class = getClassB(CompTy);
// Since we know that boolean values will be either zero or one, we don't
// have to extend or clear them.
if (CompTy == Type::BoolTy)
return Reg;
// Before we do a comparison or SetCC, we have to make sure that we truncate
// the source registers appropriately.
if (Class == cByte) {
unsigned TmpReg = makeAnotherReg(CompTy);
if (CompTy->isSigned())
BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Reg);
else
BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Reg).addImm(0)
.addImm(24).addImm(31);
Reg = TmpReg;
} else if (Class == cShort) {
unsigned TmpReg = makeAnotherReg(CompTy);
if (CompTy->isSigned())
BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Reg);
else
BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Reg).addImm(0)
.addImm(16).addImm(31);
Reg = TmpReg;
}
return Reg;
}
/// EmitComparison - emits a comparison of the two operands. The result is in
/// CR0.
///
void PPC32ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP) {
// The arguments are already supposed to be of the same type.
const Type *CompTy = Op0->getType();
unsigned Class = getClassB(CompTy);
unsigned Op0r = ExtendOrClear(MBB, IP, Op0);
// Use crand for lt, gt and crandc for le, ge
unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC;
// ? cr1[lt] : cr1[gt]
unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 0 : 1;
// ? cr0[lt] : cr0[gt]
unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1;
unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW;
unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI;
// Special case handling of: cmp R, i
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Class == cByte || Class == cShort || Class == cInt) {
unsigned Op1v = CI->getRawValue() & 0xFFFF;
unsigned OpClass = (CompTy->isSigned()) ? 0 : 2;
// Treat compare like ADDI for the purposes of immediate suitability
if (canUseAsImmediateForOpcode(CI, OpClass, false)) {
BuildMI(*MBB, IP, OpcodeImm, 2, PPC::CR0).addReg(Op0r).addSImm(Op1v);
} else {
unsigned Op1r = getReg(Op1, MBB, IP);
BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
}
return;
} else {
assert(Class == cLong && "Unknown integer class!");
unsigned LowCst = CI->getRawValue();
unsigned HiCst = CI->getRawValue() >> 32;
if (OpNum < 2) { // seteq, setne
unsigned LoLow = makeAnotherReg(Type::IntTy);
unsigned LoTmp = makeAnotherReg(Type::IntTy);
unsigned HiLow = makeAnotherReg(Type::IntTy);
unsigned HiTmp = makeAnotherReg(Type::IntTy);
unsigned FinalTmp = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC::XORI, 2, LoLow).addReg(Op0r+1)
.addImm(LowCst & 0xFFFF);
BuildMI(*MBB, IP, PPC::XORIS, 2, LoTmp).addReg(LoLow)
.addImm(LowCst >> 16);
BuildMI(*MBB, IP, PPC::XORI, 2, HiLow).addReg(Op0r)
.addImm(HiCst & 0xFFFF);
BuildMI(*MBB, IP, PPC::XORIS, 2, HiTmp).addReg(HiLow)
.addImm(HiCst >> 16);
BuildMI(*MBB, IP, PPC::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
return;
} else {
unsigned ConstReg = makeAnotherReg(CompTy);
copyConstantToRegister(MBB, IP, CI, ConstReg);
// cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r)
.addReg(ConstReg);
BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1)
.addReg(ConstReg+1);
BuildMI(*MBB, IP, PPC::CRAND, 5, PPC::CR0).addImm(2)
.addReg(PPC::CR0).addImm(2).addReg(PPC::CR1).addImm(CR1field);
BuildMI(*MBB, IP, PPC::CROR, 5, PPC::CR0).addImm(CR0field)
.addReg(PPC::CR0).addImm(CR0field).addReg(PPC::CR0).addImm(2);
return;
}
}
}
unsigned Op1r = getReg(Op1, MBB, IP);
switch (Class) {
default: assert(0 && "Unknown type class!");
case cByte:
case cShort:
case cInt:
BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
break;
case cFP32:
case cFP64:
emitUCOM(MBB, IP, Op0r, Op1r);
break;
case cLong:
if (OpNum < 2) { // seteq, setne
unsigned LoTmp = makeAnotherReg(Type::IntTy);
unsigned HiTmp = makeAnotherReg(Type::IntTy);
unsigned FinalTmp = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r);
BuildMI(*MBB, IP, PPC::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1);
BuildMI(*MBB, IP, PPC::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
break; // Allow the sete or setne to be generated from flags set by OR
} else {
unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
// cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1).addReg(Op1r+1);
BuildMI(*MBB, IP, PPC::CRAND, 5, PPC::CR0).addImm(2)
.addReg(PPC::CR0).addImm(2).addReg(PPC::CR1).addImm(CR1field);
BuildMI(*MBB, IP, PPC::CROR, 5, PPC::CR0).addImm(CR0field)
.addReg(PPC::CR0).addImm(CR0field).addReg(PPC::CR0).addImm(2);
return;
}
}
return;
}
/// visitSetCondInst - emit code to calculate the condition via
/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
///
void PPC32ISel::visitSetCondInst(SetCondInst &I) {
if (canFoldSetCCIntoBranchOrSelect(&I))
return;
MachineBasicBlock::iterator MI = BB->end();
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
const Type *Ty = Op0->getType();
unsigned Class = getClassB(Ty);
unsigned Opcode = I.getOpcode();
unsigned OpNum = getSetCCNumber(Opcode);
unsigned DestReg = getReg(I);
// If the comparison type is byte, short, or int, then we can emit a
// branchless version of the SetCC that puts 0 (false) or 1 (true) in the
// destination register.
if (Class <= cInt) {
ConstantInt *CI = dyn_cast<ConstantInt>(Op1);
if (CI && CI->getRawValue() == 0) {
unsigned Op0Reg = ExtendOrClear(BB, MI, Op0);
// comparisons against constant zero and negative one often have shorter
// and/or faster sequences than the set-and-branch general case, handled
// below.
switch(OpNum) {
case 0: { // eq0
unsigned TempReg = makeAnotherReg(Type::IntTy);
BuildMI(*BB, MI, PPC::CNTLZW, 1, TempReg).addReg(Op0Reg);
BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(TempReg).addImm(27)
.addImm(5).addImm(31);
break;
}
case 1: { // ne0
unsigned TempReg = makeAnotherReg(Type::IntTy);
BuildMI(*BB, MI, PPC::ADDIC, 2, TempReg).addReg(Op0Reg).addSImm(-1);
BuildMI(*BB, MI, PPC::SUBFE, 2, DestReg).addReg(TempReg).addReg(Op0Reg);
break;
}
case 2: { // lt0, always false if unsigned
if (Ty->isSigned())
BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Op0Reg).addImm(1)
.addImm(31).addImm(31);
else
BuildMI(*BB, MI, PPC::LI, 1, DestReg).addSImm(0);
break;
}
case 3: { // ge0, always true if unsigned
if (Ty->isSigned()) {
unsigned TempReg = makeAnotherReg(Type::IntTy);
BuildMI(*BB, MI, PPC::RLWINM, 4, TempReg).addReg(Op0Reg).addImm(1)
.addImm(31).addImm(31);
BuildMI(*BB, MI, PPC::XORI, 2, DestReg).addReg(TempReg).addImm(1);
} else {
BuildMI(*BB, MI, PPC::LI, 1, DestReg).addSImm(1);
}
break;
}
case 4: { // gt0, equivalent to ne0 if unsigned
unsigned Temp1 = makeAnotherReg(Type::IntTy);
unsigned Temp2 = makeAnotherReg(Type::IntTy);
if (Ty->isSigned()) {
BuildMI(*BB, MI, PPC::NEG, 2, Temp1).addReg(Op0Reg);
BuildMI(*BB, MI, PPC::ANDC, 2, Temp2).addReg(Temp1).addReg(Op0Reg);
BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Temp2).addImm(1)
.addImm(31).addImm(31);
} else {
BuildMI(*BB, MI, PPC::ADDIC, 2, Temp1).addReg(Op0Reg).addSImm(-1);
BuildMI(*BB, MI, PPC::SUBFE, 2, DestReg).addReg(Temp1).addReg(Op0Reg);
}
break;
}
case 5: { // le0, equivalent to eq0 if unsigned
unsigned Temp1 = makeAnotherReg(Type::IntTy);
unsigned Temp2 = makeAnotherReg(Type::IntTy);
if (Ty->isSigned()) {
BuildMI(*BB, MI, PPC::NEG, 2, Temp1).addReg(Op0Reg);
BuildMI(*BB, MI, PPC::ORC, 2, Temp2).addReg(Op0Reg).addReg(Temp1);
BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Temp2).addImm(1)
.addImm(31).addImm(31);
} else {
BuildMI(*BB, MI, PPC::CNTLZW, 1, Temp1).addReg(Op0Reg);
BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Temp1).addImm(27)
.addImm(5).addImm(31);
}
break;
}
} // switch
return;
}
}
unsigned PPCOpcode = getPPCOpcodeForSetCCOpcode(Opcode);
// Create an iterator with which to insert the MBB for copying the false value
// and the MBB to hold the PHI instruction for this SetCC.
MachineBasicBlock *thisMBB = BB;
const BasicBlock *LLVM_BB = BB->getBasicBlock();
ilist<MachineBasicBlock>::iterator It = BB;
++It;
// thisMBB:
// ...
// cmpTY cr0, r1, r2
// %TrueValue = li 1
// bCC sinkMBB
EmitComparison(OpNum, Op0, Op1, BB, BB->end());
unsigned TrueValue = makeAnotherReg(I.getType());
BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1);
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
BuildMI(BB, PPCOpcode, 2).addReg(PPC::CR0).addMBB(sinkMBB);
F->getBasicBlockList().insert(It, copy0MBB);
F->getBasicBlockList().insert(It, sinkMBB);
// Update machine-CFG edges
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
// copy0MBB:
// %FalseValue = li 0
// fallthrough
BB = copy0MBB;
unsigned FalseValue = makeAnotherReg(I.getType());
BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0);
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
.addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
}
void PPC32ISel::visitSelectInst(SelectInst &SI) {
unsigned DestReg = getReg(SI);
MachineBasicBlock::iterator MII = BB->end();
emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
SI.getFalseValue(), DestReg);
}
/// emitSelect - Common code shared between visitSelectInst and the constant
/// expression support.
void PPC32ISel::emitSelectOperation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Value *Cond, Value *TrueVal,
Value *FalseVal, unsigned DestReg) {
unsigned SelectClass = getClassB(TrueVal->getType());
unsigned Opcode;
// See if we can fold the setcc into the select instruction, or if we have
// to get the register of the Cond value
if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
// We successfully folded the setcc into the select instruction.
unsigned OpNum = getSetCCNumber(SCI->getOpcode());
if (OpNum >= 2 && OpNum <= 5) {
unsigned SetCondClass = getClassB(SCI->getOperand(0)->getType());
if ((SetCondClass == cFP32 || SetCondClass == cFP64) &&
(SelectClass == cFP32 || SelectClass == cFP64)) {
unsigned CondReg = getReg(SCI->getOperand(0), MBB, IP);
unsigned TrueReg = getReg(TrueVal, MBB, IP);
unsigned FalseReg = getReg(FalseVal, MBB, IP);
// if the comparison of the floating point value used to for the select
// is against 0, then we can emit an fsel without subtraction.
ConstantFP *Op1C = dyn_cast<ConstantFP>(SCI->getOperand(1));
if (Op1C && (Op1C->isExactlyValue(-0.0) || Op1C->isExactlyValue(0.0))) {
switch(OpNum) {
case 2: // LT
BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(CondReg)
.addReg(FalseReg).addReg(TrueReg);
break;
case 3: // GE == !LT
BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(CondReg)
.addReg(TrueReg).addReg(FalseReg);
break;
case 4: { // GT
unsigned NegatedReg = makeAnotherReg(SCI->getOperand(0)->getType());
BuildMI(*MBB, IP, PPC::FNEG, 1, NegatedReg).addReg(CondReg);
BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(NegatedReg)
.addReg(FalseReg).addReg(TrueReg);
}
break;
case 5: { // LE == !GT
unsigned NegatedReg = makeAnotherReg(SCI->getOperand(0)->getType());
BuildMI(*MBB, IP, PPC::FNEG, 1, NegatedReg).addReg(CondReg);
BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(NegatedReg)
.addReg(TrueReg).addReg(FalseReg);
}
break;
default:
assert(0 && "Invalid SetCC opcode to fsel");
abort();
break;
}
} else {
unsigned OtherCondReg = getReg(SCI->getOperand(1), MBB, IP);
unsigned SelectReg = makeAnotherReg(SCI->getOperand(0)->getType());
switch(OpNum) {
case 2: // LT
BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(CondReg)
.addReg(OtherCondReg);
BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg)
.addReg(FalseReg).addReg(TrueReg);
break;
case 3: // GE == !LT
BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(CondReg)
.addReg(OtherCondReg);
BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg)
.addReg(TrueReg).addReg(FalseReg);
break;
case 4: // GT
BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(OtherCondReg)
.addReg(CondReg);
BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg)
.addReg(FalseReg).addReg(TrueReg);
break;
case 5: // LE == !GT
BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(OtherCondReg)
.addReg(CondReg);
BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg)
.addReg(TrueReg).addReg(FalseReg);
break;
default:
assert(0 && "Invalid SetCC opcode to fsel");
abort();
break;
}
}
return;
}
}
EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
Opcode = getPPCOpcodeForSetCCOpcode(SCI->getOpcode());
} else {
unsigned CondReg = getReg(Cond, MBB, IP);
BuildMI(*MBB, IP, PPC::CMPWI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
Opcode = getPPCOpcodeForSetCCOpcode(Instruction::SetNE);
}
MachineBasicBlock *thisMBB = BB;
const BasicBlock *LLVM_BB = BB->getBasicBlock();
ilist<MachineBasicBlock>::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// cmpTY cr0, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
unsigned TrueValue = getReg(TrueVal);
BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(sinkMBB);
F->getBasicBlockList().insert(It, copy0MBB);
F->getBasicBlockList().insert(It, sinkMBB);
// Update machine-CFG edges
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
unsigned FalseValue = getReg(FalseVal);
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
.addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
// For a register pair representing a long value, define the top part.
if (getClassB(TrueVal->getType()) == cLong)
BuildMI(BB, PPC::PHI, 4, DestReg+1).addReg(FalseValue+1)
.addMBB(copy0MBB).addReg(TrueValue+1).addMBB(thisMBB);
}
/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
/// operand, in the specified target register.
///
void PPC32ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
Value *Val = VR.Val;
const Type *Ty = VR.Ty;
if (Val) {
if (Constant *C = dyn_cast<Constant>(Val)) {
Val = ConstantExpr::getCast(C, Type::IntTy);
if (isa<ConstantExpr>(Val)) // Could not fold
Val = C;
else
Ty = Type::IntTy; // Folded!
}
// If this is a simple constant, just emit a load directly to avoid the copy
if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
copyConstantToRegister(BB, BB->end(), CI, targetReg);
return;
}
}
// Make sure we have the register number for this value...
unsigned Reg = Val ? getReg(Val) : VR.Reg;
switch (getClassB(Ty)) {
case cByte:
// Extend value into target register (8->32)
if (Ty == Type::BoolTy)
BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg);
else if (isUnsigned)
BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
.addZImm(24).addZImm(31);
else
BuildMI(BB, PPC::EXTSB, 1, targetReg).addReg(Reg);
break;
case cShort:
// Extend value into target register (16->32)
if (isUnsigned)
BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
.addZImm(16).addZImm(31);
else
BuildMI(BB, PPC::EXTSH, 1, targetReg).addReg(Reg);
break;
case cInt:
// Move value into target register (32->32)
BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg);
break;
default:
assert(0 && "Unpromotable operand class in promote32");
}
}
/// visitReturnInst - implemented with BLR
///
void PPC32ISel::visitReturnInst(ReturnInst &I) {
// Only do the processing if this is a non-void return
if (I.getNumOperands() > 0) {
Value *RetVal = I.getOperand(0);
switch (getClassB(RetVal->getType())) {
case cByte: // integral return values: extend or move into r3 and return
case cShort:
case cInt:
promote32(PPC::R3, ValueRecord(RetVal));
break;
case cFP32:
case cFP64: { // Floats & Doubles: Return in f1
unsigned RetReg = getReg(RetVal);
BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(RetReg);
break;
}
case cLong: {
unsigned RetReg = getReg(RetVal);
BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(RetReg).addReg(RetReg);
BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(RetReg+1).addReg(RetReg+1);
break;
}
default:
visitInstruction(I);
}
}
BuildMI(BB, PPC::BLR, 1).addImm(0);
}
// getBlockAfter - Return the basic block which occurs lexically after the
// specified one.
static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
Function::iterator I = BB; ++I; // Get iterator to next block
return I != BB->getParent()->end() ? &*I : 0;
}
/// visitBranchInst - Handle conditional and unconditional branches here. Note
/// that since code layout is frozen at this point, that if we are trying to
/// jump to a block that is the immediate successor of the current block, we can
/// just make a fall-through (but we don't currently).
///
void PPC32ISel::visitBranchInst(BranchInst &BI) {
// Update machine-CFG edges
BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
if (BI.isConditional())
BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
if (!BI.isConditional()) { // Unconditional branch?
if (BI.getSuccessor(0) != NextBB)
BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
return;
}
// See if we can fold the setcc into the branch itself...
SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
if (SCI == 0) {
// Nope, cannot fold setcc into this branch. Emit a branch on a condition
// computed some other way...
unsigned condReg = getReg(BI.getCondition());
BuildMI(BB, PPC::CMPLI, 3, PPC::CR0).addImm(0).addReg(condReg)
.addImm(0);
if (BI.getSuccessor(1) == NextBB) {
if (BI.getSuccessor(0) != NextBB)
BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(PPC::BNE)
.addMBB(MBBMap[BI.getSuccessor(0)])
.addMBB(MBBMap[BI.getSuccessor(1)]);
} else {
BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(PPC::BEQ)
.addMBB(MBBMap[BI.getSuccessor(1)])
.addMBB(MBBMap[BI.getSuccessor(0)]);
if (BI.getSuccessor(0) != NextBB)
BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
}
return;
}
unsigned OpNum = getSetCCNumber(SCI->getOpcode());
unsigned Opcode = getPPCOpcodeForSetCCOpcode(SCI->getOpcode());
MachineBasicBlock::iterator MII = BB->end();
EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
if (BI.getSuccessor(0) != NextBB) {
BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(Opcode)
.addMBB(MBBMap[BI.getSuccessor(0)])
.addMBB(MBBMap[BI.getSuccessor(1)]);
if (BI.getSuccessor(1) != NextBB)
BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
} else {
// Change to the inverse condition...
if (BI.getSuccessor(1) != NextBB) {
Opcode = PPC32InstrInfo::invertPPCBranchOpcode(Opcode);
BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(Opcode)
.addMBB(MBBMap[BI.getSuccessor(1)])
.addMBB(MBBMap[BI.getSuccessor(0)]);
}
}
}
/// doCall - This emits an abstract call instruction, setting up the arguments
/// and the return value as appropriate. For the actual function call itself,
/// it inserts the specified CallMI instruction into the stream.
///
/// FIXME: See Documentation at the following URL for "correct" behavior
/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/PowerPCConventions/chapter_3_section_5.html>
void PPC32ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
const std::vector<ValueRecord> &Args, bool isVarArg) {
// Count how many bytes are to be pushed on the stack, including the linkage
// area, and parameter passing area.
unsigned NumBytes = 24;
unsigned ArgOffset = 24;
if (!Args.empty()) {
for (unsigned i = 0, e = Args.size(); i != e; ++i)
switch (getClassB(Args[i].Ty)) {
case cByte: case cShort: case cInt:
NumBytes += 4; break;
case cLong:
NumBytes += 8; break;
case cFP32:
NumBytes += 4; break;
case cFP64:
NumBytes += 8; break;
break;
default: assert(0 && "Unknown class!");
}
// Just to be safe, we'll always reserve the full 24 bytes of linkage area
// plus 32 bytes of argument space in case any called code gets funky on us.
if (NumBytes < 56) NumBytes = 56;
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
// Arguments go on the stack in reverse order, as specified by the ABI.
// Offset to the paramater area on the stack is 24.
int GPR_remaining = 8, FPR_remaining = 13;
unsigned GPR_idx = 0, FPR_idx = 0;
static const unsigned GPR[] = {
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
static const unsigned FPR[] = {
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6,
PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12,
PPC::F13
};
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
unsigned ArgReg;
switch (getClassB(Args[i].Ty)) {
case cByte:
case cShort:
// Promote arg to 32 bits wide into a temporary register...
ArgReg = makeAnotherReg(Type::UIntTy);
promote32(ArgReg, Args[i]);
// Reg or stack?
if (GPR_remaining > 0) {
BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
.addReg(ArgReg);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
}
if (GPR_remaining <= 0 || isVarArg) {
BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC::R1);
}
break;
case cInt:
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
// Reg or stack?
if (GPR_remaining > 0) {
BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
.addReg(ArgReg);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
}
if (GPR_remaining <= 0 || isVarArg) {
BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC::R1);
}
break;
case cLong:
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
// Reg or stack? Note that PPC calling conventions state that long args
// are passed rN = hi, rN+1 = lo, opposite of LLVM.
if (GPR_remaining > 1) {
BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
.addReg(ArgReg);
BuildMI(BB, PPC::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1)
.addReg(ArgReg+1);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
}
if (GPR_remaining <= 1 || isVarArg) {
BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC::R1);
BuildMI(BB, PPC::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4)
.addReg(PPC::R1);
}
ArgOffset += 4; // 8 byte entry, not 4.
GPR_remaining -= 1; // uses up 2 GPRs
GPR_idx += 1;
break;
case cFP32:
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
// Reg or stack?
if (FPR_remaining > 0) {
BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
FPR_remaining--;
FPR_idx++;
// If this is a vararg function, and there are GPRs left, also
// pass the float in an int. Otherwise, put it on the stack.
if (isVarArg) {
BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC::R1);
if (GPR_remaining > 0) {
BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx])
.addSImm(ArgOffset).addReg(PPC::R1);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
}
}
} else {
BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC::R1);
}
break;
case cFP64:
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
// Reg or stack?
if (FPR_remaining > 0) {
BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
FPR_remaining--;
FPR_idx++;
// For vararg functions, must pass doubles via int regs as well
if (isVarArg) {
BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC::R1);
// Doubles can be split across reg + stack for varargs
if (GPR_remaining > 0) {
BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset)
.addReg(PPC::R1);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
}
if (GPR_remaining > 1) {
BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx+1])
.addSImm(ArgOffset+4).addReg(PPC::R1);
CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
}
}
} else {
BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC::R1);
}
// Doubles use 8 bytes, and 2 GPRs worth of param space
ArgOffset += 4;
GPR_remaining--;
GPR_idx++;
break;
default: assert(0 && "Unknown class!");
}
ArgOffset += 4;
GPR_remaining--;
GPR_idx++;
}
} else {
BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
}
BuildMI(BB, PPC::IMPLICIT_DEF, 0, PPC::LR);
BB->push_back(CallMI);
// These functions are automatically eliminated by the prolog/epilog pass
BuildMI(BB, PPC::ADJCALLSTACKUP, 1).addImm(NumBytes);
// If there is a return value, scavenge the result from the location the call
// leaves it in...
//
if (Ret.Ty != Type::VoidTy) {
unsigned DestClass = getClassB(Ret.Ty);
switch (DestClass) {
case cByte:
case cShort:
case cInt:
// Integral results are in r3
BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
break;
case cFP32: // Floating-point return values live in f1
case cFP64:
BuildMI(BB, PPC::FMR, 1, Ret.Reg).addReg(PPC::F1);
break;
case cLong: // Long values are in r3:r4
BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
BuildMI(BB, PPC::OR, 2, Ret.Reg+1).addReg(PPC::R4).addReg(PPC::R4);
break;
default: assert(0 && "Unknown class!");
}
}
}
/// visitCallInst - Push args on stack and do a procedure call instruction.
void PPC32ISel::visitCallInst(CallInst &CI) {
MachineInstr *TheCall;
Function *F = CI.getCalledFunction();
if (F) {
// Is it an intrinsic function call?
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
return;
}
// Emit a CALL instruction with PC-relative displacement.
TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(F, true);
} else { // Emit an indirect call through the CTR
unsigned Reg = getReg(CI.getCalledValue());
BuildMI(BB, PPC::OR, 2, PPC::R12).addReg(Reg).addReg(Reg);
BuildMI(BB, PPC::MTCTR, 1).addReg(PPC::R12);
TheCall = BuildMI(PPC::CALLindirect, 3).addZImm(20).addZImm(0)
.addReg(PPC::R12);
}
std::vector<ValueRecord> Args;
for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Args.push_back(ValueRecord(CI.getOperand(i)));
unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
}
/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
///
static Value *dyncastIsNan(Value *V) {
if (CallInst *CI = dyn_cast<CallInst>(V))
if (Function *F = CI->getCalledFunction())
if (F->getIntrinsicID() == Intrinsic::isunordered)
return CI->getOperand(1);
return 0;
}
/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
/// or's whos operands are all calls to the isnan predicate.
static bool isOnlyUsedByUnorderedComparisons(Value *V) {
assert(dyncastIsNan(V) && "The value isn't an isnan call!");
// Check all uses, which will be or's of isnans if this predicate is true.
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
Instruction *I = cast<Instruction>(*UI);
if (I->getOpcode() != Instruction::Or) return false;
if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
}
return true;
}
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
/// function, lowering any calls to unknown intrinsic functions into the
/// equivalent LLVM code.
///
void PPC32ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
if (CallInst *CI = dyn_cast<CallInst>(I++))
if (Function *F = CI->getCalledFunction())
switch (F->getIntrinsicID()) {
case Intrinsic::not_intrinsic:
case Intrinsic::vastart:
case Intrinsic::vacopy:
case Intrinsic::vaend:
case Intrinsic::returnaddress:
case Intrinsic::frameaddress:
// FIXME: should lower these ourselves
// case Intrinsic::isunordered:
// case Intrinsic::memcpy: -> doCall(). system memcpy almost
// guaranteed to be faster than anything we generate ourselves
// We directly implement these intrinsics
break;
case Intrinsic::readio: {
// On PPC, memory operations are in-order. Lower this intrinsic
// into a volatile load.
LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
CI->replaceAllUsesWith(LI);
BB->getInstList().erase(CI);
break;
}
case Intrinsic::writeio: {
// On PPC, memory operations are in-order. Lower this intrinsic
// into a volatile store.
StoreInst *SI = new StoreInst(CI->getOperand(1),
CI->getOperand(2), true, CI);
CI->replaceAllUsesWith(SI);
BB->getInstList().erase(CI);
break;
}
default: {
// All other intrinsic calls we must lower.
BasicBlock::iterator me(CI);
bool atBegin(BB->begin() == me);
if (!atBegin)
--me;
TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
// Move iterator to instruction after call
I = atBegin ? BB->begin() : ++me;
}
}
}
void PPC32ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
unsigned TmpReg1, TmpReg2, TmpReg3;
switch (ID) {
case Intrinsic::vastart:
//FIXME: need to store, not return a value
// Get the address of the first vararg value...
TmpReg1 = getReg(CI);
addFrameReference(BuildMI(BB, PPC::ADDI, 2, TmpReg1), VarArgsFrameIndex,
0, false);
return;
case Intrinsic::vacopy:
//FIXME: need to store into first arg the value of the second
TmpReg1 = getReg(CI);
TmpReg2 = getReg(CI.getOperand(1));
BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
return;
case Intrinsic::vaend: return;
case Intrinsic::returnaddress:
TmpReg1 = getReg(CI);
if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
MachineFrameInfo *MFI = F->getFrameInfo();
unsigned NumBytes = MFI->getStackSize();
BuildMI(BB, PPC::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
.addReg(PPC::R1);
} else {
// Values other than zero are not implemented yet.
BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
}
return;
case Intrinsic::frameaddress:
TmpReg1 = getReg(CI);
if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(PPC::R1).addReg(PPC::R1);
} else {
// Values other than zero are not implemented yet.
BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
}
return;
#if 0
// This may be useful for supporting isunordered
case Intrinsic::isnan:
// If this is only used by 'isunordered' style comparisons, don't emit it.
if (isOnlyUsedByUnorderedComparisons(&CI)) return;
TmpReg1 = getReg(CI.getOperand(1));
emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
TmpReg2 = makeAnotherReg(Type::IntTy);
BuildMI(BB, PPC::MFCR, TmpReg2);
TmpReg3 = getReg(CI);
BuildMI(BB, PPC::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
return;
#endif
default: assert(0 && "Error: unknown intrinsics should have been lowered!");
}
}
/// visitSimpleBinary - Implement simple binary operators for integral types...
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
/// Xor.
///
void PPC32ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
if (std::find(SkipList.begin(), SkipList.end(), &B) != SkipList.end())
return;
unsigned DestReg = getReg(B);
MachineBasicBlock::iterator MI = BB->end();
RlwimiRec RR = InsertMap[&B];
if (RR.Target != 0) {
unsigned TargetReg = getReg(RR.Target, BB, MI);
unsigned InsertReg = getReg(RR.Insert, BB, MI);
BuildMI(*BB, MI, PPC::RLWIMI, 5, DestReg).addReg(TargetReg)
.addReg(InsertReg).addImm(RR.Shift).addImm(RR.MB).addImm(RR.ME);
return;
}
unsigned Class = getClassB(B.getType());
Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
emitSimpleBinaryOperation(BB, MI, &B, Op0, Op1, OperatorClass, DestReg);
}
/// emitBinaryFPOperation - This method handles emission of floating point
/// Add (0), Sub (1), Mul (2), and Div (3) operations.
void PPC32ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1,
unsigned OperatorClass, unsigned DestReg){
static const unsigned OpcodeTab[][4] = {
{ PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS }, // Float
{ PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV }, // Double
};
// Special case: R1 = op <const fp>, R2
if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
// -0.0 - X === -X
unsigned op1Reg = getReg(Op1, BB, IP);
BuildMI(*BB, IP, PPC::FNEG, 1, DestReg).addReg(op1Reg);
return;
}
unsigned Opcode = OpcodeTab[Op0->getType() == Type::DoubleTy][OperatorClass];
unsigned Op0r = getReg(Op0, BB, IP);
unsigned Op1r = getReg(Op1, BB, IP);
BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
}
// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
// returns zero when the input is not exactly a power of two.
static unsigned ExactLog2(unsigned Val) {
if (Val == 0 || (Val & (Val-1))) return 0;
unsigned Count = 0;
while (Val != 1) {
Val >>= 1;
++Count;
}
return Count;
}
// isRunOfOnes - returns true if Val consists of one contiguous run of 1's with
// any number of 0's on either side. the 1's are allowed to wrap from LSB to
// MSB. so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
// not, since all 1's are not contiguous.
static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
bool isRun = true;
MB = 0;
ME = 0;
// look for first set bit
int i = 0;
for (; i < 32; i++) {
if ((Val & (1 << (31 - i))) != 0) {
MB = i;
ME = i;
break;
}
}
// look for last set bit
for (; i < 32; i++) {
if ((Val & (1 << (31 - i))) == 0)
break;
ME = i;
}
// look for next set bit
for (; i < 32; i++) {
if ((Val & (1 << (31 - i))) != 0)
break;
}
// if we exhausted all the bits, we found a match at this point for 0*1*0*
if (i == 32)
return true;
// since we just encountered more 1's, if it doesn't wrap around to the
// most significant bit of the word, then we did not find a match to 1*0*1* so
// exit.
if (MB != 0)
return false;
// look for last set bit
for (MB = i; i < 32; i++) {
if ((Val & (1 << (31 - i))) == 0)
break;
}
// if we exhausted all the bits, then we found a match for 1*0*1*, otherwise,
// the value is not a run of ones.
if (i == 32)
return true;
return false;
}
/// isInsertAndHalf - Helper function for emitBitfieldInsert. Returns true if
/// OpUser has one use, is used by an or instruction, and is itself an and whose
/// second operand is a constant int. Optionally, set OrI to the Or instruction
/// that is the sole user of OpUser, and Op1User to the other operand of the Or
/// instruction.
static bool isInsertAndHalf(User *OpUser, Instruction **Op1User,
Instruction **OrI, unsigned &Mask) {
// If this instruction doesn't have one use, then return false.
if (!OpUser->hasOneUse())
return false;
Mask = 0xFFFFFFFF;
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(OpUser))
if (BO->getOpcode() == Instruction::And) {
Value *AndUse = *(OpUser->use_begin());
if (BinaryOperator *Or = dyn_cast<BinaryOperator>(AndUse)) {
if (Or->getOpcode() == Instruction::Or) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(OpUser->getOperand(1))) {
if (OrI) *OrI = Or;
if (Op1User) {
if (Or->getOperand(0) == OpUser)
*Op1User = dyn_cast<Instruction>(Or->getOperand(1));
else
*Op1User = dyn_cast<Instruction>(Or->getOperand(0));
}
Mask &= CI->getRawValue();
return true;
}
}
}
}
return false;
}
/// isInsertShiftHalf - Helper function for emitBitfieldInsert. Returns true if
/// OpUser has one use, is used by an or instruction, and is itself a shift
/// instruction that is either used directly by the or instruction, or is used
/// by an and instruction whose second operand is a constant int, and which is
/// used by the or instruction.
static bool isInsertShiftHalf(User *OpUser, Instruction **Op1User,
Instruction **OrI, Instruction **OptAndI,
unsigned &Shift, unsigned &Mask) {
// If this instruction doesn't have one use, then return false.
if (!OpUser->hasOneUse())
return false;
Mask = 0xFFFFFFFF;
if (ShiftInst *SI = dyn_cast<ShiftInst>(OpUser)) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getOperand(1))) {
Shift = CI->getRawValue();
if (SI->getOpcode() == Instruction::Shl)
Mask <<= Shift;
else if (!SI->getOperand(0)->getType()->isSigned()) {
Mask >>= Shift;
Shift = 32 - Shift;
}
// Now check to see if the shift instruction is used by an or.
Value *ShiftUse = *(OpUser->use_begin());
Value *OptAndICopy = 0;
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ShiftUse)) {
if (BO->getOpcode() == Instruction::And && BO->hasOneUse()) {
if (ConstantInt *ACI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
if (OptAndI) *OptAndI = BO;
OptAndICopy = BO;
Mask &= ACI->getRawValue();
BO = dyn_cast<BinaryOperator>(*(BO->use_begin()));
}
}
if (BO && BO->getOpcode() == Instruction::Or) {
if (OrI) *OrI = BO;
if (Op1User) {
if (BO->getOperand(0) == OpUser || BO->getOperand(0) == OptAndICopy)
*Op1User = dyn_cast<Instruction>(BO->getOperand(1));
else
*Op1User = dyn_cast<Instruction>(BO->getOperand(0));
}
return true;
}
}
}
}
return false;
}
/// emitBitfieldInsert - turn a shift used only by an and with immediate into
/// the rotate left word immediate then mask insert (rlwimi) instruction.
/// Patterns matched:
/// 1. or shl, and 5. or (shl-and), and 9. or and, and
/// 2. or and, shl 6. or and, (shl-and)
/// 3. or shr, and 7. or (shr-and), and
/// 4. or and, shr 8. or and, (shr-and)
bool PPC32ISel::emitBitfieldInsert(User *OpUser, unsigned DestReg) {
// Instructions to skip if we match any of the patterns
Instruction *Op0User, *Op1User = 0, *OptAndI = 0, *OrI = 0;
unsigned TgtMask, InsMask, Amount = 0;
bool matched = false;
// We require OpUser to be an instruction to continue
Op0User = dyn_cast<Instruction>(OpUser);
if (0 == Op0User)
return false;
// Look for cases 2, 4, 6, 8, and 9
if (isInsertAndHalf(Op0User, &Op1User, &OrI, TgtMask))
if (Op1User)
if (isInsertAndHalf(Op1User, 0, 0, InsMask))
matched = true;
else if (isInsertShiftHalf(Op1User, 0, 0, &OptAndI, Amount, InsMask))
matched = true;
// Look for cases 1, 3, 5, and 7. Force the shift argument to be the one
// inserted into the target, since rlwimi can only rotate the value inserted,
// not the value being inserted into.
if (matched == false)
if (isInsertShiftHalf(Op0User, &Op1User, &OrI, &OptAndI, Amount, InsMask))
if (Op1User && isInsertAndHalf(Op1User, 0, 0, TgtMask)) {
std::swap(Op0User, Op1User);
matched = true;
}
// We didn't succeed in matching one of the patterns, so return false
if (matched == false)
return false;
// If the masks xor to -1, and the insert mask is a run of ones, then we have
// succeeded in matching one of the cases for generating rlwimi. Update the
// skip lists and users of the Instruction::Or.
unsigned MB, ME;
if (((TgtMask ^ InsMask) == 0xFFFFFFFF) && isRunOfOnes(InsMask, MB, ME)) {
SkipList.push_back(Op0User);
SkipList.push_back(Op1User);
SkipList.push_back(OptAndI);
InsertMap[OrI] = RlwimiRec(Op0User->getOperand(0), Op1User->getOperand(0),
Amount, MB, ME);
return true;
}
return false;
}
/// emitBitfieldExtract - turn a shift used only by an and with immediate into the
/// rotate left word immediate then and with mask (rlwinm) instruction.
bool PPC32ISel::emitBitfieldExtract(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
User *OpUser, unsigned DestReg) {
return false;
/*
// Instructions to skip if we match any of the patterns
Instruction *Op0User, *Op1User = 0;
unsigned ShiftMask, AndMask, Amount = 0;
bool matched = false;
// We require OpUser to be an instruction to continue
Op0User = dyn_cast<Instruction>(OpUser);
if (0 == Op0User)
return false;
if (isExtractShiftHalf)
if (isExtractAndHalf)
matched = true;
if (matched == false && isExtractAndHalf)
if (isExtractShiftHalf)
matched = true;
if (matched == false)
return false;
if (isRunOfOnes(Imm, MB, ME)) {
unsigned SrcReg = getReg(Op, MBB, IP);
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(Rotate)
.addImm(MB).addImm(ME);
Op1User->replaceAllUsesWith(Op0User);
SkipList.push_back(BO);
return true;
}
*/
}
/// emitBinaryConstOperation - Implement simple binary operators for integral
/// types with a constant operand. Opcode is one of: 0 for Add, 1 for Sub,
/// 2 for And, 3 for Or, 4 for Xor, and 5 for Subtract-From.
///
void PPC32ISel::emitBinaryConstOperation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
unsigned Op0Reg, ConstantInt *Op1,
unsigned Opcode, unsigned DestReg) {
static const unsigned OpTab[] = {
PPC::ADD, PPC::SUB, PPC::AND, PPC::OR, PPC::XOR, PPC::SUBF
};
static const unsigned ImmOpTab[2][6] = {
{ PPC::ADDI, PPC::ADDI, PPC::ANDIo, PPC::ORI, PPC::XORI, PPC::SUBFIC },
{ PPC::ADDIS, PPC::ADDIS, PPC::ANDISo, PPC::ORIS, PPC::XORIS, PPC::SUBFIC }
};
// Handle subtract now by inverting the constant value: X-4 == X+(-4)
if (Opcode == 1) {
Op1 = cast<ConstantInt>(ConstantExpr::getNeg(Op1));
Opcode = 0;
}
// xor X, -1 -> not X
if (Opcode == 4 && Op1->isAllOnesValue()) {
BuildMI(*MBB, IP, PPC::NOR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
return;
}
if (Opcode == 2 && !Op1->isNullValue()) {
unsigned MB, ME, mask = Op1->getRawValue();
if (isRunOfOnes(mask, MB, ME)) {
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(Op0Reg).addImm(0)
.addImm(MB).addImm(ME);
return;
}
}
// PowerPC 16 bit signed immediates are sign extended before use by the
// instruction. Therefore, we can only split up an add of a reg with a 32 bit
// immediate into addis and addi if the sign bit of the low 16 bits is cleared
// so that for register A, const imm X, we don't end up with
// A + XXXX0000 + FFFFXXXX.
bool WontSignExtend = (0 == (Op1->getRawValue() & 0x8000));
// For Add, Sub, and SubF the instruction takes a signed immediate. For And,
// Or, and Xor, the instruction takes an unsigned immediate. There is no
// shifted immediate form of SubF so disallow its opcode for those constants.
if (canUseAsImmediateForOpcode(Op1, Opcode, false)) {
if (Opcode < 2 || Opcode == 5)
BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(Op0Reg)
.addSImm(Op1->getRawValue());
else
BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(Op0Reg)
.addZImm(Op1->getRawValue());
} else if (canUseAsImmediateForOpcode(Op1, Opcode, true) && (Opcode < 5)) {
if (Opcode < 2)
BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, DestReg).addReg(Op0Reg)
.addSImm(Op1->getRawValue() >> 16);
else
BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, DestReg).addReg(Op0Reg)
.addZImm(Op1->getRawValue() >> 16);
} else if ((Opcode < 2 && WontSignExtend) || Opcode == 3 || Opcode == 4) {
unsigned TmpReg = makeAnotherReg(Op1->getType());
if (Opcode < 2) {
BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, TmpReg).addReg(Op0Reg)
.addSImm(Op1->getRawValue() >> 16);
BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(TmpReg)
.addSImm(Op1->getRawValue());
} else {
BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, TmpReg).addReg(Op0Reg)
.addZImm(Op1->getRawValue() >> 16);
BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(TmpReg)
.addZImm(Op1->getRawValue());
}
} else {
unsigned Op1Reg = getReg(Op1, MBB, IP);
BuildMI(*MBB, IP, OpTab[Opcode], 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
}
}
/// emitSimpleBinaryOperation - Implement simple binary operators for integral
/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
/// Or, 4 for Xor.
///
void PPC32ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
BinaryOperator *BO,
Value *Op0, Value *Op1,
unsigned OperatorClass,
unsigned DestReg) {
// Arithmetic and Bitwise operators
static const unsigned OpcodeTab[] = {
PPC::ADD, PPC::SUBF, PPC::AND, PPC::OR, PPC::XOR
};
static const unsigned LongOpTab[2][5] = {
{ PPC::ADDC, PPC::SUBFC, PPC::AND, PPC::OR, PPC::XOR },
{ PPC::ADDE, PPC::SUBFE, PPC::AND, PPC::OR, PPC::XOR }
};
unsigned Class = getClassB(Op0->getType());
if (Class == cFP32 || Class == cFP64) {
assert(OperatorClass < 2 && "No logical ops for FP!");
emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
return;
}
if (Op0->getType() == Type::BoolTy) {
if (OperatorClass == 3)
// If this is an or of two isnan's, emit an FP comparison directly instead
// of or'ing two isnan's together.
if (Value *LHS = dyncastIsNan(Op0))
if (Value *RHS = dyncastIsNan(Op1)) {
unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
unsigned TmpReg = makeAnotherReg(Type::IntTy);
emitUCOM(MBB, IP, Op0Reg, Op1Reg);
BuildMI(*MBB, IP, PPC::MFCR, TmpReg);
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
.addImm(31).addImm(31);
return;
}
}
// Special case: op <const int>, Reg
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
if (Class != cLong) {
unsigned Opcode = (OperatorClass == 1) ? 5 : OperatorClass;
unsigned Op1r = getReg(Op1, MBB, IP);
emitBinaryConstOperation(MBB, IP, Op1r, CI, Opcode, DestReg);
return;
}
// Special case: op Reg, <const int>
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
if (Class != cLong) {
if (emitBitfieldInsert(BO, DestReg))
return;
unsigned Op0r = getReg(Op0, MBB, IP);
emitBinaryConstOperation(MBB, IP, Op0r, CI, OperatorClass, DestReg);
return;
}
// We couldn't generate an immediate variant of the op, load both halves into
// registers and emit the appropriate opcode.
unsigned Op0r = getReg(Op0, MBB, IP);
unsigned Op1r = getReg(Op1, MBB, IP);
// Subtracts have their operands swapped
if (OperatorClass == 1) {
if (Class != cLong) {
BuildMI(*MBB, IP, PPC::SUBF, 2, DestReg).addReg(Op1r).addReg(Op0r);
} else {
BuildMI(*MBB, IP, PPC::SUBFC, 2, DestReg+1).addReg(Op1r+1).addReg(Op0r+1);
BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(Op1r).addReg(Op0r);
}
return;
}
if (Class != cLong) {
unsigned Opcode = OpcodeTab[OperatorClass];
BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
} else {
BuildMI(*MBB, IP, LongOpTab[0][OperatorClass], 2, DestReg+1).addReg(Op0r+1)
.addReg(Op1r+1);
BuildMI(*MBB, IP, LongOpTab[1][OperatorClass], 2, DestReg).addReg(Op0r)
.addReg(Op1r);
}
return;
}
/// doMultiply - Emit appropriate instructions to multiply together the
/// Values Op0 and Op1, and put the result in DestReg.
///
void PPC32ISel::doMultiply(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
unsigned DestReg, Value *Op0, Value *Op1) {
unsigned Class0 = getClass(Op0->getType());
unsigned Class1 = getClass(Op1->getType());
unsigned Op0r = getReg(Op0, MBB, IP);
unsigned Op1r = getReg(Op1, MBB, IP);
// 64 x 64 -> 64
if (Class0 == cLong && Class1 == cLong) {
unsigned Tmp1 = makeAnotherReg(Type::IntTy);
unsigned Tmp2 = makeAnotherReg(Type::IntTy);
unsigned Tmp3 = makeAnotherReg(Type::IntTy);
unsigned Tmp4 = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1);
BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r);
BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1);
BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
return;
}
// 64 x 32 or less, promote 32 to 64 and do a 64 x 64
if (Class0 == cLong && Class1 <= cInt) {
unsigned Tmp0 = makeAnotherReg(Type::IntTy);
unsigned Tmp1 = makeAnotherReg(Type::IntTy);
unsigned Tmp2 = makeAnotherReg(Type::IntTy);
unsigned Tmp3 = makeAnotherReg(Type::IntTy);
unsigned Tmp4 = makeAnotherReg(Type::IntTy);
if (Op1->getType()->isSigned())
BuildMI(*MBB, IP, PPC::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31);
else
BuildMI(*MBB, IP, PPC::LI, 2, Tmp0).addSImm(0);
BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r);
BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r);
BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0);
BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r);
BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
return;
}
// 32 x 32 -> 32
if (Class0 <= cInt && Class1 <= cInt) {
BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
return;
}
assert(0 && "doMultiply cannot operate on unknown type!");
}
/// doMultiplyConst - This method will multiply the value in Op0 by the
/// value of the ContantInt *CI
void PPC32ISel::doMultiplyConst(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
unsigned DestReg, Value *Op0, ConstantInt *CI) {
unsigned Class = getClass(Op0->getType());
// Mul op0, 0 ==> 0
if (CI->isNullValue()) {
BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
if (Class == cLong)
BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0);
return;
}
// Mul op0, 1 ==> op0
if (CI->equalsInt(1)) {
unsigned Op0r = getReg(Op0, MBB, IP);
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
if (Class == cLong)
BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
return;
}
// If the element size is exactly a power of 2, use a shift to get it.
if (unsigned Shift = ExactLog2(CI->getRawValue())) {
ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), 0, DestReg);
return;
}
// If 32 bits or less and immediate is in right range, emit mul by immediate
if (Class == cByte || Class == cShort || Class == cInt) {
if (canUseAsImmediateForOpcode(CI, 0, false)) {
unsigned Op0r = getReg(Op0, MBB, IP);
unsigned imm = CI->getRawValue() & 0xFFFF;
BuildMI(*MBB, IP, PPC::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
return;
}
}
doMultiply(MBB, IP, DestReg, Op0, CI);
}
void PPC32ISel::visitMul(BinaryOperator &I) {
unsigned ResultReg = getReg(I);
Value *Op0 = I.getOperand(0);
Value *Op1 = I.getOperand(1);
MachineBasicBlock::iterator IP = BB->end();
emitMultiply(BB, IP, Op0, Op1, ResultReg);
}
void PPC32ISel::emitMultiply(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1, unsigned DestReg) {
TypeClass Class = getClass(Op0->getType());
switch (Class) {
case cByte:
case cShort:
case cInt:
case cLong:
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
doMultiplyConst(MBB, IP, DestReg, Op0, CI);
} else {
doMultiply(MBB, IP, DestReg, Op0, Op1);
}
return;
case cFP32:
case cFP64:
emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
return;
break;
}
}
/// visitDivRem - Handle division and remainder instructions... these
/// instruction both require the same instructions to be generated, they just
/// select the result from a different register. Note that both of these
/// instructions work differently for signed and unsigned operands.
///
void PPC32ISel::visitDivRem(BinaryOperator &I) {
unsigned ResultReg = getReg(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
MachineBasicBlock::iterator IP = BB->end();
emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
ResultReg);
}
void PPC32ISel::emitDivRemOperation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1, bool isDiv,
unsigned ResultReg) {
const Type *Ty = Op0->getType();
unsigned Class = getClass(Ty);
switch (Class) {
case cFP32:
if (isDiv) {
// Floating point divide...
emitBinaryFPOperation(MBB, IP, Op0, Op1, 3, ResultReg);
return;
} else {
// Floating point remainder via fmodf(float x, float y);
unsigned Op0Reg = getReg(Op0, MBB, IP);
unsigned Op1Reg = getReg(Op1, MBB, IP);
MachineInstr *TheCall =
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
std::vector<ValueRecord> Args;
Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
}
return;
case cFP64:
if (isDiv) {
// Floating point divide...
emitBinaryFPOperation(MBB, IP, Op0, Op1, 3, ResultReg);
return;
} else {
// Floating point remainder via fmod(double x, double y);
unsigned Op0Reg = getReg(Op0, MBB, IP);
unsigned Op1Reg = getReg(Op1, MBB, IP);
MachineInstr *TheCall =
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
std::vector<ValueRecord> Args;
Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
}
return;
case cLong: {
static Function* const Funcs[] =
{ __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
unsigned Op0Reg = getReg(Op0, MBB, IP);
unsigned Op1Reg = getReg(Op1, MBB, IP);
unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
MachineInstr *TheCall =
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
std::vector<ValueRecord> Args;
Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
return;
}
case cByte: case cShort: case cInt:
break; // Small integrals, handled below...
default: assert(0 && "Unknown class!");
}
// Special case signed division by power of 2.
if (isDiv)
if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
assert(Class != cLong && "This doesn't handle 64-bit divides!");
int V = CI->getValue();
if (V == 1) { // X /s 1 => X
unsigned Op0Reg = getReg(Op0, MBB, IP);
BuildMI(*MBB, IP, PPC::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
return;
}
if (V == -1) { // X /s -1 => -X
unsigned Op0Reg = getReg(Op0, MBB, IP);
BuildMI(*MBB, IP, PPC::NEG, 1, ResultReg).addReg(Op0Reg);
return;
}
unsigned log2V = ExactLog2(V);
if (log2V != 0 && Ty->isSigned()) {
unsigned Op0Reg = getReg(Op0, MBB, IP);
unsigned TmpReg = makeAnotherReg(Op0->getType());
BuildMI(*MBB, IP, PPC::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
BuildMI(*MBB, IP, PPC::ADDZE, 1, ResultReg).addReg(TmpReg);
return;
}
}
unsigned Op0Reg = getReg(Op0, MBB, IP);
if (isDiv) {
unsigned Op1Reg = getReg(Op1, MBB, IP);
unsigned Opcode = Ty->isSigned() ? PPC::DIVW : PPC::DIVWU;
BuildMI(*MBB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
} else { // Remainder
// FIXME: don't load the CI part of a CI divide twice
ConstantInt *CI = dyn_cast<ConstantInt>(Op1);
unsigned TmpReg1 = makeAnotherReg(Op0->getType());
unsigned TmpReg2 = makeAnotherReg(Op0->getType());
emitDivRemOperation(MBB, IP, Op0, Op1, true, TmpReg1);
if (CI && canUseAsImmediateForOpcode(CI, 0, false)) {
BuildMI(*MBB, IP, PPC::MULLI, 2, TmpReg2).addReg(TmpReg1)
.addSImm(CI->getRawValue());
} else {
unsigned Op1Reg = getReg(Op1, MBB, IP);
BuildMI(*MBB, IP, PPC::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
}
BuildMI(*MBB, IP, PPC::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
}
}
/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
/// for constant immediate shift values, and for constant immediate
/// shift values equal to 1. Even the general case is sort of special,
/// because the shift amount has to be in CL, not just any old register.
///
void PPC32ISel::visitShiftInst(ShiftInst &I) {
if (std::find(SkipList.begin(), SkipList.end(), &I) != SkipList.end())
return;
MachineBasicBlock::iterator IP = BB->end();
emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
I.getOpcode() == Instruction::Shl, I.getType(),
&I, getReg(I));
}
/// emitShiftOperation - Common code shared between visitShiftInst and
/// constant expression support.
///
void PPC32ISel::emitShiftOperation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Value *Op, Value *ShiftAmount,
bool isLeftShift, const Type *ResultTy,
ShiftInst *SI, unsigned DestReg) {
bool isSigned = ResultTy->isSigned ();
unsigned Class = getClass (ResultTy);
// Longs, as usual, are handled specially...
if (Class == cLong) {
unsigned SrcReg = getReg (Op, MBB, IP);
// If we have a constant shift, we can generate much more efficient code
// than for a variable shift by using the rlwimi instruction.
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
unsigned Amount = CUI->getValue();
if (Amount == 0) {
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1)
.addReg(SrcReg+1).addReg(SrcReg+1);
} else if (Amount < 32) {
unsigned TempReg = makeAnotherReg(ResultTy);
if (isLeftShift) {
BuildMI(*MBB, IP, PPC::RLWINM, 4, TempReg).addReg(SrcReg)
.addImm(Amount).addImm(0).addImm(31-Amount);
BuildMI(*MBB, IP, PPC::RLWIMI, 5, DestReg).addReg(TempReg)
.addReg(SrcReg+1).addImm(Amount).addImm(32-Amount).addImm(31);
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
.addImm(Amount).addImm(0).addImm(31-Amount);
} else {
BuildMI(*MBB, IP, PPC::RLWINM, 4, TempReg).addReg(SrcReg+1)
.addImm(32-Amount).addImm(Amount).addImm(31);
BuildMI(*MBB, IP, PPC::RLWIMI, 5, DestReg+1).addReg(TempReg)
.addReg(SrcReg).addImm(32-Amount).addImm(0).addImm(Amount-1);
if (isSigned) {
BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg)
.addImm(Amount);
} else {
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
.addImm(32-Amount).addImm(Amount).addImm(31);
}
}
} else { // Shifting more than 32 bits
Amount -= 32;
if (isLeftShift) {
if (Amount != 0) {
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg+1)
.addImm(Amount).addImm(0).addImm(31-Amount);
} else {
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg+1)
.addReg(SrcReg+1);
}
BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0);
} else {
if (Amount != 0) {
if (isSigned)
BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg+1).addReg(SrcReg)
.addImm(Amount);
else
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg)
.addImm(32-Amount).addImm(Amount).addImm(31);
} else {
BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
.addReg(SrcReg);
}
if (isSigned)
BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg)
.addImm(31);
else
BuildMI(*MBB, IP,PPC::LI, 1, DestReg).addSImm(0);
}
}
} else {
unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
if (isLeftShift) {
BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
.addSImm(32);
BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg2).addReg(SrcReg)
.addReg(ShiftAmountReg);
BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg3).addReg(SrcReg+1)
.addReg(TmpReg1);
BuildMI(*MBB, IP, PPC::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
.addSImm(-32);
BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg6).addReg(SrcReg+1)
.addReg(TmpReg5);
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(TmpReg4)
.addReg(TmpReg6);
BuildMI(*MBB, IP, PPC::SLW, 2, DestReg+1).addReg(SrcReg+1)
.addReg(ShiftAmountReg);
} else {
if (isSigned) { // shift right algebraic
MachineBasicBlock *TmpMBB =new MachineBasicBlock(BB->getBasicBlock());
MachineBasicBlock *PhiMBB =new MachineBasicBlock(BB->getBasicBlock());
MachineBasicBlock *OldMBB = BB;
ilist<MachineBasicBlock>::iterator It = BB; ++It;
F->getBasicBlockList().insert(It, TmpMBB);
F->getBasicBlockList().insert(It, PhiMBB);
BB->addSuccessor(TmpMBB);
BB->addSuccessor(PhiMBB);
BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
.addSImm(32);
BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg2).addReg(SrcReg+1)
.addReg(ShiftAmountReg);
BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg3).addReg(SrcReg)
.addReg(TmpReg1);
BuildMI(*MBB, IP, PPC::OR, 2, TmpReg4).addReg(TmpReg2)
.addReg(TmpReg3);
BuildMI(*MBB, IP, PPC::ADDICo, 2, TmpReg5).addReg(ShiftAmountReg)
.addSImm(-32);
BuildMI(*MBB, IP, PPC::SRAW, 2, TmpReg6).addReg(SrcReg)
.addReg(TmpReg5);
BuildMI(*MBB, IP, PPC::SRAW, 2, DestReg).addReg(SrcReg)
.addReg(ShiftAmountReg);
BuildMI(*MBB, IP, PPC::BLE, 2).addReg(PPC::CR0).addMBB(PhiMBB);
// OrMBB:
// Select correct least significant half if the shift amount > 32
BB = TmpMBB;
unsigned OrReg = makeAnotherReg(Type::IntTy);
BuildMI(BB, PPC::OR, 2, OrReg).addReg(TmpReg6).addReg(TmpReg6);
TmpMBB->addSuccessor(PhiMBB);
BB = PhiMBB;
BuildMI(BB, PPC::PHI, 4, DestReg+1).addReg(TmpReg4).addMBB(OldMBB)
.addReg(OrReg).addMBB(TmpMBB);
} else { // shift right logical
BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
.addSImm(32);
BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg2).addReg(SrcReg+1)
.addReg(ShiftAmountReg);
BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg3).addReg(SrcReg)
.addReg(TmpReg1);
BuildMI(*MBB, IP, PPC::OR, 2, TmpReg4).addReg(TmpReg2)
.addReg(TmpReg3);
BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
.addSImm(-32);
BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg6).addReg(SrcReg)
.addReg(TmpReg5);
BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(TmpReg4)
.addReg(TmpReg6);
BuildMI(*MBB, IP, PPC::SRW, 2, DestReg).addReg(SrcReg)
.addReg(ShiftAmountReg);
}
}
}
return;
}
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
// The shift amount is constant, guaranteed to be a ubyte. Get its value.
assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
unsigned Amount = CUI->getValue();
// If this is a shift with one use, and that use is an And instruction,
// then attempt to emit a bitfield operation.
if (SI && emitBitfieldInsert(SI, DestReg))
return;
unsigned SrcReg = getReg (Op, MBB, IP);
if (Amount == 0) {
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
} else if (isLeftShift) {
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
.addImm(Amount).addImm(0).addImm(31-Amount);
} else {
if (isSigned) {
BuildMI(*MBB, IP, PPC::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
} else {
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
.addImm(32-Amount).addImm(Amount).addImm(31);
}
}
} else { // The shift amount is non-constant.
unsigned SrcReg = getReg (Op, MBB, IP);
unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
if (isLeftShift) {
BuildMI(*MBB, IP, PPC::SLW, 2, DestReg).addReg(SrcReg)
.addReg(ShiftAmountReg);
} else {
BuildMI(*MBB, IP, isSigned ? PPC::SRAW : PPC::SRW, 2, DestReg)
.addReg(SrcReg).addReg(ShiftAmountReg);
}
}
}
/// LoadNeedsSignExtend - On PowerPC, there is no load byte with sign extend.
/// Therefore, if this is a byte load and the destination type is signed, we
/// would normally need to also emit a sign extend instruction after the load.
/// However, store instructions don't care whether a signed type was sign
/// extended across a whole register. Also, a SetCC instruction will emit its
/// own sign extension to force the value into the appropriate range, so we
/// need not emit it here. Ideally, this kind of thing wouldn't be necessary
/// once LLVM's type system is improved.
static bool LoadNeedsSignExtend(LoadInst &LI) {
if (cByte == getClassB(LI.getType()) && LI.getType()->isSigned()) {
bool AllUsesAreStoresOrSetCC = true;
for (Value::use_iterator I = LI.use_begin(), E = LI.use_end(); I != E; ++I){
if (isa<SetCondInst>(*I))
continue;
if (StoreInst *SI = dyn_cast<StoreInst>(*I))
if (cByte == getClassB(SI->getOperand(0)->getType()))
continue;
AllUsesAreStoresOrSetCC = false;
break;
}
if (!AllUsesAreStoresOrSetCC)
return true;
}
return false;
}
/// visitLoadInst - Implement LLVM load instructions. Pretty straightforward
/// mapping of LLVM classes to PPC load instructions, with the exception of
/// signed byte loads, which need a sign extension following them.
///
void PPC32ISel::visitLoadInst(LoadInst &I) {
// Immediate opcodes, for reg+imm addressing
static const unsigned ImmOpcodes[] = {
PPC::LBZ, PPC::LHZ, PPC::LWZ,
PPC::LFS, PPC::LFD, PPC::LWZ
};
// Indexed opcodes, for reg+reg addressing
static const unsigned IdxOpcodes[] = {
PPC::LBZX, PPC::LHZX, PPC::LWZX,
PPC::LFSX, PPC::LFDX, PPC::LWZX
};
unsigned Class = getClassB(I.getType());
unsigned ImmOpcode = ImmOpcodes[Class];
unsigned IdxOpcode = IdxOpcodes[Class];
unsigned DestReg = getReg(I);
Value *SourceAddr = I.getOperand(0);
if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC::LHA;
if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC::LHAX;
// If this is a fixed size alloca, emit a load directly from the stack slot
// corresponding to it.
if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
unsigned FI = getFixedSizedAllocaFI(AI);
if (Class == cLong) {
addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg+1), FI, 4);
} else if (LoadNeedsSignExtend(I)) {
unsigned TmpReg = makeAnotherReg(I.getType());
addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
} else {
addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
}
return;
}
// If the offset fits in 16 bits, we can emit a reg+imm load, otherwise, we
// use the index from the FoldedGEP struct and use reg+reg addressing.
if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
// Generate the code for the GEP and get the components of the folded GEP
emitGEPOperation(BB, BB->end(), GEPI, true);
unsigned baseReg = GEPMap[GEPI].base;
unsigned indexReg = GEPMap[GEPI].index;
ConstantSInt *offset = GEPMap[GEPI].offset;
if (Class != cLong) {
unsigned TmpReg = LoadNeedsSignExtend(I) ? makeAnotherReg(I.getType())
: DestReg;
if (indexReg == 0)
BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
.addReg(baseReg);
else
BuildMI(BB, IdxOpcode, 2, TmpReg).addReg(indexReg).addReg(baseReg);
if (LoadNeedsSignExtend(I))
BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
} else {
indexReg = (indexReg != 0) ? indexReg : getReg(offset);
unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
BuildMI(BB, IdxOpcode, 2, DestReg+1).addReg(indexPlus4).addReg(baseReg);
}
return;
}
// The fallback case, where the load was from a source that could not be
// folded into the load instruction.
unsigned SrcAddrReg = getReg(SourceAddr);
if (Class == cLong) {
BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
BuildMI(BB, ImmOpcode, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg);
} else if (LoadNeedsSignExtend(I)) {
unsigned TmpReg = makeAnotherReg(I.getType());
BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
} else {
BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
}
}
/// visitStoreInst - Implement LLVM store instructions
///
void PPC32ISel::visitStoreInst(StoreInst &I) {
// Immediate opcodes, for reg+imm addressing
static const unsigned ImmOpcodes[] = {
PPC::STB, PPC::STH, PPC::STW,
PPC::STFS, PPC::STFD, PPC::STW
};
// Indexed opcodes, for reg+reg addressing
static const unsigned IdxOpcodes[] = {
PPC::STBX, PPC::STHX, PPC::STWX,
PPC::STFSX, PPC::STFDX, PPC::STWX
};
Value *SourceAddr = I.getOperand(1);
const Type *ValTy = I.getOperand(0)->getType();
unsigned Class = getClassB(ValTy);
unsigned ImmOpcode = ImmOpcodes[Class];
unsigned IdxOpcode = IdxOpcodes[Class];
unsigned ValReg = getReg(I.getOperand(0));
// If this is a fixed size alloca, emit a store directly to the stack slot
// corresponding to it.
if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
unsigned FI = getFixedSizedAllocaFI(AI);
addFrameReference(BuildMI(BB, ImmOpcode, 3).addReg(ValReg), FI);
if (Class == cLong)
addFrameReference(BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1), FI, 4);
return;
}
// If the offset fits in 16 bits, we can emit a reg+imm store, otherwise, we
// use the index from the FoldedGEP struct and use reg+reg addressing.
if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
// Generate the code for the GEP and get the components of the folded GEP
emitGEPOperation(BB, BB->end(), GEPI, true);
unsigned baseReg = GEPMap[GEPI].base;
unsigned indexReg = GEPMap[GEPI].index;
ConstantSInt *offset = GEPMap[GEPI].offset;
if (Class != cLong) {
if (indexReg == 0)
BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
.addReg(baseReg);
else
BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg)
.addReg(baseReg);
} else {
indexReg = (indexReg != 0) ? indexReg : getReg(offset);
unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
BuildMI(BB, IdxOpcode, 3).addReg(ValReg+1).addReg(indexPlus4)
.addReg(baseReg);
}
return;
}
// If the store address wasn't the only use of a GEP, we fall back to the
// standard path: store the ValReg at the value in AddressReg.
unsigned AddressReg = getReg(I.getOperand(1));
if (Class == cLong) {
BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg);
return;
}
BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
}
/// visitCastInst - Here we have various kinds of copying with or without sign
/// extension going on.
///
void PPC32ISel::visitCastInst(CastInst &CI) {
Value *Op = CI.getOperand(0);
unsigned SrcClass = getClassB(Op->getType());
unsigned DestClass = getClassB(CI.getType());
// Noop casts are not emitted: getReg will return the source operand as the
// register to use for any uses of the noop cast.
if (DestClass == SrcClass) return;
// If this is a cast from a 32-bit integer to a Long type, and the only uses
// of the cast are GEP instructions, then the cast does not need to be
// generated explicitly, it will be folded into the GEP.
if (DestClass == cLong && SrcClass == cInt) {
bool AllUsesAreGEPs = true;
for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
if (!isa<GetElementPtrInst>(*I)) {
AllUsesAreGEPs = false;
break;
}
if (AllUsesAreGEPs) return;
}
unsigned DestReg = getReg(CI);
MachineBasicBlock::iterator MI = BB->end();
// If this is a cast from an integer type to a ubyte, with one use where the
// use is the shift amount argument of a shift instruction, just emit a move
// instead (since the shift instruction will only look at the low 5 bits
// regardless of how it is sign extended)
if (CI.getType() == Type::UByteTy && SrcClass <= cInt && CI.hasOneUse()) {
ShiftInst *SI = dyn_cast<ShiftInst>(*(CI.use_begin()));
if (SI && (SI->getOperand(1) == &CI)) {
unsigned SrcReg = getReg(Op, BB, MI);
BuildMI(*BB, MI, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
return;
}
}
// If this is a cast from an byte, short, or int to an integer type of equal
// or lesser width, and all uses of the cast are store instructions then dont
// emit them, as the store instruction will implicitly not store the zero or
// sign extended bytes.
if (SrcClass <= cInt && SrcClass >= DestClass) {
bool AllUsesAreStores = true;
for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
if (!isa<StoreInst>(*I)) {
AllUsesAreStores = false;
break;
}
// Turn this cast directly into a move instruction, which the register
// allocator will deal with.
if (AllUsesAreStores) {
unsigned SrcReg = getReg(Op, BB, MI);
BuildMI(*BB, MI, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
return;
}
}
emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
}
/// emitCastOperation - Common code shared between visitCastInst and constant
/// expression cast support.
///
void PPC32ISel::emitCastOperation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Value *Src, const Type *DestTy,
unsigned DestReg) {
const Type *SrcTy = Src->getType();
unsigned SrcClass = getClassB(SrcTy);
unsigned DestClass = getClassB(DestTy);
unsigned SrcReg = getReg(Src, MBB, IP);
// Implement casts from bool to integer types as a move operation
if (SrcTy == Type::BoolTy) {
switch (DestClass) {
case cByte:
case cShort:
case cInt:
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
return;
case cLong:
BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addImm(0);
BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg).addReg(SrcReg);
return;
default:
break;
}
}
// Implement casts to bool by using compare on the operand followed by set if
// not zero on the result.
if (DestTy == Type::BoolTy) {
switch (SrcClass) {
case cByte:
case cShort:
case cInt: {
unsigned TmpReg = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
break;
}
case cLong: {
unsigned TmpReg = makeAnotherReg(Type::IntTy);
unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1);
BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg)
.addReg(SrcReg2);
break;
}
case cFP32:
case cFP64:
unsigned TmpReg = makeAnotherReg(Type::IntTy);
unsigned ConstZero = getReg(ConstantFP::get(Type::DoubleTy, 0.0), BB, IP);
BuildMI(*MBB, IP, PPC::FCMPU, PPC::CR7).addReg(SrcReg).addReg(ConstZero);
BuildMI(*MBB, IP, PPC::MFCR, TmpReg);
BuildMI(*MBB, IP, PPC::RLWINM, DestReg).addReg(TmpReg).addImm(31)
.addImm(31).addImm(31);
}
return;
}
// Handle cast of Float -> Double
if (SrcClass == cFP32 && DestClass == cFP64) {
BuildMI(*MBB, IP, PPC::FMR, 1, DestReg).addReg(SrcReg);
return;
}
// Handle cast of Double -> Float
if (SrcClass == cFP64 && DestClass == cFP32) {
BuildMI(*MBB, IP, PPC::FRSP, 1, DestReg).addReg(SrcReg);
return;
}
// Handle casts from integer to floating point now...
if (DestClass == cFP32 || DestClass == cFP64) {
// Emit a library call for long to float conversion
if (SrcClass == cLong) {
Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
if (SrcTy->isSigned()) {
std::vector<ValueRecord> Args;
Args.push_back(ValueRecord(SrcReg, SrcTy));
MachineInstr *TheCall =
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
} else {
std::vector<ValueRecord> CmpArgs, ClrArgs, SetArgs;
unsigned ZeroLong = getReg(ConstantUInt::get(SrcTy, 0));
unsigned CondReg = makeAnotherReg(Type::IntTy);
// Update machine-CFG edges
MachineBasicBlock *ClrMBB = new MachineBasicBlock(BB->getBasicBlock());
MachineBasicBlock *SetMBB = new MachineBasicBlock(BB->getBasicBlock());
MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
MachineBasicBlock *OldMBB = BB;
ilist<MachineBasicBlock>::iterator It = BB; ++It;
F->getBasicBlockList().insert(It, ClrMBB);
F->getBasicBlockList().insert(It, SetMBB);
F->getBasicBlockList().insert(It, PhiMBB);
BB->addSuccessor(ClrMBB);
BB->addSuccessor(SetMBB);
CmpArgs.push_back(ValueRecord(SrcReg, SrcTy));
CmpArgs.push_back(ValueRecord(ZeroLong, SrcTy));
MachineInstr *TheCall =
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(__cmpdi2Fn, true);
doCall(ValueRecord(CondReg, Type::IntTy), TheCall, CmpArgs, false);
BuildMI(*MBB, IP, PPC::CMPWI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
BuildMI(*MBB, IP, PPC::BLE, 2).addReg(PPC::CR0).addMBB(SetMBB);
// ClrMBB
BB = ClrMBB;
unsigned ClrReg = makeAnotherReg(DestTy);
ClrArgs.push_back(ValueRecord(SrcReg, SrcTy));
TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
doCall(ValueRecord(ClrReg, DestTy), TheCall, ClrArgs, false);
BuildMI(BB, PPC::B, 1).addMBB(PhiMBB);
BB->addSuccessor(PhiMBB);
// SetMBB
BB = SetMBB;
unsigned SetReg = makeAnotherReg(DestTy);
unsigned CallReg = makeAnotherReg(DestTy);
unsigned ShiftedReg = makeAnotherReg(SrcTy);
ConstantSInt *Const1 = ConstantSInt::get(Type::IntTy, 1);
emitShiftOperation(BB, BB->end(), Src, Const1, false, SrcTy, 0,
ShiftedReg);
SetArgs.push_back(ValueRecord(ShiftedReg, SrcTy));
TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
doCall(ValueRecord(CallReg, DestTy), TheCall, SetArgs, false);
unsigned SetOpcode = (DestClass == cFP32) ? PPC::FADDS : PPC::FADD;
BuildMI(BB, SetOpcode, 2, SetReg).addReg(CallReg).addReg(CallReg);
BB->addSuccessor(PhiMBB);
// PhiMBB
BB = PhiMBB;
BuildMI(BB, PPC::PHI, 4, DestReg).addReg(ClrReg).addMBB(ClrMBB)
.addReg(SetReg).addMBB(SetMBB);
}
return;
}
// Make sure we're dealing with a full 32 bits
if (SrcClass < cInt) {
unsigned TmpReg = makeAnotherReg(Type::IntTy);
promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
SrcReg = TmpReg;
}
// Spill the integer to memory and reload it from there.
// Also spill room for a special conversion constant
int ValueFrameIdx =
F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
unsigned constantHi = makeAnotherReg(Type::IntTy);
unsigned TempF = makeAnotherReg(Type::DoubleTy);
if (!SrcTy->isSigned()) {
ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, 0x1.000000p52);
unsigned ConstF = getReg(CFP, BB, IP);
BuildMI(*MBB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(constantHi),
ValueFrameIdx);
addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(SrcReg),
ValueFrameIdx, 4);
addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
BuildMI(*MBB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
} else {
ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, 0x1.000008p52);
unsigned ConstF = getReg(CFP, BB, IP);
unsigned TempLo = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(constantHi),
ValueFrameIdx);
BuildMI(*MBB, IP, PPC::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(TempLo),
ValueFrameIdx, 4);
addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
BuildMI(*MBB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
}
return;
}
// Handle casts from floating point to integer now...
if (SrcClass == cFP32 || SrcClass == cFP64) {
static Function* const Funcs[] =
{ __fixsfdiFn, __fixdfdiFn, __fixunssfdiFn, __fixunsdfdiFn };
// emit library call
if (DestClass == cLong) {
bool isDouble = SrcClass == cFP64;
unsigned nameIndex = 2 * DestTy->isSigned() + isDouble;
std::vector<ValueRecord> Args;
Args.push_back(ValueRecord(SrcReg, SrcTy));
Function *floatFn = Funcs[nameIndex];
MachineInstr *TheCall =
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
return;
}
int ValueFrameIdx =
F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
if (DestTy->isSigned()) {
unsigned TempReg = makeAnotherReg(Type::DoubleTy);
// Convert to integer in the FP reg and store it to a stack slot
BuildMI(*MBB, IP, PPC::FCTIWZ, 1, TempReg).addReg(SrcReg);
addFrameReference(BuildMI(*MBB, IP, PPC::STFD, 3)
.addReg(TempReg), ValueFrameIdx);
// There is no load signed byte opcode, so we must emit a sign extend for
// that particular size. Make sure to source the new integer from the
// correct offset.
if (DestClass == cByte) {
unsigned TempReg2 = makeAnotherReg(DestTy);
addFrameReference(BuildMI(*MBB, IP, PPC::LBZ, 2, TempReg2),
ValueFrameIdx, 7);
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(TempReg2);
} else {
int offset = (DestClass == cShort) ? 6 : 4;
unsigned LoadOp = (DestClass == cShort) ? PPC::LHA : PPC::LWZ;
addFrameReference(BuildMI(*MBB, IP, LoadOp, 2, DestReg),
ValueFrameIdx, offset);
}
} else {
unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
double maxInt = (1LL << 32) - 1;
unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
double border = 1LL << 31;
unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
unsigned UseZero = makeAnotherReg(Type::DoubleTy);
unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
unsigned IntTmp = makeAnotherReg(Type::IntTy);
unsigned XorReg = makeAnotherReg(Type::IntTy);
int FrameIdx =
F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
// Update machine-CFG edges
MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
MachineBasicBlock *OldMBB = BB;
ilist<MachineBasicBlock>::iterator It = BB; ++It;
F->getBasicBlockList().insert(It, XorMBB);
F->getBasicBlockList().insert(It, PhiMBB);
BB->addSuccessor(XorMBB);
BB->addSuccessor(PhiMBB);
// Convert from floating point to unsigned 32-bit value
// Use 0 if incoming value is < 0.0
BuildMI(*MBB, IP, PPC::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
.addReg(Zero);
// Use 2**32 - 1 if incoming value is >= 2**32
BuildMI(*MBB, IP, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
BuildMI(*MBB, IP, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt)
.addReg(UseZero).addReg(MaxInt);
// Subtract 2**31
BuildMI(*MBB, IP, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
// Use difference if >= 2**31
BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice)
.addReg(Border);
BuildMI(*MBB, IP, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
.addReg(UseChoice);
// Convert to integer
BuildMI(*MBB, IP, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
addFrameReference(BuildMI(*MBB, IP, PPC::STFD, 3).addReg(ConvReg),
FrameIdx);
if (DestClass == cByte) {
addFrameReference(BuildMI(*MBB, IP, PPC::LBZ, 2, DestReg),
FrameIdx, 7);
} else if (DestClass == cShort) {
addFrameReference(BuildMI(*MBB, IP, PPC::LHZ, 2, DestReg),
FrameIdx, 6);
} if (DestClass == cInt) {
addFrameReference(BuildMI(*MBB, IP, PPC::LWZ, 2, IntTmp),
FrameIdx, 4);
BuildMI(*MBB, IP, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB);
BuildMI(*MBB, IP, PPC::B, 1).addMBB(XorMBB);
// XorMBB:
// add 2**31 if input was >= 2**31
BB = XorMBB;
BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
XorMBB->addSuccessor(PhiMBB);
// PhiMBB:
// DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
BB = PhiMBB;
BuildMI(BB, PPC::PHI, 4, DestReg).addReg(IntTmp).addMBB(OldMBB)
.addReg(XorReg).addMBB(XorMBB);
}
}
return;
}
// Check our invariants
assert((SrcClass <= cInt || SrcClass == cLong) &&
"Unhandled source class for cast operation!");
assert((DestClass <= cInt || DestClass == cLong) &&
"Unhandled destination class for cast operation!");
bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
bool destUnsigned = DestTy->isUnsigned();
// Unsigned -> Unsigned, clear if larger,
if (sourceUnsigned && destUnsigned) {
// handle long dest class now to keep switch clean
if (DestClass == cLong) {
BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
.addReg(SrcReg);
return;
}
// handle u{ byte, short, int } x u{ byte, short, int }
unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
switch (SrcClass) {
case cByte:
case cShort:
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
.addImm(0).addImm(clearBits).addImm(31);
break;
case cLong:
++SrcReg;
// Fall through
case cInt:
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
.addImm(0).addImm(clearBits).addImm(31);
break;
}
return;
}
// Signed -> Signed
if (!sourceUnsigned && !destUnsigned) {
// handle long dest class now to keep switch clean
if (DestClass == cLong) {
BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
.addReg(SrcReg);
return;
}
// handle { byte, short, int } x { byte, short, int }
switch (SrcClass) {
case cByte:
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
break;
case cShort:
if (DestClass == cByte)
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
else
BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
break;
case cLong:
++SrcReg;
// Fall through
case cInt:
if (DestClass == cByte)
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
else if (DestClass == cShort)
BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
else
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
break;
}
return;
}
// Unsigned -> Signed
if (sourceUnsigned && !destUnsigned) {
// handle long dest class now to keep switch clean
if (DestClass == cLong) {
BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
.addReg(SrcReg);
return;
}
// handle u{ byte, short, int } -> { byte, short, int }
switch (SrcClass) {
case cByte:
// uByte 255 -> signed short/int == 255
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
.addImm(24).addImm(31);
break;
case cShort:
if (DestClass == cByte)
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
else
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
.addImm(16).addImm(31);
break;
case cLong:
++SrcReg;
// Fall through
case cInt:
if (DestClass == cByte)
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
else if (DestClass == cShort)
BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
else
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
break;
}
return;
}
// Signed -> Unsigned
if (!sourceUnsigned && destUnsigned) {
// handle long dest class now to keep switch clean
if (DestClass == cLong) {
BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
.addReg(SrcReg);
return;
}
// handle { byte, short, int } -> u{ byte, short, int }
unsigned clearBits = (DestClass == cByte) ? 24 : 16;
switch (SrcClass) {
case cByte:
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
break;
case cShort:
if (DestClass == cByte)
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
.addImm(0).addImm(clearBits).addImm(31);
else
BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
break;
case cLong:
++SrcReg;
// Fall through
case cInt:
if (DestClass == cInt)
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
else
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
.addImm(0).addImm(clearBits).addImm(31);
break;
}
return;
}
// Anything we haven't handled already, we can't (yet) handle at all.
std::cerr << "Unhandled cast from " << SrcTy->getDescription()
<< "to " << DestTy->getDescription() << '\n';
abort();
}
void PPC32ISel::visitVAArgInst(VAArgInst &I) {
unsigned VAListPtr = getReg(I.getOperand(0));
unsigned DestReg = getReg(I);
unsigned VAList = makeAnotherReg(Type::IntTy);
BuildMI(BB, PPC::LWZ, 2, VAList).addSImm(0).addReg(VAListPtr);
int Size;
switch (I.getType()->getTypeID()) {
default:
std::cerr << I;
assert(0 && "Error: bad type for va_next instruction!");
return;
case Type::PointerTyID:
case Type::UIntTyID:
case Type::IntTyID:
Size = 4;
BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
break;
case Type::ULongTyID:
case Type::LongTyID:
Size = 8;
BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
BuildMI(BB, PPC::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList);
break;
case Type::FloatTyID:
Size = 4; //?? Bad value?
BuildMI(BB, PPC::LFS, 2, DestReg).addSImm(0).addReg(VAList);
break;
case Type::DoubleTyID:
Size = 8;
BuildMI(BB, PPC::LFD, 2, DestReg).addSImm(0).addReg(VAList);
break;
}
// Increment the VAList pointer...
unsigned NP = makeAnotherReg(Type::IntTy);
BuildMI(BB, PPC::ADDI, 2, NP).addReg(VAList).addSImm(Size);
BuildMI(BB, PPC::STW, 3).addReg(NP).addSImm(0).addReg(VAListPtr);
}
/// visitGetElementPtrInst - instruction-select GEP instructions
///
void PPC32ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
if (canFoldGEPIntoLoadOrStore(&I))
return;
emitGEPOperation(BB, BB->end(), &I, false);
}
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
/// constant expression GEP support.
///
void PPC32ISel::emitGEPOperation(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
GetElementPtrInst *GEPI, bool GEPIsFolded) {
// If we've already emitted this particular GEP, just return to avoid
// multiple definitions of the base register.
if (GEPIsFolded && (GEPMap[GEPI].base != 0))
return;
Value *Src = GEPI->getOperand(0);
User::op_iterator IdxBegin = GEPI->op_begin()+1;
User::op_iterator IdxEnd = GEPI->op_end();
const TargetData &TD = TM.getTargetData();
const Type *Ty = Src->getType();
int32_t constValue = 0;
// Record the operations to emit the GEP in a vector so that we can emit them
// after having analyzed the entire instruction.
std::vector<CollapsedGepOp> ops;
// GEPs have zero or more indices; we must perform a struct access
// or array access for each one.
for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
++oi) {
Value *idx = *oi;
if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
// It's a struct access. idx is the index into the structure,
// which names the field. Use the TargetData structure to
// pick out what the layout of the structure is in memory.
// Use the (constant) structure index's value to find the
// right byte offset from the StructLayout class's list of
// structure member offsets.
unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
// StructType member offsets are always constant values. Add it to the
// running total.
constValue += TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
// The next type is the member of the structure selected by the index.
Ty = StTy->getElementType (fieldIndex);
} else if (const SequentialType *SqTy = dyn_cast<SequentialType>(Ty)) {
// Many GEP instructions use a [cast (int/uint) to LongTy] as their
// operand. Handle this case directly now...
if (CastInst *CI = dyn_cast<CastInst>(idx))
if (CI->getOperand(0)->getType() == Type::IntTy ||
CI->getOperand(0)->getType() == Type::UIntTy)
idx = CI->getOperand(0);
// It's an array or pointer access: [ArraySize x ElementType].
// We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
// must find the size of the pointed-to type (Not coincidentally, the next
// type is the type of the elements in the array).
Ty = SqTy->getElementType();
unsigned elementSize = TD.getTypeSize(Ty);
if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
constValue += CS->getValue() * elementSize;
else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
constValue += CU->getValue() * elementSize;
else
assert(0 && "Invalid ConstantInt GEP index type!");
} else {
// Push current gep state to this point as an add and multiply
ops.push_back(CollapsedGepOp(
ConstantSInt::get(Type::IntTy, constValue),
idx, ConstantUInt::get(Type::UIntTy, elementSize)));
constValue = 0;
}
}
}
// Emit instructions for all the collapsed ops
unsigned indexReg = 0;
for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
CollapsedGepOp& cgo = *cgo_i;
// Avoid emitting known move instructions here for the register allocator
// to deal with later. val * 1 == val. val + 0 == val.
unsigned TmpReg1;
if (cgo.size->getValue() == 1) {
TmpReg1 = getReg(cgo.index, MBB, IP);
} else {
TmpReg1 = makeAnotherReg(Type::IntTy);
doMultiplyConst(MBB, IP, TmpReg1, cgo.index, cgo.size);
}
unsigned TmpReg2;
if (cgo.offset->isNullValue()) {
TmpReg2 = TmpReg1;
} else {
TmpReg2 = makeAnotherReg(Type::IntTy);
emitBinaryConstOperation(MBB, IP, TmpReg1, cgo.offset, 0, TmpReg2);
}
if (indexReg == 0)
indexReg = TmpReg2;
else {
unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC::ADD, 2, TmpReg3).addReg(indexReg).addReg(TmpReg2);
indexReg = TmpReg3;
}
}
// We now have a base register, an index register, and possibly a constant
// remainder. If the GEP is going to be folded, we try to generate the
// optimal addressing mode.
ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
// If we are emitting this during a fold, copy the current base register to
// the target, and save the current constant offset so the folding load or
// store can try and use it as an immediate.
if (GEPIsFolded) {
if (indexReg == 0) {
if (!canUseAsImmediateForOpcode(remainder, 0, false)) {
indexReg = getReg(remainder, MBB, IP);
remainder = 0;
}
} else if (!remainder->isNullValue()) {
unsigned TmpReg = makeAnotherReg(Type::IntTy);
emitBinaryConstOperation(MBB, IP, indexReg, remainder, 0, TmpReg);
indexReg = TmpReg;
remainder = 0;
}
unsigned basePtrReg = getReg(Src, MBB, IP);
GEPMap[GEPI] = FoldedGEP(basePtrReg, indexReg, remainder);
return;
}
// We're not folding, so collapse the base, index, and any remainder into the
// destination register.
unsigned TargetReg = getReg(GEPI, MBB, IP);
unsigned basePtrReg = getReg(Src, MBB, IP);
if ((indexReg == 0) && remainder->isNullValue()) {
BuildMI(*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
.addReg(basePtrReg);
return;
}
if (!remainder->isNullValue()) {
unsigned TmpReg = (indexReg == 0) ? TargetReg : makeAnotherReg(Type::IntTy);
emitBinaryConstOperation(MBB, IP, basePtrReg, remainder, 0, TmpReg);
basePtrReg = TmpReg;
}
if (indexReg != 0)
BuildMI(*MBB, IP, PPC::ADD, 2, TargetReg).addReg(indexReg)
.addReg(basePtrReg);
}
/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
/// frame manager, otherwise do it the hard way.
///
void PPC32ISel::visitAllocaInst(AllocaInst &I) {
// If this is a fixed size alloca in the entry block for the function, we
// statically stack allocate the space, so we don't need to do anything here.
//
if (dyn_castFixedAlloca(&I)) return;
// Find the data size of the alloca inst's getAllocatedType.
const Type *Ty = I.getAllocatedType();
unsigned TySize = TM.getTargetData().getTypeSize(Ty);
// Create a register to hold the temporary result of multiplying the type size
// constant by the variable amount.
unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
// TotalSizeReg = mul <numelements>, <TypeSize>
MachineBasicBlock::iterator MBBI = BB->end();
ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
// AddedSize = add <TotalSizeReg>, 15
unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
BuildMI(BB, PPC::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
// AlignedSize = and <AddedSize>, ~15
unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
BuildMI(BB, PPC::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
.addImm(0).addImm(27);
// Subtract size from stack pointer, thereby allocating some space.
BuildMI(BB, PPC::SUBF, 2, PPC::R1).addReg(AlignedSize).addReg(PPC::R1);
// Put a pointer to the space into the result register, by copying
// the stack pointer.
BuildMI(BB, PPC::OR, 2, getReg(I)).addReg(PPC::R1).addReg(PPC::R1);
// Inform the Frame Information that we have just allocated a variable-sized
// object.
F->getFrameInfo()->CreateVariableSizedObject();
}
/// visitMallocInst - Malloc instructions are code generated into direct calls
/// to the library malloc.
///
void PPC32ISel::visitMallocInst(MallocInst &I) {
unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
unsigned Arg;
if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
} else {
Arg = makeAnotherReg(Type::UIntTy);
MachineBasicBlock::iterator MBBI = BB->end();
ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
}
std::vector<ValueRecord> Args;
Args.push_back(ValueRecord(Arg, Type::UIntTy));
MachineInstr *TheCall =
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
}
/// visitFreeInst - Free instructions are code gen'd to call the free libc
/// function.
///
void PPC32ISel::visitFreeInst(FreeInst &I) {
std::vector<ValueRecord> Args;
Args.push_back(ValueRecord(I.getOperand(0)));
MachineInstr *TheCall =
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(freeFn, true);
doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
}
/// createPPC32ISelSimple - This pass converts an LLVM function into a machine
/// code representation is a very simple peep-hole fashion.
///
FunctionPass *llvm::createPPC32ISelSimple(TargetMachine &TM) {
return new PPC32ISel(TM);
}