forked from OSchip/llvm-project
2825 lines
112 KiB
C++
2825 lines
112 KiB
C++
//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Rewrite call/invoke instructions so as to make potential relocations
|
|
// performed by the garbage collector explicit in the IR.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Statepoint.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <set>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#define DEBUG_TYPE "rewrite-statepoints-for-gc"
|
|
|
|
using namespace llvm;
|
|
|
|
// Print the liveset found at the insert location
|
|
static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
|
|
cl::init(false));
|
|
static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
|
|
cl::init(false));
|
|
|
|
// Print out the base pointers for debugging
|
|
static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
|
|
cl::init(false));
|
|
|
|
// Cost threshold measuring when it is profitable to rematerialize value instead
|
|
// of relocating it
|
|
static cl::opt<unsigned>
|
|
RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
|
|
cl::init(6));
|
|
|
|
#ifdef EXPENSIVE_CHECKS
|
|
static bool ClobberNonLive = true;
|
|
#else
|
|
static bool ClobberNonLive = false;
|
|
#endif
|
|
|
|
static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
|
|
cl::location(ClobberNonLive),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool>
|
|
AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
|
|
cl::Hidden, cl::init(true));
|
|
|
|
/// The IR fed into RewriteStatepointsForGC may have had attributes and
|
|
/// metadata implying dereferenceability that are no longer valid/correct after
|
|
/// RewriteStatepointsForGC has run. This is because semantically, after
|
|
/// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
|
|
/// heap. stripNonValidData (conservatively) restores
|
|
/// correctness by erasing all attributes in the module that externally imply
|
|
/// dereferenceability. Similar reasoning also applies to the noalias
|
|
/// attributes and metadata. gc.statepoint can touch the entire heap including
|
|
/// noalias objects.
|
|
/// Apart from attributes and metadata, we also remove instructions that imply
|
|
/// constant physical memory: llvm.invariant.start.
|
|
static void stripNonValidData(Module &M);
|
|
|
|
static bool shouldRewriteStatepointsIn(Function &F);
|
|
|
|
PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
|
|
ModuleAnalysisManager &AM) {
|
|
bool Changed = false;
|
|
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
for (Function &F : M) {
|
|
// Nothing to do for declarations.
|
|
if (F.isDeclaration() || F.empty())
|
|
continue;
|
|
|
|
// Policy choice says not to rewrite - the most common reason is that we're
|
|
// compiling code without a GCStrategy.
|
|
if (!shouldRewriteStatepointsIn(F))
|
|
continue;
|
|
|
|
auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
|
|
auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
|
|
Changed |= runOnFunction(F, DT, TTI, TLI);
|
|
}
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
|
|
// stripNonValidData asserts that shouldRewriteStatepointsIn
|
|
// returns true for at least one function in the module. Since at least
|
|
// one function changed, we know that the precondition is satisfied.
|
|
stripNonValidData(M);
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserve<TargetIRAnalysis>();
|
|
PA.preserve<TargetLibraryAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class RewriteStatepointsForGCLegacyPass : public ModulePass {
|
|
RewriteStatepointsForGC Impl;
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
|
|
initializeRewriteStatepointsForGCLegacyPassPass(
|
|
*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnModule(Module &M) override {
|
|
bool Changed = false;
|
|
const TargetLibraryInfo &TLI =
|
|
getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
|
for (Function &F : M) {
|
|
// Nothing to do for declarations.
|
|
if (F.isDeclaration() || F.empty())
|
|
continue;
|
|
|
|
// Policy choice says not to rewrite - the most common reason is that
|
|
// we're compiling code without a GCStrategy.
|
|
if (!shouldRewriteStatepointsIn(F))
|
|
continue;
|
|
|
|
TargetTransformInfo &TTI =
|
|
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
|
|
|
|
Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
|
|
}
|
|
|
|
if (!Changed)
|
|
return false;
|
|
|
|
// stripNonValidData asserts that shouldRewriteStatepointsIn
|
|
// returns true for at least one function in the module. Since at least
|
|
// one function changed, we know that the precondition is satisfied.
|
|
stripNonValidData(M);
|
|
return true;
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
// We add and rewrite a bunch of instructions, but don't really do much
|
|
// else. We could in theory preserve a lot more analyses here.
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char RewriteStatepointsForGCLegacyPass::ID = 0;
|
|
|
|
ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
|
|
return new RewriteStatepointsForGCLegacyPass();
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
|
|
"rewrite-statepoints-for-gc",
|
|
"Make relocations explicit at statepoints", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
|
|
"rewrite-statepoints-for-gc",
|
|
"Make relocations explicit at statepoints", false, false)
|
|
|
|
namespace {
|
|
|
|
struct GCPtrLivenessData {
|
|
/// Values defined in this block.
|
|
MapVector<BasicBlock *, SetVector<Value *>> KillSet;
|
|
|
|
/// Values used in this block (and thus live); does not included values
|
|
/// killed within this block.
|
|
MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
|
|
|
|
/// Values live into this basic block (i.e. used by any
|
|
/// instruction in this basic block or ones reachable from here)
|
|
MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
|
|
|
|
/// Values live out of this basic block (i.e. live into
|
|
/// any successor block)
|
|
MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
|
|
};
|
|
|
|
// The type of the internal cache used inside the findBasePointers family
|
|
// of functions. From the callers perspective, this is an opaque type and
|
|
// should not be inspected.
|
|
//
|
|
// In the actual implementation this caches two relations:
|
|
// - The base relation itself (i.e. this pointer is based on that one)
|
|
// - The base defining value relation (i.e. before base_phi insertion)
|
|
// Generally, after the execution of a full findBasePointer call, only the
|
|
// base relation will remain. Internally, we add a mixture of the two
|
|
// types, then update all the second type to the first type
|
|
using DefiningValueMapTy = MapVector<Value *, Value *>;
|
|
using StatepointLiveSetTy = SetVector<Value *>;
|
|
using RematerializedValueMapTy =
|
|
MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
|
|
|
|
struct PartiallyConstructedSafepointRecord {
|
|
/// The set of values known to be live across this safepoint
|
|
StatepointLiveSetTy LiveSet;
|
|
|
|
/// Mapping from live pointers to a base-defining-value
|
|
MapVector<Value *, Value *> PointerToBase;
|
|
|
|
/// The *new* gc.statepoint instruction itself. This produces the token
|
|
/// that normal path gc.relocates and the gc.result are tied to.
|
|
Instruction *StatepointToken;
|
|
|
|
/// Instruction to which exceptional gc relocates are attached
|
|
/// Makes it easier to iterate through them during relocationViaAlloca.
|
|
Instruction *UnwindToken;
|
|
|
|
/// Record live values we are rematerialized instead of relocating.
|
|
/// They are not included into 'LiveSet' field.
|
|
/// Maps rematerialized copy to it's original value.
|
|
RematerializedValueMapTy RematerializedValues;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
|
|
Optional<OperandBundleUse> DeoptBundle =
|
|
CS.getOperandBundle(LLVMContext::OB_deopt);
|
|
|
|
if (!DeoptBundle.hasValue()) {
|
|
assert(AllowStatepointWithNoDeoptInfo &&
|
|
"Found non-leaf call without deopt info!");
|
|
return None;
|
|
}
|
|
|
|
return DeoptBundle.getValue().Inputs;
|
|
}
|
|
|
|
/// Compute the live-in set for every basic block in the function
|
|
static void computeLiveInValues(DominatorTree &DT, Function &F,
|
|
GCPtrLivenessData &Data);
|
|
|
|
/// Given results from the dataflow liveness computation, find the set of live
|
|
/// Values at a particular instruction.
|
|
static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
|
|
StatepointLiveSetTy &out);
|
|
|
|
// TODO: Once we can get to the GCStrategy, this becomes
|
|
// Optional<bool> isGCManagedPointer(const Type *Ty) const override {
|
|
|
|
static bool isGCPointerType(Type *T) {
|
|
if (auto *PT = dyn_cast<PointerType>(T))
|
|
// For the sake of this example GC, we arbitrarily pick addrspace(1) as our
|
|
// GC managed heap. We know that a pointer into this heap needs to be
|
|
// updated and that no other pointer does.
|
|
return PT->getAddressSpace() == 1;
|
|
return false;
|
|
}
|
|
|
|
// Return true if this type is one which a) is a gc pointer or contains a GC
|
|
// pointer and b) is of a type this code expects to encounter as a live value.
|
|
// (The insertion code will assert that a type which matches (a) and not (b)
|
|
// is not encountered.)
|
|
static bool isHandledGCPointerType(Type *T) {
|
|
// We fully support gc pointers
|
|
if (isGCPointerType(T))
|
|
return true;
|
|
// We partially support vectors of gc pointers. The code will assert if it
|
|
// can't handle something.
|
|
if (auto VT = dyn_cast<VectorType>(T))
|
|
if (isGCPointerType(VT->getElementType()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// Returns true if this type contains a gc pointer whether we know how to
|
|
/// handle that type or not.
|
|
static bool containsGCPtrType(Type *Ty) {
|
|
if (isGCPointerType(Ty))
|
|
return true;
|
|
if (VectorType *VT = dyn_cast<VectorType>(Ty))
|
|
return isGCPointerType(VT->getScalarType());
|
|
if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
|
|
return containsGCPtrType(AT->getElementType());
|
|
if (StructType *ST = dyn_cast<StructType>(Ty))
|
|
return llvm::any_of(ST->subtypes(), containsGCPtrType);
|
|
return false;
|
|
}
|
|
|
|
// Returns true if this is a type which a) is a gc pointer or contains a GC
|
|
// pointer and b) is of a type which the code doesn't expect (i.e. first class
|
|
// aggregates). Used to trip assertions.
|
|
static bool isUnhandledGCPointerType(Type *Ty) {
|
|
return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
|
|
}
|
|
#endif
|
|
|
|
// Return the name of the value suffixed with the provided value, or if the
|
|
// value didn't have a name, the default value specified.
|
|
static std::string suffixed_name_or(Value *V, StringRef Suffix,
|
|
StringRef DefaultName) {
|
|
return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
|
|
}
|
|
|
|
// Conservatively identifies any definitions which might be live at the
|
|
// given instruction. The analysis is performed immediately before the
|
|
// given instruction. Values defined by that instruction are not considered
|
|
// live. Values used by that instruction are considered live.
|
|
static void
|
|
analyzeParsePointLiveness(DominatorTree &DT,
|
|
GCPtrLivenessData &OriginalLivenessData, CallSite CS,
|
|
PartiallyConstructedSafepointRecord &Result) {
|
|
Instruction *Inst = CS.getInstruction();
|
|
|
|
StatepointLiveSetTy LiveSet;
|
|
findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet);
|
|
|
|
if (PrintLiveSet) {
|
|
dbgs() << "Live Variables:\n";
|
|
for (Value *V : LiveSet)
|
|
dbgs() << " " << V->getName() << " " << *V << "\n";
|
|
}
|
|
if (PrintLiveSetSize) {
|
|
dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
|
|
dbgs() << "Number live values: " << LiveSet.size() << "\n";
|
|
}
|
|
Result.LiveSet = LiveSet;
|
|
}
|
|
|
|
static bool isKnownBaseResult(Value *V);
|
|
|
|
namespace {
|
|
|
|
/// A single base defining value - An immediate base defining value for an
|
|
/// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
|
|
/// For instructions which have multiple pointer [vector] inputs or that
|
|
/// transition between vector and scalar types, there is no immediate base
|
|
/// defining value. The 'base defining value' for 'Def' is the transitive
|
|
/// closure of this relation stopping at the first instruction which has no
|
|
/// immediate base defining value. The b.d.v. might itself be a base pointer,
|
|
/// but it can also be an arbitrary derived pointer.
|
|
struct BaseDefiningValueResult {
|
|
/// Contains the value which is the base defining value.
|
|
Value * const BDV;
|
|
|
|
/// True if the base defining value is also known to be an actual base
|
|
/// pointer.
|
|
const bool IsKnownBase;
|
|
|
|
BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
|
|
: BDV(BDV), IsKnownBase(IsKnownBase) {
|
|
#ifndef NDEBUG
|
|
// Check consistency between new and old means of checking whether a BDV is
|
|
// a base.
|
|
bool MustBeBase = isKnownBaseResult(BDV);
|
|
assert(!MustBeBase || MustBeBase == IsKnownBase);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static BaseDefiningValueResult findBaseDefiningValue(Value *I);
|
|
|
|
/// Return a base defining value for the 'Index' element of the given vector
|
|
/// instruction 'I'. If Index is null, returns a BDV for the entire vector
|
|
/// 'I'. As an optimization, this method will try to determine when the
|
|
/// element is known to already be a base pointer. If this can be established,
|
|
/// the second value in the returned pair will be true. Note that either a
|
|
/// vector or a pointer typed value can be returned. For the former, the
|
|
/// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
|
|
/// If the later, the return pointer is a BDV (or possibly a base) for the
|
|
/// particular element in 'I'.
|
|
static BaseDefiningValueResult
|
|
findBaseDefiningValueOfVector(Value *I) {
|
|
// Each case parallels findBaseDefiningValue below, see that code for
|
|
// detailed motivation.
|
|
|
|
if (isa<Argument>(I))
|
|
// An incoming argument to the function is a base pointer
|
|
return BaseDefiningValueResult(I, true);
|
|
|
|
if (isa<Constant>(I))
|
|
// Base of constant vector consists only of constant null pointers.
|
|
// For reasoning see similar case inside 'findBaseDefiningValue' function.
|
|
return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
|
|
true);
|
|
|
|
if (isa<LoadInst>(I))
|
|
return BaseDefiningValueResult(I, true);
|
|
|
|
if (isa<InsertElementInst>(I))
|
|
// We don't know whether this vector contains entirely base pointers or
|
|
// not. To be conservatively correct, we treat it as a BDV and will
|
|
// duplicate code as needed to construct a parallel vector of bases.
|
|
return BaseDefiningValueResult(I, false);
|
|
|
|
if (isa<ShuffleVectorInst>(I))
|
|
// We don't know whether this vector contains entirely base pointers or
|
|
// not. To be conservatively correct, we treat it as a BDV and will
|
|
// duplicate code as needed to construct a parallel vector of bases.
|
|
// TODO: There a number of local optimizations which could be applied here
|
|
// for particular sufflevector patterns.
|
|
return BaseDefiningValueResult(I, false);
|
|
|
|
// The behavior of getelementptr instructions is the same for vector and
|
|
// non-vector data types.
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
|
|
return findBaseDefiningValue(GEP->getPointerOperand());
|
|
|
|
// If the pointer comes through a bitcast of a vector of pointers to
|
|
// a vector of another type of pointer, then look through the bitcast
|
|
if (auto *BC = dyn_cast<BitCastInst>(I))
|
|
return findBaseDefiningValue(BC->getOperand(0));
|
|
|
|
// We assume that functions in the source language only return base
|
|
// pointers. This should probably be generalized via attributes to support
|
|
// both source language and internal functions.
|
|
if (isa<CallInst>(I) || isa<InvokeInst>(I))
|
|
return BaseDefiningValueResult(I, true);
|
|
|
|
// A PHI or Select is a base defining value. The outer findBasePointer
|
|
// algorithm is responsible for constructing a base value for this BDV.
|
|
assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
|
|
"unknown vector instruction - no base found for vector element");
|
|
return BaseDefiningValueResult(I, false);
|
|
}
|
|
|
|
/// Helper function for findBasePointer - Will return a value which either a)
|
|
/// defines the base pointer for the input, b) blocks the simple search
|
|
/// (i.e. a PHI or Select of two derived pointers), or c) involves a change
|
|
/// from pointer to vector type or back.
|
|
static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
|
|
assert(I->getType()->isPtrOrPtrVectorTy() &&
|
|
"Illegal to ask for the base pointer of a non-pointer type");
|
|
|
|
if (I->getType()->isVectorTy())
|
|
return findBaseDefiningValueOfVector(I);
|
|
|
|
if (isa<Argument>(I))
|
|
// An incoming argument to the function is a base pointer
|
|
// We should have never reached here if this argument isn't an gc value
|
|
return BaseDefiningValueResult(I, true);
|
|
|
|
if (isa<Constant>(I)) {
|
|
// We assume that objects with a constant base (e.g. a global) can't move
|
|
// and don't need to be reported to the collector because they are always
|
|
// live. Besides global references, all kinds of constants (e.g. undef,
|
|
// constant expressions, null pointers) can be introduced by the inliner or
|
|
// the optimizer, especially on dynamically dead paths.
|
|
// Here we treat all of them as having single null base. By doing this we
|
|
// trying to avoid problems reporting various conflicts in a form of
|
|
// "phi (const1, const2)" or "phi (const, regular gc ptr)".
|
|
// See constant.ll file for relevant test cases.
|
|
|
|
return BaseDefiningValueResult(
|
|
ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
|
|
}
|
|
|
|
if (CastInst *CI = dyn_cast<CastInst>(I)) {
|
|
Value *Def = CI->stripPointerCasts();
|
|
// If stripping pointer casts changes the address space there is an
|
|
// addrspacecast in between.
|
|
assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
|
|
cast<PointerType>(CI->getType())->getAddressSpace() &&
|
|
"unsupported addrspacecast");
|
|
// If we find a cast instruction here, it means we've found a cast which is
|
|
// not simply a pointer cast (i.e. an inttoptr). We don't know how to
|
|
// handle int->ptr conversion.
|
|
assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
|
|
return findBaseDefiningValue(Def);
|
|
}
|
|
|
|
if (isa<LoadInst>(I))
|
|
// The value loaded is an gc base itself
|
|
return BaseDefiningValueResult(I, true);
|
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
|
|
// The base of this GEP is the base
|
|
return findBaseDefiningValue(GEP->getPointerOperand());
|
|
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
switch (II->getIntrinsicID()) {
|
|
default:
|
|
// fall through to general call handling
|
|
break;
|
|
case Intrinsic::experimental_gc_statepoint:
|
|
llvm_unreachable("statepoints don't produce pointers");
|
|
case Intrinsic::experimental_gc_relocate:
|
|
// Rerunning safepoint insertion after safepoints are already
|
|
// inserted is not supported. It could probably be made to work,
|
|
// but why are you doing this? There's no good reason.
|
|
llvm_unreachable("repeat safepoint insertion is not supported");
|
|
case Intrinsic::gcroot:
|
|
// Currently, this mechanism hasn't been extended to work with gcroot.
|
|
// There's no reason it couldn't be, but I haven't thought about the
|
|
// implications much.
|
|
llvm_unreachable(
|
|
"interaction with the gcroot mechanism is not supported");
|
|
}
|
|
}
|
|
// We assume that functions in the source language only return base
|
|
// pointers. This should probably be generalized via attributes to support
|
|
// both source language and internal functions.
|
|
if (isa<CallInst>(I) || isa<InvokeInst>(I))
|
|
return BaseDefiningValueResult(I, true);
|
|
|
|
// TODO: I have absolutely no idea how to implement this part yet. It's not
|
|
// necessarily hard, I just haven't really looked at it yet.
|
|
assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
|
|
|
|
if (isa<AtomicCmpXchgInst>(I))
|
|
// A CAS is effectively a atomic store and load combined under a
|
|
// predicate. From the perspective of base pointers, we just treat it
|
|
// like a load.
|
|
return BaseDefiningValueResult(I, true);
|
|
|
|
assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
|
|
"binary ops which don't apply to pointers");
|
|
|
|
// The aggregate ops. Aggregates can either be in the heap or on the
|
|
// stack, but in either case, this is simply a field load. As a result,
|
|
// this is a defining definition of the base just like a load is.
|
|
if (isa<ExtractValueInst>(I))
|
|
return BaseDefiningValueResult(I, true);
|
|
|
|
// We should never see an insert vector since that would require we be
|
|
// tracing back a struct value not a pointer value.
|
|
assert(!isa<InsertValueInst>(I) &&
|
|
"Base pointer for a struct is meaningless");
|
|
|
|
// An extractelement produces a base result exactly when it's input does.
|
|
// We may need to insert a parallel instruction to extract the appropriate
|
|
// element out of the base vector corresponding to the input. Given this,
|
|
// it's analogous to the phi and select case even though it's not a merge.
|
|
if (isa<ExtractElementInst>(I))
|
|
// Note: There a lot of obvious peephole cases here. This are deliberately
|
|
// handled after the main base pointer inference algorithm to make writing
|
|
// test cases to exercise that code easier.
|
|
return BaseDefiningValueResult(I, false);
|
|
|
|
// The last two cases here don't return a base pointer. Instead, they
|
|
// return a value which dynamically selects from among several base
|
|
// derived pointers (each with it's own base potentially). It's the job of
|
|
// the caller to resolve these.
|
|
assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
|
|
"missing instruction case in findBaseDefiningValing");
|
|
return BaseDefiningValueResult(I, false);
|
|
}
|
|
|
|
/// Returns the base defining value for this value.
|
|
static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
|
|
Value *&Cached = Cache[I];
|
|
if (!Cached) {
|
|
Cached = findBaseDefiningValue(I).BDV;
|
|
LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
|
|
<< Cached->getName() << "\n");
|
|
}
|
|
assert(Cache[I] != nullptr);
|
|
return Cached;
|
|
}
|
|
|
|
/// Return a base pointer for this value if known. Otherwise, return it's
|
|
/// base defining value.
|
|
static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
|
|
Value *Def = findBaseDefiningValueCached(I, Cache);
|
|
auto Found = Cache.find(Def);
|
|
if (Found != Cache.end()) {
|
|
// Either a base-of relation, or a self reference. Caller must check.
|
|
return Found->second;
|
|
}
|
|
// Only a BDV available
|
|
return Def;
|
|
}
|
|
|
|
/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
|
|
/// is it known to be a base pointer? Or do we need to continue searching.
|
|
static bool isKnownBaseResult(Value *V) {
|
|
if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
|
|
!isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
|
|
!isa<ShuffleVectorInst>(V)) {
|
|
// no recursion possible
|
|
return true;
|
|
}
|
|
if (isa<Instruction>(V) &&
|
|
cast<Instruction>(V)->getMetadata("is_base_value")) {
|
|
// This is a previously inserted base phi or select. We know
|
|
// that this is a base value.
|
|
return true;
|
|
}
|
|
|
|
// We need to keep searching
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Models the state of a single base defining value in the findBasePointer
|
|
/// algorithm for determining where a new instruction is needed to propagate
|
|
/// the base of this BDV.
|
|
class BDVState {
|
|
public:
|
|
enum Status { Unknown, Base, Conflict };
|
|
|
|
BDVState() : BaseValue(nullptr) {}
|
|
|
|
explicit BDVState(Status Status, Value *BaseValue = nullptr)
|
|
: Status(Status), BaseValue(BaseValue) {
|
|
assert(Status != Base || BaseValue);
|
|
}
|
|
|
|
explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
|
|
|
|
Status getStatus() const { return Status; }
|
|
Value *getBaseValue() const { return BaseValue; }
|
|
|
|
bool isBase() const { return getStatus() == Base; }
|
|
bool isUnknown() const { return getStatus() == Unknown; }
|
|
bool isConflict() const { return getStatus() == Conflict; }
|
|
|
|
bool operator==(const BDVState &Other) const {
|
|
return BaseValue == Other.BaseValue && Status == Other.Status;
|
|
}
|
|
|
|
bool operator!=(const BDVState &other) const { return !(*this == other); }
|
|
|
|
LLVM_DUMP_METHOD
|
|
void dump() const {
|
|
print(dbgs());
|
|
dbgs() << '\n';
|
|
}
|
|
|
|
void print(raw_ostream &OS) const {
|
|
switch (getStatus()) {
|
|
case Unknown:
|
|
OS << "U";
|
|
break;
|
|
case Base:
|
|
OS << "B";
|
|
break;
|
|
case Conflict:
|
|
OS << "C";
|
|
break;
|
|
}
|
|
OS << " (" << getBaseValue() << " - "
|
|
<< (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
|
|
}
|
|
|
|
private:
|
|
Status Status = Unknown;
|
|
AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
#ifndef NDEBUG
|
|
static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
|
|
State.print(OS);
|
|
return OS;
|
|
}
|
|
#endif
|
|
|
|
static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
|
|
switch (LHS.getStatus()) {
|
|
case BDVState::Unknown:
|
|
return RHS;
|
|
|
|
case BDVState::Base:
|
|
assert(LHS.getBaseValue() && "can't be null");
|
|
if (RHS.isUnknown())
|
|
return LHS;
|
|
|
|
if (RHS.isBase()) {
|
|
if (LHS.getBaseValue() == RHS.getBaseValue()) {
|
|
assert(LHS == RHS && "equality broken!");
|
|
return LHS;
|
|
}
|
|
return BDVState(BDVState::Conflict);
|
|
}
|
|
assert(RHS.isConflict() && "only three states!");
|
|
return BDVState(BDVState::Conflict);
|
|
|
|
case BDVState::Conflict:
|
|
return LHS;
|
|
}
|
|
llvm_unreachable("only three states!");
|
|
}
|
|
|
|
// Values of type BDVState form a lattice, and this function implements the meet
|
|
// operation.
|
|
static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
|
|
BDVState Result = meetBDVStateImpl(LHS, RHS);
|
|
assert(Result == meetBDVStateImpl(RHS, LHS) &&
|
|
"Math is wrong: meet does not commute!");
|
|
return Result;
|
|
}
|
|
|
|
/// For a given value or instruction, figure out what base ptr its derived from.
|
|
/// For gc objects, this is simply itself. On success, returns a value which is
|
|
/// the base pointer. (This is reliable and can be used for relocation.) On
|
|
/// failure, returns nullptr.
|
|
static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
|
|
Value *Def = findBaseOrBDV(I, Cache);
|
|
|
|
if (isKnownBaseResult(Def))
|
|
return Def;
|
|
|
|
// Here's the rough algorithm:
|
|
// - For every SSA value, construct a mapping to either an actual base
|
|
// pointer or a PHI which obscures the base pointer.
|
|
// - Construct a mapping from PHI to unknown TOP state. Use an
|
|
// optimistic algorithm to propagate base pointer information. Lattice
|
|
// looks like:
|
|
// UNKNOWN
|
|
// b1 b2 b3 b4
|
|
// CONFLICT
|
|
// When algorithm terminates, all PHIs will either have a single concrete
|
|
// base or be in a conflict state.
|
|
// - For every conflict, insert a dummy PHI node without arguments. Add
|
|
// these to the base[Instruction] = BasePtr mapping. For every
|
|
// non-conflict, add the actual base.
|
|
// - For every conflict, add arguments for the base[a] of each input
|
|
// arguments.
|
|
//
|
|
// Note: A simpler form of this would be to add the conflict form of all
|
|
// PHIs without running the optimistic algorithm. This would be
|
|
// analogous to pessimistic data flow and would likely lead to an
|
|
// overall worse solution.
|
|
|
|
#ifndef NDEBUG
|
|
auto isExpectedBDVType = [](Value *BDV) {
|
|
return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
|
|
isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
|
|
isa<ShuffleVectorInst>(BDV);
|
|
};
|
|
#endif
|
|
|
|
// Once populated, will contain a mapping from each potentially non-base BDV
|
|
// to a lattice value (described above) which corresponds to that BDV.
|
|
// We use the order of insertion (DFS over the def/use graph) to provide a
|
|
// stable deterministic ordering for visiting DenseMaps (which are unordered)
|
|
// below. This is important for deterministic compilation.
|
|
MapVector<Value *, BDVState> States;
|
|
|
|
// Recursively fill in all base defining values reachable from the initial
|
|
// one for which we don't already know a definite base value for
|
|
/* scope */ {
|
|
SmallVector<Value*, 16> Worklist;
|
|
Worklist.push_back(Def);
|
|
States.insert({Def, BDVState()});
|
|
while (!Worklist.empty()) {
|
|
Value *Current = Worklist.pop_back_val();
|
|
assert(!isKnownBaseResult(Current) && "why did it get added?");
|
|
|
|
auto visitIncomingValue = [&](Value *InVal) {
|
|
Value *Base = findBaseOrBDV(InVal, Cache);
|
|
if (isKnownBaseResult(Base))
|
|
// Known bases won't need new instructions introduced and can be
|
|
// ignored safely
|
|
return;
|
|
assert(isExpectedBDVType(Base) && "the only non-base values "
|
|
"we see should be base defining values");
|
|
if (States.insert(std::make_pair(Base, BDVState())).second)
|
|
Worklist.push_back(Base);
|
|
};
|
|
if (PHINode *PN = dyn_cast<PHINode>(Current)) {
|
|
for (Value *InVal : PN->incoming_values())
|
|
visitIncomingValue(InVal);
|
|
} else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
|
|
visitIncomingValue(SI->getTrueValue());
|
|
visitIncomingValue(SI->getFalseValue());
|
|
} else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
|
|
visitIncomingValue(EE->getVectorOperand());
|
|
} else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
|
|
visitIncomingValue(IE->getOperand(0)); // vector operand
|
|
visitIncomingValue(IE->getOperand(1)); // scalar operand
|
|
} else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
|
|
visitIncomingValue(SV->getOperand(0));
|
|
visitIncomingValue(SV->getOperand(1));
|
|
}
|
|
else {
|
|
llvm_unreachable("Unimplemented instruction case");
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
LLVM_DEBUG(dbgs() << "States after initialization:\n");
|
|
for (auto Pair : States) {
|
|
LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
|
|
}
|
|
#endif
|
|
|
|
// Return a phi state for a base defining value. We'll generate a new
|
|
// base state for known bases and expect to find a cached state otherwise.
|
|
auto getStateForBDV = [&](Value *baseValue) {
|
|
if (isKnownBaseResult(baseValue))
|
|
return BDVState(baseValue);
|
|
auto I = States.find(baseValue);
|
|
assert(I != States.end() && "lookup failed!");
|
|
return I->second;
|
|
};
|
|
|
|
bool Progress = true;
|
|
while (Progress) {
|
|
#ifndef NDEBUG
|
|
const size_t OldSize = States.size();
|
|
#endif
|
|
Progress = false;
|
|
// We're only changing values in this loop, thus safe to keep iterators.
|
|
// Since this is computing a fixed point, the order of visit does not
|
|
// effect the result. TODO: We could use a worklist here and make this run
|
|
// much faster.
|
|
for (auto Pair : States) {
|
|
Value *BDV = Pair.first;
|
|
assert(!isKnownBaseResult(BDV) && "why did it get added?");
|
|
|
|
// Given an input value for the current instruction, return a BDVState
|
|
// instance which represents the BDV of that value.
|
|
auto getStateForInput = [&](Value *V) mutable {
|
|
Value *BDV = findBaseOrBDV(V, Cache);
|
|
return getStateForBDV(BDV);
|
|
};
|
|
|
|
BDVState NewState;
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
|
|
NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
|
|
NewState =
|
|
meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
|
|
} else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
|
|
for (Value *Val : PN->incoming_values())
|
|
NewState = meetBDVState(NewState, getStateForInput(Val));
|
|
} else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
|
|
// The 'meet' for an extractelement is slightly trivial, but it's still
|
|
// useful in that it drives us to conflict if our input is.
|
|
NewState =
|
|
meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
|
|
} else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
|
|
// Given there's a inherent type mismatch between the operands, will
|
|
// *always* produce Conflict.
|
|
NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
|
|
NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
|
|
} else {
|
|
// The only instance this does not return a Conflict is when both the
|
|
// vector operands are the same vector.
|
|
auto *SV = cast<ShuffleVectorInst>(BDV);
|
|
NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
|
|
NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
|
|
}
|
|
|
|
BDVState OldState = States[BDV];
|
|
if (OldState != NewState) {
|
|
Progress = true;
|
|
States[BDV] = NewState;
|
|
}
|
|
}
|
|
|
|
assert(OldSize == States.size() &&
|
|
"fixed point shouldn't be adding any new nodes to state");
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
|
|
for (auto Pair : States) {
|
|
LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
|
|
}
|
|
#endif
|
|
|
|
// Insert Phis for all conflicts
|
|
// TODO: adjust naming patterns to avoid this order of iteration dependency
|
|
for (auto Pair : States) {
|
|
Instruction *I = cast<Instruction>(Pair.first);
|
|
BDVState State = Pair.second;
|
|
assert(!isKnownBaseResult(I) && "why did it get added?");
|
|
assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
|
|
|
|
// extractelement instructions are a bit special in that we may need to
|
|
// insert an extract even when we know an exact base for the instruction.
|
|
// The problem is that we need to convert from a vector base to a scalar
|
|
// base for the particular indice we're interested in.
|
|
if (State.isBase() && isa<ExtractElementInst>(I) &&
|
|
isa<VectorType>(State.getBaseValue()->getType())) {
|
|
auto *EE = cast<ExtractElementInst>(I);
|
|
// TODO: In many cases, the new instruction is just EE itself. We should
|
|
// exploit this, but can't do it here since it would break the invariant
|
|
// about the BDV not being known to be a base.
|
|
auto *BaseInst = ExtractElementInst::Create(
|
|
State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
|
|
BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
|
|
States[I] = BDVState(BDVState::Base, BaseInst);
|
|
}
|
|
|
|
// Since we're joining a vector and scalar base, they can never be the
|
|
// same. As a result, we should always see insert element having reached
|
|
// the conflict state.
|
|
assert(!isa<InsertElementInst>(I) || State.isConflict());
|
|
|
|
if (!State.isConflict())
|
|
continue;
|
|
|
|
/// Create and insert a new instruction which will represent the base of
|
|
/// the given instruction 'I'.
|
|
auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
|
|
if (isa<PHINode>(I)) {
|
|
BasicBlock *BB = I->getParent();
|
|
int NumPreds = pred_size(BB);
|
|
assert(NumPreds > 0 && "how did we reach here");
|
|
std::string Name = suffixed_name_or(I, ".base", "base_phi");
|
|
return PHINode::Create(I->getType(), NumPreds, Name, I);
|
|
} else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
|
|
// The undef will be replaced later
|
|
UndefValue *Undef = UndefValue::get(SI->getType());
|
|
std::string Name = suffixed_name_or(I, ".base", "base_select");
|
|
return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
|
|
} else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
|
|
UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
|
|
std::string Name = suffixed_name_or(I, ".base", "base_ee");
|
|
return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
|
|
EE);
|
|
} else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
|
|
UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
|
|
UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
|
|
std::string Name = suffixed_name_or(I, ".base", "base_ie");
|
|
return InsertElementInst::Create(VecUndef, ScalarUndef,
|
|
IE->getOperand(2), Name, IE);
|
|
} else {
|
|
auto *SV = cast<ShuffleVectorInst>(I);
|
|
UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
|
|
std::string Name = suffixed_name_or(I, ".base", "base_sv");
|
|
return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2),
|
|
Name, SV);
|
|
}
|
|
};
|
|
Instruction *BaseInst = MakeBaseInstPlaceholder(I);
|
|
// Add metadata marking this as a base value
|
|
BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
|
|
States[I] = BDVState(BDVState::Conflict, BaseInst);
|
|
}
|
|
|
|
// Returns a instruction which produces the base pointer for a given
|
|
// instruction. The instruction is assumed to be an input to one of the BDVs
|
|
// seen in the inference algorithm above. As such, we must either already
|
|
// know it's base defining value is a base, or have inserted a new
|
|
// instruction to propagate the base of it's BDV and have entered that newly
|
|
// introduced instruction into the state table. In either case, we are
|
|
// assured to be able to determine an instruction which produces it's base
|
|
// pointer.
|
|
auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
|
|
Value *BDV = findBaseOrBDV(Input, Cache);
|
|
Value *Base = nullptr;
|
|
if (isKnownBaseResult(BDV)) {
|
|
Base = BDV;
|
|
} else {
|
|
// Either conflict or base.
|
|
assert(States.count(BDV));
|
|
Base = States[BDV].getBaseValue();
|
|
}
|
|
assert(Base && "Can't be null");
|
|
// The cast is needed since base traversal may strip away bitcasts
|
|
if (Base->getType() != Input->getType() && InsertPt)
|
|
Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
|
|
return Base;
|
|
};
|
|
|
|
// Fixup all the inputs of the new PHIs. Visit order needs to be
|
|
// deterministic and predictable because we're naming newly created
|
|
// instructions.
|
|
for (auto Pair : States) {
|
|
Instruction *BDV = cast<Instruction>(Pair.first);
|
|
BDVState State = Pair.second;
|
|
|
|
assert(!isKnownBaseResult(BDV) && "why did it get added?");
|
|
assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
|
|
if (!State.isConflict())
|
|
continue;
|
|
|
|
if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
|
|
PHINode *PN = cast<PHINode>(BDV);
|
|
unsigned NumPHIValues = PN->getNumIncomingValues();
|
|
for (unsigned i = 0; i < NumPHIValues; i++) {
|
|
Value *InVal = PN->getIncomingValue(i);
|
|
BasicBlock *InBB = PN->getIncomingBlock(i);
|
|
|
|
// If we've already seen InBB, add the same incoming value
|
|
// we added for it earlier. The IR verifier requires phi
|
|
// nodes with multiple entries from the same basic block
|
|
// to have the same incoming value for each of those
|
|
// entries. If we don't do this check here and basephi
|
|
// has a different type than base, we'll end up adding two
|
|
// bitcasts (and hence two distinct values) as incoming
|
|
// values for the same basic block.
|
|
|
|
int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
|
|
if (BlockIndex != -1) {
|
|
Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
|
|
BasePHI->addIncoming(OldBase, InBB);
|
|
|
|
#ifndef NDEBUG
|
|
Value *Base = getBaseForInput(InVal, nullptr);
|
|
// In essence this assert states: the only way two values
|
|
// incoming from the same basic block may be different is by
|
|
// being different bitcasts of the same value. A cleanup
|
|
// that remains TODO is changing findBaseOrBDV to return an
|
|
// llvm::Value of the correct type (and still remain pure).
|
|
// This will remove the need to add bitcasts.
|
|
assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
|
|
"Sanity -- findBaseOrBDV should be pure!");
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
// Find the instruction which produces the base for each input. We may
|
|
// need to insert a bitcast in the incoming block.
|
|
// TODO: Need to split critical edges if insertion is needed
|
|
Value *Base = getBaseForInput(InVal, InBB->getTerminator());
|
|
BasePHI->addIncoming(Base, InBB);
|
|
}
|
|
assert(BasePHI->getNumIncomingValues() == NumPHIValues);
|
|
} else if (SelectInst *BaseSI =
|
|
dyn_cast<SelectInst>(State.getBaseValue())) {
|
|
SelectInst *SI = cast<SelectInst>(BDV);
|
|
|
|
// Find the instruction which produces the base for each input.
|
|
// We may need to insert a bitcast.
|
|
BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
|
|
BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
|
|
} else if (auto *BaseEE =
|
|
dyn_cast<ExtractElementInst>(State.getBaseValue())) {
|
|
Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
|
|
// Find the instruction which produces the base for each input. We may
|
|
// need to insert a bitcast.
|
|
BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
|
|
} else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
|
|
auto *BdvIE = cast<InsertElementInst>(BDV);
|
|
auto UpdateOperand = [&](int OperandIdx) {
|
|
Value *InVal = BdvIE->getOperand(OperandIdx);
|
|
Value *Base = getBaseForInput(InVal, BaseIE);
|
|
BaseIE->setOperand(OperandIdx, Base);
|
|
};
|
|
UpdateOperand(0); // vector operand
|
|
UpdateOperand(1); // scalar operand
|
|
} else {
|
|
auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
|
|
auto *BdvSV = cast<ShuffleVectorInst>(BDV);
|
|
auto UpdateOperand = [&](int OperandIdx) {
|
|
Value *InVal = BdvSV->getOperand(OperandIdx);
|
|
Value *Base = getBaseForInput(InVal, BaseSV);
|
|
BaseSV->setOperand(OperandIdx, Base);
|
|
};
|
|
UpdateOperand(0); // vector operand
|
|
UpdateOperand(1); // vector operand
|
|
}
|
|
}
|
|
|
|
// Cache all of our results so we can cheaply reuse them
|
|
// NOTE: This is actually two caches: one of the base defining value
|
|
// relation and one of the base pointer relation! FIXME
|
|
for (auto Pair : States) {
|
|
auto *BDV = Pair.first;
|
|
Value *Base = Pair.second.getBaseValue();
|
|
assert(BDV && Base);
|
|
assert(!isKnownBaseResult(BDV) && "why did it get added?");
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "Updating base value cache"
|
|
<< " for: " << BDV->getName() << " from: "
|
|
<< (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
|
|
<< " to: " << Base->getName() << "\n");
|
|
|
|
if (Cache.count(BDV)) {
|
|
assert(isKnownBaseResult(Base) &&
|
|
"must be something we 'know' is a base pointer");
|
|
// Once we transition from the BDV relation being store in the Cache to
|
|
// the base relation being stored, it must be stable
|
|
assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
|
|
"base relation should be stable");
|
|
}
|
|
Cache[BDV] = Base;
|
|
}
|
|
assert(Cache.count(Def));
|
|
return Cache[Def];
|
|
}
|
|
|
|
// For a set of live pointers (base and/or derived), identify the base
|
|
// pointer of the object which they are derived from. This routine will
|
|
// mutate the IR graph as needed to make the 'base' pointer live at the
|
|
// definition site of 'derived'. This ensures that any use of 'derived' can
|
|
// also use 'base'. This may involve the insertion of a number of
|
|
// additional PHI nodes.
|
|
//
|
|
// preconditions: live is a set of pointer type Values
|
|
//
|
|
// side effects: may insert PHI nodes into the existing CFG, will preserve
|
|
// CFG, will not remove or mutate any existing nodes
|
|
//
|
|
// post condition: PointerToBase contains one (derived, base) pair for every
|
|
// pointer in live. Note that derived can be equal to base if the original
|
|
// pointer was a base pointer.
|
|
static void
|
|
findBasePointers(const StatepointLiveSetTy &live,
|
|
MapVector<Value *, Value *> &PointerToBase,
|
|
DominatorTree *DT, DefiningValueMapTy &DVCache) {
|
|
for (Value *ptr : live) {
|
|
Value *base = findBasePointer(ptr, DVCache);
|
|
assert(base && "failed to find base pointer");
|
|
PointerToBase[ptr] = base;
|
|
assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
|
|
DT->dominates(cast<Instruction>(base)->getParent(),
|
|
cast<Instruction>(ptr)->getParent())) &&
|
|
"The base we found better dominate the derived pointer");
|
|
}
|
|
}
|
|
|
|
/// Find the required based pointers (and adjust the live set) for the given
|
|
/// parse point.
|
|
static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
|
|
CallSite CS,
|
|
PartiallyConstructedSafepointRecord &result) {
|
|
MapVector<Value *, Value *> PointerToBase;
|
|
findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
|
|
|
|
if (PrintBasePointers) {
|
|
errs() << "Base Pairs (w/o Relocation):\n";
|
|
for (auto &Pair : PointerToBase) {
|
|
errs() << " derived ";
|
|
Pair.first->printAsOperand(errs(), false);
|
|
errs() << " base ";
|
|
Pair.second->printAsOperand(errs(), false);
|
|
errs() << "\n";;
|
|
}
|
|
}
|
|
|
|
result.PointerToBase = PointerToBase;
|
|
}
|
|
|
|
/// Given an updated version of the dataflow liveness results, update the
|
|
/// liveset and base pointer maps for the call site CS.
|
|
static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
|
|
CallSite CS,
|
|
PartiallyConstructedSafepointRecord &result);
|
|
|
|
static void recomputeLiveInValues(
|
|
Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
|
|
MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
|
|
// TODO-PERF: reuse the original liveness, then simply run the dataflow
|
|
// again. The old values are still live and will help it stabilize quickly.
|
|
GCPtrLivenessData RevisedLivenessData;
|
|
computeLiveInValues(DT, F, RevisedLivenessData);
|
|
for (size_t i = 0; i < records.size(); i++) {
|
|
struct PartiallyConstructedSafepointRecord &info = records[i];
|
|
recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
|
|
}
|
|
}
|
|
|
|
// When inserting gc.relocate and gc.result calls, we need to ensure there are
|
|
// no uses of the original value / return value between the gc.statepoint and
|
|
// the gc.relocate / gc.result call. One case which can arise is a phi node
|
|
// starting one of the successor blocks. We also need to be able to insert the
|
|
// gc.relocates only on the path which goes through the statepoint. We might
|
|
// need to split an edge to make this possible.
|
|
static BasicBlock *
|
|
normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
|
|
DominatorTree &DT) {
|
|
BasicBlock *Ret = BB;
|
|
if (!BB->getUniquePredecessor())
|
|
Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
|
|
|
|
// Now that 'Ret' has unique predecessor we can safely remove all phi nodes
|
|
// from it
|
|
FoldSingleEntryPHINodes(Ret);
|
|
assert(!isa<PHINode>(Ret->begin()) &&
|
|
"All PHI nodes should have been removed!");
|
|
|
|
// At this point, we can safely insert a gc.relocate or gc.result as the first
|
|
// instruction in Ret if needed.
|
|
return Ret;
|
|
}
|
|
|
|
// Create new attribute set containing only attributes which can be transferred
|
|
// from original call to the safepoint.
|
|
static AttributeList legalizeCallAttributes(AttributeList AL) {
|
|
if (AL.isEmpty())
|
|
return AL;
|
|
|
|
// Remove the readonly, readnone, and statepoint function attributes.
|
|
AttrBuilder FnAttrs = AL.getFnAttributes();
|
|
FnAttrs.removeAttribute(Attribute::ReadNone);
|
|
FnAttrs.removeAttribute(Attribute::ReadOnly);
|
|
for (Attribute A : AL.getFnAttributes()) {
|
|
if (isStatepointDirectiveAttr(A))
|
|
FnAttrs.remove(A);
|
|
}
|
|
|
|
// Just skip parameter and return attributes for now
|
|
LLVMContext &Ctx = AL.getContext();
|
|
return AttributeList::get(Ctx, AttributeList::FunctionIndex,
|
|
AttributeSet::get(Ctx, FnAttrs));
|
|
}
|
|
|
|
/// Helper function to place all gc relocates necessary for the given
|
|
/// statepoint.
|
|
/// Inputs:
|
|
/// liveVariables - list of variables to be relocated.
|
|
/// liveStart - index of the first live variable.
|
|
/// basePtrs - base pointers.
|
|
/// statepointToken - statepoint instruction to which relocates should be
|
|
/// bound.
|
|
/// Builder - Llvm IR builder to be used to construct new calls.
|
|
static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
|
|
const int LiveStart,
|
|
ArrayRef<Value *> BasePtrs,
|
|
Instruction *StatepointToken,
|
|
IRBuilder<> Builder) {
|
|
if (LiveVariables.empty())
|
|
return;
|
|
|
|
auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
|
|
auto ValIt = llvm::find(LiveVec, Val);
|
|
assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
|
|
size_t Index = std::distance(LiveVec.begin(), ValIt);
|
|
assert(Index < LiveVec.size() && "Bug in std::find?");
|
|
return Index;
|
|
};
|
|
Module *M = StatepointToken->getModule();
|
|
|
|
// All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
|
|
// element type is i8 addrspace(1)*). We originally generated unique
|
|
// declarations for each pointer type, but this proved problematic because
|
|
// the intrinsic mangling code is incomplete and fragile. Since we're moving
|
|
// towards a single unified pointer type anyways, we can just cast everything
|
|
// to an i8* of the right address space. A bitcast is added later to convert
|
|
// gc_relocate to the actual value's type.
|
|
auto getGCRelocateDecl = [&] (Type *Ty) {
|
|
assert(isHandledGCPointerType(Ty));
|
|
auto AS = Ty->getScalarType()->getPointerAddressSpace();
|
|
Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
|
|
if (auto *VT = dyn_cast<VectorType>(Ty))
|
|
NewTy = VectorType::get(NewTy, VT->getNumElements());
|
|
return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
|
|
{NewTy});
|
|
};
|
|
|
|
// Lazily populated map from input types to the canonicalized form mentioned
|
|
// in the comment above. This should probably be cached somewhere more
|
|
// broadly.
|
|
DenseMap<Type*, Value*> TypeToDeclMap;
|
|
|
|
for (unsigned i = 0; i < LiveVariables.size(); i++) {
|
|
// Generate the gc.relocate call and save the result
|
|
Value *BaseIdx =
|
|
Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
|
|
Value *LiveIdx = Builder.getInt32(LiveStart + i);
|
|
|
|
Type *Ty = LiveVariables[i]->getType();
|
|
if (!TypeToDeclMap.count(Ty))
|
|
TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
|
|
Value *GCRelocateDecl = TypeToDeclMap[Ty];
|
|
|
|
// only specify a debug name if we can give a useful one
|
|
CallInst *Reloc = Builder.CreateCall(
|
|
GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
|
|
suffixed_name_or(LiveVariables[i], ".relocated", ""));
|
|
// Trick CodeGen into thinking there are lots of free registers at this
|
|
// fake call.
|
|
Reloc->setCallingConv(CallingConv::Cold);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// This struct is used to defer RAUWs and `eraseFromParent` s. Using this
|
|
/// avoids having to worry about keeping around dangling pointers to Values.
|
|
class DeferredReplacement {
|
|
AssertingVH<Instruction> Old;
|
|
AssertingVH<Instruction> New;
|
|
bool IsDeoptimize = false;
|
|
|
|
DeferredReplacement() = default;
|
|
|
|
public:
|
|
static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
|
|
assert(Old != New && Old && New &&
|
|
"Cannot RAUW equal values or to / from null!");
|
|
|
|
DeferredReplacement D;
|
|
D.Old = Old;
|
|
D.New = New;
|
|
return D;
|
|
}
|
|
|
|
static DeferredReplacement createDelete(Instruction *ToErase) {
|
|
DeferredReplacement D;
|
|
D.Old = ToErase;
|
|
return D;
|
|
}
|
|
|
|
static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
|
|
#ifndef NDEBUG
|
|
auto *F = cast<CallInst>(Old)->getCalledFunction();
|
|
assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
|
|
"Only way to construct a deoptimize deferred replacement");
|
|
#endif
|
|
DeferredReplacement D;
|
|
D.Old = Old;
|
|
D.IsDeoptimize = true;
|
|
return D;
|
|
}
|
|
|
|
/// Does the task represented by this instance.
|
|
void doReplacement() {
|
|
Instruction *OldI = Old;
|
|
Instruction *NewI = New;
|
|
|
|
assert(OldI != NewI && "Disallowed at construction?!");
|
|
assert((!IsDeoptimize || !New) &&
|
|
"Deoptimize intrinsics are not replaced!");
|
|
|
|
Old = nullptr;
|
|
New = nullptr;
|
|
|
|
if (NewI)
|
|
OldI->replaceAllUsesWith(NewI);
|
|
|
|
if (IsDeoptimize) {
|
|
// Note: we've inserted instructions, so the call to llvm.deoptimize may
|
|
// not necessarily be followed by the matching return.
|
|
auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
|
|
new UnreachableInst(RI->getContext(), RI);
|
|
RI->eraseFromParent();
|
|
}
|
|
|
|
OldI->eraseFromParent();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static StringRef getDeoptLowering(CallSite CS) {
|
|
const char *DeoptLowering = "deopt-lowering";
|
|
if (CS.hasFnAttr(DeoptLowering)) {
|
|
// FIXME: CallSite has a *really* confusing interface around attributes
|
|
// with values.
|
|
const AttributeList &CSAS = CS.getAttributes();
|
|
if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
|
|
return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
|
|
.getValueAsString();
|
|
Function *F = CS.getCalledFunction();
|
|
assert(F && F->hasFnAttribute(DeoptLowering));
|
|
return F->getFnAttribute(DeoptLowering).getValueAsString();
|
|
}
|
|
return "live-through";
|
|
}
|
|
|
|
static void
|
|
makeStatepointExplicitImpl(const CallSite CS, /* to replace */
|
|
const SmallVectorImpl<Value *> &BasePtrs,
|
|
const SmallVectorImpl<Value *> &LiveVariables,
|
|
PartiallyConstructedSafepointRecord &Result,
|
|
std::vector<DeferredReplacement> &Replacements) {
|
|
assert(BasePtrs.size() == LiveVariables.size());
|
|
|
|
// Then go ahead and use the builder do actually do the inserts. We insert
|
|
// immediately before the previous instruction under the assumption that all
|
|
// arguments will be available here. We can't insert afterwards since we may
|
|
// be replacing a terminator.
|
|
Instruction *InsertBefore = CS.getInstruction();
|
|
IRBuilder<> Builder(InsertBefore);
|
|
|
|
ArrayRef<Value *> GCArgs(LiveVariables);
|
|
uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
|
|
uint32_t NumPatchBytes = 0;
|
|
uint32_t Flags = uint32_t(StatepointFlags::None);
|
|
|
|
ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
|
|
ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
|
|
ArrayRef<Use> TransitionArgs;
|
|
if (auto TransitionBundle =
|
|
CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
|
|
Flags |= uint32_t(StatepointFlags::GCTransition);
|
|
TransitionArgs = TransitionBundle->Inputs;
|
|
}
|
|
|
|
// Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
|
|
// with a return value, we lower then as never returning calls to
|
|
// __llvm_deoptimize that are followed by unreachable to get better codegen.
|
|
bool IsDeoptimize = false;
|
|
|
|
StatepointDirectives SD =
|
|
parseStatepointDirectivesFromAttrs(CS.getAttributes());
|
|
if (SD.NumPatchBytes)
|
|
NumPatchBytes = *SD.NumPatchBytes;
|
|
if (SD.StatepointID)
|
|
StatepointID = *SD.StatepointID;
|
|
|
|
// Pass through the requested lowering if any. The default is live-through.
|
|
StringRef DeoptLowering = getDeoptLowering(CS);
|
|
if (DeoptLowering.equals("live-in"))
|
|
Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
|
|
else {
|
|
assert(DeoptLowering.equals("live-through") && "Unsupported value!");
|
|
}
|
|
|
|
Value *CallTarget = CS.getCalledValue();
|
|
if (Function *F = dyn_cast<Function>(CallTarget)) {
|
|
if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
|
|
// Calls to llvm.experimental.deoptimize are lowered to calls to the
|
|
// __llvm_deoptimize symbol. We want to resolve this now, since the
|
|
// verifier does not allow taking the address of an intrinsic function.
|
|
|
|
SmallVector<Type *, 8> DomainTy;
|
|
for (Value *Arg : CallArgs)
|
|
DomainTy.push_back(Arg->getType());
|
|
auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
|
|
/* isVarArg = */ false);
|
|
|
|
// Note: CallTarget can be a bitcast instruction of a symbol if there are
|
|
// calls to @llvm.experimental.deoptimize with different argument types in
|
|
// the same module. This is fine -- we assume the frontend knew what it
|
|
// was doing when generating this kind of IR.
|
|
CallTarget =
|
|
F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
|
|
|
|
IsDeoptimize = true;
|
|
}
|
|
}
|
|
|
|
// Create the statepoint given all the arguments
|
|
Instruction *Token = nullptr;
|
|
if (CS.isCall()) {
|
|
CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
|
|
CallInst *Call = Builder.CreateGCStatepointCall(
|
|
StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
|
|
TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
|
|
|
|
Call->setTailCallKind(ToReplace->getTailCallKind());
|
|
Call->setCallingConv(ToReplace->getCallingConv());
|
|
|
|
// Currently we will fail on parameter attributes and on certain
|
|
// function attributes. In case if we can handle this set of attributes -
|
|
// set up function attrs directly on statepoint and return attrs later for
|
|
// gc_result intrinsic.
|
|
Call->setAttributes(legalizeCallAttributes(ToReplace->getAttributes()));
|
|
|
|
Token = Call;
|
|
|
|
// Put the following gc_result and gc_relocate calls immediately after the
|
|
// the old call (which we're about to delete)
|
|
assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
|
|
Builder.SetInsertPoint(ToReplace->getNextNode());
|
|
Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
|
|
} else {
|
|
InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
|
|
|
|
// Insert the new invoke into the old block. We'll remove the old one in a
|
|
// moment at which point this will become the new terminator for the
|
|
// original block.
|
|
InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
|
|
StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
|
|
ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
|
|
GCArgs, "statepoint_token");
|
|
|
|
Invoke->setCallingConv(ToReplace->getCallingConv());
|
|
|
|
// Currently we will fail on parameter attributes and on certain
|
|
// function attributes. In case if we can handle this set of attributes -
|
|
// set up function attrs directly on statepoint and return attrs later for
|
|
// gc_result intrinsic.
|
|
Invoke->setAttributes(legalizeCallAttributes(ToReplace->getAttributes()));
|
|
|
|
Token = Invoke;
|
|
|
|
// Generate gc relocates in exceptional path
|
|
BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
|
|
assert(!isa<PHINode>(UnwindBlock->begin()) &&
|
|
UnwindBlock->getUniquePredecessor() &&
|
|
"can't safely insert in this block!");
|
|
|
|
Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
|
|
Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
|
|
|
|
// Attach exceptional gc relocates to the landingpad.
|
|
Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
|
|
Result.UnwindToken = ExceptionalToken;
|
|
|
|
const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
|
|
CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
|
|
Builder);
|
|
|
|
// Generate gc relocates and returns for normal block
|
|
BasicBlock *NormalDest = ToReplace->getNormalDest();
|
|
assert(!isa<PHINode>(NormalDest->begin()) &&
|
|
NormalDest->getUniquePredecessor() &&
|
|
"can't safely insert in this block!");
|
|
|
|
Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
|
|
|
|
// gc relocates will be generated later as if it were regular call
|
|
// statepoint
|
|
}
|
|
assert(Token && "Should be set in one of the above branches!");
|
|
|
|
if (IsDeoptimize) {
|
|
// If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
|
|
// transform the tail-call like structure to a call to a void function
|
|
// followed by unreachable to get better codegen.
|
|
Replacements.push_back(
|
|
DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
|
|
} else {
|
|
Token->setName("statepoint_token");
|
|
if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
|
|
StringRef Name =
|
|
CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
|
|
CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
|
|
GCResult->setAttributes(
|
|
AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
|
|
CS.getAttributes().getRetAttributes()));
|
|
|
|
// We cannot RAUW or delete CS.getInstruction() because it could be in the
|
|
// live set of some other safepoint, in which case that safepoint's
|
|
// PartiallyConstructedSafepointRecord will hold a raw pointer to this
|
|
// llvm::Instruction. Instead, we defer the replacement and deletion to
|
|
// after the live sets have been made explicit in the IR, and we no longer
|
|
// have raw pointers to worry about.
|
|
Replacements.emplace_back(
|
|
DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
|
|
} else {
|
|
Replacements.emplace_back(
|
|
DeferredReplacement::createDelete(CS.getInstruction()));
|
|
}
|
|
}
|
|
|
|
Result.StatepointToken = Token;
|
|
|
|
// Second, create a gc.relocate for every live variable
|
|
const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
|
|
CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
|
|
}
|
|
|
|
// Replace an existing gc.statepoint with a new one and a set of gc.relocates
|
|
// which make the relocations happening at this safepoint explicit.
|
|
//
|
|
// WARNING: Does not do any fixup to adjust users of the original live
|
|
// values. That's the callers responsibility.
|
|
static void
|
|
makeStatepointExplicit(DominatorTree &DT, CallSite CS,
|
|
PartiallyConstructedSafepointRecord &Result,
|
|
std::vector<DeferredReplacement> &Replacements) {
|
|
const auto &LiveSet = Result.LiveSet;
|
|
const auto &PointerToBase = Result.PointerToBase;
|
|
|
|
// Convert to vector for efficient cross referencing.
|
|
SmallVector<Value *, 64> BaseVec, LiveVec;
|
|
LiveVec.reserve(LiveSet.size());
|
|
BaseVec.reserve(LiveSet.size());
|
|
for (Value *L : LiveSet) {
|
|
LiveVec.push_back(L);
|
|
assert(PointerToBase.count(L));
|
|
Value *Base = PointerToBase.find(L)->second;
|
|
BaseVec.push_back(Base);
|
|
}
|
|
assert(LiveVec.size() == BaseVec.size());
|
|
|
|
// Do the actual rewriting and delete the old statepoint
|
|
makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
|
|
}
|
|
|
|
// Helper function for the relocationViaAlloca.
|
|
//
|
|
// It receives iterator to the statepoint gc relocates and emits a store to the
|
|
// assigned location (via allocaMap) for the each one of them. It adds the
|
|
// visited values into the visitedLiveValues set, which we will later use them
|
|
// for sanity checking.
|
|
static void
|
|
insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
|
|
DenseMap<Value *, Value *> &AllocaMap,
|
|
DenseSet<Value *> &VisitedLiveValues) {
|
|
for (User *U : GCRelocs) {
|
|
GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
|
|
if (!Relocate)
|
|
continue;
|
|
|
|
Value *OriginalValue = Relocate->getDerivedPtr();
|
|
assert(AllocaMap.count(OriginalValue));
|
|
Value *Alloca = AllocaMap[OriginalValue];
|
|
|
|
// Emit store into the related alloca
|
|
// All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
|
|
// the correct type according to alloca.
|
|
assert(Relocate->getNextNode() &&
|
|
"Should always have one since it's not a terminator");
|
|
IRBuilder<> Builder(Relocate->getNextNode());
|
|
Value *CastedRelocatedValue =
|
|
Builder.CreateBitCast(Relocate,
|
|
cast<AllocaInst>(Alloca)->getAllocatedType(),
|
|
suffixed_name_or(Relocate, ".casted", ""));
|
|
|
|
StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
|
|
Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
|
|
|
|
#ifndef NDEBUG
|
|
VisitedLiveValues.insert(OriginalValue);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Helper function for the "relocationViaAlloca". Similar to the
|
|
// "insertRelocationStores" but works for rematerialized values.
|
|
static void insertRematerializationStores(
|
|
const RematerializedValueMapTy &RematerializedValues,
|
|
DenseMap<Value *, Value *> &AllocaMap,
|
|
DenseSet<Value *> &VisitedLiveValues) {
|
|
for (auto RematerializedValuePair: RematerializedValues) {
|
|
Instruction *RematerializedValue = RematerializedValuePair.first;
|
|
Value *OriginalValue = RematerializedValuePair.second;
|
|
|
|
assert(AllocaMap.count(OriginalValue) &&
|
|
"Can not find alloca for rematerialized value");
|
|
Value *Alloca = AllocaMap[OriginalValue];
|
|
|
|
StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
|
|
Store->insertAfter(RematerializedValue);
|
|
|
|
#ifndef NDEBUG
|
|
VisitedLiveValues.insert(OriginalValue);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/// Do all the relocation update via allocas and mem2reg
|
|
static void relocationViaAlloca(
|
|
Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
|
|
ArrayRef<PartiallyConstructedSafepointRecord> Records) {
|
|
#ifndef NDEBUG
|
|
// record initial number of (static) allocas; we'll check we have the same
|
|
// number when we get done.
|
|
int InitialAllocaNum = 0;
|
|
for (Instruction &I : F.getEntryBlock())
|
|
if (isa<AllocaInst>(I))
|
|
InitialAllocaNum++;
|
|
#endif
|
|
|
|
// TODO-PERF: change data structures, reserve
|
|
DenseMap<Value *, Value *> AllocaMap;
|
|
SmallVector<AllocaInst *, 200> PromotableAllocas;
|
|
// Used later to chack that we have enough allocas to store all values
|
|
std::size_t NumRematerializedValues = 0;
|
|
PromotableAllocas.reserve(Live.size());
|
|
|
|
// Emit alloca for "LiveValue" and record it in "allocaMap" and
|
|
// "PromotableAllocas"
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
auto emitAllocaFor = [&](Value *LiveValue) {
|
|
AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
|
|
DL.getAllocaAddrSpace(), "",
|
|
F.getEntryBlock().getFirstNonPHI());
|
|
AllocaMap[LiveValue] = Alloca;
|
|
PromotableAllocas.push_back(Alloca);
|
|
};
|
|
|
|
// Emit alloca for each live gc pointer
|
|
for (Value *V : Live)
|
|
emitAllocaFor(V);
|
|
|
|
// Emit allocas for rematerialized values
|
|
for (const auto &Info : Records)
|
|
for (auto RematerializedValuePair : Info.RematerializedValues) {
|
|
Value *OriginalValue = RematerializedValuePair.second;
|
|
if (AllocaMap.count(OriginalValue) != 0)
|
|
continue;
|
|
|
|
emitAllocaFor(OriginalValue);
|
|
++NumRematerializedValues;
|
|
}
|
|
|
|
// The next two loops are part of the same conceptual operation. We need to
|
|
// insert a store to the alloca after the original def and at each
|
|
// redefinition. We need to insert a load before each use. These are split
|
|
// into distinct loops for performance reasons.
|
|
|
|
// Update gc pointer after each statepoint: either store a relocated value or
|
|
// null (if no relocated value was found for this gc pointer and it is not a
|
|
// gc_result). This must happen before we update the statepoint with load of
|
|
// alloca otherwise we lose the link between statepoint and old def.
|
|
for (const auto &Info : Records) {
|
|
Value *Statepoint = Info.StatepointToken;
|
|
|
|
// This will be used for consistency check
|
|
DenseSet<Value *> VisitedLiveValues;
|
|
|
|
// Insert stores for normal statepoint gc relocates
|
|
insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
|
|
|
|
// In case if it was invoke statepoint
|
|
// we will insert stores for exceptional path gc relocates.
|
|
if (isa<InvokeInst>(Statepoint)) {
|
|
insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
|
|
VisitedLiveValues);
|
|
}
|
|
|
|
// Do similar thing with rematerialized values
|
|
insertRematerializationStores(Info.RematerializedValues, AllocaMap,
|
|
VisitedLiveValues);
|
|
|
|
if (ClobberNonLive) {
|
|
// As a debugging aid, pretend that an unrelocated pointer becomes null at
|
|
// the gc.statepoint. This will turn some subtle GC problems into
|
|
// slightly easier to debug SEGVs. Note that on large IR files with
|
|
// lots of gc.statepoints this is extremely costly both memory and time
|
|
// wise.
|
|
SmallVector<AllocaInst *, 64> ToClobber;
|
|
for (auto Pair : AllocaMap) {
|
|
Value *Def = Pair.first;
|
|
AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
|
|
|
|
// This value was relocated
|
|
if (VisitedLiveValues.count(Def)) {
|
|
continue;
|
|
}
|
|
ToClobber.push_back(Alloca);
|
|
}
|
|
|
|
auto InsertClobbersAt = [&](Instruction *IP) {
|
|
for (auto *AI : ToClobber) {
|
|
auto PT = cast<PointerType>(AI->getAllocatedType());
|
|
Constant *CPN = ConstantPointerNull::get(PT);
|
|
StoreInst *Store = new StoreInst(CPN, AI);
|
|
Store->insertBefore(IP);
|
|
}
|
|
};
|
|
|
|
// Insert the clobbering stores. These may get intermixed with the
|
|
// gc.results and gc.relocates, but that's fine.
|
|
if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
|
|
InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
|
|
InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
|
|
} else {
|
|
InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update use with load allocas and add store for gc_relocated.
|
|
for (auto Pair : AllocaMap) {
|
|
Value *Def = Pair.first;
|
|
Value *Alloca = Pair.second;
|
|
|
|
// We pre-record the uses of allocas so that we dont have to worry about
|
|
// later update that changes the user information..
|
|
|
|
SmallVector<Instruction *, 20> Uses;
|
|
// PERF: trade a linear scan for repeated reallocation
|
|
Uses.reserve(Def->getNumUses());
|
|
for (User *U : Def->users()) {
|
|
if (!isa<ConstantExpr>(U)) {
|
|
// If the def has a ConstantExpr use, then the def is either a
|
|
// ConstantExpr use itself or null. In either case
|
|
// (recursively in the first, directly in the second), the oop
|
|
// it is ultimately dependent on is null and this particular
|
|
// use does not need to be fixed up.
|
|
Uses.push_back(cast<Instruction>(U));
|
|
}
|
|
}
|
|
|
|
llvm::sort(Uses.begin(), Uses.end());
|
|
auto Last = std::unique(Uses.begin(), Uses.end());
|
|
Uses.erase(Last, Uses.end());
|
|
|
|
for (Instruction *Use : Uses) {
|
|
if (isa<PHINode>(Use)) {
|
|
PHINode *Phi = cast<PHINode>(Use);
|
|
for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
|
|
if (Def == Phi->getIncomingValue(i)) {
|
|
LoadInst *Load = new LoadInst(
|
|
Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
|
|
Phi->setIncomingValue(i, Load);
|
|
}
|
|
}
|
|
} else {
|
|
LoadInst *Load = new LoadInst(Alloca, "", Use);
|
|
Use->replaceUsesOfWith(Def, Load);
|
|
}
|
|
}
|
|
|
|
// Emit store for the initial gc value. Store must be inserted after load,
|
|
// otherwise store will be in alloca's use list and an extra load will be
|
|
// inserted before it.
|
|
StoreInst *Store = new StoreInst(Def, Alloca);
|
|
if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
|
|
if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
|
|
// InvokeInst is a TerminatorInst so the store need to be inserted
|
|
// into its normal destination block.
|
|
BasicBlock *NormalDest = Invoke->getNormalDest();
|
|
Store->insertBefore(NormalDest->getFirstNonPHI());
|
|
} else {
|
|
assert(!Inst->isTerminator() &&
|
|
"The only TerminatorInst that can produce a value is "
|
|
"InvokeInst which is handled above.");
|
|
Store->insertAfter(Inst);
|
|
}
|
|
} else {
|
|
assert(isa<Argument>(Def));
|
|
Store->insertAfter(cast<Instruction>(Alloca));
|
|
}
|
|
}
|
|
|
|
assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
|
|
"we must have the same allocas with lives");
|
|
if (!PromotableAllocas.empty()) {
|
|
// Apply mem2reg to promote alloca to SSA
|
|
PromoteMemToReg(PromotableAllocas, DT);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
for (auto &I : F.getEntryBlock())
|
|
if (isa<AllocaInst>(I))
|
|
InitialAllocaNum--;
|
|
assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
|
|
#endif
|
|
}
|
|
|
|
/// Implement a unique function which doesn't require we sort the input
|
|
/// vector. Doing so has the effect of changing the output of a couple of
|
|
/// tests in ways which make them less useful in testing fused safepoints.
|
|
template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
|
|
SmallSet<T, 8> Seen;
|
|
Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }),
|
|
Vec.end());
|
|
}
|
|
|
|
/// Insert holders so that each Value is obviously live through the entire
|
|
/// lifetime of the call.
|
|
static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
|
|
SmallVectorImpl<CallInst *> &Holders) {
|
|
if (Values.empty())
|
|
// No values to hold live, might as well not insert the empty holder
|
|
return;
|
|
|
|
Module *M = CS.getInstruction()->getModule();
|
|
// Use a dummy vararg function to actually hold the values live
|
|
Function *Func = cast<Function>(M->getOrInsertFunction(
|
|
"__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
|
|
if (CS.isCall()) {
|
|
// For call safepoints insert dummy calls right after safepoint
|
|
Holders.push_back(CallInst::Create(Func, Values, "",
|
|
&*++CS.getInstruction()->getIterator()));
|
|
return;
|
|
}
|
|
// For invoke safepooints insert dummy calls both in normal and
|
|
// exceptional destination blocks
|
|
auto *II = cast<InvokeInst>(CS.getInstruction());
|
|
Holders.push_back(CallInst::Create(
|
|
Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
|
|
Holders.push_back(CallInst::Create(
|
|
Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
|
|
}
|
|
|
|
static void findLiveReferences(
|
|
Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
|
|
MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
|
|
GCPtrLivenessData OriginalLivenessData;
|
|
computeLiveInValues(DT, F, OriginalLivenessData);
|
|
for (size_t i = 0; i < records.size(); i++) {
|
|
struct PartiallyConstructedSafepointRecord &info = records[i];
|
|
analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
|
|
}
|
|
}
|
|
|
|
// Helper function for the "rematerializeLiveValues". It walks use chain
|
|
// starting from the "CurrentValue" until it reaches the root of the chain, i.e.
|
|
// the base or a value it cannot process. Only "simple" values are processed
|
|
// (currently it is GEP's and casts). The returned root is examined by the
|
|
// callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array
|
|
// with all visited values.
|
|
static Value* findRematerializableChainToBasePointer(
|
|
SmallVectorImpl<Instruction*> &ChainToBase,
|
|
Value *CurrentValue) {
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
|
|
ChainToBase.push_back(GEP);
|
|
return findRematerializableChainToBasePointer(ChainToBase,
|
|
GEP->getPointerOperand());
|
|
}
|
|
|
|
if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
|
|
if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
|
|
return CI;
|
|
|
|
ChainToBase.push_back(CI);
|
|
return findRematerializableChainToBasePointer(ChainToBase,
|
|
CI->getOperand(0));
|
|
}
|
|
|
|
// We have reached the root of the chain, which is either equal to the base or
|
|
// is the first unsupported value along the use chain.
|
|
return CurrentValue;
|
|
}
|
|
|
|
// Helper function for the "rematerializeLiveValues". Compute cost of the use
|
|
// chain we are going to rematerialize.
|
|
static unsigned
|
|
chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
|
|
TargetTransformInfo &TTI) {
|
|
unsigned Cost = 0;
|
|
|
|
for (Instruction *Instr : Chain) {
|
|
if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
|
|
assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
|
|
"non noop cast is found during rematerialization");
|
|
|
|
Type *SrcTy = CI->getOperand(0)->getType();
|
|
Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI);
|
|
|
|
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
|
|
// Cost of the address calculation
|
|
Type *ValTy = GEP->getSourceElementType();
|
|
Cost += TTI.getAddressComputationCost(ValTy);
|
|
|
|
// And cost of the GEP itself
|
|
// TODO: Use TTI->getGEPCost here (it exists, but appears to be not
|
|
// allowed for the external usage)
|
|
if (!GEP->hasAllConstantIndices())
|
|
Cost += 2;
|
|
|
|
} else {
|
|
llvm_unreachable("unsupported instruction type during rematerialization");
|
|
}
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
|
|
unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
|
|
if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
|
|
OrigRootPhi.getParent() != AlternateRootPhi.getParent())
|
|
return false;
|
|
// Map of incoming values and their corresponding basic blocks of
|
|
// OrigRootPhi.
|
|
SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
|
|
for (unsigned i = 0; i < PhiNum; i++)
|
|
CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
|
|
OrigRootPhi.getIncomingBlock(i);
|
|
|
|
// Both current and base PHIs should have same incoming values and
|
|
// the same basic blocks corresponding to the incoming values.
|
|
for (unsigned i = 0; i < PhiNum; i++) {
|
|
auto CIVI =
|
|
CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
|
|
if (CIVI == CurrentIncomingValues.end())
|
|
return false;
|
|
BasicBlock *CurrentIncomingBB = CIVI->second;
|
|
if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// From the statepoint live set pick values that are cheaper to recompute then
|
|
// to relocate. Remove this values from the live set, rematerialize them after
|
|
// statepoint and record them in "Info" structure. Note that similar to
|
|
// relocated values we don't do any user adjustments here.
|
|
static void rematerializeLiveValues(CallSite CS,
|
|
PartiallyConstructedSafepointRecord &Info,
|
|
TargetTransformInfo &TTI) {
|
|
const unsigned int ChainLengthThreshold = 10;
|
|
|
|
// Record values we are going to delete from this statepoint live set.
|
|
// We can not di this in following loop due to iterator invalidation.
|
|
SmallVector<Value *, 32> LiveValuesToBeDeleted;
|
|
|
|
for (Value *LiveValue: Info.LiveSet) {
|
|
// For each live pointer find its defining chain
|
|
SmallVector<Instruction *, 3> ChainToBase;
|
|
assert(Info.PointerToBase.count(LiveValue));
|
|
Value *RootOfChain =
|
|
findRematerializableChainToBasePointer(ChainToBase,
|
|
LiveValue);
|
|
|
|
// Nothing to do, or chain is too long
|
|
if ( ChainToBase.size() == 0 ||
|
|
ChainToBase.size() > ChainLengthThreshold)
|
|
continue;
|
|
|
|
// Handle the scenario where the RootOfChain is not equal to the
|
|
// Base Value, but they are essentially the same phi values.
|
|
if (RootOfChain != Info.PointerToBase[LiveValue]) {
|
|
PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
|
|
PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
|
|
if (!OrigRootPhi || !AlternateRootPhi)
|
|
continue;
|
|
// PHI nodes that have the same incoming values, and belonging to the same
|
|
// basic blocks are essentially the same SSA value. When the original phi
|
|
// has incoming values with different base pointers, the original phi is
|
|
// marked as conflict, and an additional `AlternateRootPhi` with the same
|
|
// incoming values get generated by the findBasePointer function. We need
|
|
// to identify the newly generated AlternateRootPhi (.base version of phi)
|
|
// and RootOfChain (the original phi node itself) are the same, so that we
|
|
// can rematerialize the gep and casts. This is a workaround for the
|
|
// deficiency in the findBasePointer algorithm.
|
|
if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
|
|
continue;
|
|
// Now that the phi nodes are proved to be the same, assert that
|
|
// findBasePointer's newly generated AlternateRootPhi is present in the
|
|
// liveset of the call.
|
|
assert(Info.LiveSet.count(AlternateRootPhi));
|
|
}
|
|
// Compute cost of this chain
|
|
unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
|
|
// TODO: We can also account for cases when we will be able to remove some
|
|
// of the rematerialized values by later optimization passes. I.e if
|
|
// we rematerialized several intersecting chains. Or if original values
|
|
// don't have any uses besides this statepoint.
|
|
|
|
// For invokes we need to rematerialize each chain twice - for normal and
|
|
// for unwind basic blocks. Model this by multiplying cost by two.
|
|
if (CS.isInvoke()) {
|
|
Cost *= 2;
|
|
}
|
|
// If it's too expensive - skip it
|
|
if (Cost >= RematerializationThreshold)
|
|
continue;
|
|
|
|
// Remove value from the live set
|
|
LiveValuesToBeDeleted.push_back(LiveValue);
|
|
|
|
// Clone instructions and record them inside "Info" structure
|
|
|
|
// Walk backwards to visit top-most instructions first
|
|
std::reverse(ChainToBase.begin(), ChainToBase.end());
|
|
|
|
// Utility function which clones all instructions from "ChainToBase"
|
|
// and inserts them before "InsertBefore". Returns rematerialized value
|
|
// which should be used after statepoint.
|
|
auto rematerializeChain = [&ChainToBase](
|
|
Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
|
|
Instruction *LastClonedValue = nullptr;
|
|
Instruction *LastValue = nullptr;
|
|
for (Instruction *Instr: ChainToBase) {
|
|
// Only GEP's and casts are supported as we need to be careful to not
|
|
// introduce any new uses of pointers not in the liveset.
|
|
// Note that it's fine to introduce new uses of pointers which were
|
|
// otherwise not used after this statepoint.
|
|
assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
|
|
|
|
Instruction *ClonedValue = Instr->clone();
|
|
ClonedValue->insertBefore(InsertBefore);
|
|
ClonedValue->setName(Instr->getName() + ".remat");
|
|
|
|
// If it is not first instruction in the chain then it uses previously
|
|
// cloned value. We should update it to use cloned value.
|
|
if (LastClonedValue) {
|
|
assert(LastValue);
|
|
ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
|
|
#ifndef NDEBUG
|
|
for (auto OpValue : ClonedValue->operand_values()) {
|
|
// Assert that cloned instruction does not use any instructions from
|
|
// this chain other than LastClonedValue
|
|
assert(!is_contained(ChainToBase, OpValue) &&
|
|
"incorrect use in rematerialization chain");
|
|
// Assert that the cloned instruction does not use the RootOfChain
|
|
// or the AlternateLiveBase.
|
|
assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
|
|
}
|
|
#endif
|
|
} else {
|
|
// For the first instruction, replace the use of unrelocated base i.e.
|
|
// RootOfChain/OrigRootPhi, with the corresponding PHI present in the
|
|
// live set. They have been proved to be the same PHI nodes. Note
|
|
// that the *only* use of the RootOfChain in the ChainToBase list is
|
|
// the first Value in the list.
|
|
if (RootOfChain != AlternateLiveBase)
|
|
ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
|
|
}
|
|
|
|
LastClonedValue = ClonedValue;
|
|
LastValue = Instr;
|
|
}
|
|
assert(LastClonedValue);
|
|
return LastClonedValue;
|
|
};
|
|
|
|
// Different cases for calls and invokes. For invokes we need to clone
|
|
// instructions both on normal and unwind path.
|
|
if (CS.isCall()) {
|
|
Instruction *InsertBefore = CS.getInstruction()->getNextNode();
|
|
assert(InsertBefore);
|
|
Instruction *RematerializedValue = rematerializeChain(
|
|
InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
|
|
Info.RematerializedValues[RematerializedValue] = LiveValue;
|
|
} else {
|
|
InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
|
|
|
|
Instruction *NormalInsertBefore =
|
|
&*Invoke->getNormalDest()->getFirstInsertionPt();
|
|
Instruction *UnwindInsertBefore =
|
|
&*Invoke->getUnwindDest()->getFirstInsertionPt();
|
|
|
|
Instruction *NormalRematerializedValue = rematerializeChain(
|
|
NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
|
|
Instruction *UnwindRematerializedValue = rematerializeChain(
|
|
UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
|
|
|
|
Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
|
|
Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
|
|
}
|
|
}
|
|
|
|
// Remove rematerializaed values from the live set
|
|
for (auto LiveValue: LiveValuesToBeDeleted) {
|
|
Info.LiveSet.remove(LiveValue);
|
|
}
|
|
}
|
|
|
|
static bool insertParsePoints(Function &F, DominatorTree &DT,
|
|
TargetTransformInfo &TTI,
|
|
SmallVectorImpl<CallSite> &ToUpdate) {
|
|
#ifndef NDEBUG
|
|
// sanity check the input
|
|
std::set<CallSite> Uniqued;
|
|
Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
|
|
assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
|
|
|
|
for (CallSite CS : ToUpdate)
|
|
assert(CS.getInstruction()->getFunction() == &F);
|
|
#endif
|
|
|
|
// When inserting gc.relocates for invokes, we need to be able to insert at
|
|
// the top of the successor blocks. See the comment on
|
|
// normalForInvokeSafepoint on exactly what is needed. Note that this step
|
|
// may restructure the CFG.
|
|
for (CallSite CS : ToUpdate) {
|
|
if (!CS.isInvoke())
|
|
continue;
|
|
auto *II = cast<InvokeInst>(CS.getInstruction());
|
|
normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
|
|
normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
|
|
}
|
|
|
|
// A list of dummy calls added to the IR to keep various values obviously
|
|
// live in the IR. We'll remove all of these when done.
|
|
SmallVector<CallInst *, 64> Holders;
|
|
|
|
// Insert a dummy call with all of the deopt operands we'll need for the
|
|
// actual safepoint insertion as arguments. This ensures reference operands
|
|
// in the deopt argument list are considered live through the safepoint (and
|
|
// thus makes sure they get relocated.)
|
|
for (CallSite CS : ToUpdate) {
|
|
SmallVector<Value *, 64> DeoptValues;
|
|
|
|
for (Value *Arg : GetDeoptBundleOperands(CS)) {
|
|
assert(!isUnhandledGCPointerType(Arg->getType()) &&
|
|
"support for FCA unimplemented");
|
|
if (isHandledGCPointerType(Arg->getType()))
|
|
DeoptValues.push_back(Arg);
|
|
}
|
|
|
|
insertUseHolderAfter(CS, DeoptValues, Holders);
|
|
}
|
|
|
|
SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
|
|
|
|
// A) Identify all gc pointers which are statically live at the given call
|
|
// site.
|
|
findLiveReferences(F, DT, ToUpdate, Records);
|
|
|
|
// B) Find the base pointers for each live pointer
|
|
/* scope for caching */ {
|
|
// Cache the 'defining value' relation used in the computation and
|
|
// insertion of base phis and selects. This ensures that we don't insert
|
|
// large numbers of duplicate base_phis.
|
|
DefiningValueMapTy DVCache;
|
|
|
|
for (size_t i = 0; i < Records.size(); i++) {
|
|
PartiallyConstructedSafepointRecord &info = Records[i];
|
|
findBasePointers(DT, DVCache, ToUpdate[i], info);
|
|
}
|
|
} // end of cache scope
|
|
|
|
// The base phi insertion logic (for any safepoint) may have inserted new
|
|
// instructions which are now live at some safepoint. The simplest such
|
|
// example is:
|
|
// loop:
|
|
// phi a <-- will be a new base_phi here
|
|
// safepoint 1 <-- that needs to be live here
|
|
// gep a + 1
|
|
// safepoint 2
|
|
// br loop
|
|
// We insert some dummy calls after each safepoint to definitely hold live
|
|
// the base pointers which were identified for that safepoint. We'll then
|
|
// ask liveness for _every_ base inserted to see what is now live. Then we
|
|
// remove the dummy calls.
|
|
Holders.reserve(Holders.size() + Records.size());
|
|
for (size_t i = 0; i < Records.size(); i++) {
|
|
PartiallyConstructedSafepointRecord &Info = Records[i];
|
|
|
|
SmallVector<Value *, 128> Bases;
|
|
for (auto Pair : Info.PointerToBase)
|
|
Bases.push_back(Pair.second);
|
|
|
|
insertUseHolderAfter(ToUpdate[i], Bases, Holders);
|
|
}
|
|
|
|
// By selecting base pointers, we've effectively inserted new uses. Thus, we
|
|
// need to rerun liveness. We may *also* have inserted new defs, but that's
|
|
// not the key issue.
|
|
recomputeLiveInValues(F, DT, ToUpdate, Records);
|
|
|
|
if (PrintBasePointers) {
|
|
for (auto &Info : Records) {
|
|
errs() << "Base Pairs: (w/Relocation)\n";
|
|
for (auto Pair : Info.PointerToBase) {
|
|
errs() << " derived ";
|
|
Pair.first->printAsOperand(errs(), false);
|
|
errs() << " base ";
|
|
Pair.second->printAsOperand(errs(), false);
|
|
errs() << "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
// It is possible that non-constant live variables have a constant base. For
|
|
// example, a GEP with a variable offset from a global. In this case we can
|
|
// remove it from the liveset. We already don't add constants to the liveset
|
|
// because we assume they won't move at runtime and the GC doesn't need to be
|
|
// informed about them. The same reasoning applies if the base is constant.
|
|
// Note that the relocation placement code relies on this filtering for
|
|
// correctness as it expects the base to be in the liveset, which isn't true
|
|
// if the base is constant.
|
|
for (auto &Info : Records)
|
|
for (auto &BasePair : Info.PointerToBase)
|
|
if (isa<Constant>(BasePair.second))
|
|
Info.LiveSet.remove(BasePair.first);
|
|
|
|
for (CallInst *CI : Holders)
|
|
CI->eraseFromParent();
|
|
|
|
Holders.clear();
|
|
|
|
// In order to reduce live set of statepoint we might choose to rematerialize
|
|
// some values instead of relocating them. This is purely an optimization and
|
|
// does not influence correctness.
|
|
for (size_t i = 0; i < Records.size(); i++)
|
|
rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
|
|
|
|
// We need this to safely RAUW and delete call or invoke return values that
|
|
// may themselves be live over a statepoint. For details, please see usage in
|
|
// makeStatepointExplicitImpl.
|
|
std::vector<DeferredReplacement> Replacements;
|
|
|
|
// Now run through and replace the existing statepoints with new ones with
|
|
// the live variables listed. We do not yet update uses of the values being
|
|
// relocated. We have references to live variables that need to
|
|
// survive to the last iteration of this loop. (By construction, the
|
|
// previous statepoint can not be a live variable, thus we can and remove
|
|
// the old statepoint calls as we go.)
|
|
for (size_t i = 0; i < Records.size(); i++)
|
|
makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
|
|
|
|
ToUpdate.clear(); // prevent accident use of invalid CallSites
|
|
|
|
for (auto &PR : Replacements)
|
|
PR.doReplacement();
|
|
|
|
Replacements.clear();
|
|
|
|
for (auto &Info : Records) {
|
|
// These live sets may contain state Value pointers, since we replaced calls
|
|
// with operand bundles with calls wrapped in gc.statepoint, and some of
|
|
// those calls may have been def'ing live gc pointers. Clear these out to
|
|
// avoid accidentally using them.
|
|
//
|
|
// TODO: We should create a separate data structure that does not contain
|
|
// these live sets, and migrate to using that data structure from this point
|
|
// onward.
|
|
Info.LiveSet.clear();
|
|
Info.PointerToBase.clear();
|
|
}
|
|
|
|
// Do all the fixups of the original live variables to their relocated selves
|
|
SmallVector<Value *, 128> Live;
|
|
for (size_t i = 0; i < Records.size(); i++) {
|
|
PartiallyConstructedSafepointRecord &Info = Records[i];
|
|
|
|
// We can't simply save the live set from the original insertion. One of
|
|
// the live values might be the result of a call which needs a safepoint.
|
|
// That Value* no longer exists and we need to use the new gc_result.
|
|
// Thankfully, the live set is embedded in the statepoint (and updated), so
|
|
// we just grab that.
|
|
Statepoint Statepoint(Info.StatepointToken);
|
|
Live.insert(Live.end(), Statepoint.gc_args_begin(),
|
|
Statepoint.gc_args_end());
|
|
#ifndef NDEBUG
|
|
// Do some basic sanity checks on our liveness results before performing
|
|
// relocation. Relocation can and will turn mistakes in liveness results
|
|
// into non-sensical code which is must harder to debug.
|
|
// TODO: It would be nice to test consistency as well
|
|
assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
|
|
"statepoint must be reachable or liveness is meaningless");
|
|
for (Value *V : Statepoint.gc_args()) {
|
|
if (!isa<Instruction>(V))
|
|
// Non-instruction values trivial dominate all possible uses
|
|
continue;
|
|
auto *LiveInst = cast<Instruction>(V);
|
|
assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
|
|
"unreachable values should never be live");
|
|
assert(DT.dominates(LiveInst, Info.StatepointToken) &&
|
|
"basic SSA liveness expectation violated by liveness analysis");
|
|
}
|
|
#endif
|
|
}
|
|
unique_unsorted(Live);
|
|
|
|
#ifndef NDEBUG
|
|
// sanity check
|
|
for (auto *Ptr : Live)
|
|
assert(isHandledGCPointerType(Ptr->getType()) &&
|
|
"must be a gc pointer type");
|
|
#endif
|
|
|
|
relocationViaAlloca(F, DT, Live, Records);
|
|
return !Records.empty();
|
|
}
|
|
|
|
// Handles both return values and arguments for Functions and CallSites.
|
|
template <typename AttrHolder>
|
|
static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
|
|
unsigned Index) {
|
|
AttrBuilder R;
|
|
if (AH.getDereferenceableBytes(Index))
|
|
R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
|
|
AH.getDereferenceableBytes(Index)));
|
|
if (AH.getDereferenceableOrNullBytes(Index))
|
|
R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
|
|
AH.getDereferenceableOrNullBytes(Index)));
|
|
if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
|
|
R.addAttribute(Attribute::NoAlias);
|
|
|
|
if (!R.empty())
|
|
AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
|
|
}
|
|
|
|
static void stripNonValidAttributesFromPrototype(Function &F) {
|
|
LLVMContext &Ctx = F.getContext();
|
|
|
|
for (Argument &A : F.args())
|
|
if (isa<PointerType>(A.getType()))
|
|
RemoveNonValidAttrAtIndex(Ctx, F,
|
|
A.getArgNo() + AttributeList::FirstArgIndex);
|
|
|
|
if (isa<PointerType>(F.getReturnType()))
|
|
RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
|
|
}
|
|
|
|
/// Certain metadata on instructions are invalid after running RS4GC.
|
|
/// Optimizations that run after RS4GC can incorrectly use this metadata to
|
|
/// optimize functions. We drop such metadata on the instruction.
|
|
static void stripInvalidMetadataFromInstruction(Instruction &I) {
|
|
if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
|
|
return;
|
|
// These are the attributes that are still valid on loads and stores after
|
|
// RS4GC.
|
|
// The metadata implying dereferenceability and noalias are (conservatively)
|
|
// dropped. This is because semantically, after RewriteStatepointsForGC runs,
|
|
// all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
|
|
// touch the entire heap including noalias objects. Note: The reasoning is
|
|
// same as stripping the dereferenceability and noalias attributes that are
|
|
// analogous to the metadata counterparts.
|
|
// We also drop the invariant.load metadata on the load because that metadata
|
|
// implies the address operand to the load points to memory that is never
|
|
// changed once it became dereferenceable. This is no longer true after RS4GC.
|
|
// Similar reasoning applies to invariant.group metadata, which applies to
|
|
// loads within a group.
|
|
unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
|
|
LLVMContext::MD_range,
|
|
LLVMContext::MD_alias_scope,
|
|
LLVMContext::MD_nontemporal,
|
|
LLVMContext::MD_nonnull,
|
|
LLVMContext::MD_align,
|
|
LLVMContext::MD_type};
|
|
|
|
// Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
|
|
I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
|
|
}
|
|
|
|
static void stripNonValidDataFromBody(Function &F) {
|
|
if (F.empty())
|
|
return;
|
|
|
|
LLVMContext &Ctx = F.getContext();
|
|
MDBuilder Builder(Ctx);
|
|
|
|
// Set of invariantstart instructions that we need to remove.
|
|
// Use this to avoid invalidating the instruction iterator.
|
|
SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
|
|
|
|
for (Instruction &I : instructions(F)) {
|
|
// invariant.start on memory location implies that the referenced memory
|
|
// location is constant and unchanging. This is no longer true after
|
|
// RewriteStatepointsForGC runs because there can be calls to gc.statepoint
|
|
// which frees the entire heap and the presence of invariant.start allows
|
|
// the optimizer to sink the load of a memory location past a statepoint,
|
|
// which is incorrect.
|
|
if (auto *II = dyn_cast<IntrinsicInst>(&I))
|
|
if (II->getIntrinsicID() == Intrinsic::invariant_start) {
|
|
InvariantStartInstructions.push_back(II);
|
|
continue;
|
|
}
|
|
|
|
if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
|
|
MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
|
|
I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
|
|
}
|
|
|
|
stripInvalidMetadataFromInstruction(I);
|
|
|
|
if (CallSite CS = CallSite(&I)) {
|
|
for (int i = 0, e = CS.arg_size(); i != e; i++)
|
|
if (isa<PointerType>(CS.getArgument(i)->getType()))
|
|
RemoveNonValidAttrAtIndex(Ctx, CS, i + AttributeList::FirstArgIndex);
|
|
if (isa<PointerType>(CS.getType()))
|
|
RemoveNonValidAttrAtIndex(Ctx, CS, AttributeList::ReturnIndex);
|
|
}
|
|
}
|
|
|
|
// Delete the invariant.start instructions and RAUW undef.
|
|
for (auto *II : InvariantStartInstructions) {
|
|
II->replaceAllUsesWith(UndefValue::get(II->getType()));
|
|
II->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
/// Returns true if this function should be rewritten by this pass. The main
|
|
/// point of this function is as an extension point for custom logic.
|
|
static bool shouldRewriteStatepointsIn(Function &F) {
|
|
// TODO: This should check the GCStrategy
|
|
if (F.hasGC()) {
|
|
const auto &FunctionGCName = F.getGC();
|
|
const StringRef StatepointExampleName("statepoint-example");
|
|
const StringRef CoreCLRName("coreclr");
|
|
return (StatepointExampleName == FunctionGCName) ||
|
|
(CoreCLRName == FunctionGCName);
|
|
} else
|
|
return false;
|
|
}
|
|
|
|
static void stripNonValidData(Module &M) {
|
|
#ifndef NDEBUG
|
|
assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
|
|
#endif
|
|
|
|
for (Function &F : M)
|
|
stripNonValidAttributesFromPrototype(F);
|
|
|
|
for (Function &F : M)
|
|
stripNonValidDataFromBody(F);
|
|
}
|
|
|
|
bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
|
|
TargetTransformInfo &TTI,
|
|
const TargetLibraryInfo &TLI) {
|
|
assert(!F.isDeclaration() && !F.empty() &&
|
|
"need function body to rewrite statepoints in");
|
|
assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
|
|
|
|
auto NeedsRewrite = [&TLI](Instruction &I) {
|
|
if (ImmutableCallSite CS = ImmutableCallSite(&I))
|
|
return !callsGCLeafFunction(CS, TLI) && !isStatepoint(CS);
|
|
return false;
|
|
};
|
|
|
|
|
|
// Delete any unreachable statepoints so that we don't have unrewritten
|
|
// statepoints surviving this pass. This makes testing easier and the
|
|
// resulting IR less confusing to human readers.
|
|
DeferredDominance DD(DT);
|
|
bool MadeChange = removeUnreachableBlocks(F, nullptr, &DD);
|
|
DD.flush();
|
|
|
|
// Gather all the statepoints which need rewritten. Be careful to only
|
|
// consider those in reachable code since we need to ask dominance queries
|
|
// when rewriting. We'll delete the unreachable ones in a moment.
|
|
SmallVector<CallSite, 64> ParsePointNeeded;
|
|
for (Instruction &I : instructions(F)) {
|
|
// TODO: only the ones with the flag set!
|
|
if (NeedsRewrite(I)) {
|
|
// NOTE removeUnreachableBlocks() is stronger than
|
|
// DominatorTree::isReachableFromEntry(). In other words
|
|
// removeUnreachableBlocks can remove some blocks for which
|
|
// isReachableFromEntry() returns true.
|
|
assert(DT.isReachableFromEntry(I.getParent()) &&
|
|
"no unreachable blocks expected");
|
|
ParsePointNeeded.push_back(CallSite(&I));
|
|
}
|
|
}
|
|
|
|
// Return early if no work to do.
|
|
if (ParsePointNeeded.empty())
|
|
return MadeChange;
|
|
|
|
// As a prepass, go ahead and aggressively destroy single entry phi nodes.
|
|
// These are created by LCSSA. They have the effect of increasing the size
|
|
// of liveness sets for no good reason. It may be harder to do this post
|
|
// insertion since relocations and base phis can confuse things.
|
|
for (BasicBlock &BB : F)
|
|
if (BB.getUniquePredecessor()) {
|
|
MadeChange = true;
|
|
FoldSingleEntryPHINodes(&BB);
|
|
}
|
|
|
|
// Before we start introducing relocations, we want to tweak the IR a bit to
|
|
// avoid unfortunate code generation effects. The main example is that we
|
|
// want to try to make sure the comparison feeding a branch is after any
|
|
// safepoints. Otherwise, we end up with a comparison of pre-relocation
|
|
// values feeding a branch after relocation. This is semantically correct,
|
|
// but results in extra register pressure since both the pre-relocation and
|
|
// post-relocation copies must be available in registers. For code without
|
|
// relocations this is handled elsewhere, but teaching the scheduler to
|
|
// reverse the transform we're about to do would be slightly complex.
|
|
// Note: This may extend the live range of the inputs to the icmp and thus
|
|
// increase the liveset of any statepoint we move over. This is profitable
|
|
// as long as all statepoints are in rare blocks. If we had in-register
|
|
// lowering for live values this would be a much safer transform.
|
|
auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
|
|
if (auto *BI = dyn_cast<BranchInst>(TI))
|
|
if (BI->isConditional())
|
|
return dyn_cast<Instruction>(BI->getCondition());
|
|
// TODO: Extend this to handle switches
|
|
return nullptr;
|
|
};
|
|
for (BasicBlock &BB : F) {
|
|
TerminatorInst *TI = BB.getTerminator();
|
|
if (auto *Cond = getConditionInst(TI))
|
|
// TODO: Handle more than just ICmps here. We should be able to move
|
|
// most instructions without side effects or memory access.
|
|
if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
|
|
MadeChange = true;
|
|
Cond->moveBefore(TI);
|
|
}
|
|
}
|
|
|
|
MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
|
|
return MadeChange;
|
|
}
|
|
|
|
// liveness computation via standard dataflow
|
|
// -------------------------------------------------------------------
|
|
|
|
// TODO: Consider using bitvectors for liveness, the set of potentially
|
|
// interesting values should be small and easy to pre-compute.
|
|
|
|
/// Compute the live-in set for the location rbegin starting from
|
|
/// the live-out set of the basic block
|
|
static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
|
|
BasicBlock::reverse_iterator End,
|
|
SetVector<Value *> &LiveTmp) {
|
|
for (auto &I : make_range(Begin, End)) {
|
|
// KILL/Def - Remove this definition from LiveIn
|
|
LiveTmp.remove(&I);
|
|
|
|
// Don't consider *uses* in PHI nodes, we handle their contribution to
|
|
// predecessor blocks when we seed the LiveOut sets
|
|
if (isa<PHINode>(I))
|
|
continue;
|
|
|
|
// USE - Add to the LiveIn set for this instruction
|
|
for (Value *V : I.operands()) {
|
|
assert(!isUnhandledGCPointerType(V->getType()) &&
|
|
"support for FCA unimplemented");
|
|
if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
|
|
// The choice to exclude all things constant here is slightly subtle.
|
|
// There are two independent reasons:
|
|
// - We assume that things which are constant (from LLVM's definition)
|
|
// do not move at runtime. For example, the address of a global
|
|
// variable is fixed, even though it's contents may not be.
|
|
// - Second, we can't disallow arbitrary inttoptr constants even
|
|
// if the language frontend does. Optimization passes are free to
|
|
// locally exploit facts without respect to global reachability. This
|
|
// can create sections of code which are dynamically unreachable and
|
|
// contain just about anything. (see constants.ll in tests)
|
|
LiveTmp.insert(V);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
|
|
for (BasicBlock *Succ : successors(BB)) {
|
|
for (auto &I : *Succ) {
|
|
PHINode *PN = dyn_cast<PHINode>(&I);
|
|
if (!PN)
|
|
break;
|
|
|
|
Value *V = PN->getIncomingValueForBlock(BB);
|
|
assert(!isUnhandledGCPointerType(V->getType()) &&
|
|
"support for FCA unimplemented");
|
|
if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
|
|
LiveTmp.insert(V);
|
|
}
|
|
}
|
|
}
|
|
|
|
static SetVector<Value *> computeKillSet(BasicBlock *BB) {
|
|
SetVector<Value *> KillSet;
|
|
for (Instruction &I : *BB)
|
|
if (isHandledGCPointerType(I.getType()))
|
|
KillSet.insert(&I);
|
|
return KillSet;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// Check that the items in 'Live' dominate 'TI'. This is used as a basic
|
|
/// sanity check for the liveness computation.
|
|
static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
|
|
TerminatorInst *TI, bool TermOkay = false) {
|
|
for (Value *V : Live) {
|
|
if (auto *I = dyn_cast<Instruction>(V)) {
|
|
// The terminator can be a member of the LiveOut set. LLVM's definition
|
|
// of instruction dominance states that V does not dominate itself. As
|
|
// such, we need to special case this to allow it.
|
|
if (TermOkay && TI == I)
|
|
continue;
|
|
assert(DT.dominates(I, TI) &&
|
|
"basic SSA liveness expectation violated by liveness analysis");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Check that all the liveness sets used during the computation of liveness
|
|
/// obey basic SSA properties. This is useful for finding cases where we miss
|
|
/// a def.
|
|
static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
|
|
BasicBlock &BB) {
|
|
checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
|
|
checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
|
|
checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
|
|
}
|
|
#endif
|
|
|
|
static void computeLiveInValues(DominatorTree &DT, Function &F,
|
|
GCPtrLivenessData &Data) {
|
|
SmallSetVector<BasicBlock *, 32> Worklist;
|
|
|
|
// Seed the liveness for each individual block
|
|
for (BasicBlock &BB : F) {
|
|
Data.KillSet[&BB] = computeKillSet(&BB);
|
|
Data.LiveSet[&BB].clear();
|
|
computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
|
|
|
|
#ifndef NDEBUG
|
|
for (Value *Kill : Data.KillSet[&BB])
|
|
assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
|
|
#endif
|
|
|
|
Data.LiveOut[&BB] = SetVector<Value *>();
|
|
computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
|
|
Data.LiveIn[&BB] = Data.LiveSet[&BB];
|
|
Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
|
|
Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
|
|
if (!Data.LiveIn[&BB].empty())
|
|
Worklist.insert(pred_begin(&BB), pred_end(&BB));
|
|
}
|
|
|
|
// Propagate that liveness until stable
|
|
while (!Worklist.empty()) {
|
|
BasicBlock *BB = Worklist.pop_back_val();
|
|
|
|
// Compute our new liveout set, then exit early if it hasn't changed despite
|
|
// the contribution of our successor.
|
|
SetVector<Value *> LiveOut = Data.LiveOut[BB];
|
|
const auto OldLiveOutSize = LiveOut.size();
|
|
for (BasicBlock *Succ : successors(BB)) {
|
|
assert(Data.LiveIn.count(Succ));
|
|
LiveOut.set_union(Data.LiveIn[Succ]);
|
|
}
|
|
// assert OutLiveOut is a subset of LiveOut
|
|
if (OldLiveOutSize == LiveOut.size()) {
|
|
// If the sets are the same size, then we didn't actually add anything
|
|
// when unioning our successors LiveIn. Thus, the LiveIn of this block
|
|
// hasn't changed.
|
|
continue;
|
|
}
|
|
Data.LiveOut[BB] = LiveOut;
|
|
|
|
// Apply the effects of this basic block
|
|
SetVector<Value *> LiveTmp = LiveOut;
|
|
LiveTmp.set_union(Data.LiveSet[BB]);
|
|
LiveTmp.set_subtract(Data.KillSet[BB]);
|
|
|
|
assert(Data.LiveIn.count(BB));
|
|
const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
|
|
// assert: OldLiveIn is a subset of LiveTmp
|
|
if (OldLiveIn.size() != LiveTmp.size()) {
|
|
Data.LiveIn[BB] = LiveTmp;
|
|
Worklist.insert(pred_begin(BB), pred_end(BB));
|
|
}
|
|
} // while (!Worklist.empty())
|
|
|
|
#ifndef NDEBUG
|
|
// Sanity check our output against SSA properties. This helps catch any
|
|
// missing kills during the above iteration.
|
|
for (BasicBlock &BB : F)
|
|
checkBasicSSA(DT, Data, BB);
|
|
#endif
|
|
}
|
|
|
|
static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
|
|
StatepointLiveSetTy &Out) {
|
|
BasicBlock *BB = Inst->getParent();
|
|
|
|
// Note: The copy is intentional and required
|
|
assert(Data.LiveOut.count(BB));
|
|
SetVector<Value *> LiveOut = Data.LiveOut[BB];
|
|
|
|
// We want to handle the statepoint itself oddly. It's
|
|
// call result is not live (normal), nor are it's arguments
|
|
// (unless they're used again later). This adjustment is
|
|
// specifically what we need to relocate
|
|
computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
|
|
LiveOut);
|
|
LiveOut.remove(Inst);
|
|
Out.insert(LiveOut.begin(), LiveOut.end());
|
|
}
|
|
|
|
static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
|
|
CallSite CS,
|
|
PartiallyConstructedSafepointRecord &Info) {
|
|
Instruction *Inst = CS.getInstruction();
|
|
StatepointLiveSetTy Updated;
|
|
findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
|
|
|
|
// We may have base pointers which are now live that weren't before. We need
|
|
// to update the PointerToBase structure to reflect this.
|
|
for (auto V : Updated)
|
|
if (Info.PointerToBase.insert({V, V}).second) {
|
|
assert(isKnownBaseResult(V) &&
|
|
"Can't find base for unexpected live value!");
|
|
continue;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
for (auto V : Updated)
|
|
assert(Info.PointerToBase.count(V) &&
|
|
"Must be able to find base for live value!");
|
|
#endif
|
|
|
|
// Remove any stale base mappings - this can happen since our liveness is
|
|
// more precise then the one inherent in the base pointer analysis.
|
|
DenseSet<Value *> ToErase;
|
|
for (auto KVPair : Info.PointerToBase)
|
|
if (!Updated.count(KVPair.first))
|
|
ToErase.insert(KVPair.first);
|
|
|
|
for (auto *V : ToErase)
|
|
Info.PointerToBase.erase(V);
|
|
|
|
#ifndef NDEBUG
|
|
for (auto KVPair : Info.PointerToBase)
|
|
assert(Updated.count(KVPair.first) && "record for non-live value");
|
|
#endif
|
|
|
|
Info.LiveSet = Updated;
|
|
}
|